More stories

  • in

    Phototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity

    All Alteromonas strains support long-term survival of Prochlorococcus under N starvationPrevious research showed that Prochlorococcus, and to some extent Synechococcus depend on co-occurring heterotrophic bacteria to survive various types of stress, including nitrogen starvation [33, 34, 42, 43]. At the first encounter between previously axenic Prochlorococcus and Alteromonas (E1), all co-cultures and axenic controls grew exponentially (Fig. 1B, C). However, all axenic cultures showed a rapid and mostly monotonic decrease in fluorescence starting shortly after the cultures stopped growing, reaching levels below the limit of detection after ~20–30 days. None of the axenic Prochlorococcus cultures were able to re-grow when transferred into fresh media after 60 days (Fig. 1C). In contrast, the decline of co-cultures rapidly slowed, and in some cases was interrupted by an extended “plateau” or second growth stage (Fig. 1B). Across multiple experiments, 92% of the co-cultures contained living Prochlorococcus cells for at least 140 days, meaning that they could be revived by transfer into fresh media. Thus, the ability of Alteromonas to support long-term N starvation in Prochlorococcus was conserved in all analyzed strains.Fig. 1: Experimental designs and overview of the dynamics of Prochlorococcus-Alteromonas co-cultures from first encounter and over multiple transfers.A Schematic illustration of the experimental design. One ml from Experiment E1 was transferred into 20 ml fresh media after 100 days, starting experiment E2. Experiment E2 was similarly transferred into fresh media after 140 days, starting experiment E3. Additional experiments replicating these transfers are described in Supplementary Fig. S1. B Overview of the growth curves of the 25 Prochlorococcus-Alteromonas co-cultures over three transfers spanning ~1.2 years (E1, E2 and E3). Results show mean + standard error from biological triplicates, colored by Prochlorococcus strain as in panel D. C Axenic Prochlorococcus grew exponentially in E1 but failed to grow when transferred into fresh media after 60, 100, or 140 days. Axenic Alteromonas cultures were counted after 60 and 100 days, as their growth cannot be monitored sensitively and non-invasively using fluorescence (optical density is low at these cell numbers). D High reproducibility and strain-specific dynamics of the initial contact between Prochlorococcus and Alteromonas strains (E1). Three biological replicates for each mono-culture and co-culture are shown. Note that the Y axis is linear in panels B, C and logarithmic in panel D. Au: arbitrary units.Full size imageIt has previously been shown that Prochlorococcus MIT9313 is initially inhibited by co-culture with Alteromonas HOT1A3, while Prochlorococcus MED4 is not [12, 32]. This “delayed growth” phenotype was observed here too, was specific to MIT9313 (not observed in other Prochlorococcus strains) and occurred with all Alteromonas strains tested (Fig. 1D). MIT9313 belongs to the low-light adapted clade IV (LLIV), which are relatively distant from other Prochlorococcus strains and differ from them in multiple physiological aspects including the structure of their cell wall [44], the use of different (and nitrogen-containing) compatible solutes [45], and the production of multiple peptide secondary metabolites (lanthipeptides, [46, 47]). LLIV cells also have larger genomes, and are predicted to take up a higher diversity of organic compounds such as sugars and amino acids [48]. It is intriguing that specifically this strain, which has higher predicted metabolic and regulatory flexibilities [49], is the only one initially inhibited in co-culture with Alteromonas.Differences in co-culture phenotype are related to Prochlorococcus and not Alteromonas strains and occur primarily during the decline stageWhile co-culture with all Alteromonas strains had a major effect on Prochlorococcus viability after long-term starvation, there was no significant effect of co-culture on traditional metrics of growth such as maximal growth rate, maximal fluorescence, and lag phase (with the exception of the previously described inhibition of MIT9313; Fig. 2A–C). However, a visual inspection of the growth curves suggested subtle yet consistent differences in the shape of the growth curve, and especially the decline phase, between the different Prochlorococcus strains in the co-cultures (Fig. 1D). To test this, we used the growth curves as input for a principal component analysis (PCA), revealing that the growth curves from each Prochlorococcus strain clustered together, regardless of which Alteromonas strain they were co-cultured with (Fig. 2D). The growth curves of all high-light adapted strains (MED4, MIT9312, and MIT0604) were relatively similar, the low-light I strain NATL2A was somewhat distinct, and the low-light IV strain MIT9313 was a clear outlier (Fig. 2D), consistent with this strain being the only one initially inhibited in all co-cultures. Random forest classification supported the observation that the growth curve shapes were affected more by the Prochlorococcus rather than Alteromonas strains, and also confirmed the visual observation that most of the features differentiating between Prochlorococcus strains occurred during culture decline (random forest is a supervised machine learning algorithm explained in more detail in Supplementary Text S2; see also Supplementary Fig. S2). Thus, co-culture with Alteromonas affects the decline stage of Prochlorococcus in co-culture in a way that differs between Prochlorococcus but not Alteromonas strains.Fig. 2: Growth analysis and principal component analysis (PCA) of the growth curves from all co-cultures during 140 days of E1.A Growth rate, B Maximum fluorescence, and C duration of lag phase during experiment E1. Box-plots represent mean and 75th percentile of co-cultures, circles represent measurements of individual cultures of the axenic controls. The only significant difference between axenic and co-cultures is in the length of the lag phase for MIT9313 (Bonferroni corrected ANOVA, p  More

  • in

    A colonial-nesting seabird shows no heart-rate response to drone-based population surveys

    Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101 (2015).
    Google Scholar 
    Albores-Barajas, Y. V. et al. A new use of technology to solve an old problem: Estimating the population size of a burrow nesting seabird. PLoS ONE 13, 1–15 (2018).
    Google Scholar 
    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Chabot, D., Craik, S. R. & Bird, D. M. Population census of a large Common tern colony with a small unmanned aircraft. PLoS ONE 10, 1–14 (2015).
    Google Scholar 
    McClelland, G. T. W., Bond, A. L., Sardana, A. & Glass, T. Rapid population estimate of a surface-nesting seabird on a remote island using a low-cost unmanned aerial vehicle. Mar. Ornithol. 44, 215–220 (2016).
    Google Scholar 
    Lynch, H. J., White, R., Black, A. D. & Naveen, R. Detection, differentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biol. 35, 963–968 (2012).
    Google Scholar 
    Fretwell, P. T. et al. An Emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, Y., Wang, T. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 1–16 (2017).
    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 31, 362–371 (2003).
    Google Scholar 
    Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).
    Google Scholar 
    LaRue, M. A., Stapleton, S. & Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 31, 213–220 (2017).PubMed 

    Google Scholar 
    Sardà-Palomera, F., Bota, G., Padilla, N., Brotons, L. & Sardà, F. Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. J. Avian Biol. 48, 1273–1280 (2017).
    Google Scholar 
    Schofield, G., Katselidis, K. A., Lilley, M. K. S., Reina, R. D. & Hays, G. C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 31, 2310–2319 (2017).
    Google Scholar 
    Lachman, D., Conway, C., Vierling, K. & Matthews, T. Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: A demonstration with Western grebes. Wetl. Ecol. Manag. 28, 837–845 (2020).
    Google Scholar 
    Torres, L. G., Nieukirk, S. L., Lemos, L. & Chandler, T. E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 5, 1–14 (2018).
    Google Scholar 
    Jagielski, P. M., Dey, C. J., Gilchrist, H. G., Richardson, E. S. & Semeniuk, C. A. D. Polar bear foraging on common eider eggs: Estimating the energetic consequences of a climate-mediated behavioural shift. Anim. Behav. 171, 63–75 (2021).
    Google Scholar 
    Jagielski, P. M. et al. Polar bears are inefficient predators of seabird eggs. R. Soc. Open Sci. 8, 210391 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callaghan, C. T., Brandis, K. J., Lyons, M. B., Ryall, S. & Kingsford, R. T. A comment on the limitations of UAVS in wildlife research—The example of colonial nesting waterbirds. J. Avian Biol. 49, e01825 (2018).
    Google Scholar 
    Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 1–9 (2017).
    Google Scholar 
    Nowak, M. M., Dziób, K. & Bogawski, P. Unmanned aerial vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 4, 56–74 (2019).
    Google Scholar 
    Watts, A. C. et al. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 74, 1614–1619 (2010).
    Google Scholar 
    Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).
    Google Scholar 
    Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: A review. N. Z. J. Zool. 36, 367–377 (2009).
    Google Scholar 
    Carney, K. M. & Sydeman, W. J. A review of human disturbance effects on nesting colonial waterbirds. Int. J. Waterbird Biol. 22, 68–79 (1999).
    Google Scholar 
    Barber-Meyer, S. M., Kooyman, G. L. & Ponganis, P. J. Estimating the relative abundance of Emperor penguins at inaccessible colonies using satellite imagery. Polar Biol. 30, 1565–1570 (2007).
    Google Scholar 
    Lyons, M. et al. A protocol for using drones to assist monitoring of large breeding bird colonies. EcolEvol https://doi.org/10.32942/osf.io/p9j3f (2019).Article 

    Google Scholar 
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
    Google Scholar 
    Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).
    Google Scholar 
    Korczak-Abshire, M. et al. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Sci. 23, 1–16 (2016).
    Google Scholar 
    Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: A quasi-experiment study. Curr. Zool. 41, 259–266 (2020).
    Google Scholar 
    Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).
    Google Scholar 
    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Barnas, A. et al. Evaluating behavioral responses of nesting Lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).PubMed 

    Google Scholar 
    Ellis-felege, S. N. et al. Nesting Common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2021-0012 (2021).Article 

    Google Scholar 
    Wilson, R. P., Culik, B., Danfeld, R. & Adelung, D. People in Antarctica—how much do Adélie penguins Pygoscelis adeliae care?. Polar Biol. 11, 363–370 (1991).
    Google Scholar 
    Ricklefs, R. E. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9, 1–48 (1969).
    Google Scholar 
    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).PubMed 

