More stories

  • in

    Influence of urbanisation on phytodiversity and some soil properties in riverine wetlands of Bamenda municipality, Cameroon

    Description of the study areaThe study covers urban, peri-urban and rural wetlands in the Bamenda Municipality of the North West Region of Cameroon that have evolved concomitantly with different stages of urbanization (Fig. 1). In this study, urbanisation is considered a loose term that is aimed at giving a geographical expression to the variation in the economic, social and cultural practices in the milieu. The central town with many economic activities is termed the urban, the fringe area with sprawls is termed peri-urban while the rural has typical peasant activities and make-shift structures. From the variation of human activities in the three sub-zones, a variety of chemical substances are discharged into drains, playing a substantial role in soil quality, and therefore plant macrophyte diversity. The Plants studied were ubiquitous in the area and verification of their IUCN conservation status in the red data book of plants of Cameroon confirmed their abundance14. Information on protected sites in Cameroon does not place the study area under conservation status. In line with that, permits are not required to undertake academic and research studies as well as do a responsible collection of plants in the study area. The urbanization rate of Bamenda is 42%, and the population grew from 48,111 inhabitants in 1976 to 488,883 inhabitants in 201015, with 150–200 inhabitants/km2.Figure 1Relief Map of Bamenda showing the Bamenda escarpment, topography and the location for quadrat sites.Full size imageThe study area is part of the Bamenda escarpment that is located between latitudes 5° 55″ N and 6° 30″ N and longitudes 10° 25″ E and 10° 67″ E. The town shows an altitudinal range of 1200–1700 m and is divided into two parts by escarpments—a low-lying and gently undulating part with altitudes ranging from 1200 to 1400 m, with many flat areas that are usually inundated for most parts of the year, and an elevated part that range from 1400 to 1700 m altitude. Most of the streams take their rise from this elevated part (Fig. 1).This area experiences two seasons—a rainy season (mid-March to mid-October) and a short dry season (mid-October to mid-March). The thermic and hyperthermic temperature regimes dominate in the area. The mean annual temperature stands at 19.9 °C. January and February are the hottest months with mean monthly temperatures of 29.1 and 29.7 °C, respectively. This area is dominated by the Ustic and Udic moisture regimes with the Udic extending to the south9. Annual rainfall ranges from 1300 to 3000 mm16. The area has a rich hydrographical network with intense human activities and a dense population along different water courses in the watershed. The area is bounded on the West, North and East by the Cameroon Volcanic Line (made up of basalts, trachytes, rhyolites and numerous salt springs). The geologic history of this area originates from the Precambrian era when there was a vast formation of geosynclinal complexes, which became filled with clay-calcareous, and sandstone sediments9. These materials, crossed by intrusions of crystalline rocks, were folded in a generally NE-SW direction and underwent variable metamorphism9. The Rocks in the area are thus of igneous (granitic and volcanic) and metamorphic (migmatites) origin17, which gives rise to ferralitic soils18.Agriculture is the principal human activity in and around this region18. The area equally harbours the commercial center that has factories ranging from soap production, and mechanic workshops to metallurgy, which may be potential sources of pollutants that can influence wetland Geochemistry. Raffia farinifera bush, which is largely limited to the wetlands, is an important vegetation type in this area. R. farinifera provides raffia wine, a vital economic resource to the inhabitants who are fighting against the cultivation of these wetlands by vegetable farmers.Methods of the studyMacrophyte diversity studyThe plant diversity of the wetlands was evaluated using quadrats in the dry season for accessibility reasons. For each of the three wetlands (the urban, peri-urban and rural areas), three transects were established on which representative quadrats, each measuring 10 m × 10 m, were mapped out in uncultivated areas for the determination of plant species cover-abundance and diversity. It is perceived that the different zones receive different mixtures of chemical substances and thus influence macrophyte diversity differently.According to a publication by14 on the vascular plants of Cameroon and a taxonomic checklist with IUCN assessment, the plants of the area are placed under the Least Concern Category(LC), and therefore not in the risky category. Diversity studies involved the identification of a specific area called “relevé” by progressively increasing test quadrat size and sampling for specific diversity until the smallest area with adequate species representation was reached. The relevé size determined here was 1 m2, making a total of 300 sub-quadrats (relevé) in the entire study ie. 100 in each main quadrat). For each site (main quadrat), 10 representative relevés were sampled and all plant species were enumerated. Most plant species in each of them were identified in the field by the Botanist, Dr Ndam Lawrence Monah using visual observation of the morphology of the leaves and flowers, a self-made field guide, the Flora of West Africa and the Flora of Cameroon. 10 unidentified plants were appropriately collected where there were in abundance, placed onto a conventional plant press and dried in the field. Voucher specimens were tagged and transported to the Limbe Botanic Gardens (SCA: Southern Cameroon, the code of the Limbe Botanic Gardens Herbarium) for identification. Mr Elias Ndive, the Taxonomist of the Limbe Botanic Gardens compared unidentified specimens with authentic herbarium specimens and other taxonomic guides and finally identified them. Voucher specimens of the 10 plants were given identification numbers and deposited in the Herbarium of the Limbe Botanic Gardens.The Braun–Banquet method was used19 for the assessment of species cover abundance. Relative abundance and abundance ratings were determined using the Braun–Banquet rating scheme (Table 1).Table 1 Braun-Blanquet rating scheme for vegetation cover-abundance, Source19.Full size tableSimpson’s diversity indexSpecies richness was evaluated using Simpson’s diversity index (D), which takes into account both species richness and the Braun-Blanquet rating scheme for vegetation cover abundance and evenness of abundance among the species present. In essence, D measures the probability that two individuals that are randomly selected from an area will belong to the same species. The formula for calculating D is presented as:$${text{D}} = frac{{sum {{text{n}}_{i} left( {{text{n}}_{i} – 1} right)} }}{{{text{N}}({text{N}} – 1)}}$$where ni = the total number of each species; N = the total number of individuals of all species.The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and 1 represents no diversity. That is, the larger the value the lower the diversity.Alternatively, Simpson’s Diversity Index, = 1–D,1-D was used as a measure of diversity because it is more logical and less likely to cause confusion. The scale then gives a score from 0 to 1 with higher scores showing higher diversity (instead of being associated with low scores).The Simpson index is a dominance index because it gives more weight to common or dominant species. In this case, a few rare species with only a few representatives will not affect the diversity.
    Soil sampling and analysisSoil sampling was done in and around the three quadrats laid in the urban, peri-urban and rural wetlands for macrophytes sampling. Twenty-one (21) composite samples (0–25 cm) were randomly collected (Fig. 2) and taken to the laboratory in black plastic bags. Each composite sample was a collection of 5 dried core soil samples. Due to the observed greater heterogeneity in the urban sector, the sampling density was intensified. The soil samples were air-dried and screened through a 2-mm sieve. They were analyzed in duplicate for their physicochemical properties in the Environmental and Analytical Chemistry Laboratory of the University of Dschang, Cameroon. Particle size distribution, cation exchange capacity (CEC), exchangeable bases, electrical conductivity (EC) and pH were determined by standard procedures20. Soil pH was measured both in water and KCl (1:2.5 soil/water mixture) using a glass electrode pH meter. Part of the soil was ball-milled for organic carbon (Walkley–Black method) and total nitrogen (Macro-Kjeldahl method) as largely described by20. Available phosphorus (P) was determined by Bray I method. Exchangeable cations were extracted using 1 N ammonium acetate at pH 7. Potassium (K) and sodium (Na) in the extract were determined using a flame photometer and magnesium (Mg) and calcium (Ca) were determined by complexiometric titration. Exchange acidity was extracted with 1 M KCl followed by quantification of Al and H by titration20. Effective cation exchange capacity (ECEC) was determined as the sum of bases and exchanged acidity.Figure 2Adapted from the 1980 land use map of the Bamenda City Area showing soil sampling points: Source Bamenda City Council.Map of the study area in freshwater wetlands of Bamenda Municipality.Full size imageApparent CEC (CEC at pH 7) was determined directly as outlined by20. Based on critical values of nutrients established for vegetables, nutrients were declared sufficient or deficient.
    Statistical analysisThe data were subjected to statistical analysis using Microsoft Excel 2007 and SPSS statistical package 20.0. Soil properties were assessed for their variability using the coefficient of variation (CV) and compared with variability classes (Table 2).$$CV=frac{Sd}{X}X 100$$where: Sd = standard deviation; = X arithmetic mean of soil properties.Table 2 Grouping coefficient of variation into variability classes.Full size tableThe hierarchical cluster analysis (HCA) was used to group the area under managing units. The main goal of the hierarchical agglomerative cluster analysis is to spontaneously classify the data into groups of similarity (clusters). This is done by searching objects in the n-dimensional space that is located in the closest neighborhood and separating a stable cluster from other clusters. The sampling sites were considered objects for classification. Each object was determined by a set of variables (chemical concentrations of the soils in this case). More

