More stories

  • in

    The impact of natural fibers’ characteristics on mechanical properties of the cement composites

    The structure and microstructure of the fibresThe surfaces of the natural fibres are presented from Figs. 6, 7, 8, 9, 10 and of the synthetic fibres are presented in Figs. 11 and 12.Figure 6SEM of jute fibre [Fot.M.Kurpińska].Full size imageFigure 7SEM of bamboo fibre [Fot.M.Kurpińska].Full size imageFigure 8SEM of sisal fibre [Fot.M.Kurpińska].Full size imageFigure 9SEM of cotton fibre [Fot.M.Kurpińska].Full size imageFigure 10SEM of ramie fibre [Fot.M.Kurpińska].Full size imageFigure 11SEM of polymer fibre [Fot.M.Kurpińska].Full size imageFigure 12SEM of polypropylene (PP) fibre [Fot.M.Kurpińska].Full size imageThe basic components of natural fibres influencing their properties are cellulose, hemicellulose, lignin, waxes, oils, and pectin. Cellulose is mainly composed of three elements such as carbon, hydrogen, and oxygen, and it is the material basis that forms the cell wall natural fibre. Typically, cellulose remains in the form of micro-fibrils within the cell wall of a plant. Cellulose is the main factor affecting the tensile strength along natural fibre and the cellulose content is closely related to the plant’s age and content decreases with the increasing age of the plant6.Hemicellulose is an amorphous substance offering a low degree of polymerization and it exists between fibres. Hemicellulose is a complex polysaccharide with xylan as the predominant chain, and the branches mainly include 4-O-methyl-D-glucuronic acid, L-arabinose, and D-xylose. Lignin is a kind of polymer with complex structures and of many types. The basic units of lignin include: guaiacyl, syringyl monomers, and p-hydroxyphenyl monomers. The structural units in lignin are mainly connected by ether bonds and carbon–carbon single bonds. Usually, lignin is not evenly distributed in the plant fibre wall9.In addition to three main components, lignin often contains various sugars, fats, protein substances, and a small amount of ash elements. These chemical compositions affect not only the properties of natural fibres, but also the possibility of a specific application of fibre. The composition of individual natural fibres and their properties are presented in Table 1. Figure 6a–c shows longitudinal and cross-sectional views of the untreated jute fibre. Externally, the fibre is smooth and shiny. The presence of hemicellulose influences the high hygroscopicity of jute fibres. The structure of the jute fibre shows that the fibre swells when it absorbs water. Possible swelling of the fibre in the cross-section by approx. 30%. The microscope scans of indicate the succinylated regions. This is due to the chemical bonding of the succinic anhydride molecule with the hydroxyl group of the cellulose present in the fibre. The encircled region in the top side shows an unsuccinylated region with naturally waxy impurities16.Figure 7a shows the scanning electron micrograph (SEM) of the bamboo fibre. According to the SEM analysis, the microstructure of bamboo is anisotropic. At the Fig. 7b–c it can be recognized that the orientation of cellulose fibrils was placed almost along the fibre axis which may affect to maximize the modulus of elasticity. Factors affect the mechanical properties of bamboo fibres are the chemical composition and structure of bamboo fibres, moisture content, age of bamboo, etc. In addition, the age of the plant affects the chemical composition and structure of fibre. These factors and the natural humidity influence their change of mechanical properties. The hemicellulose content directly influences the tensile strength. This parameter increases with the decrease in the hemicellulose content in the bamboo fibre18.The cell structure of bamboo fibres is complex, and the middle layer of the cell wall has a multi-layer structure. The lignification of the thin and thick layers in the multilayer structure varies. The multi-layered cell wall structure leads to better fracture resistance and promotes internal sliding between the cell wall layers during tension. The angle of the microfiber alignment is also an important factor influencing the mechanical properties of the fibre. Typically, the tensile strength and modulus of elasticity of a fibre increase as the angle between the interposition of the microfibers decreases. Hence, the smaller microfibril angle is an important factor that contributes to the good mechanical properties of bamboo fibre. Large voids between bamboo fibre molecules can be seen, which impact good hygroscopicity19. The moisture content is an important factor affecting the mechanical properties of bamboo fibres. Figure 8a–c shows the morphology of the sisal fibre. The surface of the sisal fibre has higher roughness, and it increases the bonding area between the fibre and cement paste. This leads to increase the mechanical properties of the composites38.Figure 9a–c shows images of the cotton fibres. At the microscope image, a cotton fibre looks like a twisted ribbon or a collapsed and twisted tube. These twists are called convolutions: there are about 60 convolutions per centimetre. The weaves give the cotton an uneven surface of the fibres, which increases the friction between the fibres, but at the same time they can prevent fibres from evenly dispersing in the cement matrix. The outer layer, the cuticle is a thin film of mostly fats and waxes. Figure 9b shows the waxy layer surface with some smooth grooves. The waxy layer forms a thin sheet over the primary wall that forms grooves on the cotton surface19. The cotton fibre surface comprises non-cellulosic materials and amorphous cellulose in which the fibrils are arranged in a criss-cross pattern. Owing to the non-structured orientation of cellulose and non-cellulosic materials, the wall surface is unorganized and open. This gives flexibility to the fibre. The basic ingredients, responsible for the complicated interconnections in the primary wall, are cellulose, hemicelluloses, pectin, proteins, and ions. In the core of fibre, only the crystalline cellulose is present, what is highly ordered and has a compact structure with the cellulose fibrils lying parallel to one another18.SEM micrograph of the surface and cross section of the ramie fibre are shown at Fig. 10a–c. The surface of the ramie fibres is dense but porous. There are many micropores and continuous bubbles in the porous structure of a single bundle of a ramie fibre Fig. 10c. This structure has some effect for low absorption of water, moreover, it is also related to the fibre distribution in the cement composites. In case of the short ramie fibre, due to its random distribution in composites, the strength of the composite may be affected. Cellulose, lignin, and hemicellulose weight materials can form a dense layer on the surface of the ramie fibres, so the water absorptivity is low. This special structure of the fibre with a dense matrix, and at the same time, with a characteristic pore arrangement has an influence on the adhesion of the cement matrix and the strength of the cement composite18.The surface and cross section of multifilament macrofibre is demonstrated at Fig. 11a–c. From the chemical point of view, this type of fibres belongs to the polymers from the group of polyolefins, composed of units of the formula: –[CH2CH (CH3)]–. They are obtained by low-pressure polymerization of propylene. They are made of 100% pure co-polymer twisted bundles of multifilament fibres Fig. 11c. Polypropylene is one of two most commonly used plastics, in addition to polyethylene. Polypropylene is a hydrocarbon thermoplastic polymer2.Figure 12a–c shows the structure of a bundle of polypropylene (PP) fibres in the form of a 3D mesh. They are made of isotactic polypropylene, called propylene, CH2=CHCH3 obtained from crude oil. They are one of the finest polypropylene fibres. The surface of the fibres is smooth Fig. 12b 2.The consistency—fluidityThe results of fluidity are shown at Fig. 13. The fluidity of the composite not modified with fibres is 145 mm and is a reference to other test results. The use of bamboo fibres increased the composite fluidity and composite flow by 8.6% (157.5 mm). The use of polymer fibers and jute increased the consistency by about 7%, while the use of sisal fibres by 3%. The use of PP fibres (122.5 mm) had the greatest impact on the loss of consistency by 15.5%. The use of cotton and frame fibres resulted in a reduction of workability and consistency