    Google Scholar 
    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 6, 1–7 (2018).
    Google Scholar 
    Jaatinen, K., Seltmann, M. W. & Öst, M. Context-dependent stress responses and their connections to fitness in a landscape of fear. J. Zool. 294, 147–153 (2014).
    Google Scholar 
    Seltmann, M. W. et al. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim. Behav. 84, 889–896 (2012).
    Google Scholar 
    Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, S169–S178 (2007).
    Google Scholar 
    Criscuolo, F. Does blood sampling during eider incubation induce nest desertion in the female Common eider Somateria mollissima?. Mar. Ornithol. 29, 47–50 (2001).
    Google Scholar 
    Ellenberg, U., Mattern, T. & Seddon, P. J. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. Conserv. Physiol. 1, 1–11 (2013).
    Google Scholar 
    DeRose-Wilson, A., Fraser, J. D., Karpanty, S. M. & Hillman, M. D. Effects of overflights on incubating Wilson’s plover behavior and heart rate. J. Wildl. Manag. 79, 1246–1254 (2015).
    Google Scholar 
    de Villiers, M., Bause, M., Giese, M. & Fourie, A. Hardly hard-hearted: Heart rate responses of incubating Northern giant petrels (Macronectes halli) to human disturbance on sub-Antarctic Marion Island. Polar Biol. 29, 717–720 (2006).
    Google Scholar 
    Borneman, T. E., Rose, E. T. & Simons, T. R. Minimal changes in heart rate of incubating American oystercatchers (Haematopus palliatus) in response to human activity. Condor 116, 493–503 (2014).
    Google Scholar 
    Felton, S. K., Pollock, K. H. & Simons, T. R. Response of beach-nesting American oystercatchers to off-road vehicles: An experimental approach reveals physiological nuances and decreased nest attendance. Condor 120, 47–62 (2018).
    Google Scholar 
    Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common eiders: Interaction between visitors and gulls. Biol. Conserv. 110, 77–83 (2003).
    Google Scholar 
    Hennin, H. L. et al. Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol. Evol. 9, 1512–1521 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Culik, B., Adelung, D. & Woakes, A. J. The effect of disturbance on the heart rate and behaviour of Adélie penguins (Pygoscelis adeliae) during the breeding season. In Antarctic Ecosystems. Ecological Change and Conservation (eds Kerry, K. R. & Hempel, G.) 177–182 (Springer, 1990).
    Google Scholar 
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating Wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. 205, 475–483 (2002).PubMed 

    Google Scholar 
    Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. Condor 122, 1–15 (2020).
    Google Scholar 
    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).
    Google Scholar 
    Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and Crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE 13, 4–6 (2018).
    Google Scholar 
    Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U. & Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol. 39, 1329–1334 (2016).
    Google Scholar 
    Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Ecol. Soc. 6, 11 (2002).
    Google Scholar 
    Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: Intra-and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).
    Google Scholar 
    Viblanc, V. A., Smith, A. D., Gineste, B., Kauffmann, M. & Groscolas, R. Modulation of heart rate response to acute stressors throughout the breeding season in the King penguin Aptenodytes patagonicus. J. Exp. Biol. 218, 1686–1692 (2015).PubMed 

    Google Scholar 
    Montgomerie, R. D. & Weatherhead, P. J. Risks and rewards of nest defence by parent birds. Q. Rev. Biol. 63, 167–187 (1988).
    Google Scholar 
    Criscuolo, F., Gabrielsen, G. W., Gendner, J.-P. & Maho, Y. L. Body mass regulation during incubation in female Common eiders Somateria mollissima. J. Avian Biol. 33, 83–88 (2002).
    Google Scholar 
    Cyr, N. E., Wikelski, M. & Romero, L. M. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. Ecol. Evol. Approaches 81, 452–462 (2008).
    Google Scholar 
    Kralj-Fišer, S., Scheiber, I. B. R., Kotrschal, K., Weiß, B. M. & Wascher, C. A. F. Glucocorticoids enhance and suppress heart rate and behaviour in time dependent manner in Greylag geese (Anser anser). Physiol. Behav. 100, 394–400 (2010).PubMed 

    Google Scholar 
    Hodgson, J. C. & Koh, L. P. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Curr. Biol. 26, R404–R405 (2016).PubMed 

    Google Scholar 
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female Common eiders nesting in the high Arctic. Auk 107, 660–668 (1990).
    Google Scholar 
    Mehlum, F. Eider Studies in Svalbard Vol. 195 (Norsk Polarinstitutt Skrifter, 1991).
    Google Scholar 
    Markowitz, E. M., Nisbet, M. C., Danylchuk, A. J. & Engelbourg, S. I. What’s that buzzing noise? Public opinion on the use of drones for conservation science. Bioscience 67, 382–385 (2017).
    Google Scholar 
    Legagneux, P. et al. Unpredictable perturbation reduces breeding propensity regardless of pre-laying reproductive readiness in a partial capital breeder. J. Avian Biol. 47, 880–886 (2016).
    Google Scholar 
    Love, O. P., Gilchrist, H. G., Descamps, S., Semeniuk, C. A. D. & Bêty, J. Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164, 277–286 (2010).ADS 
    PubMed 

    Google Scholar 
    Fast, P. L. F., Gilchrist, H. G. & Clark, R. G. Nest-site materials affect nest-bowl use by Common eiders (Somateria mollissima). Can. J. Zool. 88, 214–218 (2010).
    Google Scholar 
    McKinnon, L., Gilchrist, H. G. & Scribner, K. T. Genetic evidence for kin-based female social structure in Common eiders (Somateria mollissima). Behav. Ecol. 17, 614–621 (2006).
    Google Scholar 
    Descamps, S., Forbes, M. R., Gilchrist, H. G., Love, O. P. & Bêty, J. Avian cholera, post-hatching survival and selection on hatch characteristics in a long-lived bird, the Common eider Somateria mollissima. J. Avian Biol. 42, 39–48 (2011).
    Google Scholar 
    Buttler, E. I. Avian Cholera Among Arctic Breeding Common eiders Somateria mollissima: Temporal Dynamics and the Role of Handling Stress in Reproduction and Survival (Carleton University, 2009).
    Google Scholar 
    Descamps, S., Gilchrist, H. G., Bêty, J., Buttler, E. I. & Forbes, M. R. Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol. Lett. 5, 278–281 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. A., Gilchrist, H. G., Smith, P. A., Gaston, A. J. & Forbes, M. R. Longer ice-free seasons increase the risk of nest depredation by Polar bears for colonial breeding birds in the Canadian Arctic. Proc. R. Soc. B Biol. Sci. 281, 20133128 (2014).
    Google Scholar 
    Dey, C. J. et al. Increasing nest predation will be insufficient to maintain Polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).ADS 

    Google Scholar 
    Giese, M., Handsworth, R. & Stephenson, R. Measuring resting heart rates in penguins using an artificial egg. J. Field Ornithol. 70, 49–54 (1999).
    Google Scholar 
    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).
    Google Scholar 
    Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).
    Google Scholar 
    Audacity Team. Audacity(R): Free Audio Editor and Recorder [Computer Application]. Version 2.3.2 retrieved Oct 10th 2019 from https://www.audacityteam.org/ (2019).Nimon, A. J., Schroter, R. C. & Oxenham, R. K. C. Artificial eggs: Measuring heart rate and effects of disturbance in nesting penguins. Physiol. Behav. 60, 1019–1022 (1996).PubMed 

    Google Scholar 
    SAS Institute Inc. SAS® Studio 3.8: User’s Guide (SAS Institute Inc, 2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics, Volume I, Foundations and Basic Theory (eds Kotz, S. & Johnson, N. L.) 610–624 (Springer, New York, 1998).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2015).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).
    Google Scholar 
    Hijmans, R. J., Williams, E. & Vennes, C. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Found. Stat. Comput., Vienna, 2017).
    Google Scholar  More

  • in

    Long term environmental variability modulates the epigenetics of maternal traits of kelp crabs in the coast of Chile

    Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity 105, 4–13 (2010).CAS 
    PubMed 

    Google Scholar 
    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, 1–17 (2017).
    Google Scholar 
    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental Epigenomics and Its Applications in Marine Organisms 325–359 (Springer, 2018). https://doi.org/10.1007/13836_2018_28.Book 

    Google Scholar 
    Hofmann, G. E. Ecological epigenetics in marine metazoans. Front. Mar. Sci. 4, 1–7 (2017).CAS 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).PubMed 

    Google Scholar 
    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Chang. 8, 504–509 (2018).ADS 

    Google Scholar 
    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, 6 (2018).
    Google Scholar 
    Anastasiadi, D., Díaz, N. & Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Bio. Ecol. 517, 54–64 (2019).
    Google Scholar 
    Rey, O. et al. Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Google Scholar 
    Eirin-Lopez, J. M. & Putnam, H. Editorial: Marine environmental epigenetics. Front. Mar. Sci. 8, 5 (2021).
    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of longterm inequality in herbivory. Mol. Ecol. 20, 1675–1688 (2011).CAS 
    PubMed 

    Google Scholar 
    Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: Facts and challenges. Int. J. Evol. Biol. 2014, 1–7 (2014).
    Google Scholar 
    Liebl, A. L., Wesner, J. S., Russell, A. F. & Schrey, A. W. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS ONE 16, e0252227 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metzger, D. C. H. & Schulte, P. M. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc. R. Soc. B Biol. Sci. 284, 5 (2017).
    Google Scholar 
    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, R. G. A., Baldanzi, S., Pérez-Figueroa, A., Gouws, G. & Porri, F. Morphological and epigenetic variation in mussels from contrasting environments. Mar. Biol. 165, 8 (2018).
    Google Scholar 
    Baldanzi, S., Watson, R., McQuaid, C. D., Gouws, G. & Porri, F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol. Ecol. 31, 77–91 (2017).
    Google Scholar 
    Ardura, A., Zaiko, A., Morán, P., Planes, S. & Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 7, 5 (2017).
    Google Scholar 
    Baldanzi, S., Storch, D., Navarrete, S. A., Graeve, M. & Fernández, M. Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Mar. Biol. 165, 1 (2018).
    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).ADS 

    Google Scholar 
    Letelier, J., Pizarro, O. & Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Ocean. 114, 12009 (2009).ADS 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).CAS 

    Google Scholar 
    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: Implications for the carbonate system in river-influenced rocky shore environments. J. Geophys. Res. Biogeosciences 120, 673–692 (2015).ADS 

    Google Scholar 
    Saldías, G. S. et al. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 146, 212–222 (2016).ADS 