  • in

    Influence of tillage systems and sowing dates on the incidence of leaf spot disease in Telfairia occidentalis caused by Phoma sorghina in Cameroon

    ResultsSoil physiochemical propertiesThe preliminary status of the soil analyzed before the commencement of the field preparatory activities revealed that the soil was subtlety fertile with regard to the physical and chemical properties (Table 1).Table 1 Physicochemical properties of the soil.Full size tableAssessment of disease incidence at sowing dates during each year in the trial studyIn the trial study, very low and statistically significant (p  More

  • in

    Nasal microbiome disruption and recovery after mupirocin treatment in Staphylococcus aureus carriers and noncarriers

    Study population and study designThis is a prospective interventional cohort study of healthy S. aureus carriers and noncarriers in the Netherlands. All experiments were performed in accordance with the Dutch Medical Research Involving Human Subjects Act (WMO). The study protocol was approved by the local Medical Ethical Committee of the Erasmus University Medical Centre Rotterdam, The Netherlands (MEC-2018-091). Written informed consent was obtained for all participants. Participants were recruited through advertisements at Dutch universities and the research teams social networks. Exclusion criteria were age  8 CFU/mL for each culture. Noncarriers were defined as 2 S. aureus-negative cultures. Intermittent S. aureus carriers were excluded from further participation in the study. Eligible volunteers were enrolled on a first-come, first-served basis.Eligible participants were asked to fill out a questionnaire regarding risk factors for S. aureus acquisition. All participants received decolonization treatment. Decolonization consisted of mupirocin nasal ointment (2%, GlaxoSmithKline BV, Zeist, the Netherlands) twice daily and chlorhexidine gluconate cutaneous solution (4%w/v, Regent Medical Overseas Limited, Oldham, UK) once daily, both for 5 days.Nasal samples were taken 1 day before decolonization (D0) and 2 days (D7), 1 month (M1), 3 months (M3) and 6 months (M6) after decolonization. All participants received a personal demonstration for nasal sampling by the executive researcher. Thereafter, all specimens were taken by the participants by inserting a swab (ESwab, 490CE.A, Copan Italia, Brescia, Italy) into one nostril and rotating 5 times, repeating this in the second nostril using the same swab. Swabs were collected in a container filled with 1 ml modified Liquid Amies, a collection and transport solution, and sent through regular mail service (non-temperature controlled) or deposited at the laboratory personally.
    Staphylococcus aureus quantitative cultureQuantitative S. aureus cultures were conducted to examine the dynamics of S. aureus carriage over the 6-month follow-up period after decolonization. Swab containers were vortexed for 20 s before plating. Serial dilutions of Amies medium were plated onto phenol mannitol salt agar (PHMA) and incubated for 2 days at 37 °C. Swabs were placed in phenol mannitol salt broth (PHMB) and incubated for 7 days at 37 °C for enrichment. S. aureus growth was confirmed by a latex agglutination test (Staph Plus Latex Kit, Diamondial, Vienna, Austria). Morphologically different S. aureus colonies were selected for spa typing and methicillin resistance screening using BBL CHROMagar MRSA II agar (BD, Breda, The Netherlands).
    Spa typingMolecular typing of S. aureus isolates was performed to infer whether recolonization with S. aureus in decolonized carriers involved the same spa-type. Typing was limited to the last S. aureus positive culture moment and the last S. aureus positive culture moment after decolonization in recolonised carriers. S. aureus DNA lysates were prepared by boiling in 10 mM Tris–HCl, 1 mM disodium EDTA, pH 8.0 or extraction with the QIAamp DNA Mini Kit (QIAGEN, Venlo, The Netherlands) according to the manufacturer’s instructions. Amplification of the S. aureus protein A (spa) repeat region was performed by PCR with 2 sets of primers. One set consisted of forward primer spa-1113, 5′-TAAAGACGATCCTTCGGTGAGC-3′ and reverse primer spa-1514, 5′-CAGCAGTAGTGCCGTTTGCTT-3′24. The other set consisted of forward primers spa-F1, 5′-AACAACGTAACGGCTTCATCC-3′ and spa-F2 5′-AGACGATCCTTCAGTGAGC-3′ and reverse primer spa-R1 5′-GCTTTTGCAATGTCATTTACTG-3′. Amplicons were purified with ExoSAP-IT (Applied Biosystems) according to the manufacturer’s instructions and sent for sequence analysis (Baseclear, Leiden, The Netherlands). Resulting sequences were analysed using BioNumerics v7.6 (Applied Maths NV, Sint-Martens-Latem, Belgium) and the spa types were assigned by use of the RidomStaphType database (Ridom GmbH, Würzburg, Germany).16S ribosomal RNA sequencing of nasal microbiotaThe impact of decolonization on the nasal microbiome and the recovery of the microbiome structure after decolonization were examined by means of 16S rRNA metabarcoding. Amies medium from each nasal swab container was stored at − 80 °C on the day of receipt at the study laboratory in Rotterdam, NL, then sent at − 80 °C to the microbiome analysis laboratory in Lyon, FR. To properly capture the impact of decolonization on the living microbiota, metabarcoding used RNA-based 16S ribosomal RNA (rRNA, which is preserved in living cells but quickly cleared after cell death or lysis) rather than the DNA coding sequence, as DNA can persist for prolonged time periods after cell death25,26,27,28. RNA was extracted using the Mag Bind® Total RNA 96 Kit (Omega Bio-tek) tissue protocol from 150 µL of samples’ material. Cell lysis was performed using beads (Disruptor plate C plus—Omega Bio-tek) and proteinase K for 15 min at 2600 rpm, followed by 10 min at room temperature without agitation, and finished with a DNase I digestion of 20 min at room temperature. RNA was quantified using QuantiFluor RNA kit on Tecan Safire (TECAN). 10 ng total RNA was used for reverse transcription using FIREScript RT cDNA synthesis kit (Solis Biodyne) with random primers, then cDNA was purified with SPRIselect reagent (Beckman coulter) and quantified.The rRNA V1–V3 region was PCR amplified using the 5× HOT BIOAmp® BlendMaster Mix 12,5 mM MgCl 2 (Biofidal), 10× GC rich Enhancer (Biofidal) and BSA 20 mg/mL. The PCR reaction consisted of 30 cycles at 56 °C using the forward primer 27F, 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AGAGTTTGATCCTGGCTCAG-3′ and reverse primer 534R, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG-3′ in 25 µL of solution. PCR products were purified using SPRIselect beads (Beckman Coulter) in 20 µL nuclease-free water and quantified using QuantiFluor dsDNA (Promega). Samples were indexed with lllumina’s barcodes with the same PCR reagents during a 12 cycles PCR, then purified and quantified as previously mentioned. Samples were normalized and pooled, then sequenced using Illumina MiSeq V3 Flow Cell following the constructor’s recommendations for a 2 × 300 bp paired-end application. A mean of 130 k proofread reads per sample was obtained.Experiment buffers were used as negative controls to detect contamination by out-of-sample bacterial RNA. RNA extraction was controlled using an in-house mix of live Staphylococcus aureus ATCC29213 and Escherichia coli ATCC25922 in equal proportions, allowing for assessing extraction bias in Gram-positive and -negative bacteria. PCR amplification bias was controlled using a commercial DNA mix of 8 bacterial species (ZymoBIOMICS™ Microbial Community DNA Standard).Bioinformatics and statistical analysesSequencing reads were quality checked and trimmed. Paired-ended read pairs were merged using BBMap version 38.49 (available at https://sourceforge.net/projects/bbmap/), with default options besides a minimum single size of 150 bp with an average Phred quality score higher than 10, and a total pair size of minimum 400 bp. PCR adapters were removed with cutadapt v.2.1 (Martin 2011) then dereplicated using vsearch v.2.12.029 with the sizeout option. For species assignment, reads were aligned to sequences of NCBI blast 16S_ribosomal_RNA database (version date 03.12.2020) using Blastn v.2.11.0+30,31, keeping a maximum of 20 reference targets. Read counts per bacterial species were normalized to account for taxon-specific variations of the copy number of 16S rRNA genes using NCBI rrnDB-5.5 database based on the mean gene copy number in the taxon.To optimize the resolution of sequencing read taxonomic assignment, we used in-house bioinformatic software publicly available at https://github.com/rasigadelab/taxonresolve. Briefly, when a read matches sequences from several species with identical alignment scores, taxonomic assignment pipelines typically output the higher taxonomic level such as the genus (e.g., Staphylococcus spp. when a read matches S. aureus and S. epidermidis). This loss of information can be problematic when species-level discrimination is important. To prevent losing species-level information, the taxonresolve software assigns reads with uncertain species to groups of species rather than to genera.Bacterial species deemed present from contaminating sources such as kits reagents and found in negative controls, mostly from the Bacillus genera, were removed. A total of 1376 species or group of species were retained. The rarefaction curves corresponding to the sequencing effort to assess the species richness within samples are shown in Supplementary Fig. 3. Most samples reached a plateau after 40,000 sequences.Given the small sample size compared to the number of variables and species considered in this study, no hypothesis testing was performed, and we provide a descriptive assessment of the results. In figures, 95% confidence intervals of the means were computed based on normal approximation, after log transformation for CFU/mL and log odds transformation for quantities restricted to the [0, 1] interval, such as proportions.In microbial diversity analyses, we retained the 9 most prevalent bacterial species and pooled the other species into an ‘Others’ category. To assess the disruption and possible recovery of the microbiota, the divergence of sampled microbiota relative to the initial, pre-treatment microbiota (D0) was assessed using the Bray–Curtis dissimilarity at each sampling time point relative to the first sample of the same patient.Software code of the analyses are available at https://github.com/rasigadelab/macotra-metabarcoding. Data are available at https://zenodo.org/record/6382657. Analyses and figures used R software v3.6.032 with packages dplyr33, ggplot234, vegan35, and MicrobiomAnalyst available at https://www.microbiomeanalyst.ca36,37. More

