More stories

  • in

    Global crop yields can be lifted by timely adaptation of growing periods to climate change

    Rule-based mean sowing and maturity datesLocation- and climate-specific mean crop calendars are computed by combining two rule-based approaches published by19 and22 to simulate sowing and physiological maturity dates of grain crops, respectively. The assumption is that farmers select growing seasons based on the mean climatic characteristics of their specific location and on the physiological limitations (base and optimum temperatures for reproductive growth; sensitivity to terminal water stress) of the respective crop species. Accordingly, they select sowing dates and cultivars with phenologies that, on average, meet these adapted maturity dates.The climate is classified into (i) seasonality types, based on the coefficient of variation of monthly mean temperature and precipitation and (ii) temperature levels, based on the temperature of the warmest month as compared to the base and the optimum temperatures for the crop reproductive growth. Optimal temperatures for sowing, optimal temperature ranges for grain filling, as well as indicators of soil moisture conditions (based on precipitation/potential-evapotranspiration ratio (P/PET)), are defined as global parameters for each crop (Supplementary Table 1) and used as thresholds to identify the best timing for sowing and for the start or end of the crop grain-filling phase. To cope with fluctuations of daily values around these thresholds, mean daily temperature, precipitation and potential evapotranspiration are derived by linear interpolation between monthly values.We distinguish between spring and winter crop types. Maize, rice, sorghum, and soybean are simulated as spring crops only, for wheat we simulate both types. For spring crops, farmers sow the crops at the onset of the wet season (first day of the wettest 120 consecutive days), in case of prevailing precipitation seasonality, or on the day of the year when temperatures increase above crop-specific temperature threshold19 (Supplementary Table 1), in case of temperature-driven seasonality.For wheat, we distinguish three types: winter wheat with vernalization is chosen if monthly temperatures fall below 0 °C, but winter is neither too harsh (temperature of the coldest month is higher than −10 °C), nor too long (temperatures fall below the sowing temperature threshold (12 °C) after 15th September (North hemisphere) or 31st March (South hemisphere)19). Winter wheat without vernalization is grown if winters are mild (the temperature of the coldest month is higher than 0 °C) without dormancy. In this case, wheat is sown 75 days before the coldest month of the year. This rule was arbitrarily chosen based on observed wheat sowing dates in mild winter regions. If the conditions for growing any of the winter-wheat types are not met (winter too harsh and too long), then spring wheat (without vernalization) is chosen. Note that the computed sowing dates do not differ between rainfed and irrigated for any of the crops.The mean maturity date is chosen so that the crop grain-filling phase, the most critical for yield formation, occurs under the least stressful conditions possible in that location and climate as follows. Under precipitation seasonality, grain filling starts towards the end of the rainy season, when a P/PET threshold is crossed. Under temperature seasonality, (a) grain filling of spring crops starts in the warmest month of the year (if summer temperatures are optimal), or right after temperatures return within an optimal range; (b) grain filling of winter crops ends in the warmest month of the year (if summer temperatures are optimal), or right before temperatures exceed the optimal range; (c) eventually, maturity is advanced to escape terminal water stress. Note that the grain-filling phase has a static duration of 60 days for maize and 40 days for all the other crops. This assumption is based on empirical relationships between the total growth period and the post-flowering reproductive phase, showing that the partition between the vegetative and reproductive phase of grain crops follows a saturation curve that levels off after 90–100 days of total growth duration54. Different crops are assumed to have only one crop cycle (sowing-to-maturity) per year, therefore neither multi-cropping systems nor crop rotations are accounted for in the decision-making rules. A detailed description of the rules and parameterization can be found in refs. 19, 22.Simulated crop calendars reflect current farmers’ managementSimulated historical crop calendars, driven by the bias-corrected climate dataset WFDEI23, largely agree with observations11,12,13. We compare results both at the country and grid-cell level because, although the observed crop calendars used here are gridded datasets, their underlying sources are often reported per country. The country-level comparison highlights that the agreement is good for most countries, importantly, including those with large cropland area. The area-weighted Mean Absolute Error (MAE) is close or well below 30 days for all considered crops (Fig. 4). The simulated crop calendars compare well with the observed data also at the grid-cell level. Large areas, including major agricultural regions of importance for global yields, show deviations within ±15 days for both sowing and maturity dates (Supplementary Table 2 and Supplementary Figs. 21–24). However, evaluating the accuracy below 30 days is limited by the time resolution of the observations, which is either (i) monthly11 and converted by us into daily values, by taking the mid-day of the reported month, or (ii) daily12,13, but resulting from averages over large time windows (often  > 1 month). Overall, the accuracy of the model is in line with the original evaluations of this rule-base method19,22, as well as with other studies simulating average growing periods across large regions18,20.Fig. 4: Evaluation of simulated crop calendars.Country-level comparison of simulated and observed sowing (A) and maturity (B) dates (day of the year) for five crops. Each circle refers to a country and a crop, the size of the circle is scaled according to the cropland area per country. The area-weighted Mean Absolute Error (MAE, days) is reported for each crop. Crop-calendar simulations are based on WFDEI reanalysis climate forcing23 for the period 1979–2012. The observed crop calendar includes different sources11,12,13.Full size imageSimulation of daily crop phenology and yields with the LPJmL crop modelWe perform a modeling experiment across the global land grid at 0.5° × 0.5° resolution. We used the LPJmL5 crop model24,25 to simulate daily growth and phenological development of five crops, driven by climate projections from four General Circulation Models (GCMs) GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 under the Representative Concentration Pathways 6.0 (RCP6.0) as provided in bias-adjusted form from the CMIP5 archive by the ISIMIP2b project42. Irrigated and rainfed production systems are simulated separately on their current harvested areas11, which is also used to compute total crop yields at grid-cell and global scale, as the product of yield by crop-specific area. A first 5000-year spin-up simulation is used to initialize all model pools (e.g., soil carbon and nitrogen content). A second spin-up simulation of 390 years is used to introduced effects of historical human-driven land-use change on these pools. A change in cropping area for the future scenarios is not considered in this study.Phenological development is simulated based on the thermal-time model, including the effect of vernalization. All crops are assumed to be insensitive to photoperiod, due to a lack of parameters for multiple-crops and global-scale simulations. Previous global studies15,18 that have focused on maize and wheat only, have found lower performances in the growing-period simulations when using a photo-thermal model, compared to a temperature-only driven approach and thus recommend caution when using the photoperiodic response. State-of-the-art global crop models13,16 also typically do not consider sensitivity to photoperiod or assume that the photoperiodic response of the cultivars chosen in each location are perfectly tuned to the given conditions.Sowing dates are prescribed based on the external rule-based algorithm. Crop cultivars are parametrized based on the phenological units required to reach the corresponding maturity dates (TUreq, °C days). In line with15, TUreq are derived consistently with the phenological module of the crop model LPJmL for each grid cell, crop, and rule-based computed growing period from the respective climate input. They are calculated as the sum of daily mean air temperature increments above a crop-specific base temperature (TU) (Supplementary Table 1) between rule-based sowing and maturity. In addition, winter-wheat cultivars require effective vernalization days (VUreq), that range between 0 (mild winters) and 70 (cold winters), depending on the temperature of the 5 coldest months (Eq. (1))15,18.$${{{{{mathrm{V}}}}}}{{{{{{mathrm{U}}}}}}}_{{{{{{{mathrm{req}}}}}}}}=frac{70}{5}times left(1-frac{{T}_{m}-3}{10-3}right)$$
    (1)
    where Tm is the mean temperature of the month.From the day of sowing, effective TU for phenological development are accumulated daily, as the difference between the mean air temperature on that day and the crop-specific base temperature for phenological development (Eq. (2)). The vernalization effectiveness is computed daily by a scaling factor (0–1), which is then multiplied to the TU (Eq. (2)). For crops that are insensitive to vernalization, VUd is set equal one.$${{{{{mathrm{T}}}}}}{{{{{{mathrm{U}}}}}}}_{{{{{{{mathrm{req}}}}}}}}=mathop{sum }_{d=1}^{{ndays}}left({max }left(0,{T}_{d}-{T}_{{base}}right)times mathop{sum }_{0}^{d}{{{{{mathrm{V}}}}}}{{{{{{mathrm{U}}}}}}}_{d}right)$$
    (2)
    where the scaling factor VUd is computed by a three-stage linear response function with a range of optimal temperatures (Eq. 3). Temperature for effective vernalization range between −4 °C and +17 °C, with an optimum range between 3 °C and 10 °C.$${{{{{{{mathrm{VU}}}}}}}}_{d}=left{begin{array}{cc}left({T}_{d}-left(-4right)right)/left(3-10right) & {{{{{{mathrm{if}}}}}}}-4 , < ,{T}_{d} , < , 3\ 1 & {{{{{{mathrm{if}}}}}}};3,le ,{T}_{d},le, 10\ left(17-{T}_{d}right)/left(17-10right) & {{{{{{mathrm{if}}}}}}};10 , < ,{T}_{d} , < , 17\ 0 & {{{{{{mathrm{otherwise}}}}}}}end{array}right}$$ (3) In this study, we have removed the effect of vernalization on slowing down TU accumulation until 10% of the total vernalization requirements is reached. In this way, the crop can accumulate both vernalization units and heat units in fall, so that there is some leaf growth before winter (in LPJmL, the LAI curve depends on accumulated heat units).The LPJmL model simulates phenology as one single phase from emergence to maturity. Although the flowering stage is not simulated as an explicit break point, the fraction of above-ground biomass that is allocated to the storage organs (fHI) depends on the phenological progress (fTUreq, fraction of TUreq that have been fulfilled), with the bulk of the storage organs start filling up after 40% of TUreq have been reached (Eq. (4)). In line with this, the LAI curve reaches a plateau when 45% (wheat) or 50% (other crops) of the TUreq are fulfilled, which could be considered a proxy of the flowering stage.$${{{{{{mathrm{fHI}}}}}}}=100times frac{{{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}}{100times {{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}+{{exp }}^{11.1-10.0times {{{{{{{mathrm{fTU}}}}}}}}_{{{{{{{mathrm{req}}}}}}}}}}$$ (4) Crop biomass growth is simulated by daily carbon accumulation and allocation to different plant organs (roots, leaves, storage organs, mobile reserves, and stem). The fraction of carbon allocated to each pool is a function of the fraction of completed phenological progress. Water stress increases allocation to the roots and reduces allocation to the leaves. The daily Net Primary Production (NPP) is the result of the Gross Primary Production (daily gross photosynthesis) reduced by the respiration costs. Gross photosynthesis is simulated as a function of absorbed photosynthetically active radiation, CO2 atmospheric mixing ratio, air temperature, day length, and canopy conductance. Photosynthesis rate is given by the minimum between light-limited and Rubisco-limited photosynthesis rates, with distinguished pathways for C3 and C4 crops. Respiration is tissue-specific and it is also driven by temperature. If accumulated NPP is insufficient to satisfy all organ demands, allocation follows a hierarchical order from roots, to leaves, to storage organs, and consequently penalizing the harvest index. Crops are subject to yield failure due to frost events (daily minimum temperature More