by 13.8% and 3.5%, respectively.Figure 13Results of fluidity test.Full size imageBased on the research results, it was found that in the case of using bamboo fibres characterizing a high absorption of 120–145%, the consistency of composite increased by 8.2% compared to the consistency of composite without fibres. In the case of a change in consistency, the chemical composition of natural fibres, their surface, and the total length in the volume of composite are significant, too. There is a noticeable regularity related to the cellulose content in natural fibres. If the higher cellulose content, it reduces the consistency of the composite. For example, the cellulose content in bamboo fibres is the lowest and amounts to 40–45%, while the cellulose content in cotton fibres is the highest, ranging from 80 to 94%. It can also be recognized that consistency and workability will be influenced by the hemicellulose content.The higher the hemicellulose content, it impacts the higher consistency of the composite. It is similar referring to the content of lignin. It was noticed that the higher the lignin content, the higher the composite consistency was found. Regarding the total length of the fibres, a regularity is apparent that the greater the total length of fibres, e.g., in the case of cotton fibres, the greater decrease in consistency is visible. In the case of polymer and polypropylene (PP) fibres, the consistency is influenced by the surface of the fibre, the number of fibres, and their total length in the volume of the composite. Increasing the total length of PP fibres by approx. 15% resulted in a reduction of the consistency of approx. 20%.Flexural and compressive strengthAssigning mechanical properties of fibre reinforced composite, particular emphasis was placed on the determination of the flexural strength of the composite. This parameter was appointed by the 3-point test. Figure 14. shows the flexural strength of plain composite and 7 groups of different fibre reinforced composites on the 2nd, 7th, 28th, and 56th days.Figure 14Flexural strength test results.Full size imageIt can be seen that the bending strength of composites with the addition of natural fibres, ramie, bamboo, jute, and sisal are similar. The bending strength of composites with PP and polymer fibres is lower. It should be noted that the strength of the cotton fibre-reinforced composite is much lower than that of all the others tested. The reason may be the low tensile strength of the cotton fibres used. When mixing the composites, a tendency to create conglomerates of cotton fibres was also noticed, which may affect the strength of the composites.The test results clearly show that the effectiveness of the added natural fibres depends on the chemical composition and mechanical properties, and above all, on their adhesion to the cement matrix. The adhesion of the natural fibre to the cement matrix has a significant influence on the mechanical properties of the cement composite, in particular on compression and bending strength. The highest bending strength was achieved by cement composites modified with ramie fibres. Ramie fibres are characterized by the highest tensile strength among the tested synthetic and natural fibres, ranging from 400 to 1000 MPa. The results of the compressive strength are shown in Fig. 15.Figure 15Compressive strength test results.Full size imageThe analysis of the test results shows that the use of dispersed fibres reduced the early compressive strength after 2 days from 8.5 to 33%. The exception is the ramie fibres, the use of which increased the early strength by 6.6%. Within 28 days, as in the case of early strength, the use of all types of synthetic and natural fibres resulted in a decrease in strength from 4.6 to 26.5%. The exception is the use of ramie fibres, which increased the compressive strength by 7.2% after 28 days. After 56 days, a decrease in strength was noticed in the case of using PP and polymer synthetic fibres as well as natural cotton and bamboo from 5.5 to 11.9%.On the other hand, the increase in compressive strength after 56 days from 5.8 to 16.4% was visible in the case of using fibres such as sisal, jute and ramie. The highest compressive strength was achieved by the composite with a ramie fibre. The fibre of the ramie is characterized by the highest modulus of elasticity ranging from 24.5 to 128 GPa and is over 100% higher than the Young’s modulus of the other fibres.Shrinkage testFigure 16A shows that the samples after demolding showed expansion for about 2 days, and from the third day after demolding, the length of the samples was shortened. The lowest degree of expansion in the first days was shown by samples without fibres and samples containing cotton fibres. In this case, the expansion did not exceed 0.02 mm/m. However, the same samples finally showed the highest shrinkage after 180 days, which was 0.06 mm/m.Figure 16Testing the change in length of samples.Full size imageThe highest expansion within 48 h after deformation was shown by samples containing sisal fibres, while these samples finally after 180 days showed the lowest deformation of the length of the samples, which was 0.001 mm/m. The samples containing the synthetic fibres showed an expansion of about 0.02–0.03 mm/m in 48 h and the final shrinkage after 180 days was 0.03 mm/m for both the polymer and PP fibre samples. The bamboo and ramie fibres initially showed an expansion of 0.04–0.06 mm/m while their final shrinkage was 0.02 mm/m. The samples with jute fibres showed an expansion of 0.04 mm/m and the final shrinkage of the samples was 0.04 mm/m. Figure 16a,b shows the results of testing the change in length of samples over time.After 180 days, the total deformation of the samples was determined. Samples containing sisal fibers showed a slight expansion of about 0.001 mm/m, while the highest deformation (shrinkage) was shown for composite samples without fibers and with cotton fibres, which was 0.06 mm/m. Samples with bamboo, jute, PP, polymer and ramie fibres showed a shrinkage from 0.02 to 0.04 mm/m. Only the samples containing the sisal fibre showed a slight expansion of 0.001 mm/m.Ultimately, the samples containing sisal fibres were characterized by the lowest deformability. This phenomenon is related to the fibre structure and the total length of the fibres in a sample with dimensions of 40 × 40 × 160mm. For example, in a sample containing sisal fibres, their total length is 5856.7 m. Otherwise, a sample containing jute fibres, their total length in the sample is only 7.4 m. Therefore it was found that the fibre structure, its diameter, the cellulose content and the total length of the fibres in the element are important factors of deformation as a result of shrinkage or expansion of the fibre reinforced composite.Water absorption of composite testHigher water absorption (8.5%) compared to the composite without fibres was noticed in the case of using both synthetic fibres and with the exception of the use of ramie fibres, which caused a slight reduction in water absorption to 8.2%. It can be recognized that the water absorption rate of the 8 groups of samples is slightly different, the highest is the polymer fibre-reinforced composite (9.2%); the lowest water absorption rate refers to ramie fibre-reinforced composite (8.2%). The difference in water absorption rates is presented at Fig. 17.Figure 17Water absorption of composite (%).Full size imageExcept for cotton fibre-reinforced composite, the water absorption rate of another plant fibre-reinforced composite is lower than that of synthetic fibre-reinforced composite. Probably because of the fact that ramie, sisal, and jute fibres all have good moisture absorption and release properties. It is commonly known that plant fibre-reinforced cement-based materials have reduced strength and initial properties due to their performance degradation in a humid environment, so their long-term durability could become problematic. Sisal fibres (with noticed absorption of 95–100%) have absorbed more cement slurry on their surface than jute fibres (absorption of fibre 7–12%). This phenomenon could be explained by the fact that the slurry became the impregnation of the fibre. The absorbability of the composite was tested after the composite had completely hardened. Probably a fibre that is characterized by high absorption—sisal is very well “embedded” in the matrix, therefore the bending strength results for composites with sisal fibre were higher by 8–10%. More