  • in

    The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

    Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).
    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 

    Google Scholar 
    Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).CAS 

    Google Scholar 
    Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).CAS 

    Google Scholar 
    Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).
    Google Scholar 
    Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).ADS 

    Google Scholar 
    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 

    Google Scholar 
    Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).CAS 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).
    Google Scholar 
    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).
    Google Scholar 
    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).
    Google Scholar 
    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).
    Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).
    Google Scholar 
    Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).
    Google Scholar 
    Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).
    Google Scholar 
    Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).
    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).
    Google Scholar 
    Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).
    Google Scholar 
    Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).Article 

    Google Scholar 
    Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).
    Google Scholar 
    Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).
    Google Scholar 
    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).
    Google Scholar 
    Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).ADS 

    Google Scholar 
    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).
    Google Scholar 
    Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).
    Google Scholar 
    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).
    Google Scholar 
    Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).ADS 
    CAS 

    Google Scholar 
    Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).
    Google Scholar 
    Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).
    Google Scholar 
    Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).
    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
    Google Scholar 
    Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).ADS 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).
    Google Scholar 
    Little Penguin (Eudyptula minor) – BirdLife species factsheet. at Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).
    Google Scholar 
    Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).Article 

    Google Scholar 
    Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).
    Google Scholar 
    Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).
    Google Scholar 
    Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).
    Google Scholar 
    Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).
    Google Scholar 
    Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).
    Google Scholar 
    Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).ADS 
    CAS 

    Google Scholar 
    Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).
    Google Scholar 
    Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).
    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).ADS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).Article 

    Google Scholar 
    Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).
    Google Scholar 
    Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).CAS 

    Google Scholar 
    Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).
    Google Scholar 
    Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).ADS 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).
    Google Scholar 
    Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).ADS 
    CAS 

    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).
    Google Scholar 
    Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).Article 

    Google Scholar 
    Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).
    Google Scholar 
    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).
    Google Scholar 
    Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).
    Google Scholar 
    Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).
    Google Scholar 
    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).
    Google Scholar 
    Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
    Google Scholar 
    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).
    Google Scholar 
    Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).ADS 

    Google Scholar 
    Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).ADS 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).
    Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar  More

  • in

    Modelling the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the region

    Barbier, E. B. Marine ecosystem services. Curr. Biol. 27, R507–R510 (2017).CAS 
    PubMed 

    Google Scholar 
    Liquete, C., Piroddi, C., Macías, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).
    Google Scholar 
    Link, J. S. & Browman, H. I. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74, 379–381 (2017).
    Google Scholar 
    EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels: European Commission. (2020).EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, “Pathway to a healthy planet for all” with the sub-title “EU action Plan: ’Towards zero pollution for air, water and soil, COM (2021) 400. (2021).EC. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640. (2019).Alexander, K. & Haward, M. The human side of marine ecosystem-based management (EBM): ‘Sectoral interplay’ as a challenge to implementing EBM. Mar. Policy 101, 33–38 (2019).
    Google Scholar 
    EC. The EU Blue Economy Report 2021. (2021).Ostlaender, N. et al. Modelling Inventory and Knowledge Man-agement System of the European Commission (MIDAS) (Publications Office of the European Union, 2019).
    Google Scholar 
    Friedland, R. et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 596126 (2021).
    Google Scholar 
    Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: A Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 179 (2021).
    Google Scholar 
    Corrales, X. et al. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean Coast. Manag. 193, 105232 (2020).
    Google Scholar 
    Bentley, J. W. et al. Refining fisheries advice with stock-specific ecosystem information. Front. Mar. Sci. 8, 602072 (2021).
    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Heymans, J. J. et al. The ocean decade: A true ecosystem modelling challenge. Front. Mar. Sci. 7, 554573 (2020).
    Google Scholar 
    Hernvann, P.-Y. et al. The Celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018 (2020).
    Google Scholar 
    Christensen, V. & Walters, C. J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).
    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).CAS 

    Google Scholar 
    de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J. & Steenbeek, J. Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecol. Model. 360, 14–26 (2017).
    Google Scholar 
    Serpetti, N. et al. Modelling small scale impacts of Multi-Purpose Platforms: An ecosystem approach. Front. Mar. Sci. 8, 778 (2021).
    Google Scholar 
    DFO. Technical review of Roberts Bank Terminal 2 environmental assessment: section 10.3—assessing ecosystem productivity. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/050 (2016).Coll, M., Pennino, M. G., Steenbeek, J., Solé, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).
    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS One 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroddi, C., Colloca, F. & Tsikliras, A. C. The living marine resources in the Mediterranean Sea large marine ecosystem. Environ. Dev. 36, 100555 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barale, V. & Gade, M. Remote Sensing of the European Seas. (Springer, 2008).Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Bianchi, C. N. et al. In Life in the Mediterranean Sea: A Look at Habitat Changes, vol. 1 55 (2012).Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5, e11832 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moullec, F. et al. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178, 102179 (2019).
    Google Scholar 
    Macias, D., Garcia-Gorriz, E., Piroddi, C. & Stips, A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles 28, 897–907 (2014).ADS 
    CAS 

    Google Scholar 
    Piroddi, C. et al. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 44491 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lotze, H. K., Coll, M. & Dunne, J. A. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems 14, 198–222 (2011).
    Google Scholar 
    Macias, D., Huertas, I. E., Garcia-Gorriz, E. & Stips, A. Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Prog. Oceanogr. 173, 37–50 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).
    Google Scholar 
    Corrales, X. et al. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar. Ecol. Prog. Ser. 580, 17–36 (2017).ADS 

    Google Scholar 
    FAO. The State of the Mediterranean and Black Sea fisheries (General Fisheries Commission for the Mediterranean (GFCM), 2020).Ferrà, C. et al. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 94, 275–281 (2018).
    Google Scholar 
    Russo, T. et al. Trends in effort and yield of trawl fisheries: A case study from the Mediterranean Sea. Front. Mar. Sci. 6, 153 (2019).ADS 