  • in

    Quantifying thermal cues that initiate mass emigrations in juvenile white sharks

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026. https://doi.org/10.1126/SCIENCE.1206432 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185. https://doi.org/10.1007/S10336-011-0689-Y/TABLES/1 (2011).Article 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Model. 432, 109225. https://doi.org/10.1016/J.ECOLMODEL.2020.109225 (2020).Article 

    Google Scholar 
    Lehikoinen, A. et al. Sex-specific timing of autumn migration in birds: the role of sexual size dimorphism, migration distance and differences in breeding investment. Ornis Fennica 94, 53–65 (2017).
    Google Scholar 
    Stewart, B. S. Ontogeny of differential migration and sexual segregation in northern elephant seals. J. Mammol. 78(4), 1101–1116 (1997).Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674. https://doi.org/10.1111/geb.12298 (2015).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15(4), 1228–1245. https://doi.org/10.1111/J.1748-7692.1999.TB00887.X (1999).Article 

    Google Scholar 
    Mourier, J., Mills, S. C. & Planes, S. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. J. Fish Biol. 82(3), 979–993. https://doi.org/10.1111/JFB.12039 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Avgar, T., Mosser, A., Brown, G. S. & Fryxell, J. M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 82, 96–106. https://doi.org/10.1111/j.1365-2656.2012.02035.x (2013).Article 
    PubMed 

    Google Scholar 
    Crawshaw, L. I. Physiological and behavioral reactions of fishes to temperature change. J. Fish. Res. Board Can. 34(5), 730–734. https://doi.org/10.1139/f77-113 (1977).Article 

    Google Scholar 
    Heithaus, M., Dill, L., Marshall, G. J. & Buhleier, B. Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar. Biol. 140, 337–348. https://doi.org/10.1007/s00227-001-0711-7 (2002).Article 

    Google Scholar 
    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19(1), 331–343. https://doi.org/10.1093/icb/19.1.331 (1979).Article 

    Google Scholar 
    Matern, S. A., Cech, J. J. & Hopkins, T. E. Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: Evidence for behavioral thermoregulation?. Environ. Biol. Fishes 58(2), 173–182. https://doi.org/10.1023/A:1007625212099 (2000).Article 

    Google Scholar 
    Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R. & Bradshaw, C. J. A. Heat-seeking sharks: Support for behavioural thermoregulation in reef sharks. Mar. Ecol. Prog. Ser. 463, 231–244. https://doi.org/10.3354/meps09864 (2012).Article 
    ADS 

    Google Scholar 
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes https://doi.org/10.1023/B:EBFI.0000029343.54027.6a.pdf (2004).Article 

    Google Scholar 
    Hertz, P. E., Huey, R. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Estimation of shark home ranges using passive monitoring techniques. Environ. Biol. Fishes 71(2), 135–142. https://doi.org/10.1023/b:ebfi.0000045710.18997.f7 (2004).Article 

    Google Scholar 
    Topping, D. T., Lowe, C. G. & Caselle, J. E. Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): An acoustic monitoring study. Mar. Ecol. Progr. Ser. 326, 257–267 (2006).Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224. https://doi.org/10.3354/meps338211 (2007).Article 
    ADS 

    Google Scholar 
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and -dependent methods. Fish. Res. 147, 370–380. https://doi.org/10.1016/J.FISHRES.2013.07.009 (2013).Article 
    ADS 

    Google Scholar 
    Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS ONE. https://doi.org/10.1371/journal.pone.0127807 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adolph, S. C. Influence of behavioral thermoregulation on microhabitat use by two sceloporus lizards. Ecology 71(1), 315–327. https://doi.org/10.2307/1940271 (1990).Article 

    Google Scholar 
    Heithaus, M. R. The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ. Biol. Fishes 61, 25–36 (2001).Article 

    Google Scholar 
    Vaudo, J. J. & Lowe, C. G. Movement patterns of the round stingray Urobatis halleri(Cooper) near a thermal outfall. J. Fish Biol. 68(6), 1756–1766. https://doi.org/10.1111/j.0022-1112.2006.01054.x (2006).Article 

    Google Scholar 
    Vaudo, J. J. & Heithaus, M. R. Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: Behavioral thermoregulation or avoiding predation risk?. PLoS ONE. 8(4), e61907. https://doi.org/10.1371/journal.pone.0061907 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152(4), 877–894. https://doi.org/10.1007/s00227-007-0739-4 (2007).Article 