  • in

    Long-term, basin-scale salinity impacts from desalination in the Arabian/Persian Gulf

    Al-Mutawa, A. M., Al Murbati, W. M., Al Ruwaili, N. A., Al Orafi, A. S., Al Orafi, A., Al Arafati, A., Nasrullah, A., Al Bahow, M. R., Al Anzi, S. M., Rashisi, M. & Al Moosa, S. Z. Desalination in the gcc. the history, the present & the future. Available from: https://www.gcc-sg.org/en-us/CognitiveSources/DigitalLibrary/Lists/DigitalLibrary/WaterandElectricity/1414489603.pdf Second edition, The Cooperation Council for the Arab States of the Gulf (GCC) General Secretariat (2014).Global Water Intelligence. DesalData. https://www.desaldata.com/. Accessed 2022-05-01 (2022).Sharifinia, M., Afshari Bahmanbeigloo, Z., Smith Jr, W. O., Yap, C. K. & Keshavarzifard, M. Prevention is better than cure: Persian gulf biodiversity vulnerability to the impacts of desalination plants. Glob. Change Biol. 25(12), 4022–4033 (2019).Article 

    Google Scholar 
    Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World. Number 79. UNESCO, (2015).Al-Senafy, M., Al-Fahad, K. & Hadi, K. Water management strategies in the Arabian gulf countries. In Developments in Water Science, volume 50, pages 221–224. Elsevier, (2003).Ulrichsen, K.C.. Internal and external security in the arab gulf states. Middle East Policy16(2), 39 (2009).Verner, D. Adaptation to a changing climate in the Arab countries: a case for adaptation governance and leadership in building climate resilience. Number 79. World Bank Publications, (2012).Einav, R., Harussi, K. & Perry, D. The footprint of the desalination processes on the environment. Desalination 152(1–3), 141–154 (2003).Article 

    Google Scholar 
    Dawoud, M. A. Environmental impacts of seawater desalination: Arabian Gulf case study. Int. J. Environ. Sustain.1(3) (2012).Chow, A. C. et al. Numerical prediction of background buildup of salinity due to desalination brine discharges into the Northern Arabian Gulf. Water 11(11), 2284 (2019).Article 

    Google Scholar 
    Lee, K. & Jepson, W. Environmental impact of desalination: A systematic review of life cycle assessment. Desalination 509, 115066 (2021).Article 

    Google Scholar 
    Hosseini, H. et al. Marine health of the Arabian gulf: Drivers of pollution and assessment approaches focusing on desalination activities. Mar. Pollut. Bull. 164, 112085 (2021).Article 
    PubMed 

    Google Scholar 
    Le Quesne, W. J. F. et al. Is the development of desalination compatible with sustainable development of the Arabian Gulf?. Mar. Pollut. Bull. 173, 112940 (2021).Article 
    PubMed 

    Google Scholar 
    Kress, N., & Galil, B. Impact of seawater desalination by reverse osmosis on the marine environment. Efficient Desalination by Reverse Osmosis: A guide to RO practice. IWA, London, UK, pp. 177–202 (2015).Reynolds, R. M. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman: Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35–59 (1993).Article 

    Google Scholar 
    Swift, S. A. & Bower, A. S. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. Oceans 108(C1), 1–4 (2003).Article 

    Google Scholar 
    Pous, S. P., Carton, X., & Lazure, P. Hydrology and circulation in the strait of hormuz and the Gulf of Oman: Results from the gogp99 experiment: 1. strait of hormuz. J. Geophys. Res. Oceans109(C12), (2004).Pous, S., Lazure, P. & Carton, X. A model of the general circulation in the persian gulf and in the strait of hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 94, 55–70 (2015).Article 

    Google Scholar 
    Johns, W. E., Yao, F., Olson, D. B., Josey, S. A., Grist, J. P. & Smeed, D. A. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. Oceans108(C12) (2003).Hassanzadeh, S., Hosseinibalam, F. & Rezaei-Latifi, A. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian gulf. Appl. Math. Model. 35(3), 1512–1537 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Price, A. R. G. Western Arabian gulf echinoderms in high salinity waters and the occurrence of dwarfism. J. Nat. Hist. 16(4), 519–527 (1982).Article 

    Google Scholar 
    Sheppard, C. R. C. Similar trends, different causes: Responses of corals to stressed environments in Arabian seas. In Proceedings of the 6th International Coral Reef Symposium Townsville, Australia, volume 3, pp. 297–302 (1988).Coles, S. L. & Jokiel, P. L. Effects of salinity on coral reefs. In Connell, D. W., & Hawker, D. W. editors, Pollution in tropical aquatic systems, pp. 147–166. CRC Press, Florida (1992).Coles, S. L. Coral species diversity and environmental factors in the Arabian gulf and the Gulf of Oman: A comparison to the Indo-Pacific region. Atoll Res. Bull. (2003).D’Agostino, D. et al. Growth impacts in a changing ocean: Insights from two coral reef fishes in an extreme environment. Coral Reefs 40(2), 433–446 (2021).Article 

    Google Scholar 
    Bœuf, G. & Payan, P. How should salinity influence fish growth?. Compar. Biochem. Physiol. Part C Toxicol. Pharmacol. 130(4), 411–423 (2001).Article 

    Google Scholar 
    Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of north sea fishes. Glob. Change Biol. 20(4), 1023–1031 (2014).Article 

    Google Scholar 
    Dore, M. H. I. Forecasting the economic costs of desalination technology. Desalination 172(3), 207–214 (2005).Article 

    Google Scholar 
    Karagiannis, I. C. & Soldatos, P. G. Water desalination cost literature: Review and assessment. Desalination 223(1–3), 448–456 (2008).Article 

    Google Scholar 
    Al Barwani, H. H. & Purnama, A. Evaluating the effect of producing desalinated seawater on hypersaline Arabian Gulf. Eur. J. Sci. Res. 22(2), 279–285 (2008).
    Google Scholar 
    Lee, W. & Kaihatu, J. M. Effects of desalination on hydrodynamic process in Persian Gulf. Coast. Eng. Proc. 36, 3–3 (2018).Article 

    Google Scholar 
    Ibrahim, H. D. & Eltahir, E. A. B. Impact of brine discharge from seawater desalination plants on Persian/Arabian gulf salinity. J. Environ. Eng. 145(12), 04019084 (2019).Article 