    Google Scholar 
    Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D. & Cury, P. ‘Low-hanging fruit’ for conservation of marine vertebrate species at risk in the Mediterranean Sea. Glob. Ecol. Biogeogr. 24, 226–239 (2015).
    Google Scholar 
    Ruiz, J. et al. “Strengthening regional cooperation in the area of large pelagic fishery data collection (RECOLAPE)”, Annex III “Biological data collection for fisheries on highly migratory species” (2019).Boerder, K., Schiller, L. & Worm, B. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Mar. Policy 105, 80–90 (2019).
    Google Scholar 
    Giakoumi, S. et al. Conserving European biodiversity across realms. Conserv. Lett. 12, e12586 (2019).
    Google Scholar 
    Gascuel, D. & Cheung, W. W. In Predicting Future Oceans 79–85 (Elsevier, 2019).Macias, D., Garcia-Gorriz, E. & Stips, A. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63, 897–914 (2018).ADS 
    CAS 

    Google Scholar 
    Alvarez-Berastegui, D., Tugores, M., Ottmann, D., Martín-Quetglas, M. & Reglero, P. Bluefin tuna larval indices in the Western Mediterranean, ecological and analytical sources of uncertainty. Collect. Vol. Sci. Pap. ICCAT. 77, 289–311 (2020).
    Google Scholar 
    ICCAT. 2020 SCRS Advice to the Commission (Madrid, Spain, 2020).Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D. & Christensen, V. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136 (2020).
    Google Scholar 
    García-Ruiz, C. et al. Spatio-temporal patterns of macrourid fish species in the northern Mediterranean Sea. Sci. Mar. 83, 117–127 (2019).
    Google Scholar 
    Ainsworth, C. Quantifying species abundance trends in the Northern Gulf of California using local ecological knowledge. Mar. Coast. Fish. 3, 190–218 (2011).
    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Ind. 60, 947–962 (2016).
    Google Scholar 
    Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damasio, L. M., Peninno, M. G. & Lopes, P. F. Small changes, big impacts: Geographic expansion in small-scale fisheries. Fish. Res. 226, 105533 (2020).
    Google Scholar 
    Coll, M. et al. Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS One 9, e85670 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Pittman, S. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).ADS 

    Google Scholar 
    Kritzer, J. P. & Liu, O. R. In Stock Identification Methods 29–57 (Elsevier, 2014).Piroddi, C., Heymans, J. J., Macias, D., Gregoire, M. & Townsend, H. Editorial: Using ecological models to support and shape environmental policy decisions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.815313 (2021).
    Google Scholar 
    Macias, D. et al. JRC marine modelling framework in support of the marine strategy framework directive: Inventory of models, basin configurations and datasets. Update 2018. (2018).Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status. 192 (France, 2015).Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 

    Google Scholar 
    Piroddi, C., Coll, M., Steenbeek, J., Moy, D. M. & Christensen, V. Modelling the Mediterranean marine ecosystem as a whole: Addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533, 47–65 (2015).ADS 

    Google Scholar 
    Walters, C., Pauly, D. & Christensen, V. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).
    Google Scholar 
    Christensen, V., Walters, C., Pauly, D. & Forrest, R. Ecopath with Ecosim 6: A User’s Guide (University of British Columbia, 2008).
    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species. In World Wide Web Electronic Publication, www.aquamaps.org, Version, vol. 8, 2016 (2016).De Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-End modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104 (2021).
    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 741, 567877 (2020).
    Google Scholar 
    Shannon, C. & Weaver, W. (Univ. Illinois Press, 1949).Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol. Ind. 6, 623–630 (2006).
    Google Scholar 
    Coll, M. & Steenbeek, J. Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environ. Model. Softw. 89, 120–130 (2017).
    Google Scholar 
    Taconet, M., Kroodsma, D. & Fernandes, J. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities (2021). More

  • in

    Analysis on ecological characteristics of Mississippian coral reefs in Langping, Guangxi