    Google Scholar 
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14(5), e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Curtis, T. H. et al. First insights into the movements of young-of-the-year white sharks (Carcharodon carcharias) in the western North Atlantic Ocean. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-29180-5 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruce, B. D., Harasti, D., Lee, K., Gallen, C. & Bradford, R. Broad-scale movements of juvenile white sharks Carcharodon carcharias in eastern Australia from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser. 619, 1–15. https://doi.org/10.3354/MEPS12969 (2019).Article 
    ADS 

    Google Scholar 
    Carey, F. G. et al. Temperature and activities of a white shark Carcharodon carcharias. Copeia 2, 254–260. https://doi.org/10.2307/1444603 (1982).Article 

    Google Scholar 
    Klimley, A. P., Beavers, S. C., Curtis, T. H. & Jorgensen, S. J. Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. Environ. Biol. Fish. 63, 117–135. https://doi.org/10.1023/A:1014200301213.pdf (2002).Article 

    Google Scholar 
    Towner, A. V., Underhill, L. G., Jewell, O. J. D. & Smale, M. J. Environmental Influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa. PLoS ONE. 8(8), e71197. https://doi.org/10.1371/journal.pone.0071197 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. High-resolution acoustic telemetry reveals swim speeds and inferred field metabolic rates in juvenile white sharks (Carcharodon carcharias). PLoS ONE 17(6), e0268914. https://doi.org/10.1371/JOURNAL.PONE.0268914 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. Interannual nearshore habitat use of young of the year white sharks off Southern California. Front. Mar. Sci. 8, 238. https://doi.org/10.3389/fmars.2021.645142 (2021).Article 

    Google Scholar 
    Domeier, M. L. & Nasby-Lucas, N. Two-year migration of adult female white sharks (Carcharodon carcharias) reveals widely separated nursery areas and conservation concerns. Anim. Biotelemet. 1(1), 1–10. https://doi.org/10.1186/2050-3385-1-2/FIGURES/3 (2013).Article 

    Google Scholar 
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: A fishery dependent analysis. Fish. Res. 188, 125–137. https://doi.org/10.1016/J.FISHRES.2016.12.014 (2017).Article 

    Google Scholar 
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Glob. Perspect. Biol. Life Hist. White Shark 14, 169–190 (2012).
    Google Scholar 
    Anderson, J. M. et al. Non-random Co-occurrence of Juvenile White Sharks (Carcharodon carcharias) at Seasonal Aggregation Sites in Southern California. Front. Mar. Sci. 8, 1–14. https://doi.org/10.3389/fmars.2021.688505 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897. https://doi.org/10.1111/1365-2664.13158 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020) http://www.rstudio.com/.Derrick, T., & Thomas, J. Time Series Analysis: The Cross-Correlation Function. Innovative Analyses of Human Movement, Chapter 7. https://lib.dr.iastate.edu/kin_pubs/46 (2004).Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598. https://doi.org/10.1080/01621459.2012.737745 (2012).Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Bakun, A. Coastal Upwelling Indices, West Coast of North America. US Department of Commerce. NOAA Technical Report, NMFS SSRF-671 (1973).Di Lorenzo, E. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep-Sea Res. Part II 50(14–16), 2371–2388. https://doi.org/10.1016/S0967-0645(03)00125-5 (2003).Article 
    ADS 

    Google Scholar 
    Lynn, R. J. & Simpson, J. J. The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res. 92(C12), 12947. https://doi.org/10.1029/jc092ic12p12947 (1987).Article 
    ADS 

    Google Scholar 
    Sinnett, G. & Feddersen, F. The surf zone heat budget: The effect of wave heating. Geophys. Res. Lett. 41(20), 7217–7226. https://doi.org/10.1002/2014GL061398 (2014).Article 
    ADS 

    Google Scholar 
    Wei, X., Li, K.-Y., Kilpatrick, T., Wang, M. & Xie, S.-P. Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophys. Res. Lett. 48(7), e2020GL091803 (2021).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-77885-3 (2020).Article 
    CAS 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J. Fish Biol. 63(5), 1357–1363. https://doi.org/10.1046/J.1095-8649.2003.00250.X (2003).Article 

    Google Scholar 
    Guttridge, T. L. et al. Deep danger: Intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. Mar. Ecol. Progr. Ser. 445, 279–291 (2012).Article 
    ADS 

    Google Scholar 
    Grainger, R. et al. Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias). Front. Mar. Sci. 7, 422 (2020).Article 

    Google Scholar 
    Hussey, N. E., Christiansen, H. M. & Dudley, S. F. J. Size-based analysis of diet and trophic position of the white shark, carcharodon carcharias, in South African waters. Glob. Perspect. Biol. Life Hist. White Shark 3, 27–49. https://doi.org/10.1201/b11532-5 (2012).Article 

    Google Scholar 
    Kim, S. L., Tinker, M. T., Estes, J. A. & Koch, P. L. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PLoS ONE 7(9), e45068. https://doi.org/10.1371/JOURNAL.PONE.0045068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T. et al. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mamm. Sci. 32(1), 309–326. https://doi.org/10.1111/mms.12261 (2015).Article 

    Google Scholar  More

  • in

    Household perception and infestation dynamics of bedbugs among residential communities and its potential distribution in Africa