    Google Scholar 
    Campos, E. J. D. et al. Impacts of brine disposal from water desalination plants on the physical environment in the Persian/Arabian Gulf. Environ. Res. Commun. 2(12), 125003 (2020).Article 

    Google Scholar 
    Ibrahim, H. D., Xue, P. & Eltahir, E. A. B. Multiple salinity equilibria and resilience of Persian/Arabian Gulf basin salinity to brine discharge. Front. Mar. Sci. 7, 573 (2020).Article 

    Google Scholar 
    Ibrahim, H. D. Simulated effects of seawater desalination on Persian/Arabian Gulf exchange flow. J. Environ. Eng. 148(4), 04022012 (2022).Article 

    Google Scholar 
    Purnama, A. Assessing the environmental impacts of seawater desalination on the hypersalinity of arabian/persian gulf. In The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures, pp. 1229–1245. Springer, (2021).GEBCO Compilation Group. The GEBCO_2021 grid: A continuous terrain model of the global oceans and land, (2021).Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13(2), 224–230 (1961).Article 

    Google Scholar 
    Nakamura, M., Stone, P. H. & Marotzke, J. Destabilization of the thermohaline circulation by atmospheric eddy transports. J. Clim. 7(12), 1870–1882 (1994).Article 

    Google Scholar 
    Pasquero, C. & Tziperman, E. Effects of a wind-driven gyre on thermohaline circulation variability. J. Phys. Oceanogr. 34(4), 805–816 (2004).Article 

    Google Scholar 
    Lucarini, V. & Stone, P. H. Thermohaline circulation stability: A box model study. part ii: coupled atmosphere-ocean model. J. Clim. 18(4), 514–529 (2005).Article 

    Google Scholar 
    Wunsch, C. Thermohaline loops, stommel box models, and the sandström theorem. Tellus A Dyn. Meteorol. Oceanogr. 57(1), 84–99 (2005).
    Google Scholar 
    Privett, D. W. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Q. J. R. Meteorol. Soc. 85(366), 424–428 (1959).Article 

    Google Scholar 
    Chao, S.-Y., Kao, T. W. & Al-Hajri, K. R. A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res. Oceans 97(C7), 11219–11236 (1992).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020).Article 

    Google Scholar 
    Thoppil, P. G. & Hogan, P. J. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Part I 57(8), 946–955 (2010).Article 

    Google Scholar 
    Paparella, F., Chenhao, X., Vaughan, G. O. & Burt, J. A. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Front. Mar. Sci. 6, 205 (2019).Article 

    Google Scholar 
    Gutiérrez, J.M., Jones, R. G., Narisma, G.T., Alves, L.M., Amjad, M., Gorodetskaya, I.V., Grose, M., Klutse, N.A.B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L.O., Mernild, S.H., Ngo-Duc, T., van den Hurk, B. & Yoon, J.-H. Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, editors, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, (2021). Available from http://interactive-atlas.ipcc.ch/.Alosairi, Y., Imberger, J., & Falconer, R. A. Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res. Oceans116(C3) (2011).Whitehead, J. A. Internal hydraulic control in rotating fluids – applications to oceans. Geophys. Astrophys. Fluid Dyn. 48(1–3), 169–192 (1989).Article 
    MATH 

    Google Scholar 
    Dougherty, W. W., Yates, D. N., Pereira, J. E., Monaghan, A., Steinhoff, D., Ferrero, B., Wainer, I., Flores-Lopez, F., Galaitsi, S., & Kucera, P., et al. The energy–water–health nexus under climate change in the united arab emirates: Impacts and implications. In Climate Change and Energy Dynamics in the Middle East, pp. 131–180. Springer, (2019).Al-Shehhi, M. R., Song, H., Scott, J. & Marshall, J. Water mass transformation and overturning circulation in the Arabian gulf. J. Phys. Oceanogr. 51(11), 3513–3527 (2021).
    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions-the “business as usual’’ story is misleading. Nature 577, 618–620 (2020).Article 
    PubMed 

    Google Scholar 
    Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019).Article 

    Google Scholar 
    Riegl, B. M. & Purkis, S. J. Coral reefs of the gulf: adaptation to climatic extremes in the world’s hottest sea. In Coral reefs of the Gulf, pp. 1–4. Springer, (2012).Burt, J. A. et al. Insights from extreme coral reefs in a changing world. Coral Reefs 39(3), 495–507 (2020).Article 

    Google Scholar 
    D’Agostino, D. et al. The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian gulf. Coral Reefs 39(3), 733–744 (2020).Article 

    Google Scholar 
    Lachkar, Z., Mehari, M., Lévy, M., Paparella, F., & Burt, J.A. Recent expansion and intensification of hypoxia in the Arabian gulf and its drivers. Front. Mar. Sci. 1616 (2022).De Verneil, A., Burt, J. A., Mitchell, M., & Paparella, F. Summer oxygen dynamics on a southern Arabian Gulf coral reef. Front. Mar. Sci. 1676 (2021).Petersen, K. L. et al. Impact of brine and antiscalants on reef-building corals in the gulf of aqaba-potential effects from desalination plants. Water Res. 144, 183–191 (2018).Article 
    PubMed 

    Google Scholar 
    Sanchez-Lizaso, J. L. et al. Salinity tolerance of the mediterranean seagrass posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221(1–3), 602–607 (2008).Article 

    Google Scholar 
    Cambridge, M. L., Zavala-Perez, A., Cawthray, G. R., Mondon, J. & Kendrick, G. A. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass posidonia australis. Mar. Pollut. Bull. 115(1–2), 252–260 (2017).Article 
    PubMed 

    Google Scholar 
    Cambridge, M. L. et al. Effects of desalination brine and seawater with the same elevated salinity on growth, physiology and seedling development of the seagrass posidonia australis. Mar. Pollut. Bull. 140, 462–471 (2019).Article 
    PubMed 

    Google Scholar 
    Kelaher, B. P., Clark, G. F., Johnston, E. L. & Coleman, M. A. Effect of desalination discharge on the abundance and diversity of reef fishes. Environ. Sci. Technol. 54(2), 735–744 (2019).Article 
    PubMed 

    Google Scholar 
    Gegner, H. M. et al. High salinity conveys thermotolerance in the coral model aiptasia. Biol. Open 6(12), 1943–1948 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3(8), e1602047 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gegner, H. M. et al. High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biol. Open 8(12), bio045591 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thoppil, P. G. & Hogan, P. J. A modeling study of circulation and eddies in the Persian Gulf. J. Phys. Oceanogr. 40(9), 2122–2134 (2010).Article 

    Google Scholar 
    Pous, S., Carton, X. & Lazure, P. A process study of the tidal circulation in the Persian gulf. Open J. Mar. Sci. 2(04), 131–140 (2012).Article 

    Google Scholar 
    Haney, R. L. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr. 1(4), 241–248 (1971).Article 

