More stories

  • in

    Drivers of global mangrove loss and gain in social-ecological systems

    Mangrove cover change variables. We used the Global Mangrove Watch (GMW) v2.0 dataset from 1996 to 201656 to calculate four response variables across landscape mangrove geomorphic units24 over two time periods, 1996–2007 and 2007–2016: (1) percent net loss (units that had a net change in mangrove cover of 0), (3) percent gross loss (units that had a decrease in mangrove cover, not accounting for any increase), and (4) percent gross gain (units that had an increase in mangrove cover, not accounting for any decrease). Percent variables were calculated relative to the area at the start of the time period and were log transformed to meet the assumptions of the statistical models. We initially also considered 5 primary response variables (Supplementary Table 3), including net change in mangrove area ranging from negative (loss) to zero (no change) to positive (gain), however, the data did not meet model assumptions of equal variance (Supplementary Table 9). It was therefore necessary to separate areas of net loss and net gain and areas of gross loss and gross gain to remove zeros and log-transform to achieve normal distribution. Area of mangrove change was correlated with size of the mangrove geomorphic unit (higher area of mangrove loss or gain in bigger units), therefore we included geomorphic unit size as an explanatory variable in the models with primary response variables. We selected the transformations of these primary variables – percent net loss, percent net gain, percent gross loss, and percent gross gain to include in the analysis, because the percent changes control for differences in relative sizes of geomorphic units and because net change alone can underestimate the extent of change57.Examining mangrove change across geomorphic settings is likely to be relevant to socioeconomic and environmental conditions. Mangroves occur in the intertidal zone in diverse coastal geomorphic settings (e.g., deltas, estuaries, lagoons) shaped by rivers, tides, and waves58,59. The distribution, structure, and productivity of mangroves varies spatially with regional climate and local geomorphological processes (e.g., river discharge, tidal range, hydroperiod, and wave activity) that control soil biogeochemistry60,61,62,63. These geomorphic settings are defined by natural landscape boundaries (e.g., catchments/bays) which also often delineate boundaries of human settlements. A global mangrove biophysical typology v2.2 dataset64 was used for the delineation of landscape mangrove geomorphic units, which used a composite of the GMW dataset from the 1996, 2007, 2010, and 2016 timesteps to classify the maximal extent of mangrove cover into 4394 units (classified as delta, estuarine, lagoon or open coast). The mangrove geomorphic units do not include non-mangrove patches, unless they have been lost from the unit over time. The mean size of geomorphic units was 33.63 ha. Some splits of geomorphic units were undertaken to reduce size and divide by country boundaries. The four largest deltas (northern Brazil Delta ID 70000, Sundarbans Delta ID 70004, Niger Delta ID 70009, and Papua coast Delta ID 70013) were split into 4, 5, 4, and 2 units, respectively to aid with data processing. Mangrove geomorphic units that overlapped two countries (Peru/Ecuador, Singapore/Malaysia, and Papua New Guinea/Australia) were split by the national boundary.The country governing each geomorphic unit was assigned to match national-level variables to geomorphic units. To capture mangroves that are mapped outside of country coastline boundaries, we did a union of the GADM country shapefile v3.665 and the Exclusive Economic Zones (EEZs) v1166. The following manual country designations were made to resolve overlapping claims in the EEZs: (1) Hong Kong was merged with China as Hong Kong does not have a mapped EEZ; (2) The overlapping claim of Sudan/Egypt was maintained as a joint Sudan/Egypt designation, as this is an area of disputed land called the Halayib Triangle. However, for this study, mangrove units within this area were assigned to Egypt because Egypt currently has military control over the area; (3) Mayotte (claimed by France and Comoros) was assigned to Mayotte as it is a separate overseas territory of France recognised in GADM that has different socioeconomic variables; (4) The protected zone established under the Torres Strait Treaty was assigned to Australia as these islands are Australian territory.Areas of mangrove cover in 1996, 2007, and 2016, and gross losses and gains in each geomorphic units over the two time periods were assessed in ArcMap 10.867. Percent losses and gains were calculated in R 4.0.268. In using the GMW mapping, a minimum mapping unit of 1 ha is recommended for reliable results5, therefore we removed all geomorphic units less than 1 ha from the analysis, which reduced the available sample size from 4394 across 108 countries to 4235 units across 108 countries. In calculating percent net gains, 11 and 12 of the units returned infinity values for 1996–2007 and 2007–2016, respectively, because there was no initial mangrove cover. In these instances, 100% gain was assigned to these units.Socioeconomic variables (Supplementary Table 4)Economic growthPrevious global analyses of mangroves have been limited by data availability on economic activity to national metrics, such as a country’s Gross Domestic Product (GDP)12,18. Night-time lights satellite data provide local measures of economic activity that are comparable through time and available globally9,69. The data improve estimates of GDP in low to middle income countries69 and are strongly correlated with local indicators of human development70 and electricity consumption and GDP at the national-level71. We used the Night-time Lights Time Series v472 stable lights data, where transient lights that are deemed ephemeral, e.g., fires, have been filtered out and non-lit areas set to zero73, choosing the newer satellites where applicable70. As a proxy for local economic growth, we calculated the change in annual average stable lights within a 100 km buffer of the centroid of each geomorphic unit from 1996 to 2007 and 2007 to 2013 (no data available past 2013) using the ‘raster’ package in R74. The 100 km buffer was chosen to account for pressures from human activity within and surrounding the mangrove area, and to avoid bias with larger spatial units70.Market accessibilityTravel time to the nearest major market (national or provincial capital, landmark city, or major population centre) has been shown to be a stronger predictor of fish biomass on coral reefs than population density or linear distance to markets27. We used the global map of travel time to cities for 201575 to estimate the average travel time from each geomorphic unit to the nearest city via surface transport using the ‘raster’ package in R74, as an indicator of access to markets to trade commodities (e.g., rice, shrimp, palm oil).Economic complexityPrevious studies have examined the effect of GDP on mangrove change18, however, this is a blunt measure of country capability. Measuring a country’s economic complexity, that is the diversified capability of a nation’s economy, is preferable. For example, a country with high GDP but low economic complexity can be prone to regulatory capture by high-value natural resource industries and resource corruption26. Therefore, we used the Economic Complexity Index (ECI)76 for countries as an indicator of regulatory independence. The ECI had better coverage of countries in later years (Supplementary Table 4), therefore the ECI for the end of the time periods was used (2007 and 2016), although we recognise this may reduce the detection of trends because of potential time lags in impacts.DemocracyWe used the Varieties of Democracy (VDEM) index v10 which measures a country’s degree of freedom of association, clean elections, freedom of expression, elected executives, and suffrage77, and has been indicated to influence NDC ambition in countries to address climate change78. We adopted the VDEM index for the start of the time periods (1996 and 2007) to account for potential time lags in impacts.Community forestry supportWe determined the extent that community forestry (CF) is implemented across countries through a systematic review of articles returned in the Web of Science database (Core collection; Thomson Reuters, New York, U.S.A.). We used the search terms: TS = (“community forestry” OR “community-based forestry” OR “social forestry”) AND (TI = ”country” OR AB = ”country”) to identify how many CF case studies were reported in each country, and whether any were in mangroves. As scientific literature is biased towards particular regions, we also reviewed relevant FAO global studies79,80,81 and online databases (ICCA registry82 and REDD projects database83) to identify additional case studies (Supplementary Fig. 5). We then generated scores of 0–3 for each country based on summing values assessed using these criteria: +1 (1–50 CF case studies); +2 ( >50 CF case studies); +1 (CF case study in mangroves). There may have been some double counting as we counted the number of case studies in each article, and we will have missed CF projects not published