    Sample collectionA survey was conducted among the residents of nine counties in Kenya (Mombasa, Kisumu, Machakos, Nairobi, Makueni, Bomet, Kericho, Kiambu, and Narok) and GPS location coordinates were recorded and later used to build the predictive model (“Infestation dynamics of bedbugs in residential communities” section). These counties represent diversity in cultural practices, livelihood strategies (such as fishing, tourism, farming), and infrastructure development. Also, they comprise different altitudes above sea level, temperatures, and differing in average annual rainfall.Samples identification using morphological identification keysIn each county where the survey was conducted, bedbug samples was taken and preserved in ethanol 70% for morphological identification. Cimex belonging to Cimicidae family is the common genus adapted to human environment and reported throughout the world and comprising species such as Cimex lectularius and C. hemipterus that are hematophagous mainly feeding on human blood5. The key morphological features used in identifying bedbugs include: (1) the head has a labrum that appears as a free sclerite at the extreme anterior margin, ecdysial lines form a broad V, eyes project from the sides composed of several facets and the antennae are 4-segmented, (2) thorax is subdivided into prothorax, mesothorax and metathorax, (3) legs have all other normal parts except pulvilli and arolia, tarsus is 3-segmented with 2 simple claws, (4) the abdomen has 11 more-or-less segmented recognizable segments, 7 pairs of spiracles borne on the second to eighth segments, hosts the genital structures, paramere in males and mesospermalege in females45. Bedbug specimen morphological features were examined using Leica EZ24 HD dissecting microscope (Leica Microsystems, UK) and photos documented using the associated software.Survey for household’s knowledge and perceptions on bedbugsThis study was a community-based cross-sectional survey conducted from November–December 2020 with respect of the rules/guidlines introduced by the Ministry of Health to contain the COVID-19 pandemic in Kenya (wearing mask, social distance, washing hand, etc.). It was based on a stratified, systematic random sampling where 100 respondents were selected from each county.A total number of 900 respondents were randomly selected and the household head or the representative showing willingness and consent was interviewed face-to-face. The interview was conducted using a semi-structured questionnaire prepared in the English language (Appendix A). The questionnaire was translated into the local native language (Kiswahili) to avoid biasness and improve the understanding between the enumerator and the respondent. Prior to the commencement of the survey and authentic data collection, a pre-testing exercise was performed by training enumerators on a similar socio-demographic pattern. This was useful for improving the quality of data, ensuring validity, familiarizing the enumerators with the questionnaire, and data handling.The information collected using the semi-structured questionnaire included residents’ socio-economic profiles, knowledge, and perceptions on the pest, bedbug incidence, and management practices. The socio-economic profile factors addressed in the survey comprised gender, age, education, access to basic social amenities, and household size. The study also prioritized the financial consequences, the severity of the bites, perceptions of respondents on the pest, and management practices for its control.Survey data were checked for errors, completeness, summarized, and entered in Microsoft-Excel. It was then cleaned and transferred to Statistical Package for Social Science (SPSS) version 25 software (IBM Corp., Armonk, NY) for purposes of descriptive statistics (means and percentages).In contrast, in instances where more than one reason was given for a single question, percentages were calculated based on each group of similar responses. Chi-square was performed to determine the differences regarding socio-demographic characteristics, knowledge, and perceptions on bedbugs and control practices. Additionally, data were disaggregated by gender and age categories to understand the existing differences among the various respondent categories. Besides, F-test statistics was performed on the ages of respondents to determine the mean, standard deviation and statistical significance. The level of significance was considered when the p-value was below 5%.Infestation dynamics model of bedbugModel simulation assumptionsHouses infestation dynamics was studied following Susceptible-Infested-Treatment (SIT) model46. Therefore, houses in the community are classified into three groups: susceptible, infested or treated. Within a house, bedbug population dynamics was ignored, while it was considered from one house to another where infested houses have some potential to spread the infestation to other houses in the community. A population of bedbugs in an infested house has some probability per unit of time of becoming extinct either naturally or after treatment. In the infestation dynamics, the rate of house infestation depends on the number of infested houses, the movement of people from one house to another and the proportion of treated houses in the community. We assume that infested houses (I) spread the infestation at the rate β and only a fraction S/N of the houses is susceptible (S) to infestation. Infested houses become extinct at a certain rate known as rate γ. Infested houses are treated at the rate τ and the protection conferred is lost at the rate α. Ordinary differential equation developed to study SIT model were used in this study46. All the models used have the generic formulations displayed below:$$frac{dS}{dt}=frac{beta }{N}SI+gamma I+alpha T$$
    (1)
    $$frac{dI}{dt}=frac{beta }{N}SI-(gamma +tau )I$$
    (2)
    $$frac{dT}{dt}=tau I-alpha T$$
    (3)
    where β  > 0, τ  > 0, α ≥ 0 and γ  > 0. The total population size is N = S(t) + I(t) + t(t). The initial conditions satisfy at S(0)  > 0, I(0)  > 0, T(0) ≥ 0 and S(0) + I(0) = N, where N is the constant total population size, dN/dt = 0.Infestation dynamics models implementationThe method used to implement the infestation dynamics model of the pest is based on the system thinking approach with its archetypes [Causal Loop Diagram (CLD), Reinforcing (R) and Balancing (B)] by a mental and holistic conceptual framework. This is important for mapping how the variables, issues, and processes influence each other in the complex interactions of bedbugs within and between houses and their impacts. Despite these archetypes being qualitative, they are necessary for elucidating and disclosing the basic feedback configurations that occur in houses and their environs when infested with pests like bedbugs. A dynamic model was generated by converting the causal loop diagram (CLD) obtained using stocks, flows, auxiliary links, and clouds. Consequently, these in turn were translated into coupled differential equations for simulations.The SIT model was translated into causal loop diagram where arrows show the cause-effect relations where positive sign indicates direct proportionality of cause and effect while negative sign shows inverse proportionality relations, and two different scenarios have been assessed: (1) homogeneous houses where there is a single community of houses of the same quality, and (2) heterogeneous houses where there is a community of good and bad houses. Ancient houses presenting slits/fissures with less cleanliness and filled with old or secondhand furniture at low grade are considered bad houses as they may sustain high level of bedbug infestation; and new houses don’t provide well enough conditions for bedbug population to survive, and they are called in the model good houses47. Bad houses are considered to act as sources while good houses act as sinks, but all together are randomly distributed where each house has the same probability to contact good or bad houses.In the scenarios of homogeneous houses, the causal loop diagram (Fig. 7) has two feedback loops: (a) one positive, as the number of infested houses increases, the probability to get susceptible houses infested also increases resulting in infested houses increase; (b) one negative, as the infested houses increases, the treated houses increase resulting in susceptible houses decrease. The causal loop diagram is displayed in Fig. 7A while Fig. 7B showed the stocked and flows diagram and axillary variables obtained from causal loop diagram.Figure 7Susceptible-Infested-Treatment (SIT) model translated into causal loop diagram (A) and stock and flow diagram (B) for homogeneous houses and causal loop diagram (C) and stock and flow diagram (D) for heterogeneous houses in the community.Full size imageSusceptible, infested, and treated houses are stocks in the system, representing the number of houses susceptible, infested, and treated, respectively at a given point of time. The rates represent in and out-flows of the diagram. Auxiliary and constants that drive the behavior of the system were connected using information arrows within them and flows and stocks to represent the relations among variables in terms of equations.In the scenarios of heterogeneous houses, the causal loop diagram (Fig. 7C) comes with the two previous feedback loops but for each category of house. In addition, there is a fifth feedback loop that connect bad house to good house and vice versa.Therefore, as the infested bad houses increase, the probability to infest good houses increases. The more they are exposed the more they get infested. In turn, as the infested good houses increase, the chance to infest susceptible bad houses increases and the more they are exposed, the more they get infested, resulting in the increase of infested bad houses. The stocks and flows diagram of each of the two categories of houses occurred with interconnexion relationships between the two categories (Fig. 7D).Models’ simulationsThe survey data (“Bedbug Genus identification” section) on prevalence, knowledge, perceptions and self-reported; in addition, the respondents’ reported control mechanisms and their average time of effectiveness (Appendix B, Table S1) were used for model simulations. The different control methods reported were reclassified in three control approaches: chemical control, other control methods (including exposure to direct sunlight, use of hot water, painting, application of diesel, paraffin and wood ash, use of Aloe Vera extract and Herbs), and combination of chemical and other control methods. All the models commodities and units were checked before performing the simulations. Simulation and implementation of the models were done using Vensim PLP 8.1 platform (Ventana systems, Harvard, USA). It consists of a graphical environment that usually permits drawing of Causal Loop Diagram (CLD), stocks, flow diagrams and to carry out simulations. After we simulated the infestation dynamics under the two scenarios, we explored the effect of the different control methods.Spatial distribution analysis of bedbugs using MaxEnt modelEnvironmental data for MaxEntThe environmental variables used as the other maxent input were obtained by deriving bioclimatic, land cover, and elevation data. Bioclimatic variables and elevation (Digital Elevation Model; DEM) data were obtained from the Global Climate Data official website, Worldclim (http://www.worldclim.org/bioclim.htm)48 including 19 bioclimatic variables (Appendix B, Table S2). The land cover data were downloaded from the Global Land Cover Facility (GLCF).In order to reduce collinearity between predictors, a collinearity test was performed on all the variables by filtering them according to the following steps36: firstly, the MaxEnt model was run using the distribution data of bedbugs and 19 bioclimatic variables to obtain the percent contribution of each variable to the preliminary prediction results. Secondly, following the generation of the percentage contribution of all the variables, we then imported all distribution points in Arc-GIS and extracted the attribute values of the 19 variables. Furthermore, the “virtual species” package49 in R-software (R Foundation for Statistical Computing, Vienna, Australia) was used to explore the extracted variables’ clusters spatial correlation using Pearson’s correlation coefficient and the cluster tree (Fig. 8). Thus, the final number of predictor variables after screening was 5 establishing the potential geographical distribution of bedbug, which includes Temperature Seasonality (bio4), Precipitation of Driest Month (bio14), Temperature Annual Range (bio7), Precipitation of Driest Quarter (bio17) and Precipitation of Warmest Quarter (bio18) (Appendix B, Table S2). The land cover was considered because studies have shown its importance on insect spatial distribution50,51,52 and it was setled as a categorical variable53. Elevation was selected as variable because it greatly influences species’ occurrence and dispersal by affecting the temperature, precipitation, vegetation, and sun characteristics (direction, intensity, etc.) on the earth’s surface54,55,56. The study variables had different resolutions and were therefore, resampled to 1 km. The variables were clipped to Kenya and Africa boundaries and converted to ASCII (Stands for “American Standard Code for Information Interchange”) format using the ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).Figure 8Key model predictor variables.Full size imageDistribution modelling in Kenya and AfricaIn our study, we used the maximum entropy distribution modelling method. This is because it has been recommended to have the ability to perform best and remain effective despite the use of small sample size relative to the other modelling methods57.Our selected bioclimatic variables (5) and occurrence/prevalence data for bedbugs were then imported into MaxEnt model and the options of ‘Create response curves’ and ‘Do jackknife’ were selected to measure variable importance’ options. The model output file was selected as ‘Logistic’, the commonly used approach is the random portioning of distribution datasets into ‘training’, and ‘test’ sets57,58. MaxEnt model was run with a total number of 5000 iterations and five replicates for better convergence of the model and rescaled within the range of 0–1000 suitability scores using ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).The modelling performance/MaxEnt accuracy was evaluated by choosing the area under the receiver operating characteristics (ROC) curve (AUC) as the estimation index. This was important for the calibration and validation of the robustness of MaxEnt model evaluation. Furthermore, the area under the ROC curve (AUC) was necessary as an additional precision analysis59. The range of AUC values greater than 0.7 was considered a fair model performance, while those greater than 0.9 indicated that the model was considered an excellent model performance. Therefore, by considering the AUC values, the excellently performing model was selected to analyze the suitability of bedbugs in Kenya and Africa59,60,61,62.The ASCII format output was then imported into QGIS 3.10.2 (using the QGIS 3.10.2 software, https://qgis.org/downloads/), following its conversion into a raster format file using R software. This was useful for the classification and visualization of the distribution area63,64. The potential suitable distribution of bedbugs was extracted using the Kenyan and African maps. At the same time, Jenks’ natural breaks were also used to reclassify and classify the suitability into five categories, namely: unsuitable (P  More