    Notwithstanding constraints on the amount of hard data, according to our integrated analysis, the developmental environment and ecology of reef communities have an important impact on the appearance of reefs.Analysis of environmental conditions for reef developmentSettings of reef developmentThe F/F extinction event in Late Devonian caused the complete recession of the reef-building communities based on stromatoporoid-coral assemblages7,17. The Carboniferous is generally considered to be a sub-optimal period for the development of framed reefs. After the biological mass extinction, microorganisms and algae rebuilt new reef-building ecosystems18,19. Some short-term biological frame reefs developed with low diversity, limited reef-building organisms, small sizes, and restricted distribution20. Harsh climate and marine conditions occurred in the Mississippian, including extensive marine hypoxia, repeated glacial and interglacial climate changes, and frequent changes of sea level and seawater surface temperature, potentially hindering the recovery of Early Carboniferous metazoan reefs7,21.Metazoans gradually began to participate in reef building in Early Viséan. A large number of biogenic structures formed by corals and bryozoans began to appear, including a small number of sponge reefs/mounds in the middle and late stage of Viséan. The richness and biodiversity of the Mississippian post-zoobenthic reefs flourished in the late Viséan during which corals, bryozoans, sponges, calcareous microorganisms, and some calcareous algae became the main builders3 and large-scale reefs could also be seen in some areas although most of the Viséan metazoan reefs were tabular or laminar. Thus, the metazoan skeletal reefs in the middle to late Viséan were considered to have been resurrected due to relatively warm climatic conditions and higher sea levels after a period of complete disintegration at the end of the Devonian and recession at the beginning of the Carboniferous7.Consequently, the coral reefs in the study area were the products of shallow benthic communities thriving in relatively favourable conditions of Late Viséan-Serpukhovian, which was common for reef development at that time7. Thus, it is expected that more synchronous reefs would to be identified in southern China, or even in the study area in the future.Paleogeography of reefsLangping is located in Dian-Qian-Gui Basin22 regionally (Fig. 2), in the eastern end of Tethys tectonic domain and at the interjunction of Tethys and Pacific structure globally. The Carboniferous Dian-Qian-Gui Basin is adjacent to the Tethys Basin. During the Early Carboniferous, the continent of Gondwana was close to the equator but was separated from the northern continent by the Tethys, where the tropical currents flowed freely from east to west. The benthic warm-water organisms were distributed widely with high abundance and diversity on both sides of the shallow shelf of Tethys.Figure 2Paleogeographic map of southern China in Viséan-Serpukhovian (modified from Feng23, Yao8, and Maillet24). This figure was obtained from articles by Feng23, Yao8 and Maillet24 respectively. The author modified the picture with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/). QG Qian-Gui Basin, DQGX Dian-Qian-Gui-Xiang platform.Full size imageViséan-Serpukhovian ecosystems experienced dramatic climate changes and widespread glaciation25. However, the Viséan was also a key layer for a variety of biological structures, with abundant coral reefs and a high diversity of shallow benthic communities, peaking in the late Viséan. Newly discovered post-faunal reefs in Tianlin were mainly formed in the late Viséan-Serpukhovian period, which coincided with frequent sea level fluctuations and possible glacial changes. It seems counterintuitive that tropical coral communities developed during glacial period. However, recent studies suggest that the persistent warm ocean currents on the platform helped some coral species survive from Carboniferous glacial events24. While other areas of symbiotic reefs were poorly developed, Tianlin may provide an ecological sanctuary for corals associated with ocean currents26.Sedimentation of reef developmentAccording to the regional geological structure, the slope model for Langping paleocarbonate platform was obviously different from that of steep slope platform margin, which could be directly affected by waves. Langping palaeo-platform could be regarded as one of the small blocks (block fault barrier) separated from a large platform (continental margin sea basin)13. The relative positions of these blocks were crucial for the emergence and growth of reefs.In situ development of mud-crystalline tuffs and muddy tuffs with weak hydrodynamic conditions is common in the Langping area, and evaporites are poorly developed. There were patch reefs and reef layers in different sizes in the wide intraclast beach, where obviously developed reef beach complexes were rare. The fragments of carbonate base broken by storm in the clastic beach haven’t been observed. The study area is considered to be gentle-slope open platform27,28 based on sedimentary characteristics. It suggests that the study area was far away from the margin of steep-slope platform that directly affected by waves, and more consistent with less energetic internal environments of gentle-slope platform.On the vast platform of Langping gentle slop, deep water lead to low water energy. While in the coastal area, the water energy was relatively strong, thus coarse-grained bioclastic beach and a small amount of point reef could be developed. The beaches were irregular-shaped due to long term transportation and reformation effects of waves and water flow, showing low and gentle slope angles. Dispersed reef-beach complexes at the platform margin slightly impacted inner-platform seawater and the water flows smoothly29.Therefore, it can be assumed that Langping reefs developed along the intertidal shallows of the terrace. The seawater around Langping carbonate platform in Late Viséan-Serpukhovian was relatively shallow while the water flow was strong. Remains of crinoids, brachiopods, a few foraminifera, and solitary corals were likely broken by strong currents, and deposited in situ with a small amount of gravels and lime-mud (Fig. 3). The clastic beach was unstable, suggesting large-scale wave-resistant structures could not be formed quickly30 due to insufficient cohesive and consolidating organisms. In addition, the circumferential impact of water in extensive terraces leads to mud-lime deposition, which is detrimental to most benthic organisms. However, bondstone was more likely to be formed by some binding algaes in the platform (Fig. 4). Therefore, neither the surrounding or the inner region of the platform could provide favourable living conditions for coral reefs to develop over for a long term. The gently sloping terrace environment of Lanping resulted in significant differences in growth size, wave resistance and reef-building capacity between corals in the study area and those on the edge of the steeply sloping terrace.Figure 3Clastic beaches in the Langping. Various clastic beaches developed in the study area. Diverse composition, fragmentation degree and sorting of the clast indicate different water conditions of formation. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageFigure 4Algal bondstone in the Langping. Bondstone formed by various algaes living in still water. Morphology of bondstone correlates water environment and deposition of mud. Vast algal bondstones indicate deep water and high deposition rate. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageAt the same time, the warm climate of the late Viséan-Serpukhovian, the good circulation of seawater around the Langping platform, and the abundant supply of oxygen and nutrients were a series of favourable conditions that facilitated the growth of reef-building corals, which led to uplifts being formed on clastic beach, including patch reefs and reef layers with certain sizes. These uplifts impeded waves and provided a protected nearshore environment, though they were much smaller than those developed at the steep-slope platform margin. The inhabitants on the beach could not resist strong waves. These rises were therefore known as reef-beach complexes and could only persist where waves and currents were mild28. They were essentially different from the framework coral reefs which developed on steep-slope platform margin that reflected changed hydrodynamic conditions, nutrient sources, reef sizes, and growth rates.Another potentially favourable factor in the study area could be the deeper water area in the gentle-slope sedimentary environment, which could provide more stable conditions and reduce the damaging effects of global glacial events and large scale sea level fluctuations on reef-building communities25. The frequent fault activities in Dian-Qian-Gui Basin caused the rise and fall of equivalent sea level. More influence of sea-level fluctuations and hydrodynamic conditions would be exerted on Langping platform due to its small size. Furthermore, reef growth promoted by reef-building communities would be frequently disturbed. The sediments displaying evidence of multicycle sedimentation, different components, and diversely fragile clasts in the study area provided direct evidence of frequently changing environment.Alternatively, the sedimentary environment of Langping platform provided conditions favorable for reef-building communities to develop and reefs to grow rapidly. These factors directly or indirectly determined the ecology of reef-building communities and the general appearance of reef development in the study area.Overall, the environmental factor is the primary factor affecting the overall development trend of reefs.Inferred ecological characteristics of reef communitiesResponse of reef-building corals to hydrodynamic conditionsHydrodynamic conditions are very important factors for reef development, which directly determine the abundance and distribution of each reef-building population and are key factors influencing sedimentation and reef growth, and was particularly evident at Langping. Evidence from the fossils suggested the reef-building corals were also changed in response (Table 1). The hydrodynamic condition changes during the development of reefs are inferred based on analysis of the vertical sediments and microfacies changes of coral reefs in the study area31. How these ancient reef-building corals adapted to hydrodynamic conditions was reconstructed combining the evolution of reef-building communities with the study.Table.1 General situation of reef-building coral population in Langping.Full size tableThe Xiadong coral reef started with colonization and expansion of Diphyphyllum on the bioclastic hard substrates32,33. They grew vertically into upright clusters (Fig. 5A) and were insensitive to more sediment in a relatively calm, turbid water environment34. The relatively dense clumped Siphonodendron and massive Lithostrotion (Fig. 5B) were better suited to the turbulent water environment, becoming dominant over time, with Diphyphyllum subordinate with the continuous increase of the water energy, as indicated by the characteristics of sediment particles from fine to coarse. After flourishing for a period, the Siphonodendron–Lithostrotion assemblage eventually waned, likely due to the failure to adapt to the increasing hydrodynamic conditions. Diphyphyllum had persisted combined with Syringopora, to maintain the growth of the reef. However, this assemblage subsequently declined as a result of strong hydrodynamic conditions and finally died out in response to continuous falling of sea level. Consequently, the reefs stopped developing.Figure 5Sketch of coral cluster with upright growing morphology. Most reef-building corals in Langping grow vertically into cluster colonies. This type of morphology is very favourable for corals to get more living space and is important to reef-building. (A) Cluster coral individuals grow uprightly with certain distance between each other. (B) Polygonal columnar coral individuals grow closely to resist strong water flow. This figure is made by the author with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe Longjiangdong multi-layer reef was composed of three relatively independent, flat reef layers, suggesting three distinct periods of reef development. Diverse species were identified in the reef, with colonial coral Diphyphyllum contributing greatly to reef growth. Diphyphyllum clusters colonized in patchy form on substrates composed of bioclasts or lithic gravels (Fig. 6A). The first reef-building process was brief, ending under high-energy water conditions after a period of growing (Fig. 6B). Subsequently the hydrodynamic conditions became weaker and favorable. Then Diphyphyllum once again flourished. Diphyphyllum clumps in the unit grew closely together in strong currents, with larger and more sparse individuals than in the lower units. A relatively low energy environment was formed between the Diphyphyllum clusters (Fig. 6C). Subsequently, Diphyphyllum could only grow in a limited area of suitability due to the disturbance of high-energy water brought about by short-term sea-level rise and fall. Afterwards, the environment became more favourable and Diphyphyllum expanded rapidly. As a result, the upper unit of Longjiangdong coral reef was formed, in which Diphyphyllum individuals were