    Google Scholar  More

  • in

    Field research stations are key to global conservation targets

    A theme is emerging in this year’s United Nations conferences on biodiversity (COP15), climate change (COP27) and the international wildlife trade (COP19): countries are struggling to meet key conservation targets. We argue that field research stations are an effective — but imperilled and overlooked — tool that can help policy frameworks to meet those targets. We write on behalf of 149 experts from 47 countries.
    Competing Interests
    The authors declare no competing interests. More

  • in

    COP15 biodiversity plan risks being alarmingly diluted

    I was filled with hope when I read the first draft of the Global Biodiversity Framework (GBF) in mid-2021. It seemed that the parties to the United Nations Convention on Biodiversity had learnt from bitter experience — the failure of the Aichi Biodiversity Targets, set for the previous decade. Instead of vague aims, the draft framework incorporated most of the advice that the scientific community, myself included, had marshalled. It contained ambitious quantitative thresholds, such as those for the area of ecosystem to be protected, the percentage of genetic diversity to be maintained, and percentage reductions for overall extinction rates, pesticide use and subsidies harmful to biodiversity.Then came the square brackets. In the world of policy, these mark proposed amendments that the parties do not yet agree on. The square brackets proliferated at an alarming rate throughout the GBF text, enclosing, neutralizing and paralysing goals and targets. By July 2021, in a version about 10,200 words long, there were more than 900 pairs of square brackets.Brackets germinated with particular vigour in sections that could make the greatest difference for a better future because of their precision, ambition or conceptual novelty. Almost all quantitative thresholds had been bracketed or had disappeared.
    The United Nations must get its new biodiversity targets right
    I applaud the new prominence given to gender justice (with a new dedicated Target 22) and to financial resources and capacity building (Target 19). I wonder why other key aspects have not received the same treatment, and have instead been compressed almost beyond recognition. For example, the first draft highlighted that species, ecosystems, genetic diversity and nature’s contribution to people each needed their own specific, verifiable outcomes. Now they have coagulated into one vague yet verbose paragraph.This thicket of square brackets smothers the GBF and the hopes of those of us who see transformative change as the only way forward for life on Earth as we know it.In a titanic effort, a streamlined proposal from the Informal Group on the GBF has halved the brackets to be considered by the parties when they meet in Montreal, Canada, for the 15th Conference of the Parties (COP15) on 7–19 December.We need a text with teeth — and far fewer brackets. This much we have learnt in the 30 years since the foundational 1992 Rio Summit drew attention to the impact of human activities on the environment: a strong, precise, ambitious text does not in itself ensure successful implementation, but a weak, vague, toothless text almost guarantees failure.It was no surprise when the Convention on Biological Diversity officially declared the failure of its ten-year Aichi Targets. People involved at the international interface of biodiversity science and policy were already discussing how to do better in the next decade with the GBF.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    The scientific community rose to the occasion. In just three years, we produced the first-ever intergovernmental appraisal of life on Earth and what it means to people: The Global Assessment Report on Biodiversity and Ecosystem Services from IPBES (the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services), which I co-chaired. It was ready in time for the original 2020 date for COP15, before the global disruption caused by COVID-19. It was the most comprehensive ever synthesis of published information on the topic, an inclusive conceptual framework involving various disciplines and knowledge systems, and unprecedented participation of Indigenous peoples.Then, in 2020, we assembled an interdisciplinary team of more than 60 biodiversity scientists across the world, and within a few months produced detailed suggestions for the goals of the GBF. Since then, we have made the best of the many pandemic postponements by issuing a stream of specific, evidence-based recommendations on targets, scenarios and implementation.The scientific advice is convergent. First, the GBF needs to explicitly address each facet of biodiversity; none is a good substitute or umbrella for the others. Second, the biodiversity goals must be more ambitious than ever, accompanied by equally ambitious targets for concrete action and sufficient resources to make them happen. Third, the targets need to be precise, traceable and coordinated.Fourth, formally protecting a proportion of the planet’s most pristine ecosystems will by itself fall far short. Nature must be mainstreamed, incorporated in decisions made for the landscapes in which we live and work every day, well beyond protected areas. Finally, and most crucially, targets must focus on the root causes of biodiversity loss: the ways in which we consume, trade and allocate subsidies, incentives and safeguards.From previous experience, I expected objections to certain sections— pesticides and subsidies, say — but they are everywhere. Only 2 of the 22 targets have no brackets. Ironing out objections takes precious time. Because the framework can be enshrined only by consensus, too many objections can lead to too much compromise.Now, to avert failure, we exhort the governments gathering in Montreal to be brave, long-sighted and open-hearted, and to produce a visionary, ambitious biodiversity framework, grounded in knowledge. The awareness and mobilization of their constituencies has never been greater, the evidence in their hands never clearer. If not now, when?

    Competing Interests
    The author declares no competing interests. More

  • in

    Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).Article 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).
    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).Article 

    Google Scholar 
    Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).
    Google Scholar 
    Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).Article 

    Google Scholar 
    Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).
    Google Scholar 
    Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).Article 

    Google Scholar 
    Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).Article 
    PubMed 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).Article 
    PubMed 

    Google Scholar 
    Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).
    Google Scholar 
    Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).Article 

    Google Scholar 
    Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).
    Google Scholar 
    Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).Article 

    Google Scholar 
    Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).Article 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).Article 

    Google Scholar 
    Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).Article 
    PubMed 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).Chapter 

    Google Scholar 
    Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).Article 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).Article 
    PubMed 

    Google Scholar 
    Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).Article 

    Google Scholar 
    Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).Article 

    Google Scholar 
    Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).Article 
    CAS 

    Google Scholar 
    Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).Article 
    CAS 

    Google Scholar 
    Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).Article 
    CAS 

    Google Scholar 
    Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).Article 

    Google Scholar 
    Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).Article 

    Google Scholar 
    Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).Article 
    PubMed 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).Article 

    Google Scholar 
    Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).Article 

    Google Scholar 
    Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).Article 

    Google Scholar 
    Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).Article 
    CAS 

    Google Scholar 
    Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).
    Google Scholar  More

  • in

    Spatial and temporal changes in moth assemblages along an altitudinal gradient, Jeju-do island

    Thornton, I. Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, 2007).Book 

    Google Scholar 
    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. 110, 15307–15312 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P., Adsersen, H. & Loope, L. Introduction. In Islands: Biological Diversity and Ecosystem Function (eds Vitousek, P. et al.) 1–6 (Berlin, 1995).Chapter 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
    Google Scholar 
    Lomolino, M., Brown, J. & Sax, D. Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R.) 13–51 (Princeton University Press, 2010).
    Google Scholar 
    Colom, P., Carreras, D. & Stefanescu, C. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodivers. Conserv. 28, 1837–1851 (2019).Article 

    Google Scholar 
    Preston, F. W. The canonical distribution of commonness and rarity, part II. Ecology 43, 410–432 (1962).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book 

    Google Scholar 
    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006).Article 
    PubMed 

    Google Scholar 
    Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).Article 

    Google Scholar 
    Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).Article 

    Google Scholar 
    Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: A cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).Article 