  • in

    Transposable elements maintain genome-wide heterozygosity in inbred populations

    Kristensen, T. N. et al. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. J. Evol. Biol. 18, 763–770 (2005).CAS 
    PubMed 

    Google Scholar 
    Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).
    Google Scholar 
    Caballero, A., Bravo, I. & Wang, J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity 118, 177–185 (2017).CAS 
    PubMed 

    Google Scholar 
    Park, D. S., Ellison, A. M. & Davis, C. C. Mating system does not predict niche breath. Glob. Ecol. Biogeogr. 27, 804–813 (2018).
    Google Scholar 
    Buckley, J., Daly, R., Cobbold, C. A., Burgess, K. & Mable, B. K. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc. R. Soc. B Biol. Sci. 286, 20192109 (2019).
    Google Scholar 
    Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E. & Brandvain, Y. Geographic range size is predicted by plant mating system. Ecol. Lett. 18, 706–713 (2015).PubMed 

    Google Scholar 
    Wright, S. I., Lauga, B. & Charlesworth, D. Rates and patterns of molecular evolution in inbred and outbred arabidopsis. Mol. Biol. Evol. 19, 1407–1420 (2002).CAS 
    PubMed 

    Google Scholar 
    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).
    Google Scholar 
    Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53, 1678–1691 (1999).CAS 
    PubMed 

    Google Scholar 
    Coron, C., Méléard, S., Porcher, E. & Robert, A. Quantifying the mutational meltdown in diploid populations. Am. Nat. 181, 623–636 (2013).PubMed 

    Google Scholar 
    Kyriazis, C. C., Wayne, R. K. & Lohmueller, K. E. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. https://doi.org/10.1002/evl3.209 (2020).Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).PubMed 

    Google Scholar 
    Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494.e4 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 118, e2023018118 (2021).Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).
    Google Scholar 
    Goodwillie, C., Kalisz, S. & Eckert, C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).
    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).CAS 
    PubMed 

    Google Scholar 
    Covert, A. W. III, Lenski, R. E., Wilke, C. O. & Ofria, C. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl Acad. Sci. USA 110, E3171–E3178 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A. & Eyre-Walker, A. Adaptive evolution is substantially impeded by hill–robertson interference in Drosophila. Mol. Biol. Evol. 33, 442–455 (2016).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 

    Google Scholar 
    Hämälä, T. & Savolainen, O. Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol. Biol. Evol. 36, 2557–2571 (2019).
    Google Scholar 
    Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 116, 17890–17899 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mimura, M. & Aitken, S. N. Local adaptation at the range peripheries of Sitka spruce. J. Evol. Biol. 23, 249–258 (2010).CAS 
    PubMed 

    Google Scholar 
    Stanton-Geddes, J., Tiffin, P. & Shaw, R. G. Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology 93, 1604–1613 (2012).PubMed 

    Google Scholar 
    Vergeer, P. & Kunin, W. E. Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. N. Phytol. 197, 989–1001 (2013).
    Google Scholar 
    Volis, S., Ormanbekova, D. & Shulgina, I. Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Mol. Ecol. 25, 1449–1464 (2016).CAS 
    PubMed 

    Google Scholar 
    Glémin, S., Bazin, E. & Charlesworth, D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. B Biol. Sci. 273, 3011–3019 (2006).
    Google Scholar 
    Almeida‐Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta‐analysis. Mol. Ecol. 29, 4812–4822 (2020).PubMed 

    Google Scholar 
    Schrader, L. et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lu, L. et al. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl Acad. Sci. USA 114, E10550–E10559 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549 (2019).PubMed 

    Google Scholar 
    Habig, M., Lorrain, C., Feurtey, A., Komluski, J. & Stukenbrock, E. H. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat. Commun. 12, 1–13 (2021).
    Google Scholar 
    Wicker, T. et al. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).CAS 
    PubMed 

    Google Scholar 
    Stapley, J., Santure, A. W. & Dennis, S. R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24, 2241–2252 (2015).CAS 
    PubMed 

    Google Scholar 
    Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).CAS 
    PubMed 

    Google Scholar 
    Baduel, P. et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22, 1–26 (2021).
    Google Scholar 
    Quesneville, H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob. DNA 11, 28 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Linquist, S. et al. Distinguishing ecological from evolutionary approaches to transposable elements. Biol. Rev. 88, 573–584 (2013).PubMed 

    Google Scholar 
    Dupeyron, M., Singh, K. S., Bass, C. & Hayward, A. Evolution of Mutator transposable elements across eukaryotic diversity. Mob. DNA 10, 1–14 (2019).
    Google Scholar 
    Batstone, R. T. Genomes within genomes: nested symbiosis and its implications for plant evolution. New Phytol. https://doi.org/10.1111/nph.17847 (2021).Pietzenuk, B. et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 17, 209 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Horváth, V., Merenciano, M. & González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832–841 (2017).PubMed 

    Google Scholar 
    Liu, S. et al. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. N. Phytol. 229, 2238–2250 (2021).CAS 

    Google Scholar 
    Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 1–13 (2015).ADS 
    CAS 

    Google Scholar 
    Castelletti, S., Tuberosa, R., Pindo, M. & Salvi, S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL vgt1. G3 Genes, Genomes, Genet. 4, 805–812 (2014).CAS 

    Google Scholar 
    Legrand, S. et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA 10, 30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Quadrana, L. et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    Teschendorf, A. E. & Relton, C. L. Statistical and integrative system-level analysis of DNA methylation data. Nat. Rev. Genet. 19, 129–147 (2019).
    Google Scholar 
    Bonchev, G. & Willi, Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. N. Phytol. 219, 767–778 (2018).CAS 