or communicated in English. However, this is likely to have had a limited impact on the scoring method.Indigenous landThe proportion of Indigenous peoples’ land versus other land per country was calculated from national-level data84. Whilst this study involved Indigenous peoples’ land mapping at a global scale, the spatial data was not published, and thus we could only evaluate the influence of Indigenous land at the national level rather than local level.Restoration effortThe number of mangrove restoration sites per country was calculated from combining two datasets collated by C. Lovelock (2020) and Y.M. Gatt and T.A. Worthington (2020) identifying mangrove restoration project locations from web searches in English and for scientific and grey literature using Google Scholar. Duplications were removed and the number of sites was used as an indicator of effort. This will underrepresent effort in countries with few, large sites, and where restoration projects are not published or communicated in English.Climate commitmentsThe Paris Agreement is a global programme for countries to commit to climate action by submitting Nationally Determined Contributions (NDCs) to the United Nations Framework for the Convention of Climate Change (UNFCCC). First, we reviewed NDCs for mangrove-holding nations from the NDC Registry85 submitted as of 07/01/2021 to determine the extent that mangroves or coastal ecosystems were included in national climate policy (scoring method in Supplementary Table 4). We hypothesised that countries with mangrove or coastal ecosystem NDCs may be more likely to promote mangrove conservation or restoration. While the first NDCs were submitted around 2015, at the end of our time series, we suspected higher commitments would point towards a stronger baseline in environmental governance. Most countries submitted updated or second NDCs during 2021 however these were not considered relevant to the time periods assessed. Google Translate was used to interpret NDCs in languages other than English.Ramsar wetlandsThe ecological character of Ramsar wetlands have been found to be significantly better than those of wetlands generally86. The area of Ramsar coastal and marine wetlands from the Ramsar Sites Information Service87 was calculated per country. Thirty-eight mangrove-holding countries are not signatories to the Ramsar Convention, and these countries were assigned a value of 0. The area of Ramsar wetlands per country was scaled by dividing by the country’s area of mangroves in 1996.Environmental governanceWe assessed the Environmental Performance Index (EPI)88 as an indicator of a country’s effectiveness in environmental governance. The biodiversity and habitat (BDH) issue category assesses countries’ actions toward retaining natural ecosystems and protecting the full range of biodiversity within their borders. We took the BDH score for 2020 for the 2007–2016 time period and the BDH score for 2010 for the 1996–2007 time period (calculated by subtracting the ten-year change from BDH 2020). However, due to collinearity with other variables this index was excluded from the analysis (see statistical analysis).Protected area managementWe also assessed Marine Protected Area (MPA) staff capacity as an indicator of the effectiveness of management of protected areas for countries. We used published global marine protected area (MPA) management data14 which is based on the Management Effectiveness Tracking Tool (METT), the World Bank MPA Score Card, and the NOAA Coral Reef Conservation Programme’s MPA Management Assessment Checklist. Adequate staff capacity was the most important factor in explaining fish responses to MPA management globally, followed by budget capacity, but they were significantly correlated14. We, therefore, calculated the mean staff capacity across MPAs per country as our indicator. Mangroves can be included in terrestrial protected areas, which are not represented in this dataset, however, this measure provides an indicator of national governance of protected areas. However, due to collinearity with other variables this indicator was excluded from the analysis (see statistical analysis). The extent of protected areas was not included in the analysis because it has already been found to influence mangrove loss18.Biophysical variables (Supplementary Table 5)Coastal geomorphic typeMangrove extent change likely varies among different coastal geomorphic settings because human activities or environmental changes occur more commonly in some geomorphic settings than others. For example, losses of lagoonal mangroves were nearly twice as large as those in other geomorphic types24. Landscape geomorphic units from the global mangrove typology dataset v2.264 were classified as delta, estuary, lagoon or open coast.Sediment availabilityMangrove expansion and retreat are driven by sediment deposition and erosion, which are influenced by sediment availability from rivers and wave action, and alterations in hydrodynamic regimes47,89. We used the sediment trapping index from the global free-flowing rivers (FFR) dataset90 to indicate sediment availability from rivers within different geomorphic units. A mangrove catchment dataset was created based on the HydroSHEDS database91. River networks that intersected with mangrove geomorphic units were linked to that unit’s ID. Where rivers intersected multiple units, they were manually assigned by visual inspection. River basins that intersected either with the geomorphic units directly or the river networks were also linked to that unit’s ID. The FFR dataset90 was then spatially joined to the mangrove catchment dataset to identify the most downstream (i.e., the coastal outlet) segment of each FFR and its associated sediment trapping index. Not all geomorphic units (n = 3475) were linked to an FFR, however, an individual unit could be linked with several FFRs. Therefore, the unit sediment trapping index was the weighted mean of the river values, with weighting based on each FFR’s average long-term (1971–2000) naturalised discharge (m3s−1), with discharge set to the minimum value for segments with zero flow. Geomorphic units without connecting FFRs were given an index of zero (no sediment trapping). The sediment trapping index represents the percentage of the potential sediment load trapped by anthropogenic barriers along the river section. The focus on river barriers may obscure larger scale oceanic patterns that influence mangrove losses and gains (e.g., movement of mud banks from the Amazon River over 1000’s of kilometres92) or increases in sediment that could be coming from soils with catchment deforestation and erosion.Habitat fragmentationMany countries with high mangrove loss have been associated with elevated fragmentation of mangrove forests, although the relationship is not consistent at the global scale93. We calculated the clumpiness index of mangrove patches within geomorphic units within each time period, as this habitat fragmentation metric is independent of areal extent93. Whilst habitat fragmentation can be human-driven, clumpiness measures the patchy distribution of mangroves, which can also be due to natural factors inducing edge effects. We used a similar approach to Bryan-Brown, et al.86 to quantify the clumpiness index. The ‘landscape’ was defined as the combined extent of the mangrove geomorphic units across four timesteps (1996, 2007, 2010, and 2016) from the GMW dataset56. For the three focal years in this study (1996, 2007, and 2016) each geomorphic unit (n = 4394) was converted into a two-class polygon, where class one represented mangroves present during that time step and class two mangroves present in the other time steps (i.e., areas of mangrove loss). The polygons were transformed to a projected coordinate system (World Cylindrical Equal Area) and converted to rasters with a resolution of 25 m. Each raster was imported into R version 3.6.394, with clumpiness calculated using the package ‘landscapemetrics’ v1.5.095.Clumpiness describes how patches are dispersed across the landscape and ranges between minus one, where patches are maximally disaggregated, to one, where patches are maximally aggregated, a value of zero represents a case whereby patches are randomly distributed across the landscape. The clumpiness index requires that both classes are present in the landscape, therefore a no data value (NA) was returned for units where no loss of mangroves had occurred, or where there was 100% gain of mangroves in a later time period. The number of directions in which patches were connected was set to eight. The following manual fixes were conducted for NA values returned: 1) Where NA was returned for units where no loss of mangroves had occurred in another time period, i.e., class 1 (mangrove present) = 1 and class 2 (mangrove loss) = 0, assume +1 (maximally clumped); and 2) Where NA was returned for units where there was 100% gain of mangroves in a later time period, i.e., class 1 (mangrove present) = 0, class 2 (mangrove present) = 1 (100% gain), assume −1 (maximally disaggregated).Tidal amplitudeIn settings of low tidal range, mangrove vertical accretion is less likely to keep pace with rapid sea level rise3. However, in settings of high tidal range, mangroves may be more extensive and vulnerable to conversion