    Google Scholar 
    Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical A ustralian rainforests. Aust. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    Maunsell, S. C. et al. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Aust. Ecol. 41, 238–247 (2016).Article 

    Google Scholar 
    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 
    Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8, e69177 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).Article 

    Google Scholar 
    Szewczyk, T. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rahbek, C. The elevational gradient of species richness: A uniform pattern?. Ecography 18, 200–205 (1995).Article 

    Google Scholar 
    Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).Article 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Meyer, W. M. III. et al. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS ONE 10, e0135210 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong, W. S. Biogeography of Korean plants 335 (Geobook, 2007) (in Korean).
    Google Scholar 
    Kitching, R. L. et al. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37, 284–297 (2000).Article 

    Google Scholar 
    Froidevaux, J. S., Broyles, M. & Jones, G. Moth responses to sympathetic hedgerow management in temperate farmland. Agric. Ecosyst. Environ. 270, 55–64 (2019).Article 
    PubMed 

    Google Scholar 
    Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Div. 6, 5–19 (2013).Article 

    Google Scholar 
    Keret, N. M., Mutanen, M. J., Orell, M. I., Itämies, J. H. & Välimäki, P. M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128, 542–552 (2006).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).Article 
    PubMed 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Zenker, M. M. et al. Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest. J. Insect Conserv. 19, 129–140 (2015).Article 

    Google Scholar 
    Brehm, G. & Fiedler, K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. J. Biogeogr. 30, 431–440 (2003).Article 

    Google Scholar 
    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (Wiley, Chichester, 2010).
    Google Scholar 
    Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation 601 (Harvard University Press, 1993).Book 

    Google Scholar 
    Heinrich, B. Thermoregulation in Endothermic Insects: Body temperature is closely attuned to activity and energy supplies. Science 185, 747–756 (1974).Article 
    PubMed 

    Google Scholar 
    May, M. L. Insect thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).Article 

    Google Scholar 
    Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).Article 
    MathSciNet 

    Google Scholar 
    Holloway, J. D. Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations. Biol. J. Linn. Soc. 30, 325–341 (1987).Article 

    Google Scholar 
    Axmacher, J. C. et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293–302 (2004).Article 

    Google Scholar 
    Heinrich, B. & Mommsen, T. P. Flight of winter moths near 0°C. Science 228, 177–179 (1985).Article 
    PubMed 

    Google Scholar 
    Rydell, J. & Lancaster, W. C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88, 13–18 (2000).Article 

    Google Scholar 
    Skou, P. The geometroid moths of North Europe. Entomonograph, Vol. 6. Brill, Leiden. (1986).Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Syst. Entomol. 37, 102–124 (2012).Article 

    Google Scholar 
    Fiedler, K., Brehm, G., Hilt, N., Sussenbach, D. & Hauser, C. L. Variation of diversity patterns across moth families along a tropical altitudinal gradient. Ecol. Stud. 198, 167–179 (2008).Article 

    Google Scholar 
    Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).Article 

    Google Scholar 
    Beck, J. & Chey, V. K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 35, 1452–1464 (2008).Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).Article 
    PubMed 

    Google Scholar 
    Kwon, T. S. Ants foraging on grasses in South Korea: High diversity in Jeju Island and negative correlation with aphids. J. Asia-Pac. Biodivers. 10, 465–471 (2017).Article 

    Google Scholar 
    Han, E. K. et al. A disjunctive marginal edge of evergreen broad-leaved oak (Quercus gilva) in East Asia: The high genetic distinctiveness and unusual diversity of Jeju island populations and insight into a massive, independent postglacial colonization. Genes 11, 1114 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chi, Y., Shi, H., Wang, Y., Guo, Z. & Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 125, 216–241 (2017).Article 
    PubMed 

    Google Scholar 
    Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 152, 287–298 (2007).Article 
    PubMed 

    Google Scholar 
    Root, R. B. Organization of plant–arthropod association in simple and diverse habitats: The fauna of collards (I. Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Otway, S. J., Hector, A. & Lawton, J. H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240 (2005).Article 

    Google Scholar 
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).Article 

    Google Scholar 
    Major, J. A climatic index to vascular plant activity. Ecology 44, 485–498 (1963).Article 

    Google Scholar 
    Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).Article 

    Google Scholar 
    Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).Article 
    PubMed 

    Google Scholar 
    Storch, D. et al. Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).Article 
    PubMed 

    Google Scholar 
    Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).Article 

    Google Scholar 
    Choi, S. W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).Article 

    Google Scholar 
    Choi, S. W. A high mountain moth assemblage quickly recovers after fire. Ann. Entomol. Soc. Am. 111, 304–311 (2018).
    Google Scholar 
    van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).Article 

    Google Scholar 
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. 110, 18561–18565 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article 
    PubMed 

    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).Article 

    Google Scholar 
    White, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. Bioscience 69, 40–46 (2019).Article 

    Google Scholar 
    Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Div. 13, 103–114 (2020).Article 

    Google Scholar 
    Kim, J. W., Boo, K. O., Choi, J. T. & Byun, Y. H. Climate Change of 100 Years on the Korean Peninsula (National Institute of Meteorological Science, 2018).
    Google Scholar 
    Kim, S. S., Beljaev, E. A. & Oh, S. H. Illustrated Catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae) (Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, 2001).
    Google Scholar 
    Kononenko, V.S., Ahn, S.B. & Ronkay, L. Illustrated catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa (1998).Shin, Y.H. Coloured illustrations of the moths of Korea. Academybook (2001).Kim, S.S., Choi, S.W., Sohn, J.C., Kim, T. & Lee, B.W. The Geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa (2016).Kim, C. G. & Kim, N. W. Altitudinal pattern of evapotranspiration and water need for upland crops in Jeju Island. J. Korea Water Resour. Assoc. 48, 915–923 (2015).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    R Development Core Team. R 4.0.3. R: A language and environment for statistical computing. R Foundation for statistical computing Vienna. Austria. URL http://www.R-project.org. (2020).Pohlert, T. Non-parametric trend tests and change-point detection. R-package version 0.0.1. (2020).Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
    Google Scholar 
    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Colwell, R. K. Estiamtes, Version 91: Statistical Estimation of Species Richness and Shared Species from Samples (University of Connecticut, 2013).
    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar  More

  • in

    Effect of a temperature gradient on the behaviour of an endangered Mexican topminnow and an invasive freshwater fish