    Google Scholar 
    Lockton, S., Ross-Ibarra, J. & Gaut, B. S. Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc. Natl Acad. Sci. USA 105, 13965–13970 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockton, S. & Gaut, B. S. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol. Biol. 10, 10 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Mable, B. K., Dart, A. V. R., Berardo, C., Di & Witham, L. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59, 1437–1448 (2005).PubMed 

    Google Scholar 
    Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).PubMed 

    Google Scholar 
    Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. Elife 5, e15716 (2016).Stuart, T. et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife 5, e20777 (2016).Willi, Y. Mutational meltdown in selfing Arabidopsis lyrata. Evolution 67, 806–815 (2013).PubMed 

    Google Scholar 
    Joschinski, J., van Kleunen, M. & Stift, M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata? Evol. Ecol. 29, 749–764 (2015).
    Google Scholar 
    Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, Z.-W. et al. Transposable elements contribute to the adaptation of Arabidopsis thaliana. Genome Biol. Evol. 10, 2140–2150 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65, 102140 (2022).CAS 
    PubMed 

    Google Scholar 
    Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).CAS 
    PubMed 

    Google Scholar 
    Baduel, P., Quadrana, L., Hunter, B., Bomblies, K. & Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 1–10 (2019).
    Google Scholar 
    Wos, G., Choudhury, R. R., Kolář, F. & Parisod, C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA 12, 7 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).
    Google Scholar 
    Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).CAS 
    PubMed 

    Google Scholar 
    Igic, B. & Busch, J. W. Is self‐fertilization an evolutionary dead end? N. Phytol. 198, 386–397 (2013).
    Google Scholar 
    Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Abu Awad, D. & Billiard, S. The double edged sword: The demographic consequences of the evolution of self-fertilization. Evolution 71, 1178–1190 (2017).PubMed 

    Google Scholar 
    Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).CAS 
    PubMed 

    Google Scholar 
    Wu, Q. et al. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol. 18, 1–15 (2017).CAS 

    Google Scholar 
    Kerwin, R. et al. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife 2015, 1–28 (2015).
    Google Scholar 
    Waller, D. M. Addressing Darwin’s dilemma: can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 75, 779–793 (2021).CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J., Pouyet, F., Excoffier, L. & Peischl, S. Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr. Biol. 30, 101–107.e3 (2020).CAS 
    PubMed 

    Google Scholar 
    Buckley, J. et al. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol. Biol. 16, 93 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. Phylogeographic implications for the north american boreal-arctic Arabidopsis lyrata complex. Plant Ecol. Divers. 1, 245–254 (2008).
    Google Scholar 
    Buckley, J., Holub, E. B., Koch, M. A., Vergeer, P. & Mable, B. K. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 19, 1–21 (2018).
    Google Scholar 
    Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. in. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 
    PubMed 

    Google Scholar 
    Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R Package pcadapt Version 4. Mol. Biol. Evol. 37, 2153–2154 (2020).PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Charlesworth, J. & Eyre-Walker, A. The McDonald-Kreitman test and slightly deleterious mutations. Mol. Biol. Evol. 25, 1007–1015 (2008).CAS 
    PubMed 

    Google Scholar 
    Hernandez, R. D. et al. Ultrarare variants drive substantial cis heritability of human gene expression. Nat. Genet. 51, 1349–1355 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, R. J. et al. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of capsella grandiflora. PLoS Genet. 10, e1004622 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).
    Google Scholar 
    Mattila, T. M., Tyrmi, J., Pyhäjärvi, T. & Savolainen, O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol. Biol. Evol. 34, 2665–2677 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    The evolution of reproductive modes and life cycles in amphibians

    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. R. Soc. Lond. B 287, 20201474–10 (2020).
    Google Scholar 
    Hall, B. K. & Wake, M. H. The Origin and Evolution of Larval Forms (Gulf Professional Publishing, 1999).Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).CAS 
    PubMed 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (Johns Hopkins University Press, 1994).Nunes-de-Almeida, C. H., Batista Haddad, C. F. & Toledo, L. F. A revised classification of the amphibian reproductive modes. Salamandra 57, 413–427 (2021).
    Google Scholar 
    Vences, M. & Köhler, J. Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia 595, 569–580 (2007).
    Google Scholar 
    Blackburn, D. G. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J. Morphol. 276, 961–990 (2015).PubMed 

    Google Scholar 
    AmphibiaWeb. Electronic Database (University of California, Berkeley, CA, USA, 2019). https://amphibiaweb.org.Frost, D. R. Amphibian Species of the World: an Online Reference. Version 6.0 (date of access: 01.08.2019). Electronic Database (American Museum of Natural History, New York, USA, 2019). https://amphibiansoftheworld.amnh.org/.Bonett, R. M., Ledbetter, N. M., Hess, A. J., Herrboldt, M. A. & Denoël, M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Developmental Dynamics 251, 957–972 (2022).Salthe, S. N. Reproductive modes and the number and sizes of ova in the urodeles. Am. Midl. Naturalist 81, 467490 (1969).
    Google Scholar 
    Salthe, S. N. & Duellman, W. E. in Evolutionary Biology of the Anurans (ed. Vial, J. L.) 229–249 (University of Missouri Press Columbia, 1973).Haddad, C. & Prado, C. P. A. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55, 207–217 (2005).
    Google Scholar 
    Lutz, B. Ontogenetic evolution in frogs. Evolution 2, 29–39 (1948).CAS 
    PubMed 

    Google Scholar 
    Crump, M. L. Anuran reproductive modes: evolving perspectives. J. Herpetol. 49, 1–16 (2015).
    Google Scholar 
    Schoch, R. Evolution of life cycles in early amphibians. Annu. Rev. Earth Planet. Sci. 37, 135–162 (2009).ADS 
    CAS 

    Google Scholar 
    Meegaskumbura, M. et al. Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae). Zool. Scr. 44, 509–522 (2015).
    Google Scholar 
    Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    San Mauro, D. et al. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177–189 (2014).PubMed 

    Google Scholar 
    Pereira, E. B., Collevatti, R. G., de Carvalho Kokubum, M. N., de Oliveira Miranda, N. E. & Maciel, N. M. Ancestral reconstruction of reproductive traits shows no tendency toward terrestriality in leptodactyline frogs. BMC Evol. Biol. 15, 91 (2015).Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 

    Google Scholar 
    Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS 
    PubMed 

    Google Scholar 
    Dubois, A. Developmental pathway, speciation and supraspecific taxonomy in amphibians: 1. Why are there so many frog species in Sri Lanka? Alytes 22, 19–37 (2004).
    Google Scholar 
    Hedges, S. B., Duellman, W. E. & Heinicke, M. P. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737, 1–182 (2008).
    Google Scholar 
    Dugo-Cota, Á., Vilà, C., Rodríguez, A. & Gonzalez-Voyer, A. Ecomorphological convergence in Eleutherodactylus frogs: a case of replicate radiations in the Caribbean. Ecol. Lett. 22, 884–893 (2019).PubMed 

    Google Scholar 
    Simpson, G. G. The Major Features of Evolution (Columbia University Press, 1953).Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Szekely, T. Parental care and the evolution of terrestriality in frogs. Proc. R. Soc. Lond. B 286, 20182737–10 (2019).
    Google Scholar 
    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS 

    Google Scholar 
    Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and number across amphibians. PLoS Biol. 20, e3001495 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wollenberg, K. C., Vieites, D. R., Glaw, F. & Vences, M. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol. Biol. 11, 217 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: a review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
    Google Scholar 
    Phillimore, A. B., Freckleton, R. P., Orme, C. D. L. & Owens, I. P. F. Ecology predicts large‐scale patterns of phylogenetic diversification in birds. Am. Nat. 168, 220–229 (2006).PubMed 