to aquaculture or agriculture because of larger tidal flat extents. The Finite Element Solution global tide model (FES2014)96 is considered one of the most accurate tide models for shallow coastal areas97 and was selected to estimate the mean tidal amplitude within each geomorphic unit using the principal lunar semi-diurnal or M2 tidal amplitude as this is this most dominant tidal constituent98. To account for potential variation in the tidal amplitude across large geomorphic units, the raster pixel value for M2 tidal amplitude96 closest to the centroid of each mangrove patch within each unit was calculated, with the smallest value set at 0.01 m. For each geomorphic unit, the tidal amplitude was calculated as the weighted mean of the patch values, with weighting based on the patch area relative to the total unit area.Antecedent sea-level riseThe distribution of mangroves on shorelines changes over time with sediment accretion, erosion, subsidence, and sea-level rise (SLR)99, and periods of low sea level can cause mangrove dieback100. We used regional mean sea-level trends between January 1993 and December 2015 from the global sea level Essential Climate Variable (ECV) product v.2101,102 to estimate the mean antecedent SLR for each geomorphic unit. Spatial variation in regional sea-level trends generally range between −5 and +5 mm yr−1 (global mean of 3 mm yr−1)13. Extreme values ( >5 mm yr−1) observed in the dataset are subject to high levels of uncertainty (Sea Level CCI team, pers. comm.), and were therefore truncated to 5 mm yr−1. The raster pixel value for SLR102 closest to the centroid of each mangrove patch within each geomorphic unit was calculated. The geomorphic unit antecedent SLR values was calculated as the weighted mean of the patch values within the unit.DroughtWhilst long-term precipitation and temperature influence mangrove distribution globally62, periods of low rainfall have been reported to cause extensive mangrove dieback at regional scales, particularly when combined with high temperatures and low sea levels103. We used the Standardized Precipitation-Evapotranspiration Index (SPEI) from the global SPEI database v.2.6104 as an index of drought severity. SPEI is derived from precipitation and temperature and is considered an improved drought index that allows spatial and temporal comparability105,106. The mean SPEI raster pixel value was calculated for each time period and then averaged across the geomorphic units using the ‘ncdf4’107 and ‘raster’ packages74 in R.Tropical storm frequencyLarge-scale destruction of mangroves across regions have been reported from strong winds, high energy waves, and storm surges associated with tropical storms108. We used the International Best Track Archive for Climate Stewardship (IBTrACS) dataset since 1980 v4109 to calculate the number of tropical cyclone occurrences (points along their paths) within a 200 km buffer of the centroid of geomorphic units within each time period using the sf package110 in R. Maximum wind velocity and surface pressures are likely experienced within 100 km of a cyclone’s eye111, therefore the 200 km buffer zone was selected to cover the average size of geomorphic units (33.63 ha), and all tropical storms potentially influencing mangrove growth. Whilst tropical storms affect only 42% of the world’s mangroves60, they are likely to be important stressors within cyclone-impacted countries.Minimum temperatureExtreme low temperature events were a driver of mangrove loss in subtropical regions, such as Florida and Louisianan of the US, and China28,112. We used the WorldClim bioclimatic variable 6 (minimum temperature of the coldest month averaged for the years 1970–2000)113 to calculate the mean minimum temperature across the geomorphic units using the ‘sf’110 and ‘raster’ packages74 in R. Where NAs were returned due to no overlapping raster layer, the value of the closest raster pixel to the centroid of the geomorphic unit was assigned.Statistical analysisWe used multi-level linear modelling to investigate relationships between mangrove cover change variables and socioeconomic and biophysical variables to consider landscape (level 1) and country (level 2) predictors in a hierarchical approach114. For each response variable, we modelled the response for 1996–2007 and 2007–2016, using explanatory variables specific to the time-period where available. Data inspection revealed that high percent loss or gain was concentrated in small geomorphic units, therefore to avoid bias in our results, we removed geomorphic units less than 100 ha from the analysis, which further reduced the available sample size to 3134 units across 95 countries. Statistical analysis was undertaken in R 4.0.268.The response variables were log-transformed to fit normal distribution. We tested for collinearity between our explanatory variables using Pearson’s correlation coefficient (r  > 0.5) (Supplementary Tables 6 and 7). MPA staff capacity and EPI were excluded from our models because MPA staff capacity was correlated with ECI 2007 and ECI 2016 (both r = 0.54), and EPI 2020 was correlated with VDEM 2016 (r = 0.63). To improve model fit, travel time to the nearest city, mangrove restoration effort and Ramsar wetland area (relative) were log+1-transformed, and tidal amplitude was log-transformed.Two linear multi-level (mixed-effects) models were fitted for each response variable using the lme function in the ‘lme4’ package115 (Supplementary Table 8). First, a random intercept model with intercepts of landscape-level predictors varying by country was fitted. Then a random intercept and slope (coefficients) model with intercepts of landscape-level predictors varying by country, as well as slopes for socioeconomic predictors considered to have between-country variation (travel time to nearest city and night-time lights growth) was fitted, as we expect that mangrove cover change may respond to economic growth and market accessibility depending on national governance. A likelihood ratio test between the null linear model and the null random intercept model for each response variable showed that effects varied across countries and therefore we included country as a random effect (Supplementary Table 9). We also conducted likelihood ratio tests between the random intercept model and the random coefficient model to test whether the effect of travel time and night-time lights on mangrove change varies across countries. If significant, the model including random slopes for travel time and night-time lights was used (Supplementary Table 9). Mixed-effects models were fitted by maximum likelihood and model fit was validated by inspection of residual plots for the four response variables included in the analysis; percent net loss, percent net gain, percent gross loss, and percent gross gain (Supplementary Table 9).To test for spatial autocorrelation we performed spatial autoregressive (SAR) models using the errorsarlm function in the ‘spatialreg’ package116. SAR models were first fitted using a range of neighbourhood distances (50, 500, and 1000 km in 100 km intervals) for the net change variable117. Distance of 500 km showed the smallest AIC and was therefore adopted for all response variables. Neighbourhood lists of the centroid coordinates of the geomorphic units were defined with the row-standardised (‘W’) coding using the ‘spdep’ package118. We then produced Moran’s I correlograms using the correlog function in the ‘ncf’ package119 and the centroid coordinates of the geomorphic units. Correlograms for the multi-level model and SAR model were compared for each response variable (Supplementary Fig. 4). The SAR models did not improve spatial autocorrelation for any of the mangrove cover change variables and therefore the multi-level models were adopted.Hotspot estimatesWe defined hotspots as geomorphic units where raw values of percent net and gross loss and gain between 2007 and 2016 ((gamma)) differed by more than two standard deviations (sd) from the country average ((mu)).$${{{{{{rm{More}}}}}}},{{{{{{rm{loss}}}}}}}/{{{{{{rm{more}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , > , (2,times {{{{{{rm{sd}}}}}}})$$
    (1)
    $${{{{{{rm{Less}}}}}}},{{{{{{rm{loss}}}}}}},/,{{{{{{rm{less}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , < , -(2,times {{{{{{rm{sd}}}}}}})$$ (2) We excluded countries with only one geomorphic unit. Large deviations of the raw value from the country average were found for small units at a threshold below 50 km2, therefore we removed all units smaller than 50 km2 to overcome bias of hotspots towards smaller sites. This likely removed the identification of several hotspots. For example, Myanmar has had some large gains due to river sediments in the Gulf of Martaban (net gain of 100 % in Estuary 5834 and 39 % in Open Coast 62244), however, these areas were small (8 and 2 km2, respectively) and were therefore removed from the hotspot estimates.We analysed the factors contributing to hotspots by spatial investigation of satellite imagery in Google Earth with mangrove specialists from those countries. The hotspots were also assessed against protected area datasets for those countries120,121,122,123.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Volcano charges, Omicron boosters and wandering elephants