    Google Scholar 
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 
    Wieters, E. A. Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Mar. Ecol. Prog. Ser. 301, 43–54 (2005).ADS 

    Google Scholar 
    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
    Google Scholar 
    Iranon, N. N. & Miller, D. L. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front. Genet. 3, 5 (2012).
    Google Scholar 
    Ramajo, L., Lagos, N. A. & Duarte, C. M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 146, 247–254 (2019).CAS 
    PubMed 

    Google Scholar 
    Aiken, C. & Navarrete, S. Environmental fluctuations and asymmetrical ­dispersal: Generalized stability theory for studying metapopulation persistence and marine protected areas. Mar. Ecol. Prog. Ser. 428, 77–88 (2011).ADS 

    Google Scholar 
    Baldanzi, S. et al. Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 646, 93–107 (2020).ADS 
    CAS 

    Google Scholar 
    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    Doherty-Weason, D. et al. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar. Ecol. 41, 1 (2020).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Sayols-Baixeras, S., Irvin, M. R., Arnett, D. K., Elosua, R. & Aslibekyan, S. W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep. 10, 1–205 (2016).
    Google Scholar 
    Adam, A. C. et al. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS ONE 14, e0220934 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fernández, P., García-Souto, D., Almansa, E., Morán, P. & Gestal, C. Epigenetic DNA methylation mediating Octopus vulgaris early development: Effect of essential fatty acids enriched diet. Front. Physiol. 8, 1–9 (2017).
    Google Scholar 
    Hearn, J., Pearson, M., Blaxter, M., Wilson, P. J. & Little, T. J. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 20, 1–11 (2019).
    Google Scholar 
    Palma, A. T., Henríquez, L. A. & Ojeda, F. P. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44, 325–334 (2009).
    Google Scholar 
    Faúndez-Báez, P., Morales, C. E. & Arcos, D. Variabilidad espacial y temporal en la hidrografía invernal del sistema de bahías frente a la VIII región (Chile centro-sur). Rev. Chil. Hist. Nat. 74, 817–831 (2001).
    Google Scholar 
    Osma, N. et al. Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Front. Mar. Sci. 1, 323 (2020).
    Google Scholar 
    Rebolledo, L. et al. Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ∼150 years. Cont. Shelf Res. 31, 356–365 (2011).ADS 

    Google Scholar 
    Sun, Y. et al. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS ONE 9, e86232 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190454 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Feinberg, A. P. & Irizarry, R. A. Colloquium Paper: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reyna-López, G. E., Simpson, J. & Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710 (1997).PubMed 

    Google Scholar 
    Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13, 522–527 (2013).PubMed 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 

    Google Scholar 
    Valladares, F., Sanches-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).
    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Religiosity is associated with greater size, kin density, and geographic dispersal of women’s social networks in Bangladesh

    Lim, C. & Putnam, R. D. Religion, social networks, and life satisfaction. Am. Sociol. Rev. 75, 914–933 (2010).
    Google Scholar 
    Fox, R. Kinship and marriage: an anthropological perspective/by Robin Fox. (1967).Lévi-Strauss, C. The elementary structures of kinship. (Beacon Press, 1969).Murdock, G. P. Social structure. Macmillan 387 (1949).Chapais, B. Primeval kinship: how pair-bonding gave birth to human society. (Harvard University Press, 2009).Walker, R. S. & Hill, K. R. Causes, consequences, and kin bias of human group fissions. Hum. Nat. 25, 465–475 (2014).PubMed 

    Google Scholar 
    Shenk, M. K., Towner, M. C., Voss, E. A. & Alam, N. Consanguineous marriage, kinship ecology, and market transition. Curr. Anthropol. 57, S167–S180 (2016).
    Google Scholar 
    Swann, W. B. Jr., Gómez, A., Seyle, D. C., Morales, J. F. & Huici, C. Identity fusion: The interplay of personal and social identities in extreme group behavior. J. Pers. Soc. Psychol. 96, 995–1011 (2009).PubMed 

    Google Scholar 
    Richerson, P. J. & Boyd, R. Complex societies. Hum. Nat. 10, 253–289 (1999).CAS 
    PubMed 

    Google Scholar 
    Zelinsky, W. The hypothesis of the mobility transition. Geogr. Rev. 61, 219–249 (1971).
    Google Scholar 
    Gurven, M., Jaeggi, A. V., von Rueden, C., Hooper, P. L. & Kaplan, H. Does market integration buffer risk, erode traditional sharing practices and increase inequality? A test among Bolivian forager-farmers. Hum. Ecol. Interdiscip. J. 43, 515–530 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Godoy, R. A. et al. Do markets worsen economic inequalities? Kuznets in the Bush. Hum. Ecol. 32, 339–364 (2004).
    Google Scholar 
    Kaplan, H. A theory of fertility and parental investment in traditional and modern human societies. Am. J. Phys. Anthropol. 101, 91–135 (1996).
    Google Scholar 
    Duernecker, G. & Vega-Redondo, F. Social Networks and the Process of Globalization. Rev. Econ. Stud. 85, 1716–1751 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Colleran, H. Market integration reduces kin density in women’s ego-networks in rural Poland. Nat. Commun. 11, 266 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilding, R. Families, intimacy and globalization. (Macmillan International Higher Education, 2018).Hackman, J. V. & Kramer, K. L. Kin Ties and market integration in a Yucatec Mayan Village. Soc. Sci. 10, 216 (2021).
    Google Scholar 
    Norenzayan, A. Big gods: How religion transformed cooperation and conflict. (Princeton University Press, 2013).Lauder, W., Mummery, K. & Sharkey, S. Social capital, age and religiosity in people who are lonely. J. Clin. Nurs. 15, 334–340 (2006).PubMed 

    Google Scholar 
    Agate, S. T., Zabriskie, R. B. & Eggett, D. L. Praying, playing, and successful families. Marriage Fam. Rev. 42, 51–75 (2007).
    Google Scholar 
    Day, R. D. et al. Family processes and adolescent religiosity and religious practice: View from the NLSY97. Marriage Fam. Rev. 45, 289–309 (2009).
    Google Scholar 
    Fagan, P. F. Why religion matters even more: The impact of religious practice on social stability. Backgrounder 1992, 1–19 (2006).
    Google Scholar 
    Ellison, C. G. & George, L. K. Religious involvement, social ties, and social support in a Southeastern Community. J. Sci. Study Relig. 33, 46–61 (1994).
    Google Scholar 
    Ellison, C. G. & Xu, X. Religion and families. The Wiley Blackwell companion to the sociology of families 277–299 (2014).Ginges, J., Hansen, I. & Norenzayan, A. Religion and support for suicide attacks. Psychol. Sci. 20, 224–230 (2009).PubMed 

    Google Scholar 
    Lynch, R., Palestis, B. G. & Trivers, R. Religious devotion and extrinsic religiosity affect in-group altruism and out-group hostility oppositely in rural Jamaica. Evol. Psychol. Sci. 3, 335 (2017).
    Google Scholar 
    Walker, R. S. & Bailey, D. H. Marrying kin in small-scale societies. Am. J. Hum. Biol. 26, 384–388 (2014).PubMed 

    Google Scholar 
    Putnam, R. D., Leonardi, R. & Nanetti, R. Y. Making Democracy Work: Civic Traditions in Modern Italy. (Princeton University Press, 1994).Coleman, J. Foundations of Social Theory. (Belknap Press of Harvard University Press, Cambridge, Mass, 1990).Wuthnow, R. The Left Behind: Decline and Rage in Rural America. (Princeton University Press, 2018).Sunstein, C. R. # Republic: Divided democracy in the age of social media. (Princeton University Press, 2018).Putnam, R. D. E Pluribus Unum: Diversity and Community in the Twenty-first Century The 2006 Johan Skytte Prize Lecture. Scan. Polit. Stud. 30, (2007).Putnam, R. Bowling alone: The collapse and revival of American community. (Simon and Schuster, 2000).Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups, Second printing with new preface and appendix (Harvard Economic Studies). Harvard economic studies, v. 124 (Harvard University Press, 1971).Granovetter, M. S. The strength of weak ties. Am. J. Sociol. (1973).Lynch, R., Lummaa, V. & Panchanathan, K. Integration involves a trade-off between fertility and status for World War II evacuees. Nature Human Behaviour (2019).Beyerlein, K. & Hipp, J. R. Social capital, too much of a good thing? American Religious Traditions and Community Crime. Soc. Forces 84, 995–1013 (2005).
    Google Scholar 
    Lewis, V. A., Macgregor, C. A. & Putnam, R. D. Religion, networks, and neighborliness: The impact of religious social networks on civic engagement. Soc. Sci. Res. 42, 331–346 (2013).PubMed 

    Google Scholar 
    Yu, M. & Stiffman, A. R. Positive family relationships and religious affiliation as mediators between negative environment and illicit drug symptoms in American Indian adolescents. Addict. Behav. 35, 694–699 (2010).PubMed 

    Google Scholar 
    Regnerus, M. D. & Burdette, A. Religious change and adolescent family dynamics. Sociol. Q. 47, 175–194 (2006).
    Google Scholar 
    Marks, L. Religion and family relational health: An overview and conceptual model. J. Relig. Health (2006).Thornton, A. Reciprocal Influences of Family and Religion in a Changing World. J. Marriage Fam. Couns. 47, 381–394 (1985).
    Google Scholar 
    Mahoney, A., Pargament, K. I., Murray-Swank, A. & Murray-Swank, N. Religion and the Sanctification of Family Relationships. Rev. Relig. Res. 44, 220–236 (2003).
    Google Scholar 
    Mahoney, A. Religion in families 1999 to 2009: A relational spirituality framework. J. Marriage Fam. 72, 805–827 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Ebstyne King, P. & Furrow, J. L. Religion as a resource for positive youth development: religion, social capital, and moral outcomes. Dev. Psychol. 40, 703–713 (2004).PubMed 