    Google Scholar 
    Chen, J.-M. et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae). Mol. Phylogenet. Evol. 145, 106724 (2020).PubMed 

    Google Scholar 
    Zimkus, B. M., Lawson, L., Loader, S. P. & Hanken, J. Terrestrialization, miniaturization and rates of diversification in African Puddle Frogs (Anura: Phrynobatrachidae). PLoS ONE 7, e35118 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, D. S. Improving inference and avoiding over-interpretation of hidden-state diversification models: specialized plant breeding has no effect on diversification in frogs. Evolution 76, 373–384 (2022).PubMed 

    Google Scholar 
    Eastman, J. M. & Storfer, A. Correlations of life-history and distributional-range variation with salamander diversification rates: evidence for species selection. Syst. Biol. 60, 503–518 (2011).PubMed 

    Google Scholar 
    Bonett, R. M., Steffen, M. A., Lambert, S. M., Wiens, J. J. & Chippindale, P. T. Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 68, 466–482 (2014).PubMed 

    Google Scholar 
    Akaike, H. A new look at the statistical-model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 

    Google Scholar 
    Beaulieu, J. M., Oliver, J. C., O’Meara, B. & Boyko, J. R package ‘corHMM’: hidden markov models of character evolution. (2020).Pagel, M. & Meade, A. BayesTraits, version 4. University of Reading, Berkshire, UK. http://www.evolution.rdg.ac.uk (2022).Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed 

    Google Scholar 
    Maddison, W., Midford, P. & Otto, S. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 

    Google Scholar 
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).PubMed 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 

    Google Scholar 
    Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2018).
    Google Scholar 
    Strathmann, R. R. Hypotheses on the origins of marine larvae. Annu. Rev. Ecol. Syst. 24, 89–117 (1993).
    Google Scholar 
    Wray, G. A. Evolution of larvae and developmental modes. In Ecology of Marine Invertebrate Larvae. (ed. McEdward, L.) 413–447 (CRC Press, 1995).Raff, R. A. Origins of the other metazoan body plans: the evolution of larval forms. Philos. T R. Soc. B 363, 1473–1479 (2008).
    Google Scholar 
    Collin, R. & Moran, A. in Evolutionary Ecology of Marine Invertebrate Larvae 50–66 (Oxford University Press, 2018).Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).PubMed 

    Google Scholar 
    Wiens, J. J. Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law. Evolution 65, 1283–1296 (2011).PubMed 

    Google Scholar 
    Wiens, J. J., Kuczynski, C. A., Duellman, W. E. & Reeder, T. W. Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? Evolution 61, 1886–1899 (2007).CAS 
    PubMed 

    Google Scholar 
    Chippindale, P. T., Bonett, R. M., Baldwin, A. S. & Wiens, J. J. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809–2815 (2004).CAS 
    PubMed 

    Google Scholar 
    Castroviejo-Fisher, S. et al. Phylogenetic systematics of egg-brooding frogs (Anura: Hemiphractidae) and the evolution of direct development. Zootaxa 4004, 1–75 (2015).PubMed 

    Google Scholar 
    Naumann, B., Schweiger, S., Hammel, J. U. & Müller, H. Parallel evolution of direct development in frogs—skin and thyroid gland development in African Squeaker Frogs (Anura: Arthroleptidae: Arthroleptis). Dev. Dyn. 250, 584–600 (2021).PubMed 

    Google Scholar 
    Goldberg, J., Taucce, P. P. G., Quinzio, S. I., Haddad, C. F. B. & Candioti, F. V. Increasing our knowledge on direct-developing frogs: the ontogeny of Ischnocnema henselii (Anura: Brachycephalidae). Zool. Anz. 284, 78–87 (2020).
    Google Scholar 
    Wassersug, R. J. & Duellman, W. E. Oral structures and their development in egg-brooding hylid frog embryos and larvae: evolutionary and ecological implications. J. Morphol. 182, 1–37 (1984).PubMed 

    Google Scholar 
    Kerney, R. R., Blackburn, D. C., Müller, H. & Hanken, J. Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution 66, 252–262 (2011).PubMed 

    Google Scholar 
    Theska, T. Musculoskeletal development of the Central African caecilian Idiocranium russeli (Amphibia: Gymnophiona: Indotyphlidae) and its bearing on the re-evolution of larvae in caecilian amphibians. Zoomorphology 138, 137–158 (2019).
    Google Scholar 
    Laslo, M., Denver, R. J. & Hanken, J. Evolutionary conservation of thyroid hormone receptor and deiodinase expression dynamics in ovo in a direct-developing frog, Eleutherodactylus coqui. Front. Endocrinol. 10, 307 (2019).
    Google Scholar 
    Gao, W. et al. Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc. Natl Acad. Sci. USA 116, 3646–3655 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altig, R. & Crother, B. I. The evolution of three deviations from the biphasic anuran life cycle: alternatives to selection. Herpetol. Rev. 37, 321–356 (2006).
    Google Scholar 
    Venturelli, D. P., da Silva, W. R. & Giaretta, A. A. Tadpoles’ resistance to desiccation in species of Leptodactylus (Anura, Leptodactylidae). J. Herpetol. 55, 265–270 (2021).
    Google Scholar 
    Seymour, R. S. Respiration of aquatic and terrestrial amphibian embryos. American Zoologist 39, 261–270 (1999).Blackburn, D. G. Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32, 313–321 (1992).
    Google Scholar 
    Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9, 105–115 (2007).PubMed 

    Google Scholar 
    Kusrini, M. D., Rowley, J. J. L., Khairunnisa, L. R., Shea, G. M. & Altig, R. The reproductive biology and larvae of the first tadpole-bearing frog, Limnonectes larvaepartus. PLoS ONE 10, e116154–e116159 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lanza, B. & Leo, P. Sul primo caso sicuro di riproduzione vivipara nel genere Speleomantes. 1–54 (2000).Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (Genus Hydromantes): nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
    Google Scholar 
    Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. Lond. B 284, 20162598–20162599 (2017).
    Google Scholar 
    Wake, M. H. The reproductive biology of Eleutherodactylus jasperi (Amphibia, Anura, Leptodactylidae), with comments on the evolution of live-bearing systems. J. Herpetol. 12, 121–133 (1978).
    Google Scholar 
    Jennings, D. H. & Hanken, J. Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui. Gen. Comp. Endocr. 111, 225–232 (1998).CAS 
    PubMed 

    Google Scholar 
    Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callery, E. M., Hung, F. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Jetz, W. Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. Lond. B 274, 1167–1173 (2007).
    Google Scholar 
    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. Lond. B 280, 20131622 (2013).
    Google Scholar 
    Gómez-Rodríguez, C., Baselga, A. & Wiens, J. J. Is diversification rate related to climatic niche width? Glob. Ecol. Biogeogr. 24, 383–395 (2015).
    Google Scholar 
    Moen, D. S. & Wiens, J. J. Microhabitat and climatic niche change explain patterns of diversification among frog families. Am. Nat. 190, 29–44 (2017).PubMed 

    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).PubMed 

    Google Scholar 
    Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).PubMed 

    Google Scholar 
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 

    Google Scholar 
    Bars-Closel, M., Kohlsdorf, T., Moen, D. S. & Wiens, J. J. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). Evolution 71, 2243–2261 (2017).PubMed 

    Google Scholar 
    Cyriac, V. P. & Kodandaramaiah, U. Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes. J. Evolution. Biol. 31, 587–598 (2018).CAS 

    Google Scholar 
    Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation, and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).PubMed 