    A health-care worker in Chicago, Illinois, administers a COVID-19 vaccine aimed at the Omicron subvariant.Credit: Scott Olson/Getty

    Omicron boosters protect against future variantsBooster shots against current SARS-CoV-2 variants can help to arm the human immune system against variants yet to arise. That’s the implication of two studies (W. B. Alsoussi et al. Preprint at bioRxiv https://doi.org/jhht (2022); C. I. Kaku et al. Preprint at bioRxiv https://doi.org/jhhv; 2022) that analysed how a booster shot or breakthrough infection affects antibody-producing cells. The work shows that some cells evolve to exclusively create antibodies targeting new strains, whereas others make antibodies against both new and old strains.The findings have not been peer reviewed, but provide reassurance that vaccines targeting the Omicron variant will be effective. Their utility had been questioned because of evidence that the immune system has trouble pivoting between variants.One study examined people who became infected with Omicron after receiving the original vaccine. One month after infection, nearly 97% of participants’ antibodies against the virus bound to the original strain better than to Omicron BA.1. But six months after infection, nearly half of their B cells produced antibodies that bound to Omicron BA.1 better than to the original strain — showing that the immune system continued to adapt long after the infection had passed.

    White Island, also called Whakaari, is one of New Zealand’s most active volcanos.Credit: Phil Walter/Getty

    Charge dropped in New Zealand volcano caseVolcanologists have applauded a judge’s decision to dismiss one of two criminal charges against New Zealand’s Earth-science research agency, GNS Science. The charges were laid in the wake of a fatal 2019 volcanic eruption on Whakaari White Island, a popular tourist destination, that killed 22 people and injured 25 others.GNS Science issues volcanic-alert bulletins for the country’s active volcanoes, which are disseminated to the media, emergency-response agencies and the public through a service called GeoNet. The dismissed charge alleged that GNS Science should have coordinated with tour operators and other agencies and reviewed its volcanic-alert bulletins to ensure that they effectively communicated the implications of volcanic activity on the island.With the charge dismissed, scientific organizations that provide information on public health and safety risks can now “breathe a bit of a sigh of relief”, says Simon Connell, a lawyer at the University of Otago in Dunedin, New Zealand.GNS Science is also charged with having failed to ensure the health and safety of helicopter pilots whom it hired to take its employees to the island. This charge will go to trial. GNS Science has pleaded not guilty.

    A herd of Asian elephants wandered out of their nature reserve in southwestern China last year.Credit: Wang Zhengpeng/VCG via Getty

    Asian elephants mostly roam outside protected areas — and it’s a problemAsian elephants spend most of their time outside protected areas because they prefer the food that they find there, an international team of scientists reports. But this behaviour is putting the animals and people in harm’s way, say researchers.If protected areas do not contain animals’ preferred habitats, they will wander out, says Ahimsa Campos-Arceiz, who studies Asian elephants (Elephas maximus) at the Chinese Academy of Sciences’ Xishuangbanna Tropical Botanical Garden in Menglun, China.Human–elephant conflict is the biggest threat for Asian elephants. Over the past few decades, animals in protected areas have increasingly wandered into villages. They often cause destruction, damaging crops and infrastructure and injuring and even killing people.Campos-Arceiz and his colleagues set out to get a precise picture of Asian-elephant movements. They collared 102 individuals in Peninsular Malaysia and Borneo, recording 600,000 GPS locations over a decade. They found that elephants tend to spend most of their time in habitats outside the protected areas, at the forest edge and in areas of regrowth. The findings were published in the Journal of Applied Ecology (J. A. de la Torre et al. J. Appl. Ecol. https://doi.org/gq28qp; 2022) on 18 October.The researchers suspect that the elephants venture out because they like to eat grasses, bamboo, palms and fast-growing trees, which are commonly found in disturbed forests and are relatively scarce under the canopy of old-growth forests.Philip Nyhus, a conservation biologist who specializes in human–wildlife conflict at Colby College in Waterville, Maine, says that Asian elephants live deep in dense forest and so are much more difficult to study than African elephants, which roam open savannahs. “The sample size is impressive,” he says.The research provides strong evidence for how to set up suitable protected areas that reduce the risk of elephants wandering out, he says.The results do not diminish the importance of protected areas, which provide long-term safety for the animals, says Campos-Arceiz. “But they are clearly not enough.” More

  • in

    Dark plumes of glacial meltwater affect vertical distribution of zooplankton in the Arctic

    Meredith, M. et al. Polar regions. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Pörtner, H.‐O. et al. Eds.). 203–320 (2019).Nummelin, A., Ilicak, M., Li, C. & Smedsrud, L. H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 121, 617–637 (2016).ADS 

    Google Scholar 
    Smedsrud, L. H., Sorteberg, A. & Kloster, K. Recent and future changes of the Arctic sea-ice cover. Geophys. Res. Lett. 35, L20503 (2008).ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903. https://doi.org/10.1038/s41558-020-0905-y (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tripathy, S. C. et al. Summer variability in bio-optical properties and phytoplankton pigment signatures in two adjacent high Arctic fjords, Svalbard. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03767-4 (2021).Article 

    Google Scholar 
    Sagan, S. & Darecki, M. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen. Oceanologia 60, 65–75 (2018).
    Google Scholar 
    Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. in Proceedings of the National Academy of Sciences of the United States of America. Vol. 116. 9239–9244. Preprint at https://doi.org/10.1073/pnas.1904242116 (2019).Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around antarctica. Science 1979(341), 266–270 (2013).ADS 

    Google Scholar 
    Konik, M., Darecki, M., Pavlov, A. K., Sagan, S. & Kowalczuk, P. Darkening of the Svalbard Fjords waters observed with satellite ocean color imagery in 1997–2019. Front. Mar. Sci. 8, 27 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).Szeligowska, M. et al. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers. Sci. Total Environ. 780, 146491 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Trudnowska, E., Dąbrowska, A. M., Boehnke, R., Zajączkowski, M. & Blachowiak-Samolyk, K. Particles, protists, and zooplankton in glacier-influenced coastal svalbard waters. Estuar. Coast Shelf Sci. 242, 106842 (2020).
    Google Scholar 
    Maekakuchi, M., Matsuno, K., Yamamoto, J., Abe, Y. & Yamaguchi, A. Abundance, horizontal and vertical distribution of epipelagic ctenophores and scyphomedusae in the northern Bering Sea in summer 2017 and 2018: Quantification by underwater video imaging analysis. Deep Sea Res. 2 Top. Stud. Oceanogr. 181–182, 104818 (2020).
    Google Scholar 
    Norrbin, F., Eilertsen, H. C. & Degerlund, M. Vertical distribution of primary producers and zooplankton grazers during different phases of the Arctic spring bloom. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1945–1958 (2009).
    Google Scholar 
    Stemmann, L. et al. Vertical distribution (0–1000 m) of macrozooplankton, estimated using the Underwater Video Profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 94–105 (2008).
    Google Scholar 
    Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537 (2011).CAS 

    Google Scholar 
    Arimitsu, M., Piatt, J. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).ADS 

    Google Scholar 
    Renner, M., Arimitsu, M. L. & Piatt, J. F. Structure of marine predator and prey communities along environmental gradients in a glaciated fjord. Can. J. Fish. Aquat. Sci. 69, 2029–2045 (2012).
    Google Scholar 
    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471. https://doi.org/10.1016/j.jmarsys.2013.09.006 (2014).Article 

    Google Scholar 
    Falk-Petersen, S., Pavlov, V., Timofeev, S. & Sargent, J. R. Climate variability and possible effects on arctic food chains: The role of Calanus. in Arctic Alpine Ecosystems and People in a Changing Environment. 147–166. https://doi.org/10.1007/978-3-540-48514-8_9 (Springer, 2007).Stempniewicz, L. et al. Visual prey availability and distribution of foraging little auks (Alle alle) in the shelf waters of West Spitsbergen. Polar Biol. 36, 949–955 (2013).
    Google Scholar 
    CAFF. Arctic Coastal Biodiversity Monitoring Plan (CAFF Monitoring Series Report No. 29). (2019).Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).ADS 
    CAS 