    Google Scholar 
    Dudley, M. G. & Kosinski, F. A. Religiosity and marital satisfaction: A research note. Rev. Relig. Res. 32, 78–86 (1990).
    Google Scholar 
    Milevsky, A., Smoot, K., Leh, M. & Ruppe, A. Familial and contextual variables and the nature of sibling relationships in emerging adulthood. Marriage Fam. Rev. 37, 123–141 (2005).
    Google Scholar 
    Galbraith, D. & Shaver, J. H. Religion and Fertility Bibliography. evolutionarydemographyofreligion.Shaver, J. H., Sibley, C. G., Sosis, R., Galbraith, D. & Bulbulia, J. Alloparenting and religious fertility: A test of the religious alloparenting hypothesis. Evol. Hum. Behav. 40, 315–324 (2019).
    Google Scholar 
    Kaufmann, E. Shall the Religious Inherit the Earth?: Demography and Politics in the Twenty-First Century. (Profile Books, 2010).Ebaugh, H. R. & Curry, M. Fictive Kin as social capital in new immigrant communities. Sociol. Perspect. 43, 189–209 (2000).
    Google Scholar 
    Taylor, R. J., Chatters, L. M., Woodward, A. T. & Brown, E. Racial and ethnic differences in extended family, friendship, fictive kin and congregational informal support networks. Fam. Relat. 62, 609–624 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Durkheim, E. The elementary forms of the religious life. Preprint at (1915).Rappaport, R. A. Ritual and Religion in the Making of Humanity. vol. 110 (Cambridge University Press, 1999).Hastings, O. P. Not a lonely crowd? Social connectedness, religious service attendance, and the spiritual but not religious. Soc. Sci. Res. 57, 63–79 (2016).PubMed 

    Google Scholar 
    Putnam, R. & Campbell, D. E. American grace: How religion is reshaping our civic and political lives. Preprint at (2010).Turke, P. W. Evolution and the demand for children. Popul. Dev. Rev. 15, 61–90 (1989).
    Google Scholar 
    Sear, R. & Coall, D. How much does family matter? Cooperative breeding and the demographic transition. Popul. Dev. Rev. 37, 81–112 (2011).PubMed 

    Google Scholar 
    Jenkins, P. Fertility and Faith: The Demographic Revolution and the Transformation of World Religions. (Baylor University Press, 2020).Rothstein, B. Corruption and social trust: Why the fish rots from the head down. Soc. Res. 80, 1009–1032 (2013).
    Google Scholar 
    Lynch, R, Schaffnit, S. and Shenk, M. OSF preregistration – Does religion help to preserve the density of kin networks often disrupted by globalization? Open Science Framework Registries. https://osf.io/xvyqm/registrations (2020).Alam, N. et al. Health and demographic surveillance system (HDSS) in Matlab, Bangladesh. Int. J. Epidemiol. 46, 809–816 (2017).PubMed 

    Google Scholar 
    Icddr, B. Health and Demographic Surveillance System-Matlab. 2005 Socioeconomic Census (2007).Imf. International Monetary Fund. World Economic Outlook Database. (2016).Razzaque, A., Streatfield, P. K. & Evans, A. Family size and children’s education in Matlab, Bangladesh. J. Biosoc. Sci. 39, 245–256 (2007).PubMed 

    Google Scholar 
    Afsar, R. Unravelling the vicious cycle of recruitment: Labour migration from Bangladesh to the gulf states. http://ilo.org/wcmsp5/groups/public/—ed_norm/—declaration/documents/publication/wcms_106536.pdf (2009).Kabeer, N. Ideas, economics and ‘the sociology of supply’: Explanations for fertility decline in Bangladesh. J. Dev. Stud. 38, 29–70 (2001).
    Google Scholar 
    Novak, J. J. Bangladesh: Reflections on the water. (Indiana University Press, 1993).Shenk, M. K., Towner, M. C., Kress, H. C. & Alam, N. A model comparison approach shows stronger support for economic models of fertility decline. Proc. Natl. Acad. Sci. USA 110, 8045–8050 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devine, J., Hinks, T. & Naveed, A. Happiness in Bangladesh: The role of religion and connectedness. J. Happiness Stud. 20, 351–371 (2019).
    Google Scholar 
    Henrich, J. Market incorporation, agricultural change, and sustainability among the Machiguenga Indians of the Peruvian Amazon. Hum. Ecol. 25, 319–351 (1997).
    Google Scholar 
    Lu, F. Integration into the market among indigenous peoples: A cross-cultural perspective from the Ecuadorian Amazon. Curr. Anthropol. 48, 593–602 (2007).
    Google Scholar 
    Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. arXiv [stat.CO] (2017).Team, R. C. & Others. R: A language and environment for statistical computing. (2013).Lynch, R. Kin_density_and-religiosity. (2021).McElreath, R. Statistical rethinking. (2017).Clarke, M. New kinship, Islam, and the liberal tradition: sexual morality and new reproductive technology in Lebanon. J. R. Anthropol. Inst. 14, 153–169 (2008).
    Google Scholar 
    Swann, W. B. et al. What makes a group worth dying for? Identity fusion fosters perception of familial ties, promoting self-sacrifice. J. Pers. Soc. Psychol. 106, 912–926 (2014).PubMed 

    Google Scholar 
    Benítez, D. M. Bangladesh: Economy Overview and Structural Changes. (2018).Viry, G. Residential mobility and the spatial dispersion of personal networks: Effects on social support. Soc. Networks 34, 59–72 (2012).
    Google Scholar 
    Mok, D., Wellman, B. & Carrasco, J. Does distance matter in the age of the internet?. Urban Stud. 47, 2747–2783 (2010).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).
    Google Scholar 
    Pollet, T. V., Roberts, S. G. B. & Dunbar, R. I. M. Going that extra mile: Individuals travel further to maintain face-to-face contact with highly related kin than with less related kin. PLoS ONE 8, e53929 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madhavan, S., Clark, S., Araos, M. & Beguy, D. Distance or location? How the geographic distribution of kin networks shapes support given to single mothers in urban Kenya. Geogr. J. 184, 75–88 (2018).
    Google Scholar 
    Curry, O., Roberts, S. G. B. & Dunbar, R. I. M. Altruism in social networks: evidence for a ‘kinship premium’. Br. J. Psychol. 104, 283–295 (2013).PubMed 

    Google Scholar 
    Sullivan, K. & Sullivan, A. Adolescent–parent separation. Dev. Psychol. 16, 93 (1980).
    Google Scholar 
    Roberts, S. G. B. & Dunbar, R. I. M. Communication in social networks: Effects of kinship, network size, and emotional closeness. Pers. Relatsh. 18, 439–452 (2011).
    Google Scholar 
    Shenk, M. K. et al. Social support, nutrition and health among women in rural Bangladesh: complex tradeoffs in allocare, kin proximity and support network size. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 207 (2021).Snopkowski, K. & Sear, R. Grandparental help in Indonesia is directed preferentially towards needier descendants: A potential confounder when exploring grandparental influences on child health. Soc. Sci. Med. 128, 105–114 (2015).PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Support for new mothers and fertility in the United Kingdom: Not all support is equal in the decision to have a second child. Popul. Stud. 71, 345–361 (2017).
    Google Scholar 
    Boyer, P. The Naturalness of Religious Ideas: A Cognitive Theory of Religion. (University of California Press, 1994).Thomas, M. G. et al. Kinship underlies costly cooperation in Mosuo villages. R Soc Open Sci 5, 171535 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maqsood, A. Love as understanding. Am. Ethnol. https://doi.org/10.1111/amet.13000 (2021).Article 

    Google Scholar 
    Schurmann, A. T. & Mahmud, S. Civil society, health, and social exclusion in Bangladesh. J. Health Popul. Nutr. 27, 536–544 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Haque, M. R., Hasan, M. S., Alam, N., Barkat, S. & Others. Fertility preferences in Bangladesh. in Family Demography in Asia (Edward Elgar Publishing, 2018).Mattison, S. M. Economic impacts of tourism and erosion of the visiting system among the Mosuo of Lugu Lake. Asia Pac. J. Anthropol. 11, 159–176 (2010).
    Google Scholar 
    Mattison, S. M. et al. Context specificity of ‘market integration’ among the matrilineal Mosuo of Southwest China. Curr. Anthropol. 63, 118–124 (2022).
    Google Scholar 
    Uchida, Y., Kitayama, S., Mesquita, B., Reyes, J. A. S. & Morling, B. Is perceived emotional support beneficial? Well-being and health in independent and interdependent cultures. Pers. Soc. Psychol. Bull. 34, 741–754 (2008).PubMed 

    Google Scholar 
    Reblin, M. & Uchino, B. N. Social and emotional support and its implication for health. Curr. Opin. Psychiatry 21, 201–205 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Inglehart, R. Faith and freedom: Traditional and modern ways to happiness. Int. Differ. Well-being 351, 397 (2010).
    Google Scholar 
    Ferriss, A. L. Religion and the Quality of Life. J. Happiness Stud. 3, 199–215 (2002).
    Google Scholar 
    Greeley, A. & Hout, M. Happiness and lifestyle among conservative Christians. The truth about conservative Christians 1, 150–161 (2006).
    Google Scholar 
    Pilisuk, M. Kinship, social networks, social support and health. Soc. Sci. Med. 12, 273–280 (1978).CAS 
    PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Supportive families versus support from families: The decision to have a child in the Netherlands. Demogr. Res. 37, 417–454 (2017).
    Google Scholar 
    Hassan, A., Lawson, D., Schaffnit, S. B., Urassa, M. & Sear, R. Childcare in transition: evidence that patterns of childcare differ by degree of market integration in north-western Tanzania. (2021).https://doi.org/10.31219/osf.io/gtc6kPutnam, R. D. Democracies in Flux: The Evolution of Social Capital in Contemporary Society. (Oxford University Press, 2004). More

  • in

    Residual levels and dietary intake risk assessment of 11 pesticides in apricots from different ecological planting regions in China

