Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales
Wright, S. Evolution in Mendelian Populations. Genetics 16, 97–159 (1931).CAS
PubMed
PubMed Central
Google Scholar
DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).
Google Scholar
Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS
PubMed
Google Scholar
Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck Effect and Genetic Variability in Populations. Evolution 29, 1–10 (1975).PubMed
Google Scholar
Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 18, 750–755 (2005).CAS
PubMed
Google Scholar
Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).PubMed
Google Scholar
Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).CAS
PubMed
Google Scholar
Hughes, A., Inouye, B., Johnson, M., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).PubMed
Google Scholar
Hughes, A. R., Stachowicz, J. J. & Williams, S. L. Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159, 725–733 (2009).PubMed
Google Scholar
Schweitzer, J. A. et al. Genetically based trait in a dominant tree affects ecosystem processes: Plant genetics impact ecosystems. Ecol. Lett. 7, 127–134 (2004).
Google Scholar
Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl Acad. Sci. USA 101, 8998–9002 (2004).CAS
PubMed
PubMed Central
Google Scholar
Wimp, G. M. et al. Conserving plant genetic diversity for dependent animal communities. Ecol. Lett. 7, 776–780 (2004).
Google Scholar
Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. 102, 2826–2831 (2005).CAS
PubMed
PubMed Central
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS
PubMed
Google Scholar
Salo, T. & Gustafsson, C. The Effect of Genetic Diversity on Ecosystem Functioning in Vegetated Coastal Ecosystems. Ecosystems 19, 1429–1444 (2016).
Google Scholar
Zettlemoyer, M. A. & Peterson, M. L. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front. Ecol. Evol. 9, 392 (2021).
Google Scholar
Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed
PubMed Central
Google Scholar
Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021).
Google Scholar
Excoffier, L., Foll, M. & Petit, R. J. Genetic Consequences of Range Expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
Google Scholar
Alsos, I. G. et al. Genetic consequences of climate change for northern plants. Proc. R. Soc. B Biol. Sci. 279, 2042–2051 (2012).
Google Scholar
Stahl, U., Reu, B. & Wirth, C. Predicting species’ range limits from functional traits for the tree flora of North America. Proc. Natl Acad. Sci. 111, 13739–13744 (2014).CAS
PubMed
PubMed Central
Google Scholar
Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).PubMed
PubMed Central
Google Scholar
Peterson, M. L., Angert, A. L. & Kay, K. M. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10, 612–625 (2019).PubMed
PubMed Central
Google Scholar
Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS
PubMed
Google Scholar
Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
Google Scholar
Chen, I.-C., Hill, J., Ohlemüller, R., Roy, D. B. & Thomas, C. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333, 1024–6 (2011).CAS
PubMed
Google Scholar
Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).PubMed
Google Scholar
De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).PubMed
PubMed Central
Google Scholar
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed
Google Scholar
DeMarche, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change Biol. 25, 775–793 (2019).
Google Scholar
Bothwell, H. M. et al. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. Ecol. Appl. 31, e02254 (2021).Syfert, M. M., Brummitt, N. A., Coomes, D. A., Bystriakova, N. & Smith, M. J. Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Glob. Ecol. Conserv. 16, e00433 (2018).
Google Scholar
Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns? PLOS ONE 7, e32586 (2012).CAS
PubMed
PubMed Central
Google Scholar
Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).
Google Scholar
Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).
Google Scholar
Endler, J. A. Geographic variation, speciation, and clines (Princeton University Press, 1977).May, R. M. & Godfrey, J. Biological Diversity: Differences between Land and Sea [and Discussion]. Philos. Trans. Biol. Sci. 343, 105–111 (1994).
Google Scholar
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed
Google Scholar
Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).
Google Scholar
Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).
Google Scholar
Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–321 (2009).CAS
PubMed
Google Scholar
Huntington, T. G. CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process. 22, 311–314 (2008).
Google Scholar
Kim, J. H. et al. Warming-Induced Earlier Greenup Leads to Reduced Stream Discharge in a Temperate Mixed Forest Catchment. J. Geophys. Res. Biogeosciences 123, 1960–1975 (2018).
Google Scholar
Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).PubMed
PubMed Central
Google Scholar
Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).
Google Scholar
Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).PubMed
Google Scholar
Naiman, R. J., Décamps, H. & McClain, M. E. Riparia: ecology, conservation, and management of streamside communities (Elsevier Academic Press, 2005).Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant-Environ. Interact. 1, 166–180 (2020).
Google Scholar
Cooke, J. E. K. & Rood, S. B. Trees of the people: the growing science of poplars in Canada and worldwide. This commentary is one of a selection of papers published in the Special Issue on Poplar Research in Canada. Can. J. Bot. 85, 1103–1110 (2007).
Google Scholar
Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host- associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).
Google Scholar
Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).CAS
PubMed
PubMed Central
Google Scholar
Hargreaves, A. L., Samis, K. E., Eckert, C. G., Schmitz, A. E. O. J. & Bronstein, E. J. L. Are Species’ Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range. Am. Nat. 183, 157–173 (2014).PubMed
Google Scholar
Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585 (2015).
Google Scholar
Cushman, S. A. et al. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol. Appl. 24, 1000–1014 (2014).PubMed
Google Scholar
Bothwell, H. M. et al. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol. Ecol. 26, 5114–5132 (2017).PubMed
Google Scholar
Jimenez-Valverde, A. Sample Size for the evaluation of presence-absence models. Ecol. Indic. 114, 106289 (2020).
Google Scholar
Hamann, A., Wang, T., Spittlehouse, D. L. & Murdock, T. Q. A Comprehensive, High-Resolution Database of Historical and Projected Climate Surfaces for Western North America. Bull. Am. Meteorol. Soc. 94, 1307–1309 (2013).
Google Scholar
Lucinda. M. et al. NHDPlus version 2: user guide (Horizon Systems Corporation, 2012).ESRI. ArcMap (ESRI, 2018).Bayliss, S. L. J., Papeş, M., Schweitzer, J. A. & Bailey, J. K. Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLoS One. 17, e0274892 (2022).CAS
PubMed
PubMed Central
Google Scholar
Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2009).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015). (1).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
Google Scholar
Swets, J. A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293 (1988).CAS
PubMed
Google Scholar
Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).
Google Scholar
Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).
Google Scholar
Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).
Google Scholar
Mateo, R. G., Mokany, K. & Guisan, A. Biodiversity Models: What If Unsaturation Is the Rule? Trends Ecol. Evol. 32, 556–566 (2017).PubMed
PubMed Central
Google Scholar
R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Oksanen, J. et al. vegan: community ecology package (2020) http://CRAN.R-project.org/package=vegan. More