    Google Scholar 
    Blachowiak-Samolyk, K. et al. Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar. Ecol. Prog. Ser. 308, 101–116 (2006).ADS 

    Google Scholar 
    Cottier, F. R., Tarling, G. A., Wold, A. & Falk-Petersen, S. Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006).ADS 

    Google Scholar 
    Hobbs, L. et al. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol Lett 17, 20200810 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wallace, M. I. et al. Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on zooplankton behavior. Limnol. Oceanogr. 55, 831–845 (2010).ADS 

    Google Scholar 
    Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 

    Google Scholar 
    Rabindranath, A. et al. Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008. Mar. Biodivers. 41, 365–382 (2011).
    Google Scholar 
    Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 32, 549–559 (2009).
    Google Scholar 
    Frank, T. M. & Widder, E. A. Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton. Mar. Biol. 140, 1181–1193 (2002).
    Google Scholar 
    Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A. & Bini, L. M. Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators. J. Anim. Ecol. 89, 2427–2439. https://doi.org/10.1111/1365-2656.13329 (2020).Article 
    PubMed 

    Google Scholar 
    Aksnes, D. et al. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 387, 39–49 (2009).ADS 
    CAS 

    Google Scholar 
    Urbanski, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    Weslawski, J. M., Pedersen, G., Petersen, S. F. & Porazinski, K. Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42, 1 (2000).
    Google Scholar 
    Berge, J. et al. Arctic complexity: A case study on diel vertical migration of zooplankton. J. Plankton Res. 36, 1279–1297 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Darnis, G. et al. From polar night to midnight sun: Diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).ADS 
    CAS 

    Google Scholar 
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob. Chang Biol. 23, 490–502 (2017).ADS 
    PubMed 

    Google Scholar 
    Cottier, F. R. et al. Arctic fjords: A review of the oceanographic environment and dominant physical processes. Geol. Soc. Spec. Publ. 344, 35–50 (2010).ADS 

    Google Scholar 
    Inall, M. E., Nilsen, F., Cottier, F. R. & Daae, R. Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J. Geophys. Res. Oceans 120, 8283–8303 (2015).ADS 

    Google Scholar 
    Promińska, A., Cisek, M. & Walczowski, W. Kongsfjorden and Hornsund hydrography—Comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59, 397–412 (2017).
    Google Scholar 
    Agrawal, Y. C. & Pottsmith, H. C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89–114 (2000).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S. & Zhou, M. Biovolume spectrum theories applied: Spatial patterns of trophic levels within a mesozooplankton community at the polar front. J. Plankton Res. 32, 1105–1119 (2010).PubMed 

    Google Scholar 
    Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).
    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80 (2013).ADS 

    Google Scholar 
    Woźniak, S. B., Darecki, M., Zabłocka, M., Burska, D. & Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 58, 161–175 (2016).
    Google Scholar 
    Marker, A. The measurement of photosynthetic pigments in freshwaters and standardization of methods : Conclusions and recommendations. Arch. Hydrobiol. Beih 14, 91–106 (1980).CAS 

    Google Scholar 
    Stramska, M. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic. J. Geophys. Res. 108, 3143 (2003).ADS 

    Google Scholar 
    Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).
    Google Scholar 
    Gabrielsen, T. M. et al. Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol. 35, 1621–1628 (2012).
    Google Scholar 
    Trudnowska, E. et al. In a comfort zone and beyond—Ecological plasticity of key marine mediators. Ecol. Evol. 10, 14067–14081 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean version 4.0. Sci Data 7, 1–14 (2020).
    Google Scholar 
    van Rossum, G. & Drake, F. L. Python 3 Reference Manual. Preprint (2009).Caswell, T. A. et al. matplotlib/matplotlib: REL: v3.1.1. https://doi.org/10.5281/ZENODO.3264781 (2019).Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    Google Scholar 
    Mckinney, W. Data Structures for Statistical Computing in Python. (2010).Reback, J. et al. pandas-dev/pandas: Pandas 1.0.5. https://doi.org/10.5281/ZENODO.3898987 (2020).Pond, S. & Pickard, G. L. Introductory dynamical oceanography. 2nd Ed. (1983).Mojica, K. D. A. et al. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean. Limnol. Oceanogr. 60, 1498–1521 (2015).ADS 

    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. http://www.primer-e.com (2008).Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 Plymouth Routines in Multivariate Ecological Research. www.primer-e.com (2015).Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Terpilowski, M. scikit-posthocs: Pairwise multiple comparison tests in Python. J. Open Source Softw. 4, 1169 (2019).ADS 

    Google Scholar 
    Alcaraz, M. et al. The role of arctic zooplankton in biogeochemical cycles: Respiration and excretion of ammonia and phosphate during summer. Polar Biol. 33, 1719–1731 (2010).
    Google Scholar 
    Soviadan, Y. D. et al. Patterns of mesozooplankton community composition and vertical fluxes in the global ocean. Prog. Oceanogr. 200, 102717 (2022).
    Google Scholar 
    Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 2275–2284 (2008).
    Google Scholar 
    Lane, P. V. Z., Llinás, L., Smith, S. L. & Pilz, D. Zooplankton distribution in the western Arctic during summer 2002: Hydrographic habitats and implications for food chain dynamics. J. Mar. Syst. 70, 97–133 (2008).
    Google Scholar 
    Kulk, G., Poll, W. H. & Buma, A. G. J. Photophysiology of nitrate limited phytoplankton communities in Kongsfjorden, Spitsbergen. Limnol. Oceanogr. 63, 2606–2617 (2018).ADS 
    CAS 

    Google Scholar 
    Moskalik, M. et al. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 60, 446–463 (2018).
    Google Scholar 
    Svendsen, H. et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133–166 (2002).
    Google Scholar 
    Chiswell, S. M., Calil, P. H. R. & Boyd, P. W. Spring blooms and annual cycles of phytoplankton: A unified perspective. J. Plankton Res. 37, 500–508 (2015).
    Google Scholar 
    Kaartvedt, S., Melle, W., Knutsen, T. & Skjoldal, H. Vertical distribution of fish and krill beneath water of varying optical properties. Mar. Ecol. Prog. Ser. 136, 51–58 (1996).ADS 

    Google Scholar 
    Schmid, M. S., Maps, F. & Fortier, L. Lipid load triggers migration to diapause in Arctic Calanus copepods—Insights from underwater imaging. J. Plankton Res. 40, 311–325 (2018).CAS 

    Google Scholar 
    Campbell, R. G. et al. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1274–1289 (2009).
    Google Scholar 
    Hirche, H. J. Diapause in the marine copepod, calanus finmarchicus—A review. Ophelia 44, 129–143 (1996).
    Google Scholar 
    Pedersen, S. A. & Smidt, E. L. B. Zooplankton Investigations Off West Greenland, 1956–1984. (ICES, 1995).Reiner Vonnahme, T. et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier. Cryosphere 15, 2083–2107 (2021).ADS 

    Google Scholar 
    Majaneva, S. et al. Aggregations of predators and prey affect predation impact of the Arctic ctenophore Mertensia ovum. Mar. Ecol. Prog. Ser. 476, 87–100 (2013).ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep Sea Res. 2 Top Stud Oceanogr 57, 127–135 (2010).
    Google Scholar 
    Condon, R. H. et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169 (2012).
    Google Scholar 
    Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during little Auks’ breeding seasons in two different Svalbard locations. Water (Basel) 11, 1405 (2019).CAS 

    Google Scholar 
    Karnovsky, N. J. & Hunt, G. L. Estimation of carbon flux to dovekies (Alle alle) in the North Water. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 5117–5130 (2002).CAS 