    Chromatographic separation and mass spectrometric optimizationTo obtain the best monitoring conditions for each compound, a 0.5 mg/L mixed standard solution of 11 pesticides was mixed with the mobile phase through a syringe pump and then injected into the mass spectrometer for tuning. The precursor ion of the compound to be tested was determined by the primary mass spectrometry scan under ESI+ and ESI- modes, and then the product ion was scanned by the secondary mass spectrometry. Two groups of ion pairs with the best sensitivity were selected for detection; one group was used for quantification, and another, for qualitative analysis. The optimization results showed high sensitivity of all the 11 pesticides under the ESI+ mode. Among them, abamectin (B1a), β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin were [M + NH4]+, and other compounds were [M + H]+. MS parameters of 11 pesticides are mentioned in Table S2.Formic acid and ammonium acetate are commonly used reagents to enhance the ionization of target compounds [M + H]+ and [M + NH4]+ under the ESI+ mode, and they can effectively improve the peak pattern, making the peak sharper and more symmetrical; therefore, they need to be added during gradient elution38. To improve work efficiency, it is necessary to separate and complete the monitoring of 11 pesticides in the shortest possible time; therefore, we selected two different types of chromatographic columns (ACQUITY UPLC HSS C18 and ACQUITY UPLC HSS T3) and three different mobile phases (Ι: 0.1% formic acid aqueous solution—ACN, II: 0.05% formic acid aqueous solution—ACN, and III: 0.1% formic acid/5 mmol/L ammonium acetate aqueous solution—ACN) for optimization experiments. We observed that when using the HSS T3 chromatographic column, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin did not show a good retention effect under the three mobile phase systems, and there was substantial tailing of the chromatographic peak. The shape of the chromatographic peak and sensitivity of the target compound were used as evaluation indicators. Compared with Ι and II, mobile phase III produced better sensitivity for all target compounds (Fig. 1), with sharper and more symmetrical peaks of β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin. This may be because the addition of 5 mmol/L ammonium acetate improved the retention performance of the HSS C18 chromatography columns without affecting the ionization efficiency of all target compounds. In summary, we selected the HSS C18 column for chromatographic separation and used 0.1% formic acid/5 mmol/L ammonium acetate aqueous solution—ACN as the mobile phase to further optimize the gradient elution procedure and effectively separate and detect all the target compounds within 8 min.Figure 1When using HSS C18, the peak areas of 11 pesticides in three different mobile phases.Full size imageOptimization of purification materialsThe flesh of apricot contains sugar, protein, calcium, phosphorus, carotene, thiamine, riboflavin, niacin, and vitamin C. Due to these diverse impurities, the analysis of the sample matrix becomes highly complex. Therefore, these impurities need to be removed from the matrix samples before analysis. Currently, PSA, C18, and MWCNTs are widely used to adsorb to the fruit substrate39. PSA has a strong adsorption capacity for metal ions, fatty acids, sugars, and fat-soluble pigments, C18 has a strong adsorption capacity for non-polar impurities (such as fat, sterol, and volatile oil), while MWCNTs have a strong adsorption capacity for pigments, which can effectively remove chlorophyll, lutein, and carotene. However, C18 and MWCNTs can also simultaneously adsorb pesticides, resulting in poor recovery. Nano-ZrO2 has a large specific surface area and good adsorption stability and has recently been used to purify substrates. It can selectively remove fats and pigments from samples compared to conventional C18 fillers.In the current study, different purification materials were combined for the analysis of 11 pesticide residues and to propose the best purification strategy in the pretreatment of apricot samples. As displayed in Fig. 2, the average recovery of 11 pesticides in the apricot was higher using the C18/nano-ZrO2/MWCNTs than other combinations. Nano-ZrO2 showed better adsorption than PSA in purifying fatty acids, organic acids, polar pigments, and sugars in apricot, owing to its larger specific surface area, better adsorption capacity, and stability. To conclude, the combination of 10 mg C18, 30 mg nano-ZrO2, and 5 mg MWCNTs demonstrated the best recovery for 11 pesticides, with recovery in the range of 72% to 114%, at a pesticide spiking level of 0.01 mg/kg. In summary, we finally determined that among the tested combinations, C18/nano-ZrO2/MWCNTs (10 mg/ 30 mg/5 mg) is the best purification combination for the pre-treatment of apricot samples.Figure 2The recoveries of 11 pesticides in apricot matrix under different scavenger combinations (2–1 C18/nano-ZrO2/MWCNTs, 2–2 PSA/C18/MWCNTs, 2–3 nano-ZrO2/PSA/MWCNTs; 0.01 mg/kg, n = 3).Full size imageLinearity, matrix effects, limit of detection and limit of quantificationThe standard curve obtained from the standard working solutions of 11 pesticides and the calibration curve from blank apricot matrix spiked with 11 pesticides showed good linearity (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 mg/L), with R2 ≥ 0.9959 for all tested samples (Table 1).Table 1 The standard curves, R2 and MEs of 11 pesticides in apricot.Full size tableTo evaluate MEs, the slopes of matching 11 pesticide standards with solvent and apricot matrix were calculated at the same concentration. According to the derived slope of the matrix-matched calibration curve, MEs of 11 pesticides in apricot were between 89 and 113% (Table 1), well within the range of 80% to 120%, indicating that the MEs could be ignored. It also suggests that the current pre-treatment method has a good purification effect and eliminates the matrix effect very well, laying a robust foundation for the subsequent step of quantitative analysis of samples. We next used the standard solution curve to quantify the 11 pesticide residues in apricot.The LOD refers to the minimum concentration or minimum amount of a component to be tested that can be detected from a test sample under a given confidence level by an analytical method. Its physical meaning is the amount of the measured component when the signal is 3 times the standard deviation (S = 3σ) of the reagent blank signal (background signal). Sometimes it also refers to the amount of the measured component corresponding to when the signal is three times the background signal generated by the reagent blank (S = 3 N). The LOQ refers to the minimum amount of the analyte in the sample that can be quantitatively determined, and the determination result should have a certain accuracy40. The LOQ reflects whether the analytical method has the sensitive quantitative detection ability. The LOQ is the lowest validated level with sufficient recovery and precision, which was estimated to be 0.001 mg/L, while the LOD is the lowest calibration level, which was 2 µg/kg, according to SANTE/12,682/2020.Accuracy and precisionIn the matrix, 11 pesticides were spiked at four levels (0.002, 0.02, 0.1, and 1 mg/kg), and for each spiked sample, there were six replicates. The recoveries of 11 pesticides in apricot at all levels ranged between 72 and 119%. The inter- and intra-level relative standard deviations (RSDs, %) of 11 pesticides in apricot were  More

  • in

    A database of seed plants on taxonomy, geography and ecology in the Qinling-Daba Mountains and adjacent areas

    Each of the 23 key variables can be used for analysis. To validate the dataset, we used five plant-related variables (diversity of order, family, genus, species and species endemic to China) to demonstrate the process of using the dataset for analysis as follows:(1) For the four variables of plant taxa “order”, “family”, “genus” and “species”, the similarity and difference in spatial distribution pattern of diversity of different taxa in the Qinling-Daba Mountains climate transition zone were analyzed. The spatial distribution pattern of the diversity of the four taxa is shown in Fig. 3, which is increasingly lower from south (low latitude) to north (high latitude). This result is consistent with the classical latitudinal gradient model of plant diversity. The boundary between higher diversity in the south and lower diversity in the north is roughly located in the area of Funiu Mountains in the eastern Qinling-Daba Mountains, Taibai Mountains in the central Qinling-Daba Mountains and Baishui River in the western Qinling-Daba Mountains. However, with the reduction in taxon scale, the spatial distribution pattern of diversity tends to be complex. Orders (Fig. 3a) and families (Fig. 3b) can be divided by lines, while genera (Fig. 3c) need thicker lines, and species (Fig. 3d) can only be divided by polygons. Figure 3 shows that the taxonomic groups of families are more clearly divided, while species can only be divided by staggered bands. Therefore, when dividing the north–south boundary, the family taxon scale is appropriate, whereas the species scale is more appropriate when studying the north–south transition zone.Fig. 3Spatial distribution of diversity of orders, families, genera and species. (a) The blue dotted line is basically the dividing line of the order diversity of 50 species. The order diversity to the north of the blue dotted line is lower than 50 species, and the order diversity to the south of the blue dotted line is higher than 50 species. (b) The blue dotted line is basically the dividing line of the family diversity of 150 species. The family diversity to the north of the blue dotted line is lower than 150 species, and the family diversity to the south of the blue dotted line is higher than 150 species. (c) The thicker blue dotted line is basically the dividing line of genus diversity of 578–681 species. The genus diversity to the north of the blue dotted line is lower than 578 species, and the genus diversity to the south of the blue dotted line is higher than 681 species. (d) The blue area is basically the dividing line of species diversity of 1385–1618 species. The species diversity to the north of the blue dotted line is lower than 1385 species, and the species diversity to the south of the blue dotted line is higher than 1618 species.Full size imageThe dataset can also count the orders, families and genera that appear in 58 nature reserves, indicating that these orders, families and genera are widely distributed in this area, while the orders, families and genera that only appear in a single nature reserve indicate that these taxa are unique to this nature reserve in this area, reflecting their locality and uniqueness, which is helpful to understanding the specific distribution of plants in detail. The relevant statistics are as follows:
    There are 28 orders present in every nature reserve:
    Liliales, Dipsacales, Lamiales, Fabales, Ericales, Poales, Saxifragales, Malpighiales, Malvales, Asterales, Fagales, Gentianales, Geraniales, Ranunculales, Rosales, Solanales, Apiales, Cornales, Brassicales, Caryophyllales, Dioscoreales, Santalales, Myrtales, Asparagales, Celastrales, Sapindales, Alismatales, and Boraginales.The order that only appears in one nature reserve is Petrosaviales, which appears in the Dabashan Nature Reserve in Chongqing.
    There are 51 families present in every nature reserve:
    Liliaceae, Primulaceae, Plantaginaceae, Lamiaceae, Euphorbiaceae, Cannabaceae, Juncaceae, Fabaceae, Poaceae, Elaeagnaceae, Betulaceae, Apocynaceae, Violaceae, Malvaceae, Crassulaceae, Campanulaceae, Asteraceae, Orchidaceae, Polygonaceae, Orobanchaceae, Onagraceae, Gentianaceae, Geraniaceae, Ranunculaceae, Rubiaceae, Rosaceae, Caprifoliaceae, Thymelaeaceae, Apiaceae, Cyperaceae, Cornaceae, Paeoniaceae, Brassicaceae, Amaryllidaceae, Caryophyllaceae, Rhamnaceae, Santalaceae, Asparagaceae, Celastraceae, Sapindaceae, Adoxaceae, Araliaceae, Berberidaceae, Hydrangeaceae, Scrophulariaceae, Convolvulaceae, Urticaceae, Salicaceae, Papaveraceae, Iridaceae, and Boraginaceae.There are 15 families that only appear in one nature reserve, as shown in Table 2.Table 2 Endemic families of the nature reserves in the Qinling-Daba Mountains and surrounding areas.Full size table
    There are 54 genera present in every nature reserve:
    Patrinia, Polygonum, Sanicula, Plantago, Allium, Delphinium, Euphorbia, Juncus, Cynanchum, Trigonotis, Artemisia, Sorbus, Polygonatum, Scutellaria, Cirsium, Viburnum, Ajuga, Viola, Galium, Geranium, Salix, Epilobium, Gentiana, Ranunculus, Malus, Acer, Rubia, Rosa, Torilis, Lonicera, Adenophora, Philadelphus, Cornus, Paeonia, Rhamnus, Rumex, Carex, Thalictrum, Asparagus, Carpesium, Clematis, Potentilla, Euonymus, Eleutherococcus, Berberis, Spiraea, Rubus, Populus, Vicia, Silene, Iris, Poa, Aster, and Buddleja.There were 225 genera that only appeared in one nature reserve, as shown in Figshare file 269.(2) For the “species endemic to China” variable of plants, we can see from the diversity distribution pattern of species endemic to China in this region (Fig. 4) that the number of endemic species in the Qinling-Daba Mountains is higher than that of species outside of the region, which reflects the strong transition zone in the Qinling-Daba Mountains. The variables of species endemic to China obtained from the Qinling-Daba Mountains and their surroundings were clustered by the Bray–Curtis dissimilarity measure70 and Ward’s minimum variance (the clustering method recommended for plant cluster analysis). The clustering results are shown in Fig. 5a. At the same time, the clustering results are displayed in space. Figure 5b shows that category 3 extends from the east outside the Qinling-Daba Mountains to the Baishuijiang Nature Reserve inside the western Qinling-Daba Mountains, which is consistent with the fact that the Qinling-Daba Mountains are an important ecogeographical “corridor” connecting the east and the west.Fig. 4Spatial distribution of diversity of species endemic to China in the Qinling-Daba Mountains and adjacent areas.Full size imageFig. 5(a) Clustering results of Ward’s connection aggregation of species endemic to China in 58 nature reserves. (b) Spatial distribution of clustering results of species endemic to China; the larger the dot and the darker the color, the earlier it is merged into this category, and the smaller the dot and the lighter the color, the later it is merged into this category.Full size image More