    Time using the rock as refugeTemperature had an effect in the refuge usage of both species when analysed together (lme.zig: F3,192 = 7.97, p = 0.0001; Fig. 1A). However, species behaved differently (lme.zig: F1,192 = 14.79, p = 0.0004; Fig. 1A). As hypothesised, there was an interaction between temperature and species (lme.zig: F3,192 = 11.90, p  0.14, Fig. 1B).Size had an effect in the time exploring the rock (lme: F1,192 = 6.91, p = 0.012, Fig. 3) when species were analysed together, but there was no interaction with temperatures (lme: F3,192 = 0.42, p = 0.74, Fig. 3). We found that the interaction between species and size was close to be significant (lme: F1,192 = 3.62, p = 0.064, Fig. 3), implying that possibly smaller fish spent more time exploring the rock than bigger fish. However, when analysed separately, we did not find an effect of size in the exploring behaviour neither for twoline skiffias (lme: F1,96 = 2.99, p = 0.099, Fig. 3) nor for guppies (lme: F1,96 = 0.33, p = 0.569, Fig. 3).Figure 3Proportion of the total time observed (600 s) fish of different sizes spent exploring the rock. Lines represent the areas where the density of data is higher.Full size imageTime spent swimmingTemperature had an effect in the time spent swimming for both species when analysed together (lme: F3,192 = 23.48, p  More

  • in

    Incorporating distance metrics and temporal trends to refine mixed stock analysis

    MacPherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Bio. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J. & Moland, E. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85, 628–637 (2016).Article 
    PubMed 

    Google Scholar 
    Michelot, C. et al. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet. Deep. Res. Part II Top. Stud. Oceanogr. 141, 224–236 (2017).Article 

    Google Scholar 
    Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Distributional patterns of a marine bird and its prey: Habitat selection based on prey and conspecific behaviour. Mar. Ecol. Prog. Ser. 256, 229–242 (2003).Article 

    Google Scholar 
    Chiarello, A. G. et al. A translocation experiment for the conservation of maned sloths, Bradypus torquatus (Xenarthra, Bradypodidae). Biol. Conserv. 118, 421–430 (2004).Article 

    Google Scholar 
    Fukuda, Y. et al. Environmental resistance and habitat quality influence dispersal of the saltwater crocodile. Mol. Ecol. 31, 1076–1092 (2022).Article 
    PubMed 

    Google Scholar 
    O’Leary, S. J., Dunton, K. J., King, T. L., Frisk, M. G. & Chapman, D. D. Genetic diversity and effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning populations estimated from the microsatellite genotypes of marine-captured juveniles. Conserv. Genet. 15, 1173–1181 (2014).Article 

    Google Scholar 
    Brüniche-Olsen, A. et al. Genetic data reveal mixed-stock aggregations of gray whales in the North Pacific Ocean. Biol. Lett. 14, 1–4 (2018).Article 

    Google Scholar 
    Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias Del Sur) feeding ground. J. Hered. 111, 263–276 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowen, A. B. W. et al. Origin of hawksbill turtles in a Caribbean feeding area as indicated by genetic markers. Ecol. Appl. 6, 566–572 (1996).Article 

    Google Scholar 
    Paxton, K. L., Yau, M., Moore, F. R. & Irwin, D. E. Differential migratory timing of western populations of Wilson’s Warbler (Cardellina pusilla) revealed by mitochondrial DNA and stable isotopes. Auk 130, 689–698 (2013).Article 

    Google Scholar 
    Anderson, E. C., Waples, R. S. & Kalinowski, S. T. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65, 1475–1486 (2008).Article 

    Google Scholar 
    Debevec, E. M. SPAM (version 3.2): Statistics program for analyzing mixtures. J. Hered. 91, 509–511 (2000).Article 
    PubMed 

    Google Scholar 
    Bolker, B. M., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Incorporating multiple mixed stocks in mixed stock analysis: ‘Many-to-many’ analyses. Mol. Ecol. 16, 685–695 (2007).Article 
    PubMed 

    Google Scholar 
    Neaves, P. I., Wallace, C. G., Candy, J. R. & Beacham, T. D. CBayes: Computer Program for Mixed Stock Analysis of Allelic Data. Free Program Distributed by the Authors Over the Internet. at (2005).Pella, J. & Masuda, M. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99, 151–167 (2001).
    Google Scholar 
    Bolker, B., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Sea turtle stock estimation using genetic markers: Accounting for sampling error of rare genotypes. Ecol. Appl. 13, 763–775 (2003).Article 

    Google Scholar 
    Okuyama, T. & Bolker, B. M. Combining genetic and ecological data to estimate sea turtle origins. Ecol. Appl. 15, 315–325 (2005).Article 

    Google Scholar 
    Nishizawa, H. et al. Composition of green turtle feeding aggregations along the Japanese archipelago: Implications for changes in composition with current flow. Mar. Biol. 160, 2671–2685 (2013).Article 

    Google Scholar 
    Naro-Maciel, E. et al. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: A focus on mtDNA and dispersal modelling. J. R. Soc. Interface 11, 20130888 (2014).Proietti, M. C. et al. Green turtle Chelonia mydas mixed stocks in the western South Atlantic, as revealed by mtDNA haplotypes and drifter trajectories. Mar. Ecol. Prog. Ser. 447, 195–209 (2012).Article 

    Google Scholar 
    van der Zee, J. P. et al. Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Shamblin, B. M. et al. Mexican origins for the Texas green turtle foraging aggregation: A cautionary tale of incomplete baselines and poor marker resolution. J. Exp. Mar. Bio. Ecol. 488, 111–120 (2017).Article 

    Google Scholar 
    Seminoff, J. A. et al. Status Review of the Green Turtle (Chelonia mydas) Under the Endangered Species Act. (NOAA Technical Memorandum, NOAA-NMFS-SWFSC, 2015).Chaloupka, M. et al. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304 (2008).Article 

    Google Scholar 
    Bjorndal, K. A. & Bolten, A. B. Annual variation in source contributions to a mixed stock: Implications for quantifying connectivity. Mol. Ecol. 17, 2185–2193 (2008).Article 
    PubMed 

    Google Scholar 
    Roland, J., Keyghobadi, N. & Fownes, S. Alpine Parnassius butterfly dispersal: Effects of landscape and population size. Ecology 81, 1642–1653 (2000).Article 

    Google Scholar 
    Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116, 1255–1266 (2007).Article 

    Google Scholar 
    Shamblin, B. M. et al. Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol. Ecol. 21, 2330–2340 (2012).Article 
    PubMed 

    Google Scholar 
    Witherington, B., Hirama, S. & Hardy, R. Young sea turtles of the pelagic Sargassum-dominated drift community: Habitat use, population density, and threats. Mar. Ecol. Prog. Ser. 463, 1–22 (2012).Article 

    Google Scholar 
    Putman, N. F. & Mansfield, K. L. Direct evidence of swimming demonstrates active dispersal in the sea turtle ‘lost years’. Curr. Biol. 25, 1221–1227 (2015).Article 
    PubMed 

    Google Scholar 
    Mansfield, K. L., Wyneken, J. & Luo, J. First Atlantic satellite tracks of ‘lost years’ green turtles support the importance of the Sargasso Sea as a sea turtle nursery. Proc. R. Soc. B Biol. Sci. 288, 20210057 (2021).Putman, N. F. et al. Predicted distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic Ocean. Ecography (Cop.) 43, 506–517 (2020).Article 