    Google Scholar 
    Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida?. Polar Biol. 35, 401–412. https://doi.org/10.1007/s00300-011-1085-z (2012).Article 

    Google Scholar 
    Szeligowska, M. et al. Spatial patterns of particles and plankton in the warming Arctic Fjord (Isfjorden, West Spitsbergen) in seven consecutive mid-summers (2013–2019). Front. Mar. Sci. 7, 584 (2020).
    Google Scholar  More

  • in

    Spatial scaling of pollen-plant diversity relationship in landscapes with contrasting diversity patterns

    We found a significant positive relationship between pollen- and plant richness regardless of differences in plant diversity, landscape structure and environmental conditions between the two study regions. This finding represents a major step stone towards more accurate paleoecological reconstructions of plant diversity in temperate Central Europe, as previous studies on this topic have mostly been conducted in boreal and boreal-nemoral zones8,11, in high mountain habitats10 or in southern Europe9,12.Methodological differences e.g., in diversity indices, data transformations or sample sizes used make comparison between studies difficult. Nevertheless, the strongest relationships seem to be found when habitats with contrasting patterns of plant diversity are compared, such as forests and alpine vegetation7 or forests, peatlands and grasslands11. Also in our study, we found the strongest correlations when complete datasets combining forested and open habitats were analysed together for both study regions. As it is well known that plant richness is generally lower in forests than in open landscapes across temperate and boreal regions28, this finding may seem rather trivial. However, it is important for paleoecological reconstruction because Holocene changes in diversity in temperate regions were largely driven by changes in the relative abundance of major habitat types (such as forests, grasslands, wetlands and man-made habitats), and not just by changes in species richness within these habitats5,6.Regarding individual habitats, the pollen-plant diversity relationship is often rather strong and significant in grasslands and other open habitats8,11; for example the WCM open-habitat subset in this study. Open habitats are generally richer in species, thus providing a longer gradient of species richness compensating for the taxonomical imprecision of the pollen analysis. In forested sites with less species, we found mostly non-significant relationships. Moreover, two other factors may play a role.First, high pollen productivity of trees biases the diversity relationship according to the studies from northern Europe16. However, a study from an elevational transect in southern Norway showed that the strongest bias in representation occurs only in the boreal forest biome, which is dominated by high pollen producers10. Our dominant vegetation component, Picea and Quercus, have intermediate to high pollen productivity (2–2.5), whereas true high pollen producers such as Alnus and Betula ( > 3) are less abundant in our study area (Supplementary Fig. S2). Adjustment of pollen counts by PPEs led to stronger relationship between pollen and floristic richness only in the WCM open-habitat subset (Supplementary Fig. S4).Second, interception of pollen by the tree canopies29 and subsequent washout to the forest floor affects the diversity relationship of forest sites more than pollen productivity. This noise described also as a vegetation filtering30 can be illustrated in our dataset by pollen of long-distance transport from Ambrosia artemisiifolia-type, which has the closest source populations ca. 50 km south-eastwards from WCM region31; or pollen of Artemisia, growing in open habitats. Both pollen taxa are more abundant in the forest than in open sites (Supplementary Fig. S3).Regarding the application of these results for the interpretation of fossil record, we suggest to consider only marked changes of pollen richness in the past and to avoid overinterpretation of small differences, as the non-significant relationships obtained in both forest datasets suggest some limitations of the method.We showed that the pollen-plant diversity relationship may be at least partly disentangled by knowing the exact spatial position of plant species in broader surroundings of the pollen sampling sites. Changes in the relationship with changing spatial scale are largely driven by the numbers of species newly appearing as the radius of surveyed area increases, especially as new habitats are added (Fig. 5, Supplementary Fig. S5). Remarkably, in the BMH region it increases with distance, whereas the opposite trend was observed in the WCM region. This discrepancy may be explained by non-uniform richness patterns in different habitats and by different landscape structure (i.e. spatial arrangement of different habitats) in the two study regions.At open-habitat sites in the WCM area, most species generally appeared within the first 40 m. This observation is consistent with the knowledge of extremely high fine-scale plant diversity in the local steppic meadows, where a substantial portion of the species pool occurs on a scale of tens of square meters32. Moreover, the grain size of the habitat mosaic in the WCM region is finer than in the BMH region. Therefore, the closest pollen-plant diversity relationship across habitats in the WCM region is achieved over shorter distances. Although habitats such as built-up areas and roads occurring at distances greater than 40 m may be species-rich and compositionally different from the grasslands and forests, it appears that high fine-scale plant diversity (in our case in WCM open-habitat subset) limits the influence of the surrounding landscape on pollen richness and reduces the source area of pollen richness. Several studies of the relevant source area of pollen report analogous results33,34,35. A weakening relationship between pollen diversity and plant diversity with distance has also been observed in the Mediterranean region9, although their interpretations are limited by field survey methodology.The appearance of open habitats within forests led to the increase of species numbers and the local maxima of adjusted R2 in both regions. While in the BMH forest the appearance of forest roads at about 70 m was crucial, meadows and orchards at about 250 m played a similar role in the WCM forest subset. In the WCM open-habitat subset diversity patterns in the first tens of metres were crucial, while in the BMH open-habitat subset increased correlation of floristic and pollen richness appeared only at 400 and 550 m; at this distance many species appeared due to the frequent transition of meadow complexes to shrubby habitats and built-up areas. Also other studies from semi-open landscapes found a high correlation between pollen richness and landscape openness17,26,27.Estimating the source area of pollen variance as a regression of pollen and floristic variance implies that the resulting distance of 100–250 m represents all datasets. Although they differ in species richness, openness and habitats, the relationship between variances is fairly linear. The exception is the WCM open-habitat subset suggesting that the spatial scale at which the pollen variance corresponds to the floristic variance cannot be generalized.The strong effect of high pollen richness in the WCM open-habitat subset is also visible in the comparison of pollen and floristic variance. At 150 m, the WCM open-habitat subset had much lower floristic variance than the other subsets. Floristic variance in this subset corresponding to the pollen variance and the pattern of the other datasets lay at 6 m (Fig. 6b). Again, this may be caused by the high fine-scale diversity of the meadows, which include most pollen types present in the surrounding landscape. Only a few new species appeared in broader surroundings and at 150 m, WCM open habitats are more similar than other analysed habitats. The fact that extremely high alpha diversity is compensated by low beta diversity has already been reported from the open habitats of the White Carpathians36. The linearity and the significance of the variance relationship within the rest of the datasets indicate robustness and possible applicability to a variety of fossil records.The mechanism of establishing the source area of pollen variance was similar to that mentioned for the source area of pollen richness. The appearance of new habitats with new species (Fig. 5) like open habitat for forest sites (WCM forest subset) or built-up areas for open sites (BMH open-habitat subset), caused small to negligible increases of floristic variance. Moreover, the high yet insignificant relationship of the variances at the distance between 250 and 600 m (Fig. 6a) corresponds to the distance of the second range of fit between floristic and pollen richness (Fig. 4a).Beta diversity, understood as directional turnover (temporal or spatial), is becoming more frequently used in pollen analysis22,24 than beta diversity as a non-directional variation. According to Nieto-Lugilde et al.25 pollen-based turnover correlates with forest-inventory-based turnover. We extend this finding from woody taxa to all species and from directional turnover to non-directional variance. Moreover, forest sites with high contributions to pollen beta diversity also show an increased contribution to floristic beta diversity (Fig. 4b).The reference data on plant diversity report 1477 species in 15 mapping squares covered by our survey for the BMH region and 2045 species in 14 squares for the WCM region37. It means that we recorded 54.1 and 53.7%, respectively, of the known regional species pool in the two regions. We consider this as a rather good result and the close agreement in representativeness between the two regions speaks for consistency in data quality between the datasets. We advise that future studies covering wider areas and various biomes should preferentially use high-quality floristic data collected in targeted field surveys rather than database data or data from simplified field surveys. Only then we will be able to understand the pollen-plant diversity relationships more realistically and in a spatially explicit manner.In order to interpret fossil pollen richness in the light of our present results, we need to consider landscape openness, which can be roughly inferred from the ratio of arboreal and non-arboreal pollen. Variation of pollen richness during the forest phases of the records should be interpreted more carefully, especially in cases of low variation. In all other cases, the pollen richness is significantly linked to the plant richness within a distance of ten to several hundreds of meters, depending on the distance of the expected species-rich patches. More