  • in

    Radiation dose and gene expression analysis of wild boar 10 years after the Fukushima Daiichi Nuclear Plant accident

    SamplesThe intestine and muscle samples from 22 wild boars were collected between September 4 and March 2, 2020, in Namie town in Fukushima prefecture. Furthermore, control intestine samples were collected from three wild boars in Hyogo prefecture. Each location is depicted in Fig. 1. In each case, after the licensed hunters slaughtered the wild boar to be exterminated, only the tissue was transferred to the study.Measurement of radioactivityRadioactivity in the muscle samples was determined by gamma-ray spectrometry using high-purity germanium (HPGe) detectors (Ortec Co., Oak Ridge, TN, USA), as described in our previous report3. Gamma rays from 137Cs were observed.Exposure dose estimationIn order to estimate internal and external dose rates of the wild boars according to the ICRP publication 10826, we supposed the shapes of wild boars as prolate spheroids whose long axis was to be their body lengths. The short axis was given from their weight assuming their specific gravities were the same
    as water. The dose rates were calculated from the contribution of 137Cs, not including
    natural radionuclides. The energy deposition to the spheroids by beta and gamma rays from radionuclides were calculated by the numerical simulation with the use of the Particle and Heavy Ion Transport code System (PHITS)27. For the sake of simplicity, we supposed the spheroids consisted of only muscle, which would give overestimated values because muscle contains more radio cesium than other organs. The external exposure dose was calculated from the air dose rates which were observed from the monitoring post near the boars captured place. The average values of the air dose rates were obtained from fitting observed data of two years with decay curve. The background due to the natural radionuclides was estimated to be 0.05 µGy/h which was observed before the Fukushima Daiichi accident, and was removed before the fittings. The half-lives of the air dose rates were 2000–3000 days depending on the environment. Assuming the external exposure dose was ascribed to the 137Cs included in the surface of the ground. The amount of the 137Cs was calculated so as to reproduce the observed air does rates. Since the maximum range of the beta ray from 137Cs is a few millimeters, almost all of the beta ray from inside the body should be absorbed in the boar’s body, but the beta ray from outside the body would stop in its fur. The beta rays contribute 100% to internal exposure dose but 0% to external one. Since the linear attenuation coefficient for gamma rays from 137Cs is 0.084 cm−1 = (12 cm)−1, some of the gamma rays cannot stop in the body depending on the size of the body. The numerical simulation suggested that 65–90 percent of the gamma rays from 137Cs inside the body would go out, and 40–65 percent of the gamma rays from 137Cs outside would go through the body.Pathological analysisA piece of the small intestine was fixed in 10% neutral formalin at 4 °C for 24–48 h. Then, paraffin blocks were prepared for pathomorphological examination using hematoxylin and eosin (HE) staining.Gene expression analysisTotal RNA was extracted from the whole tissue of the intestine using TRIzol Reagent (Life Technologies, Inc., Frederic, MD, USA) according to the manufacturer’s instructions. RNA concentration was measured using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and cDNA was synthesized using random primers and SuperScript II (Life Technologies, Inc.). Real-time PCR for IFN-γ, TLR3, and CyclinG1 was performed using Brilliant SYBR Green QPCR Master Mix III (Stratagene, La Jolla, CA, USA) with an AriaMx system (Agilent Technologies, Santa Clara, CA, USA). Primer sequences were designed using Primer-BLAST with sequences obtained from GenBank as described in the previous report4. Amplification conditions were 95 °C for 3 min, 40 cycles at 95 °C for 5 s, and 60 °C for 20 s. Fluorescence signals measured during the amplification were analyzed. Ribosomal RNA primers were used as an internal control, and all data were normalized to constitutive rRNA values. Quantitative differences between the groups were analyzed using the AriaMx software (Agilent Technologies).Statistical analysisAll data are presented as mean ± standard error (SE) for each treatment group. Differences in mRNA expression among the groups were determined using the unpaired t-test with Welch’s correction. (Prism: GraphPad Software Inc., La Jolla, CA, USA). Differences were considered to be statistically significant at a P value of  More

  • in

    Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62(8), 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107 (2003).Article 

    Google Scholar 
    Pandey, D., Singh, A., Ramanathan, A. & Kumar, M. The combined exposure of microplastics and toxic contaminants in the floodplains of North India: A review. J. Environ. Manag. 279, 111557. https://doi.org/10.1016/j.jenvman.2020.111557 (2021).Article 
    CAS 

    Google Scholar 
    Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46(12), 6453–6454. https://doi.org/10.1021/es302011r (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368(6496), 1184–1185. https://doi.org/10.1126/science.abc4428 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jan Kole, P., Löhr, A. J., van Belleghem, F. G. A. J. & Ragas, A. M. J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph14101265 (2017).Article 

    Google Scholar 
    Sommer, F. et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099 (2018).Article 
    CAS 

    Google Scholar 
    Beita-Sandí, W., Selbes, M., Ersan, M. S. & Karanfil, T. Release of nitrosamines and nitrosamine precursors from scrap tires. Environ. Sci. Technol. Lett. 6(4), 251–256. https://doi.org/10.1021/acs.estlett.9b00172 (2019).Article 
    CAS 

    Google Scholar 
    Kaminsky, W. & Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 58–59, 803–811. https://doi.org/10.1016/S0165-2370(00)00129-7 (2001).Article 

    Google Scholar 
    Sundt, P., Schulze, P. E. & Syversen, F. Sources of microplastic- pollution to the marine environment. Mepex Nor. Environ. Agency 86, 20 (2014).
    Google Scholar 
    White, W. C. Butadiene production process overview. Chem. Biol. Interact. 166(1–3), 10–14. https://doi.org/10.1016/j.cbi.2007.01.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, D. A. & Corcoran, P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60(5), 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Brine, T. & Thompson, R. C. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60(12), 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci Technol. 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Adobe Inc. (2019). Adobe illustrator. Retrieved from https://www.adobe.com/Products/Illustrator.Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635 (2020).Article 
    CAS 

    Google Scholar 
    Councell, T. B., Duckenfield, K. U., Landa, E. R. & Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38(15), 4206–4214. https://doi.org/10.1021/es034631f (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Awet, T. T. et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0140-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chung, H., Son, Y., Yoon, T. K., Kim, S. & Kim, W. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol. Environ. Saf. 74(4), 569–575. https://doi.org/10.1016/j.ecoenv.2011.01.004 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huber, M., Welker, A. & Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Manag. Res. 36(5), 436–444. https://doi.org/10.1177/0734242X18764292 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhu, D., Li, G., Wang, H. T. & Duan, G. L. Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere 281, 130998. https://doi.org/10.1016/j.chemosphere.2021.130998 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pathan, S. I. et al. Soil Pollution from micro-and nanoplastic debris: A hidden and unknown biohazard. Sustainability 12(18), 1–31. https://doi.org/10.3390/su12187255 (2020).Article 
    CAS 

    Google Scholar 
    Rillig, M. C. & Bonkowski, M. Microplastic and soil protists: A call for research. Environ. Pollut. 241, 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47(13), 7137–7146. https://doi.org/10.1021/es401288x (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37(11), 2776–2796. https://doi.org/10.1002/etc.4268 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019(131), 104937. https://doi.org/10.1016/j.envint.2019.104937 (2018).Article 
    CAS 

    Google Scholar 
    Duis, K. & Coors, A. Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), fate and effects. Environ. Sci. Eur. 28(1), 1–25. https://doi.org/10.1186/s12302-015-0069-y (2016).Article 
    CAS 

    Google Scholar 
    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 (2017).Article 
    CAS 