    Google Scholar 
    Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 4, 679–13 (2019).
    Google Scholar 
    Müller, H. et al. Forests as promoters of terrestrial life-history strategies in East African amphibians. Biol. Lett. 9, 20121146–20121146 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Velo-Antón, G., García-París, M., Galán, P. & Cordero Rivera, A. The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45, 345–352 (2007).
    Google Scholar 
    Liedtke, H. C. AmphiNom: an amphibian systematics tool. Syst. Biodivers. 17, 1–6 (2019).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). http://www.R-project.org/.IUCN. IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org (2019).AmphibiaChina. The database of Chinese amphibians. Electronic Database (Kunming Institute of Zoology (CAS), Kunming, Yunnan, China, 2019) http://www.amphibiachina.org/.Ron, S. R., Yanez-Muñoz, M. H., Merino-Viteri, A. & Ortiz, D. A. Anfibios del Ecuador. Version 2019.0 (Museo de Zoología, Pontificia Universidad Católica del Ecuador, 2019). https://bioweb.bio/faunaweb/amphibiaweb.Greven, H. In Reproductive Biology and Phylogeny of Urodela 447–475 (Taylor & Francis, 2003).Marks, S. B. & Collazo, A. Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998, 637–648 (1998).
    Google Scholar 
    Müller, H., Loader, S. P., Ngalason, W., Howell, K. M. & Gower, D. J. Reproduction in brevicipitid frogs (Amphibia: Anura: Brevicipitidae)—evidence from Probreviceps m. macrodactylus. Copeia 2007, 726–733 (2007).
    Google Scholar 
    Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29, 185–204 (2014).
    Google Scholar 
    Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic biology 62, 725–737 (2013).Pupko, T., Pe’er, I., Shamir, R. & Graur, D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17, 890–896 (2000).CAS 
    PubMed 

    Google Scholar 
    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinforma. 7, 88 (2006).
    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).
    Google Scholar 
    Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).PubMed 

    Google Scholar 
    Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).PubMed 

    Google Scholar 
    Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. Lond. B 279, 1300–1309 (2011).
    Google Scholar  More

  • in

    Factors underlying bird community assembly in anthropogenic habitats depend on the biome

    Hobbs, R. J. et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8–18 (2016).
    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 

    Google Scholar 
    Temperton, V. M. Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice (Island Press, 2004).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 

    Google Scholar 
    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
    Google Scholar 
    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 

    Google Scholar 
    Vaccaro, A., Filloy, J. & Bellocq, M. What land use better preserves the functional and taxonomic diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).
    Google Scholar 
    Vaccaro, A. S. & Bellocq, M. I. Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecol. Austral 29, 391–404 (2019).
    Google Scholar 
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).
    Google Scholar 
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic Forest. Biotropica 44, 412–419 (2012).
    Google Scholar 
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 83, 217–246 (2012).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    Purschke, O. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 101, 857–866 (2013).
    Google Scholar 
    Srivastava, D. S., Cadotte, M. W., Macdonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785 (2012).PubMed 

    Google Scholar 
    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, S50–S61 (2006).CAS 
    PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B. et al. Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stevens, R. D., Gavilanez, M. M., Tello, J. S. & Ray, D. A. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J. Anim. Ecol. 81, 455–462 (2012).PubMed 

    Google Scholar 
    García-Navas, V. & Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 47, 2392–2404 (2020).
    Google Scholar 
    Henwood, W. D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Univ. Neb. Press 20, 121–134 (2010).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Landi, M., Oesterheld, M. & Deregibus, V. A. Manual de especies forrajeras de los pastizales naturales de Entre Ríos (1987).Viglizzo, E. F. et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 83, 65–81 (2001).
    Google Scholar 
    Galindo Leal, C. & de Gusmão Câmara, I. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (Island Press, 2003).
    Google Scholar 
    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793–810 (2000).
    Google Scholar 
    DeGraaf, R. M., Geis, A. D. & Healy, P. A. Bird population and habitat surveys in urban areas. Landsc. Urban Plan. 21, 181–188 (1991).
    Google Scholar 
    Ralph, C. J. et al. Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA 46 http://www.srs.fs.usda.gov/pubs/31462. https://doi.org/10.3145/epi.2006.jan.15 (1996).Bibby, C., Jones, M. & Marsden, S. Expedition field techniques: Bird surveys. in (ed. Society, R. G.) (1998).Zurita, G. A. & Bellocq, M. I. Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest. Landsc. Ecol. 25, 147–158 (2010).
    Google Scholar 
    Koper, N. & Schmiegelow, F. K. K. A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landsc. Ecol. 21, 1045 (2006).
    Google Scholar 
    Xeno-canto-Foundation. Xeno-canto website. https://www.xeno-canto.org (2018).Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org (2018).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. nlme: Linear and Nonlinear mixed effects models. R package version 3.1–117. (2014).Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 

    Google Scholar 
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2016).
    Google Scholar 
    Cerezo, A., Conde, M. C. & Poggio, S. L. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).
    Google Scholar 
    Pretelli, M. G., Isacch, J. P. & Cardoni, D. A. Year-round abundance, richness and nesting of the bird assemblage of tall grasslands in the south-east Pampas region, Argentina. Ardeola 60, 327–343 (2013).
    Google Scholar 
    Molinari, R. L. Biografía de la Pampa: 4 siglos de historia del campo argentino (Fundación Colombina “V Centenario,” 1987).
    Google Scholar 
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Google Scholar 
    Le Viol, I. et al. More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Google Scholar 
    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    Morse, N. B. et al. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).
    Google Scholar 
    Loyn, R. H., McNabb, E. G., Macak, P. & Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 137, 533–548 (2007).
    Google Scholar 
    Marsden, S., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).
    Google Scholar 
    Zurita, G. A., Rey, N., Varela, D. M., Villagra, M. & Bellocq, M. I. Conversion of the Atlantic Forest into native and exotic tree plantations: Effects on bird communities from the local and regional perspectives. For. Ecol. Manag. 235, 164–173 (2006).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity ecosystem-function. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Palacio, F. X., Ibañez, L. M., Maragliano, R. E. & Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 96, 1114–1121 (2018).
    Google Scholar 
    Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20, 721–729 (2017).PubMed 

    Google Scholar 
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, B. W. T. & Chown, S. L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 6, 7610–7622 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Author Correction: Climate change reshuffles northern species within their niches

    These authors contributed equally: Laura H. Antão, Benjamin Weigel.These authors jointly supervised this work: Tomas Roslin, Anna-Liisa Laine.Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandLaura H. Antão, Benjamin Weigel, Giovanni Strona, Maria Hällfors, Elina Kaarlejärvi, Otso Ovaskainen, Marjo Saastamoinen, Jarno Vanhatalo, Tomas Roslin & Anna-Liisa LaineDepartment of Biological Sciences, University of South Carolina, Columbia, SC, USATad DallasDepartment of Biology, Lund University, Lund, SwedenØystein H. OpedalFinnish Environment Institute (SYKE), Helsinki, FinlandJanne Heliölä, Mikko Kuussaari, Juha Pöyry & Kristiina VuorioNatural Resources Institute Finland (Luke), Helsinki, FinlandHeikki Henttonen, Otso Huitu, Andreas Lindén, Päivi Merilä, Maija Salemaa & Tiina TonteriSection of Ecology, Department of Biology, University of Turku, Turku, FinlandErkki KorpimäkiFinnish Museum of Natural History, University of Helsinki, Helsinki, FinlandAleksi LehikoinenKainuu Centre for Economic Development, Transport and the Environment, Kajaani, FinlandReima LeinonenUniversity of Helsinki, Helsinki, FinlandHannu PietiäinenDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FinlandOtso OvaskainenCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, NorwayOtso OvaskainenHelsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandMarjo SaastamoinenDepartment of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, FinlandJarno VanhataloSpatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, FinlandTomas RoslinSpatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenTomas RoslinDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, SwitzerlandAnna-Liisa Laine More

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More