  • in

    Extreme escalation of heat failure rates in ectotherms with global warming

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, 1987).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    PubMed 

    Google Scholar 
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Hofmann, G. E. & Todgham, A. E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).CAS 
    PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
    Google Scholar 
    Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Schmidt-Nielsen, K. Animal physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).
    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).CAS 
    PubMed 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Hollingsworth, M. J. Temperature and length of life in Drosophila. Exp. Gerontol. 4, 49–55 (1969).CAS 
    PubMed 

    Google Scholar 
    Fry, F. E. J., Hart, J. S. & Walker, K. F. Lethal Temperature Relations for a Sample of Young Speckled Trout, Salvelinus fontinalis 9–35 (Univ. Toronto, 1946).MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B 374, 20180548 (2019).
    Google Scholar 
    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 

    Google Scholar 
    Ørsted, M., Jørgensen, L. B. & Overgaard, J. Finding the right thermal limit: a framework to reconcile ecological, physiological, and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225, jeb244514 (2022).Brown, J. H., Gillooly, J. F., Alle, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Google Scholar 
    Bowler, K. Heat death in poikilotherms: is there a common cause? J. Therm. Biol. 76, 77–79 (2018).PubMed 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).Overgaard, J., Kearney, M. R. & Hoffmann, A. A. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20, 1738–1750 (2014).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol 54, 86–97 (2015).PubMed 

    Google Scholar 
    Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).
    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
    Google Scholar 
    Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 12, e03645 (2021).
    Google Scholar 
    Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).PubMed 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals the scale of prediction. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).PubMed 

    Google Scholar 
    Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).PubMed 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).PubMed 

    Google Scholar 
    Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).CAS 
    PubMed 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 
    PubMed 

    Google Scholar 
    Tollefson, J. How hot will Earth get by 2100? Nature 580, 443–445 (2020).CAS 
    PubMed 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Data from: Extreme escalation of heat failure rates in ectotherms with global warming. Zenodo https://doi.org/10.5281/zenodo.6979789 (2022).Grove, T. J., McFadden, L. A., Chase, P. B. & Moerland, T. S. Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J. Muscle Res. Cell Motil. 26, 191–197 (2005).CAS 
    PubMed 

    Google Scholar 
    Doudoroff, P. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88, 194–206 (1945).
    Google Scholar 
    Sirikharin, R., Söderhäll, I. & Söderhäll, K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol. 80, 546–549 (2018).CAS 
    PubMed 

    Google Scholar 
    Becker, C. D. & Genoway, R. G. Resistance of crayfish to acute thermal shock: preliminary studies. in Proc. Thermal Ecology NTIS Conf. 730505 (eds Gibbons, J. W. & Sharitz, R. R.) 146–150 (NTIS, 1974).Widdows, J. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20, 269–276 (1973).
    Google Scholar 
    Wallis, R. L. Thermal tolerance of Mytilus edulis of eastern Australia. Mar. Biol. 30, 183–191 (1975).
    Google Scholar 
    Gray, J. The mechanism of ciliary movement. III. The effect of temperature. Proc. R. Soc. B 95, 6–15 (1923).CAS 

    Google Scholar 
    Shertzer, R. H., Hart, R. G. & Pavlick, F. M. Thermal acclimation in selected tissues of the leopard frog Rana pipiens. Comp. Biochem. Physiol. A 51, 327–334 (1975).CAS 
    PubMed 

    Google Scholar 
    Orr, P. R. Heat death. II. Differential response of entire animal (Rana pipiens) and several organ systems. Physiol. Zool. 28, 294–302 (1955).
    Google Scholar 
    Lighton, J. R. B. & Duncan, F. D. Energy cost of locomotion: validation of laboratory data by in situ respirometry. Ecology 83, 3517–3522 (2002).
    Google Scholar 
    Heatwole, H. & Harrington, S. Heat tolerances of some ants and beetles from the pre-Saharan steppe of Tunisia. J. Arid Environ. 16, 69–77 (1989).
    Google Scholar  More

  • in

    Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario

    Li, J. & Thompson, D. W. Widespread changes in surface temperature persistence under climate change. Nature 599(7885), 425–430. https://doi.org/10.1038/s41586-021-03943-z (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Raftery, A. E., Zimmer, A., Frierson, D. M., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).ADS 
    CAS 

    Google Scholar 
    Olabi, A. G. et al. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 153, 111710. https://doi.org/10.1016/j.rser.2021.111710 (2022).CAS 

    Google Scholar 
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 103–114 (2004).
    Google Scholar 
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11(12), 926–932 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figura, S., Livingstone, D. M., Hoehn, E. & Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 38(23), 401–405 (2011).
    Google Scholar 
    Mueller, M. H., Huggenberger, P. & Epting, J. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. Sci. Total Environ. 627, 1121–1136 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).ADS 
    CAS 

    Google Scholar 
    Dehghani, R., Poudeh, H. T. & Izadi, Z. The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Ground. Sustain. Dev. 16, 100702. https://doi.org/10.1016/j.gsd.2021.100702 (2022).
    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—Too risky to bet against. Nature 57, 592–595 (2019).ADS 

    Google Scholar 
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50(1), 85–94 (2021).PubMed 

    Google Scholar 
    Stein, H. et al. Stygoregions—A promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673. https://doi.org/10.1038/srep00673 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baković, N., Matoničkin Kepčija, R. & Siemensma, F. J. Transitional and small aquatic cave habitats diversification based on protist assemblages in the Veternica cave (Medvednica Mt., Croatia). Subterr. Biol. 42, 43–60 (2022).
    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11(10), 707–717 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, Z. et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 25, 771–785 (2017).ADS 

    Google Scholar 
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41(2), 424–436 (2018).
    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: conservation issues. J. Nat. Conserv. 45, 90–97 (2018).
    Google Scholar 
    Zagmajster, M., Malard, F., Eme, D. & Culver, D. C. Subterranean biodiversity patterns from global to regional scales. In Cave Ecology, Ecological Studies—Analysis and Synthesis (eds Moldovan, O. et al.) 19–227 (Springer, 2018).
    Google Scholar 
    Hose, G. C. et al. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct. Ecol. 36, 2200. https://doi.org/10.1111/1365-2435.14125 (2022).CAS 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
    Google Scholar 
    Pallarées, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2020).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612. https://doi.org/10.1098/rspb.2013.2612 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 10(1), 1–9 (2020).
    Google Scholar 
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 141, 1–7 (2005).
    Google Scholar 
    Issartel, J., Voituron, Y. & Hervant, F. Impact of temperature on the survival, the activity and the metabolism of the cave-dwelling Niphargus virei, the ubiquitous stygobiotic N. rhenorhodanensis and the surface-dwelling Gammarus fossarum (Crustacea, Amphipoda). Subterr. Biol. 5, 9–14 (2007).
    Google Scholar 
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 216, 1683–1694 (2013).CAS 
    PubMed 

    Google Scholar 
    Di Lorenzo, T. et al. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 60, 426–435 (2015).
    Google Scholar 
    Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 9, 951. https://doi.org/10.3390/w9120951 (2017).ADS 
    CAS 