slightly larger than those in the first two units. Finally, because the kinetic energy of the water continued to weaken, the plaster deposition forced the whole coral reef to stop growing (Fig. 6D).Figure 6Micrographs of sediments in different positions of reef. (A) Calcareous bioclastic limestone, with biological particles accounting for about 70% of the debris. Abundant and diverse organisms indicate a medium-energy environment of the subtidal zone. Samples were taken from the bioclastic beach at the reef base. (B) Slightly larger bioclastics but lower biologic content than that in (A) suggest an increasing water energy. (C) Various bioclastic particles account for about 80% of the clastic particles contained in the calcareous bio-granular rock. The obviously small benthos indicate a low-energy environment in the subtidal zone barriered by the Diphyphyllum clusters. (D) Bioclastic grainstone is mainly composed of marl, with fine clastic particles (about 30%) and bedding. Low biomass indicates a low-energy environment of the subtidal zone. This figure is modified by the author with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/). Meaning of the letters in the figure: C crinoids, BF brachiopods, F foraminifera, B bryozoan, P pelletoid, MF mollusk shell fragment.Full size imageLongjiangdong patch reef started to develop in a relatively deep water environment. Diphyphyllum initially colonized and expanded in favorable conditions with the increase of water energy. Then the reef-builders transitioned from a single coral species to an assemblage of Diphyphyllum–Caninia–Lithostrotionella. These three coral species grew independently and contribute almost equally to the structure of the reef. However, the structure and function of the coral community were not yet stable enough. It was easily influenced by the weakening hydrodynamics and the increasing sedimentation, resulting in only small patch reefs.The Xinzhai layer reef was initialized by colonization and expansion of Lonsdaleia on bioclastic beach. Large coral clusters were formed in the presence of turbulent water. With the weakening of hydrodynamic conditions, an unknown branchlike organism and Antheria communities continued to develop separately in this area. Slender branchlike organisms expanded rapidly in these low-energy water environments until they were replaced by some individual corals as hydrodynamic energy increased. Each builder was short-lived in this layer reef, departing from the reef just at the beginning of colonization and expansion, due to rapidly changed hydrodynamic conditions.The evolution of reef-building corals in these four reefs indicated that both the coral assemblages and coral individuals would constantly adapt to the changing hydrodynamic conditions in Langping as sea level rose and fell. Although this was a reactive adjustment of coral populations in response to long-term environmental impacts, it was clearly positive for the building and development of coral reefs.Impact of disturbance on reef communitiesDisturbance is a relatively discontinuous event, which is ubiquitous in nature. It may indirectly affect the composition and population structure of reef communities by changing the environmental conditions, thus affect the structure and function of reef communities, even the evolution of the reef35. The major disturbances evident in these Mississippian framework reefs were associated with frequent changes of water flow, and drastic changes of climate and weather. These seem to be most obvious in the Langping platform due to its small size, with more frequent environmental influence evident on the reef communities in the study area.The most direct effect of disturbance events on coral reefs is the disruption of continuously evolving reef communities, which is common in coral reef studies. After the interruption caused by disturbances, some communities gradually recover due to the absence of continuous disturbance, or the dominant biota may be substituted by invading communities. The winner after interruption is decided by random factors to a large extent, in a ‘Competitive lottery’36. The conditions for the emergence of ‘Competitive lottery’ also include the need for species in a community to have similar abilities to invade discontinuities and to tolerate environmental conditions.Certainly, low-intensity disturbance does not necessarily produce discontinuity, but medium-intensity disturbance without discontinuity could directly impact on community species diversity. According to the ‘Moderate disturbance hypothesis’, moderate disturbance is conducive to a higher level of community diversity37. In environmental conditions with moderate intensity of disturbance, most species will not disappear entirely. The dominant pioneer species will also be restrained by disturbance to a certain extent, so large number of species can coexist, attaining the highest diversity35.The reef-builders in Langping are diverse compared with the Late Carboniferous reefs in Ziyun County10, which also developed in Dian-Qian-Gui Basin. More than 4 reef-building corals are identified in Xiadong reef, while 4 and 3 are in Xinzhai layer reef, Longjiangdong patch reef respectively. These reef-building corals, mostly Diphyphyllum, Lithostrotion, Siphonodendron and Lonsdaleia, were distributed irregularly in the reefs. Their ecological niche and function were likely similar and none of them was obviously dominant in the community (Fig. 7). This is in line with ‘Competitive lottery’ theory and the ‘Moderate disturbance hypothesis’.Figure 7Different species occupied the discontinuity surface irregularly. (A) Different reef-builders colonized and grew on the same hard substrate. (B) and (C) show detailed morphology of colony corals of (A). (D) Colony corals and a large number of individual corals grew together in a limited area, indicating equal colonization on the newly formed discontinuity surface. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe stability of a classical reef ecosystem includes the ability to withstand external disturbances and the ability to return to its original state once the disturbance is removed37,38. It is generally accepted that communities with high diversity are always more stable although ecosystem stability is not absolutely correlated to biodiversity35.There have been no reef-building corals with strong resistance and rapid recovery ability in the communities in Langping. None of these corals succeeded in developing into dominant species that can build reef shelves, which made the reefs in Langping mostly appear in the form of small patch reefs or reef layers. However, formation of the large reef in Xiadong Village, patch reef in Longjiangdong Village, and layer reef in Xinzhai Village were all related to their relatively high diversity of reef-building corals. Compared with the situation where only one reef-building organism dominated the Bianping large coral reef, Wengdao large phylloid algal reef and Ivanovia cf. manchurica patch reefs in Ziyun County10, Guizhou province, the different coral assemblages in Langping area could effectively adapt to changing hydrodynamic conditions and maintain reef growth.Species diversity increased by disturbance stabilized the ecosystemas shown during the construction of coral reefs in Langping.Effects of non-reef-builders on reef-building coralsBesides reef-building corals, there were a large number of reef-dwellers and off-reef organisms in the study area. Reef-dwellers referred to the species that didn’t directly contribute to reef growth in the community, mainly including various benthos and algaes39. Off-reef organisms are not part of the reef-building community, but also play an important role in participating in energy flow and providing organic matter to the reef ecosystem40.Common reef-dwelling organisms include crinoids, brachiopods, gastropods, various algae, foraminifera, bryozoans and individual corals. Crinoids were overwhelmingly dominant in numbers in the reef samples studied here.Carboniferous echinodermata in Guangxi Province reached its peak in Middle-to-Late Mississippian. In terms of amount and distribution, thick limestone with echinodermata debris in the carbonate platform were often dominated by crinoids41,42,43,44,45,46. The large number of crinoids in Langping excluded other metazoans and restricted the development of benthic reef-builders in Late Viséan-Serpukhovian in Langping, leading to poorly developed reef-building communities.Microorganisms and algaes had limited success in stablishing on the moving clastic beach in frequently disturbed water. There has not been obvious evidence of extensive “algal turf” in the coastal area of Langping platform. Only a few corals bonded by algal mats were observed47 (Fig. 8). In addition to their significant contribution to primary productivity, macroalgae were considered to play an important role in two aspects of coral reef ecosystems. One was to promote reef construction by its own binding and consolidation48,49. The other was to create a good condition for zoobenthos larvae to dwell and develop, thereby improving species diversity50. The limited productivity of algae in Langping constrained coral reef trophic inputs, which may then have limited populations of dependent metazoans. As a result, algaes and other metazoans were unable to achieve a variety of reef-building patterns, such as bonding, bounding, entanglement51,52. The reef framework in the study area was not stable in the presence of strong water flow, and the biological communities could not deal with frequent environmental changes, which were directly related to poor development of calcareous algae.Figure 8Micrographs of microbes and algaes. (A) Encrustations (indicated by black arrows) with distinct thickness around coral clusters formed by microbe and algal mats through bonding mud. The encrustations were formed before the clastic deposition (indicated by white arrows), showing the corals were living then. Microbes and algaes inside of the dense coral clusters had little impact on corals. (B) Single polarized micrograph showed clear and smooth boundaries of coral individuals without encrustation or drilling hole made by microbes or algaes. Few corals surrounded by bonding algaes could be observed in Langping, indicating that algaes were poorly developed between coral clusters. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageInfluence of coral morphology on reef developmentThe accumulation of reef structure had obvious impact on communities. Large reef structures could support abundance and diverse biota by modifying local environments and creating diverse conditions. Consequently the reef-building communities thrived between disturbances, stabilizing reef construction. In terms of large reef, the framework-building corals would play a key role in reef construction regardless of which kind of patterns was adopted. Therefore, reef-building corals with large size, rapid growth vertically, and strong resistance would become the biggest contributors to reef frame construction.The main reef-building corals in Langping were composed of Diphyphyllum, Lithostrotion, Siphonodendron, and Lonsdaleia, etc., being the dominant builders. These corals were similar in morphology such as cluster colony, thick and strong skeleton, and densely packed individuals (Fig. 9), which enabled them to resist water flow. At the same time, the upright colonies were adaptable to relatively calm water, being insensitive to mud deposition. The ecological characteristics of the Langping corals matched the gently sloping environment, the deep water environment and the rapidly changing energy of the currents. These cluster corals were able to colonize hard substrates and expand rapidly, thus altering the surrounding environment. The visible carbonate uplifts were formed with a large amount of benthos grouped into reef-building communities. These distinct uplifts constructed by coral clusters in different water conditions are composed of coral reefs of different sizes and appearance in the study area.Figure 9Main reef-building corals in the study area. (A) Diphyphyllum, (B) Lithostrotion, (C) Siphonodendron, (D) Lonsdaleia. (A) Rapidly grew clusters of main reef-building corals. The strong individuals are packed tightly when growing to support each other. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe complex and diverse local environments formed by large coral reefs can significantly increase benthic populations and improve reef species diversity. As a result, the nutrient flow in the community becomes complicated, and nutrients could be recycled effectively by reducing loss caused by water flow. Therefore, the overall productivity of large coral reef communities was always high. Complex trophic structure satisfied most of the benthos in the community with sufficient nutrients and inorganic salts.The morphology of reef-building corals in Langping enabled them to become predominant species in various water environments, which promoted the continued domed growth of coral reefs and facilitates the development of reef-building communities that form a variety of reefs. It suggests that the morphology of reef-building corals was a key prerequisite for reef development.In conclusion, coral reef communities are always constrained and influenced by environmental conditions. However, the ecology of the inhabitants is also an important factor in the formation of coral reefs. More