    Google Scholar 
    Jayasiri, H. B., Purushothaman, C. S. & Vennila, A. Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar. Pollut. Bull. 77(1–2), 107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassen, C., Hansen, S. F., Magnusson, K., Hartmann, N. B., Rehne Jensen, P., Nielsen, T. G. & Brinch, A. Microplastics occurrence, effects and sources of releases (2015).Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. https://doi.org/10.1126/sciadv.aap8060 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46(6), 3060–3075. https://doi.org/10.1021/es2031505 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48(4), 425–432. https://doi.org/10.1111/j.1550-7408.2001.tb00175.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27(2), 195–202. https://doi.org/10.3354/ame027195 (2002).Article 

    Google Scholar 
    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fu, S. F. et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 625, 64–70. https://doi.org/10.1016/j.scitotenv.2017.12.158 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bock, C. et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ. Microbiol. 22(6), 2243–2260. https://doi.org/10.1111/1462-2920.14992 (2020).Article 
    PubMed 

    Google Scholar 
    Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48(20), 12336–12343. https://doi.org/10.1021/es503001d (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus Koreanus). Environ. Sci. Technol. 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34(2), 127–140. https://doi.org/10.4490/algae.2019.34.5.29 (2019).Article 
    CAS 

    Google Scholar 
    Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5(1), 241–246. https://doi.org/10.1021/jz402234c (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brandts, I. et al. Effects of nanoplastics on mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ciacci, C. et al. Nanoparticle-biological interactions in a marine benthic foraminifer. Sci. Rep. https://doi.org/10.1038/s41598-019-56037-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, J. A. et al. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7(9), 7483–7494 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mao, Y. et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere https://doi.org/10.1016/j.chemosphere.2018.05.170 (2018).Article 
    PubMed 

    Google Scholar 
    Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807. https://doi.org/10.1021/nl061025k (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339. https://doi.org/10.1016/j.envpol.2016.05.006 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 114(39), 16556–16561. https://doi.org/10.1021/jp1054759 (2010).Article 
    CAS 

    Google Scholar 
    Johansen, J. L., Rønn, R. & Ekelund, F. Toxicity of cadmium and zinc to small soil protists. Environ. Pollut. 242, 1510–1517. https://doi.org/10.1016/j.envpol.2018.08.034 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711–717. https://doi.org/10.1016/j.envint.2006.03.004 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Subba, P. et al. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus Reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20(4), 461–473. https://doi.org/10.1007/s12298-014-0254-2 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corcoll, N. et al. The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecol. Indic. 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026 (2012).Article 
    CAS 

    Google Scholar 
    Moffett, B. F. et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43(1), 13–19. https://doi.org/10.1016/S0168-6496(02)00448-8 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29(2), 179–190. https://doi.org/10.1016/S0038-0717(96)00297-0 (1997).Article 
    CAS 

    Google Scholar 
    Masmoudi, S. et al. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell-a review. Cryptogam Algol 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185 (2013).Article 

    Google Scholar 
    Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29(6), 610–617. https://doi.org/10.1007/BF00260993 (1988).Article 
    CAS 

    Google Scholar 
    Khan, M. & Scullion, J. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil. Ecol. 20(2), 145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 (2002).Article 

    Google Scholar 
    Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide C12. J. Phycol. 8(1), 10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x (1972).Article 
    CAS 

    Google Scholar 
    Zagata, P., Kopańska, M., Greczek-Stachura, M. & Burnecki, T. Acute toxicity of metals: Nickel and zinc to Paramecium bursaria and its endosymbionts. J. Microbiol. Biotechnol. Food Sci. 04, 128–131. https://doi.org/10.15414/jmbfs.2015.4.special2.128-131 (2015).Article 
    CAS 

    Google Scholar 
    Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113(29), E4121–E4122. https://doi.org/10.1073/pnas.1606615113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schertzinger, G., Ruchter, N. & Sures, B. Metal accumulation in sediments and amphipods downstream of combined sewer overflows. Sci. Total Environ. 616–617, 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Erasmus, J. H. et al. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134738 (2020).Article 
    PubMed 

    Google Scholar 
    Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18(9), 1–14. https://doi.org/10.1007/s11051-016-3597-5 (2016).Article 
    CAS 

    Google Scholar 
    Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ. 1200–2, 1–15 (2012).
    Google Scholar 
    Graupner, N. et al. Effects of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm approach. Aquat. Microb. Ecol. 80(3), 257–272. https://doi.org/10.3354/ame01853 (2017).Article 

    Google Scholar 
    Strasser, R., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis Mechanisms, Regulation and Adaption (eds Yanus, M. et al.) (Taylor and Francis, 2020).
    Google Scholar 
    Thwe, A. & Kasemsap, P. Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress (2015).Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372 (2009).Article 
    CAS 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like RRNA-coding regions. Gene 71(2), 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data (2015).Lange, A. et al. AmpliconDuo: A split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10(11), 1–22. https://doi.org/10.1371/journal.pone.0141590 (2015).Article 
    CAS 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Masella, P. A., Bartram, A. K., Truszkowski, J. M., Brow, D. G. & Neufeld, J. D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2014(1), 1–13. https://doi.org/10.7717/peerj.593 (2014).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welzel, M. et al. Natrix: A snakemake-based workflow for processing, clustering, and taxonomically assigning amplicon sequencing reads. BMC Bioinform. 21(1), 1–14. https://doi.org/10.1186/s12859-020-03852-4 (2020).Article 
    CAS 

    Google Scholar 
    Oksanen, J. Package “vegan” Title Community Ecology Package (2022).R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.Chen, W., Simpson, J. & Leveque, C. RAM: R for amplicon-sequencing-based microbial-ecology (2018).Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S RRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
    CAS 

    Google Scholar 
    Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019 (2015).Article 
    CAS 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 

    Google Scholar 
    Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 284, 117075. https://doi.org/10.1016/j.envpol.2021.117075 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vardhan, K. H., Kumar, P. S. & Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 (2019).Article 
    CAS 

    Google Scholar 
    Damare, V. S. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S RDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. 95(2), 265–276. https://doi.org/10.1017/S0025315414001696 (2015).Article 
    CAS 

    Google Scholar 
    Giongo, A. et al. Adaption of Microbial communities to the hostile environment in the Doce river after the collapse of two iron ore tailing dams. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04778 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, J. J., Häggblom, M. M. & Tate, R. L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol. Fertil. Soils 38(2), 65–71. https://doi.org/10.1007/s00374-003-0642-1 (2003).Article 
    CAS 

    Google Scholar 
    Baddar, Z. E., Peck, E. & Xu, X. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0255527 (2021).Article 
    CAS 

    Google Scholar 
    Li, X., Shen, Z., Wai, O. W. H. & Li, Y. S. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chem. Speciat. Bioavailab. 12(1), 17–25. https://doi.org/10.3184/095422900782775607 (2000).Article 
    CAS 

    Google Scholar 
    Müller, B. & Sigg, L. Interaction of trace metals with natural particle surfaces: Comparison between adsorption experiments and field measurements—Dedicated to Werner Stumm for his 65th birthday. Aquat. Sci. 52(1), 75–92. https://doi.org/10.1007/BF00878242 (1990).Article 

    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18. https://doi.org/10.1016/j.jcis.2004.04.005 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Siegel, F. R. Environmental Geochemistry of Potentially Toxic Heavy Metals (Springer-Verlag, 2002).Book 

    Google Scholar 
    Vig, K., Megharaj, M., Sethunathan, N. & Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 8(1), 121–135. https://doi.org/10.1016/S1093-0191(02)00135-1 (2003).Article 
    CAS 

    Google Scholar 
    Nicolau, A., Mota, M. & Lima, N. Physiological responses of tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol. 30(3), 209–216. https://doi.org/10.1016/S0168-6496(99)00057-4 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Admiraal, W. et al. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res. 33(9), 1989–1996. https://doi.org/10.1016/S0043-1354(98)00426-6 (1999).Article 
    CAS 

    Google Scholar 
    Bradac, P., Navarro, E., Odzak, N., Behra, R. & Sigg, L. Kinetics of cadmium accumulation in periphyton under freshwater conditions. Environ. Toxicol. Chem. 28(10), 2108–2116. https://doi.org/10.1897/08-511R1.1 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Collard, J. & Matagne, R. F. Cd2+ resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2), 235–244 (1994).Article 
    CAS 

    Google Scholar 
    Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7(1), 1–14. https://doi.org/10.1186/s40168-019-0702-x (2019).Article 

    Google Scholar 
    Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3(3), 155–158. https://doi.org/10.1071/ENv3n3_ES (2006).Article 
    CAS 

    Google Scholar 
    Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fetzer, I. et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14888–14893. https://doi.org/10.1073/pnas.1505587112 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere https://doi.org/10.1002/ecs2.3184 (2020).Article 

    Google Scholar 
    Fleeger, J. W. How do indirect effects of contaminants inform ecotoxicology? A review. Processes https://doi.org/10.3390/pr8121659 (2020).Article 

    Google Scholar 
    Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ. Sci. Nano. 5(3), 792–799. https://doi.org/10.1039/c7en01119a (2018).Article 
    CAS 

    Google Scholar 
    Rowenczyk, L. et al. Heteroaggregates of polystyrene nanospheres and organic matter: Preparation, characterization and evaluation of their toxicity to algae in environmentally relevant conditions. Nanomaterials 11(2), 1–15. https://doi.org/10.3390/nano11020482 (2021).Article 
    CAS 

    Google Scholar 
    Saavedra, J., Stoll, S. & Slaveykova, V. I. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715–722. https://doi.org/10.1016/j.envpol.2019.05.135 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bižic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 

    Google Scholar 
    Lespes, G., Faucher, S. & Slaveykova, V. I. natural nanoparticles, anthropogenic nanoparticles, where is the Frontier?. Front. Environ. Sci. 8, 1–5. https://doi.org/10.3389/fenvs.2020.00071 (2020).Article 

    Google Scholar 
    Stabnikova, O. et al. Microbial life on the surface of microplastics in natural waters. Appl. Sci. 11(24), 1–19. https://doi.org/10.3390/app112411692 (2021).Article 
    CAS 

    Google Scholar 
    Suominen, S., Doorenspleet, K., Sinninghe Damsté, J. S. & Villanueva, L. Microbial community development on model particles in the deep sulfidic waters of the Black Sea. Environ. Microbiol. 23(6), 2729–2746. https://doi.org/10.1111/1462-2920.15024 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew. Chem. Int. Ed. 53(46), 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).Article 
    CAS 

    Google Scholar 
    Amelia, T. S. et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00405-4 (2021).Article 