    Google Scholar 
    Putman, N. F. & Naro-Maciel, E. Finding the ‘lost years’ in green turtles: Insights from ocean circulation models and genetic analysis. Proc. R. Soc. B Biol. Sci. 280, 20131468 (2013).Naro-Maciel, E., Hart, K. M., Cruciata, R. & Putman, N. F. DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate. Ecography (Cop.) 40, 586–597 (2017).Article 

    Google Scholar 
    Ehrhart, L. M., Redfoot, W. E. & Bagley, D. A. Marine turtles of the central region of the Indian River Lagoon system, Florida. Florida Sci. 70, 415–434 (2007).
    Google Scholar 
    Redfoot, W. & Ehrhart, L. Trends in size class distribution, recaptures, and abundance of juvenile green turtles (Chelonia mydas) utilizing a rock riprap lined embayment at Port Canaveral, Florida, USA, as developmental habitat. Chelonian Conserv. Biol. 12, 252–261 (2013).Article 

    Google Scholar 
    Ehrhart, L., Redfoot, W., Bagley, D. & Mansfield, K. Long-term trends in loggerhead (Caretta caretta) nesting and reproductive success at an important western Atlantic rookery. Chelonian Conserv. Biol. 13, 173–181 (2014).Article 

    Google Scholar 
    Bolten, A. B. Techniques for measuring sea turtles. in Research and Management Techniques for the Conservation of Sea Turtles. (eds. Eckert, K. L., Bjorndal, K. A., Abreu-Grobois, F. A. & Donnelly, M.). 1–5 (1999).Bagley, D. A. Characterizing Juvenile Green Turtles, (Chelonia mydas), from Three East Central Florida Developmental Habitats. (University of Central Florida, 2003).Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faircloth, B. & Glenn, T. Preparation of an AMPure XP Substitute. AKA Serapure https://doi.org/10.6079/J9MW2F26 (2016).Article 

    Google Scholar 
    Abreu-Grobois, F. A. et al. New mtDNA Dloop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analyses. in Proceedings of the 26th Annual Symposium on Sea Turtle Biology. 179 (International Sea Turtle Society, 2006).Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Wright, S. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. (University of Chicago Press, 1978).Hays, G. C. Ocean currents and marine life. Curr. Biol. 27, R470–R473 (2017).Article 
    PubMed 

    Google Scholar 
    Engstrom, T. N., Meylan, P. A. & Meylan, A. B. Origin of juvenile loggerhead turtles (Caretta caretta) in a tropical developmental habitat in Caribbean Panamá. Anim. Conserv. 5, 125–133 (2002).Article 

    Google Scholar 
    Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, F. W. C. F. W. R. I. Index Nesting Beach Survey (INBS). (2021).Cuevas Flores, E. A., Guzmán Hernández, V., Guerra Santos, J. J. & Rivas Hernández, G. A. El uso del Conocimiento de las Tortugas Marinas Como Herramienta para la Restauración de sus Poblaciones y Hábitats Asociados. (Universidad Autónoma del Carmen, 2019).Pineda, O. G. & Rocha, A. R. B. Las Tortugas Marinas en México: Logros y Perspectivas para su Conservación. (CONANP, 2016).Varela, R. G., Quílez, G. Z. & Harrison, E. Report on the 2014 Green Turtle Program at Tortuguero, Costa Rica. (2015).Azanza Ricardo, J. et al. Nesting ecology of Chelonia mydas (Testudines: Cheloniidae) on the Guanahacabibes Peninsula. Cuba. Rev. Biol. Trop. 61, 1935–1945 (2013).PubMed 

    Google Scholar 
    Nalovic, M. A. et al. Sea Turtles in the North Atlantic & Wider Caribbean Region. (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. https://doi.org/10.1016/B978-0-12-405888-0.09999-2 (Academic Press, 2015).Ruiz-Urquiola, A. et al. Population genetic structure of greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Rev. Investig. Mar. 31, 33–52 (2010).
    Google Scholar 
    Long, C. A. et al. Incongruent long-term trends of a marine consumer and primary producers in a habitat affected by nutrient pollution. Ecosphere 12, e03553 (2021).Article 

    Google Scholar 
    Phillips, K. F., Stahelin, G. D., Chabot, R. M. & Mansfield, K. L. Long-term trends in marine turtle size at maturity at an important Atlantic rookery. Ecosphere 12, 7 (2021).Article 

    Google Scholar 
    Bjorndal, K. A., Bolten, A. B. & Chaloupka, M. Y. Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean. Ecol. Appl. 15, 304–314 (2005).Article 

    Google Scholar 
    Naro-Maciel, E. et al. The interplay of homing and dispersal in green turtles: A focus on the southwestern atlantic. J. Hered. 103, 792–805 (2012).Article 
    PubMed 

    Google Scholar 
    Monzón-Argüello, C. et al. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J. Biogeogr. 37, 1752–1766 (2010).Article 

    Google Scholar 
    Luke, K., Horrocks, J. A., LeRoux, R. A. & Dutton, P. H. Origins of green turtle (Chelonia mydas) feeding aggregations around Barbados, West Indies. Mar. Biol. 144, 799–805 (2004).Article 

    Google Scholar 
    Bass, A. L., Epperly, S. P. & Braun-McNeill, J. Green turtle (Chelonia mydas) foraging and nesting aggregations in the Caribbean and Atlantic: Impact of currents and behavior on dispersal. J. Hered. 97, 346–354 (2006).Article 
    PubMed 

    Google Scholar 
    Lahanas, P. N. et al. Genetic composition of a green turtle (Chelonia mydas) feeding ground population: Evidence for multiple origins. Mar. Biol. 130, 345–352 (1998).Article 

    Google Scholar 
    Foley, A. M. et al. Characteristics of a green turtle (Chelonia mydas) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf Mex. Sci. 25, 131–143 (2007).
    Google Scholar 
    Bass, A. L., Lagueux, C. J. & Bowen, B. W. Origin of green turtles, Chelonia mydas, at ‘Sleeping Rocks’ off the Northeast coast of Nicaragua. Copeia 1998, 1064 (1998).Article 

    Google Scholar 
    Bass, A. L. & Witzell, W. N. Demographic composition of immature green turtles (Chelonia mydas) from the East Central Florida Coast: Evidence from mtDNA markers. Herpetologica 56, 357–367 (2000).
    Google Scholar 
    Bjorndal, K. A., Parsons, J., Mustin, W. & Bolten, A. B. Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Mar. Biol. 160, 607–616 (2013).Article 

    Google Scholar 
    Perrault, J. R. et al. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida. PLoS ONE 7, e31841 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, N. et al. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS ONE 13, 1–16 (2018).Article 

    Google Scholar 
    Shamblin, B. M. et al. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: New insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences. PLoS ONE 9, 85956 (2014).Article 

    Google Scholar 
    Anderson, J. D., Shaver, D. J. & Karel, W. J. Genetic Diversity and Natal Origins of Green Turtles (Chelonia mydas) in the Western Gulf of Mexico. J. Herpetol. 47, 251–257 (2013).Article 

    Google Scholar  More