  • in

    Effect of marigold (Tagetes erecta L.) on soil microbial communities in continuously cropped tobacco fields

    Chen, X. L. et al. Effects of Meloidogyne incognitaon the fungal community in tobaccorhizosphere. Rev. Bras. Cienc. Solo. 46, e0210127 (2022).
    Google Scholar 
    Zhang, S. X. et al. Research progresses on continuous cropping obstacles of tobacco. Soils 47(5), 823–829 (2015).CAS 

    Google Scholar 
    Luo, J. Y. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. J. Integr. Agric. 16, 1624–1633 (2017).CAS 

    Google Scholar 
    Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Newton, A., Begg, G. & Swanston, J. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
    Google Scholar 
    Li, X. G. et al. Effects of intercropping with Atractylodeslancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuouspeanut cropping field in subtropical China. Agrofor. Syst. 88, 41–52 (2014).
    Google Scholar 
    Ahmed, W. et al. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479 (2022).
    Google Scholar 
    Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V., Livera-Munoz, M. & Cárdenas-Soriano, E. Allelopathyand microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res. 83, 27–34 (2003).
    Google Scholar 
    Weidenhamer, J. D., Montgomery, T. M., Cipollini, D. F., Weston, P. A. & Mohney, B. K. Plandensity and rhizosphere chemistry: Does marigold root exudate composition respond to intra-and interspecific competition?. J. Chem. Ecol. 45(5–6), 525–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Ploeg, A. T. Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis. 86(5), 505–508 (2002).PubMed 

    Google Scholar 
    Hooks, C. R., Wang, K. H., Ploeg, A. & McSorley, R. Using marigold (Tagetes spp.) as a cover crop to protect crops fromplant-parasitic nematodes. Appl. Soil Ecol. 46, 307–320 (2010).
    Google Scholar 
    Li, W., Xu, J., Chen, H. & Qi, Y. Phytochemicals and their biological activities of plants in tagetes l.-sciencedirect. Chin. Herbal Med. 4(2), 103–117 (2012).
    Google Scholar 
    Weidenhamer, J. D., Mohney, B. K., Shihada, N. & Rupasinghe, M. Spatial and temporal dynamics of root exudation: How important is heterogeneity in allelopathic interactions?. J. Chem. Ecol. 40(8), 940–952 (2014).CAS 
    PubMed 

    Google Scholar 
    Marotti, I. et al. Thiophene occurrence in different tagetes species: Agricultural biomasses as sources ofbiocidal substances. J. Sci. Food Agric. 90(7), 1210–1217 (2010).CAS 
    PubMed 

    Google Scholar 
    Barto, E. K. et al. The fungal fastlane: Common mycorrhizal networks extendbioactive zones of allelochemicals in soils. PLoS ONE 6, e27195 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evenhuis, A., Korthals, G. & Molendijk, L. Tagetes patula as an effective catch crop forlong-term control of Pratylenchus penetrans. Nematology 6, 877–881 (2004).
    Google Scholar 
    Wu, W. T. et al. Effects of marigold-tobacco rotation on soil nematode community composition. Southwest China J. Agric. Sci. 32(2), 342–348 (2019).
    Google Scholar 
    Reynolds, L. B., Potter, J. W. & Ball-Coelho, B. R. Crop rotation with sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron. J. 92(5), 957–966 (2000).
    Google Scholar 
    El-Hamawi, M., Youssef, M. & Zawam, H. S. Management of Meloidogyne incognita, the root-knot nematode, on soybean asaffected by marigold and sea ambrosia (damsisa) plants. J. Pest Sci. 77, 95–98 (2004).
    Google Scholar 
    Kumar, N., Krishnappa, K., Reddy, B., Ravichandra, N. & Karuna, K. Intercropping for the management of root-knotnematode, Meloidogyne incognitain vegetable-based cropping systems. Indian J. Nematol. 35, 46–49 (2005).
    Google Scholar 
    Zhang, J. et al. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot Incidence in Chinese Cabbage. Plants 11(17), 2295 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia, T. Y. et al. Microbial diversity of tobacco rhizospheresoil in different growth stages of marigold-tobacco intercropping system. Southwest China J. Agric. Sci. 31(4), 680–686 (2018).
    Google Scholar 
    Wei, H. Y. et al. Effects of marigold diversified cropping with angelica on fungal community in soils. Plant Prot. 41(5), 69–74 (2015).MathSciNet 
    CAS 

    Google Scholar 
    Li, Y. et al. Intercropping with marigold promotes soil health and microbialstructure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 102, 731–742 (2020).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. MicroBiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Irikiin, I. et al. Rhizobacterial community-level, sole carbon source utilization pattern aff ects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl. Soil Ecol. 34(1), 27–32 (2006).
    Google Scholar 
    Wu, M. N. et al. Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. J. Environ. Sci. 20(7), 871–877 (2008).CAS 

    Google Scholar 
    Mendes, L. W. et al. Soil-Borne microbiome: Linking diversity to function. Microb. Ecol. 70(1), 255–265 (2015).CAS 
    PubMed 

    Google Scholar 
    Jaiswal, A. K. et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7, 44382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raaijmakers, J. M. & Mazzola, M. Soil immune responses soil microbiomes may be harnessed for plant health. Science 352, 1392–1393 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kušlienė, G., Rasmussen, J., Kuzyakov, Y. & Eriksen, J. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol. Biochem. 76, 22–33 (2014).
    Google Scholar 
    Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am.-Eurasian J. Agric. Environ. Sci. 10, 330–337 (2011).
    Google Scholar 
    Wang, G. H. et al. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32(2), 14–20 (2016).
    Google Scholar 
    Wei, H., Wang, L., Hassan, M. & Xie, B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Liu, L., Yang, J., Duan, Y. & Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715, 136983 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Glass, N. L., Schmoll, M., Cate, J. H. & Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67, 477–498 (2013).CAS 
    PubMed 

    Google Scholar 
    Li, Y. et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biol. Biochem. 107, 19–31 (2017).CAS 

    Google Scholar 
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. & Ramos, L. P. Comparison of Penicillium echinulatumand Trichoderma reeseicellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99, 1417–1424 (2008).CAS 
    PubMed 

    Google Scholar  More

  • in

    Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects

    Gandhi, K. J. K. & Herms, D. A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12, 389–405 (2010).
    Google Scholar 
    Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant. Cell Environ. 37, 1854–1865 (2014).PubMed 

    Google Scholar 
    Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).
    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113, 7575–7579 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).
    Google Scholar 
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).PubMed 

    Google Scholar 
    Sherpa, S. et al. Landscape does matter: Disentangling founder effects from natural and human-aided post-introduction dispersal during an ongoing biological invasion. J. Anim. Ecol. 89, 2027–2042 (2020).PubMed 

    Google Scholar 
    Sherpa, S. & Després, L. The evolutionary dynamics of biological invasions: A multi‐approach perspective. Evol. Appl. (2021).North, H. L., McGaughran, A. & Jiggins, C. Insights into invasive species from whole-genome resequencing. Mol. Ecol. (2021).Ma, L. et al. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 26, 610–622 (2020).
    Google Scholar 
    Ortego, J., Céspedes, V., Millán, A. & Green, A. J. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol. Ecol. 30, 4189–4203 (2021).PubMed 