    Google Scholar 
    Liu, J., Huang, J. & Che, F. Microalgae as feedstocks for biodiesel production. In Biodiesel—Feedstocks and Processing Technologies (ed. Stoytcheva, M.) (InTech, 2011). https://doi.org/10.5772/25600.Chapter 

    Google Scholar 
    Takamura, N., Kasai, F. & Watanabe, M. M. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1(1), 39–52. https://doi.org/10.1007/BF00003534 (1989).Article 
    CAS 

    Google Scholar 
    Brembu, T., Jørstad, M., Winge, P., Valle, K. C. & Bones, A. M. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 45(18), 7640–7647. https://doi.org/10.1021/es2002259 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fernandez, J. C. & Henriques, F. S. Biochemical, physiological and structural effects of excess copper in plants. Bot. Rev. 57(3), 246–273 (1991).Article 

    Google Scholar 
    Haq, R. U., Rehman, A. & Shakoori, A. R. Effect of dichromate on population and growth of various protozoa isolated from industrial effluents. Folia Microbiol. 45(3), 275–278. https://doi.org/10.1007/bf02908959 (2000).Article 
    CAS 

    Google Scholar 
    Rehman, A., Shakoori, F. R. & Shakoori, A. R. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour. Technol. 99(9), 3890–3895. https://doi.org/10.1016/j.biortech.2007.08.007 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rehman, A., Ashraf, S., Qazi, J. I. & Shakoori, A. R. Uptake of lead by a ciliate, stylonychia mytilus, isolated from industrial effluents: Potential use in bioremediation of wastewater. Bull. Environ. Contam. Toxicol. 75(2), 290–296. https://doi.org/10.1007/s00128-005-0751-7 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shakoori, A. R., Rehman, A. & ul-Haq, R. Multiple metal resistance in the ciliate protozoan, vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bull. Environ. Contam. Toxicol. 72(5), 1046–1051. https://doi.org/10.1007/s00128-004-0349-5 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Falasco, E. et al. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185 (2009).Article 
    CAS 

    Google Scholar 
    Tadros, M. G., Mbuthia, P. & Smith, W. Differential response of marine diatoms to trace metals. Bull. Environ. Contam. Toxicol. 44(6), 826–831. https://doi.org/10.1007/BF01702170 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wanner, M. et al. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb. Ecol. 79(1), 123–133. https://doi.org/10.1007/s00248-019-01383-x (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shi, J., Podola, B. & Melkonian, M. Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, T., Lin, G., Podola, B. & Melkonian, M. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 297, 112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bruning, K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J. Plankton Res. 13(1), 103–117. https://doi.org/10.1093/plankt/13.1.103 (1991).Article 

    Google Scholar 
    Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8. https://doi.org/10.3389/fmicb.2014.00278 (2014).Article 

    Google Scholar 
    Hanic, L. A., Sekimoto, S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island. Botany 87(11), 1096–1105. https://doi.org/10.1139/B09-070 (2009).Article 
    CAS 

    Google Scholar 
    Sun, A. et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ. Microbiol. 23(4), 2169–2183. https://doi.org/10.1111/1462-2920.15385 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scholz, B., Guillou, L., Marano, A. V., Neuhauser, S. & Brooke, K. Europe PMC funders group zoosporic parasites infecting marine diatoms—A black box that needs to be opened. Fungal Ecol. https://doi.org/10.1016/j.funeco.2015.09.002.Zoosporic (2017).Article 

    Google Scholar 
    Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503, 1–10. https://doi.org/10.3354/meps10784 (2014).Article 
    ADS 

    Google Scholar 
    Duarte, S., Pascoal, C. & Cássio, F. Effects of zinc on leaf decomposition by fungi in streams: Studies in microcosms. Microb. Ecol. 48(3), 366–374. https://doi.org/10.1007/s00248-003-2032-5 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan Mountains. FEMS Microbiol. Ecol. 91(4), 1–10. https://doi.org/10.1093/femsec/fiv010 (2015).Article 
    CAS 

    Google Scholar 
    Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-77045-7 (2020).Article 
    CAS 

    Google Scholar 
    Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. https://doi.org/10.1016/j.watres.2020.116170 (2020).Article 
    PubMed 

    Google Scholar 
    Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D., Moore, L.R. & Paulsen, I.T. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2(1), 1–9. https://doi.org/10.1038/s42003-019-0410-x (2019).Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A Thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45(4), 1466–1472. https://doi.org/10.1021/es1032025 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—But should microplastics be considered POPs themselves?. Integr. Environ. Assess. Manag. 13(3), 460–465. https://doi.org/10.1002/ieam.1914 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sukkasem, C. & Laehlah, S. An economical upflow bio-filter circuit (UBFC): A biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ. Sci. 1(2), 161–168. https://doi.org/10.1039/c4ew00028e (2015).Article 
    CAS 

    Google Scholar 
    Abatenh, E., Gizaw, B., Tsegaye, Z. & Wassie, M. The role of microorganisms in bioremediation-A review. Open J. Environ. Biol. 2(1), 38–46. https://doi.org/10.17352/ojeb (2017).Article 

    Google Scholar 
    Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F. & Zelezniak, A. Plastic-degrading potential across the global microbiome correlates with recent pollution trends. MBio https://doi.org/10.1128/mBio (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siver, P. A. Synurophyte algae. In Freshwater Algae of North America. Ecology and classification (eds Wehr, J. D. & Sheath, R. G.) 523–558 (Elsevier, 2003).Chapter 

    Google Scholar 
    Andersen, R. A. Molecular systematics of the chrysophyceae and synurophyceae. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics (eds Brodie, J. & Lewis, J.) 285–314 (CRC Press, Boca Raton, 2007).Chapter 

    Google Scholar 
    Engin, I. K., Cekmecelioglu, D., Yücel, A. M. & Oktem, H. A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium Sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour. Technol. 251, 128–134. https://doi.org/10.1016/j.biortech.2017.12.023 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Patrick, R. Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms (ed. Werner, D.) 284–332 (University of California Press, 1977).
    Google Scholar 
    Findenig, B. M., Chatzinotas, A. & Boenigk, J. Taxonomic and ecological characterization of stomatocysts of spumella-like flagellates (Chrysophyceae). J. Phycol. 46(5), 868–881. https://doi.org/10.1111/j.1529-8817.2010.00892.x (2010).Article 

    Google Scholar 
    Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Preisig, H. R. & Hibberd, D. J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 3. Nord. J. Bot. 3(6), 695–723. https://doi.org/10.1111/j.1756-1051.1983.tb01481.x (1983).Article 

    Google Scholar 
    Atkins, M. S. et al. Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226, 63–75. https://doi.org/10.3354/meps226063 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Manru, G., Weisong, F. & Yunfen, S. Ecological study on protozoa in the sediment of the three-gorges area of the Changjiang River. Chin. J. Oceanol. Limnol. 6(3), 272–280. https://doi.org/10.1007/BF02846505 (1988).Article 

    Google Scholar 
    Tomilina, I. I., Gremyachikh, V. A., Myl’Nikov, A. P. & Komov, V. T. The effect of metal oxide nanoparticles (CeO2, TiO2, and ZnO) on biological parameters of freshwater nanoflagellates and crustaceans. Dokl. Biol. Sci. 436(1), 53–55. https://doi.org/10.1134/S0012496611010169 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schampera, C. et al. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116781 (2021).Article 
    PubMed 

    Google Scholar 
    Gonçalves, J. M., Sousa, V. S., Teixeira, M. R. & Bebianno, M. J. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132356 (2021).Article 
    PubMed 

    Google Scholar 
    Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A. & Cedervall, T. Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-63028-1 (2020).Article 
    CAS 

    Google Scholar 
    Amin, N. M. Techniques for assessment of heavy metal toxicity using Acanthamoeba Sp, a small, naked and free-living amoeba. Funct. Ecosyst. https://doi.org/10.5772/36008 (2012).Article 

    Google Scholar 
    Amin, N. M., Azhar, N. & Shazili, M. Cytotoxic effects of mercury, cadmium, lead and zinc on Acanthamoeba Castellanii (2006).Gnecco, I., Berretta, C., Lanza, L. G. & la Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017 (2005).Article 
    CAS 

    Google Scholar 
    Heim, R. R. An overview of weather and climate extremes—Products and trends. Weather Clim. Extrem. 10, 1–9. https://doi.org/10.1016/j.wace.2015.11.001 (2015).Article 

    Google Scholar 
    Saiki, M. K., Castleberry, D. T., May, T. W., Martin, B. A. & Bullard, F. N. Copper, cadmium, and zinc concentrations in aquatic food chains from the upper Sacramento River (California) and selected tributaries. Arch. Environ. Contam. Toxicol. 29(4), 484–491. https://doi.org/10.1007/BF00208378 (1995).Article 
    CAS 

    Google Scholar 
    Wagner, S. et al. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100. https://doi.org/10.1016/j.watres.2018.03.051 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, L., Zhao, B., Xu, G. & Guan, Y. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection. Sci. Total Environ. 635, 1495–1506. https://doi.org/10.1016/j.scitotenv.2018.04.211 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhao, B. et al. Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. J. Hazard. Mater. 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hüffer, T., Wagner, S., Reemtsma, T. & Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends Anal. Chem. 113, 392–401. https://doi.org/10.1016/j.trac.2018.11.029 (2019).Article 
    CAS 

    Google Scholar 
    Tamis, J. E. et al. Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics Nanoplastics 1(1), 1–17. https://doi.org/10.1186/s43591-021-00008-w (2021).Article 

    Google Scholar 
    Chèvre, N. et al. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 63(7), 1341–1348. https://doi.org/10.2166/wst.2011.132 (2011).Article 
    PubMed 

    Google Scholar 
    Šourková, M., Adamcová, D. & Vaverková, M. D. The influence of microplastics from ground tyres on the acute, subchronical toxicity and microbial respiration of soil. Environ. MDPI 8(11), 1–14. https://doi.org/10.3390/environments8110128 (2021).Article 

    Google Scholar 
    Ye, G., Zhang, X., Yan, C., Lin, Y. & Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 156, 106724. https://doi.org/10.1016/j.envint.2021.106724 (2021).Article 
    CAS 
    PubMed 

    Google Scholar  More