    Google Scholar 
    Varone, L., Logarzo, G., Briano, J., Hight, S. & Carpenter, J. Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina. Biol. Invasions 16, 2367–2380 (2014).
    Google Scholar 
    Singer, M. C., Ng, D. & Moore, R. A. Genetic variation in oviposition preference between butterfly populations. J. Insect Behav. 4, 531–535 (1991).
    Google Scholar 
    Forister, M. L. Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol. Entomol. 29, 264–272 (2004).
    Google Scholar 
    Wiklund, C. The concept of oligophagy and the natural habitats and host plants of Papilio machaon L. Fennoscandia. Insect Syst. Evol. 5, 151–160 (1974).
    Google Scholar 
    Courtney, S. P. & Forsberg, J. Host use by two pierid butterflies varies with host density. Funct. Ecol. 2, 67–75 (1988).
    Google Scholar 
    Franklin, J. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223 (2013).
    Google Scholar 
    Peterson, A. et al. Ecological niches and geographic distributions. Monographs in Population Biology vol. 49 (2011).Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248 (2014).PubMed 

    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L. A., Ruiz-Arocho, J., Lorenzo-Ramos, A. & Jenkins, D. A. The effects of the invasive Harrisia cactus mealybug (Hypogeococcus sp.) and exotic lianas (Jasminum fluminense) on Puerto Rican native cacti survival and reproduction. Biol. Invasions 21, 3269–3284 (2019).
    Google Scholar 
    Acevedo-Rodríguez, P. & Strong, M. T. Catalogue of seed plants of the West Indies. Smithson. Contrib. to Bot. 98, 1–1192 (2012).
    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L., Ruiz-Arocho, J. & Jenkins, D. A. Symptomatology of infestation by Hypogeococcus pungens: Contrasts between host species. Haseltonia 2015, 14–18 (2015).
    Google Scholar 
    Aponte-Díaz, L., Ruiz-Arocho, J., Carrera-Martínez, R. & Ee, B. Contrasting effects of the invasive Hypogeococcus sp. (Hemiptera: Pseudococcidae) infestation on seed germination of Pilosocereus royenii (Cactaceae), a Puerto Rican native cactus. Caribb. J. Sci. 50, 212–218 (2020).
    Google Scholar 
    California Department of Food and Agriculture. Harrisia Cactus Mealybug | Hypogeococcus pungens | Pest rating proposals and final ratings. https://blogs.cdfa.ca.gov/Section3162/?p=5881 (2018).Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Segarra-Carmona, A. E., Ramírez-Lluch, A., Cabrera-Asencio, I. & Jiménez-López, A. N. First report of a new invasive mealybug, the Harrisia cactus mealybug Hypogeococcus pungens (Hemiptera: Pseudococcidae). J. Agric. Univ. Puerto Rico 94, 183–187 (2010).
    Google Scholar 
    Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14, e0220366 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, H. L. Mealybugs of California. (Univ of California Press, 1967).Hamon, A. B. A cactus mealybug, Hypogeococcus festerianus (Lizer y Trelles). Florida (Homoptera Coccoidea Pseudococcidae). Entomol. Circ. Div. Plant Ind. Florida Dep. Agric. Consum. Serv. 263, 2 (1984).Hodges, A. & Hodges, G. Hypogeococcus pungens Granara de Willink (Insecta: Hemiptera: Pseudococcidae), a mealybug. EDIS 2009, (2009).Halbert, S. Entomology section. Triology 35, 2–4 (1996).
    Google Scholar 
    Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551 (2019).CAS 

    Google Scholar 
    Aguirre, M. B. et al. Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). Sci. Rep. 11, 13377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS 
    PubMed 

    Google Scholar 
    Poveda-Martínez, D., Salinas, N., Aguirre, M. B., Sánchez-Restrepo, A. F. & Hight, S., Diaz-Soltero, H. Dataset generated in Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. https://doi.org/10.6084/m9.figshare.15167082.v2 (2022).Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: Lessons from human bottlenecks. Heredity (Edinb). 110, 409–419 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Born‐Schmidt, G. et al. The implementation of the mexican strategy on invasive species: How far have we come? Invasive Alien Species Obs. Issues from Around World 4, 153–164 (2021).
    Google Scholar 
    McFadyen, R. E. & Tomley, A. J. Preliminary indications of success in the biological control of Harrisia cactus (Eriocereus martinii Lab.) in Queensland. In Proceedings of the First Conference of the Council of Australian Weed Science Societies held at National Science Centre, Parkville, Victoria, Australia, 12–14 April 1978 108–112 (Council of Australian Weed Science Societies, 1978).McFadyen, R. E. & Tomley, A. J. The successful biological control of Harrisia cactus (Eriocereus martinii) in Queensland. In Proceedings of the Sixth Australian Weeds Conference, Volume 1, City of Gold Coast, Queensland, Australia, 13–18 September, 1981 139–143 (Queensland Weed Society, 1981).Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 19, 230–246 (2011).
    Google Scholar 
    Sutton, G. F., Klein, H. & Paterson, I. D. Evaluating the efficacy of Hypogeococcus sp. as a biological control agent of the cactaceous weed Cereus jamacaru in South Africa. Biocontrol 63, 493–503 (2018).
    Google Scholar 
    Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 29, 713–734 (2021).
    Google Scholar 
    McFadyen, R. E. Harrisia (Eriocereus) martinii (Labour.) Britton—Harrisia cactus Acanthocereus tetragonus (L.) Hummelink—sword pear. (ed. Julien, M., McFadyen, R., & Cullen, J.), Biological control of weeds in Australia 274– 281. (CSIRO Publishing, 2012).Julien, M. H. & Griffiths, M. Biological control of weeds: A world catalogue of agents and their target weeds. (Cab International, 1998).Houston, W. A. & Elder, R. Biocontrol of Harrisia cactus Harrisia martinii by the mealybug Hypogeococcus festerianus (Hemiptera: Pseudococcidae) in salt-influenced habitats in Australia. Austral Entomol. 58, 696–703 (2019).
    Google Scholar 
    Hofmeister, N., Werner, S. & Lovette, I. Environmental correlates of genetic variation in the invasive European starling in North America. Mol. Ecol. 30, 1251–1263 (2021).PubMed 

    Google Scholar 
    Driscoe, A. L. et al. Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol. Ecol. 28, 4197–4211 (2019).CAS 
    PubMed 

    Google Scholar 
    Vidal, M. C., Quinn, T. W., Stireman, J. O. 3rd., Tinghitella, R. M. & Murphy, S. M. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol. Ecol. 28, 4317–4334 (2019).PubMed 

    Google Scholar 
    Poveda-Martínez, D. et al. Spatial and host related genomic variation in partially sympatric cactophagous moth species. Mol. Ecol. 31, 356–371 (2021).PubMed 

    Google Scholar 
    Cao, L., Wei, S., Hoffmann, A. A., Wen, J. & Chen, M. Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Divers. Distrib. 22, 1276–1287 (2016).
    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 
    Yang, Q.-Q. et al. Introgressive hybridization between two non-native apple snails in China: Widespread hybridization and homogenization in egg morphology. Pest Manag. Sci. 76, 4231–4239 (2020).CAS 
    PubMed 

    Google Scholar 
    Cordeiro, E. M. G. et al. Hybridization and introgression between Helicoverpa armigera and H zea: An adaptational bridge. BMC Evol. Biol. 20, 61 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pardo-Diaz, C. et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLOS Genet. 8, e1002752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).
    Google Scholar 
    Goldson, S. L., Phillips, C. B. & Barlow, N. D. The value of parasitoids in biological control. New Zeal. J. Zool. 21, 91–96 (1994).
    Google Scholar 
    Wang, Z., Liu, Y., Shi, M., Huang, J. & Chen, X. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715 (2019).
    Google Scholar 
    Miller, G., & Lugo. A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35 (2009).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality control tool for high throughput sequence data. (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).CAS 
    PubMed 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).CAS 
    PubMed 

    Google Scholar 
    Cockerham, C. C. Drift and mutation with a finite number of allelic states. Proc. Natl. Acad. Sci. 81, 530–534 (1984).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 

    Google Scholar 
    Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manage. 38, 541–545 (1974).
    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Informatics 2, 1-10 (2005).Jorge, S. & Miguel, N. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Cobos, M. E., Peterson, A., Barve, N. & Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography (Cop.) 41, 291–307 (2018).
    Google Scholar 
    Warren, B. H. et al. Evaluating alternative explanations for an association of extinction risk and evolutionary uniqueness in multiple insular lineages. Evolution 72, 2005–2024 (2018).PubMed 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).
    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Van der Vaart, A. W. Asymptotic Statistics (UK Cam, 1998).MATH 

    Google Scholar  More