    Google Scholar 
    Mammola, S. et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthr. Rev. 6(1–2), 98–116 (2019).
    Google Scholar 
    Jones, K. et al. The critical thermal maximum of diving beetles (Coleoptera: Dytiscidae): A comparison of subterranean and surface-dwelling species. Curr. Opin. Insect. Sci. 1, 100019 (2021).
    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230 (2022).
    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Wiley, 2009).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hervant, F., Mathieu, J., Barré, H., Simon, K. & Pinon, C. Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. B 118A, 1277–1283 (1997).CAS 

    Google Scholar 
    Wilhelm, F. M., Taylor, S. J. & Adams, G. L. Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Freshwat. Biol. 51, 1162–1174 (2006).
    Google Scholar 
    Reboleira, A. S. P. S., Borges, P., Gonçalves, F., Serrano, A. R. M. & Oromí, P. The subterranean fauna of a biodiversity hotspot region—Portugal: An overview and its conservation. Int. J. Speleol. 40(1), 23–37 (2011).
    Google Scholar 
    Reboleira, A. S. P. S., Abrantes, N., Oromí, P. & Gonçalves, F. J. M. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: General aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224, 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).ADS 
    CAS 

    Google Scholar 
    Morvan, C. et al. Timetree of Aselloidea reveals species diversification dynamics in groundwater. Syst. Biol. 62(4), 512–522 (2013).CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Malard, F., Kalčikova, G. & Reboleira, A. S. P. S. Novel protocol for acute in situ ecotoxicity test using native crustaceans applied to groundwater ecosystems. Water 13(8), 1132. https://doi.org/10.3390/w13081132 (2021).CAS 

    Google Scholar 
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681(1), 292–304 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptative potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4” law of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC Press, 2006).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).Simčič, T. & Sket, B. Comparison of some epigean and troglobiotic animals regarding their metabolism intensity. Examination of a classical assertion. Int. J. Speleol. 48, 133–144 (2019).
    Google Scholar 
    Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. & Bale, J. S. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33(4), 389–394 (2008).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224. https://doi.org/10.1038/s41558-018-0067-3 (2018).ADS 

    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43(5), 724–734 (2020).
    Google Scholar 
    Sánchez-Fernández, D., Rizzo, V. & Bourdeau, C. The deep subterranean environment as a model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 25, 1–7 (2018).
    Google Scholar 
    Pallarés, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2021).MathSciNet 

    Google Scholar 
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34(1), 355–367 (2015).
    Google Scholar 
    Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm. Freshw. Biol. https://doi.org/10.1111/fwb.13987 (2022).
    Google Scholar 
    Ikeda, T., Kanno, Y., Ozaki, K. & Shinada, A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139, 587–596 (2001).
    Google Scholar 
    Mezek, T., Simčič, T., Arts, M. T. & Brancelj, A. Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: A laboratory study. Aquat. Ecol. 44(2), 397–408 (2010).CAS 

    Google Scholar 
    Hüppop, K. The role of metabolism in the evolution of cave animals. NSS Bulletin 47, 136–146 (1985).
    Google Scholar 
    Humphreys, W. F. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17(1), 5–21 (2009).ADS 
    CAS 

    Google Scholar 
    Glazier, D. S. The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56(4), 325–332 (2006).
    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Change 11, 458–459 (2021).ADS 

    Google Scholar 
    Reboleira, A. S. P. S. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environ. Microbiome 17, 41 (2022).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Characterizing phenotypic diversity in marine populations of the threespine stickleback

    Bell, M. A. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford University Press, 1994).
    Google Scholar 
    Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63, 2004–2016 (2009).PubMed 

    Google Scholar 
    Svanbäck, R. & Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 180, 50–59 (2012).PubMed 

    Google Scholar 
    Caldecutt, W. J. & Adams, D. C. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998, 827–838 (1998).
    Google Scholar 
    Yershov, P. & Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol. 38, 1813–1823 (2015).
    Google Scholar 
    Dorgham, A. S. et al. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Proc. KarRC RAS 59–73 (2018). https://doi.org/10.17076/them819.DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).CAS 
    PubMed 

    Google Scholar 
    Shaw, K. A., Scotti, M. L. & Foster, S. A. Ancestral plasticity and the evolutionary diversification of courtship behaviour in threespine sticklebacks. Anim. Behav. 73, 415–422 (2007).
    Google Scholar 
    McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 277 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).PubMed 

    Google Scholar 
    Walker, J. A. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61, 3–50 (1997).
    Google Scholar 
    Hagen, D. W. & Gilbertson, L. G. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest America. Evolution 26, 32–51 (1972).CAS 
    PubMed 

    Google Scholar 
    Smith, C., Zięba, G., Spence, R., Klepaker, T. & Przybylski, M. Three-spined stickleback armour predicted by body size, minimum winter temperature and pH. J. Zool. 311, 13–22 (2020).
    Google Scholar 
    Aguirre, W. E. & Bell, M. A. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment: Stickleback body shape evolution. Biol. J. Linn. Soc. 105, 817–831 (2012).
    Google Scholar 
    Lavin, P. A. & McPhail, J. D. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site-specific differentiation of trophic morphology. Can. J. Zool. 63, 2632–2638 (1985).
    Google Scholar 
    Matthews, B., Marchinko, K. B., Bolnick, D. I. & Mazumder, A. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91, 1025–1034 (2010).PubMed 

    Google Scholar 
    Lefébure, R., Larsson, S. & Byström, P. A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 79, 1815–1827 (2011).PubMed 

    Google Scholar 
    Foster, S. A. Inference of evolutionary pattern: Diversionary displays of three-spined sticklebacks. Behav. Ecol. 5, 114–121 (1992).
    Google Scholar 
    Taylor, E. B. & McPhail, J. D. Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biol. J. Linn. Soc. 66, 271–291 (1999).
    Google Scholar 
    Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J. A. & Bell, M. A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J. Zool. 252, 293–302 (2000).
    Google Scholar 
    Kristjánsson, B. K., Skúlason, S. & Noakes, D. L. G. Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol. Ecol. Res. 4, 659–672 (2002).
    Google Scholar 
    Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the “flexible stem” model of evolution: Ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).PubMed 

    Google Scholar 
    Arif, S., Aguirre, W. E. & Bell, M. A. Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback. Biol. J. Linn. Soc. 97, 832–844 (2009).
    Google Scholar 
    Terekhanova, N. V. et al. Fast evolution from precast bricks: Genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Ghani, N. I., Herczeg, G. & Merilä, J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol. J. Linn. Soc. 118, 520–535 (2016).
    Google Scholar 
    DeFaveri, J. & Merilä, J. Local adaptation to salinity in the three-spined stickleback?. J. Evol. Biol. 27, 290–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Jakubavičiūtė, E., De Blick, Y., Dainys, J., Ložys, L. & Olsson, J. Morphological divergence of three-spined stickleback in the Baltic Sea—Implications for stock identification. Fish. Res. 204, 305–315 (2018).
    Google Scholar 
    Yanos, C. L. et al. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).PubMed 

    Google Scholar 
    Ortí, G., Bell, M. A., Reimchen, T. E. & Meyer, A. Global survey of mitochondrial DNA sequences in the threespine sticklebacks: Evidence for recent migrations. Evolution 48, 608–622 (1994).PubMed 

    Google Scholar 
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe: Evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).PubMed 

    Google Scholar 
    Thomson, R. E. Oceanography of the British Columbia Coast (Department of Fisheries and Oceans, 1981).
    Google Scholar 
    Emmett, R. et al. Geographic signatures of North American west coast estuaries. Estuaries 23, 765 (2000).CAS 

    Google Scholar 
    Dallimore, A. & Jmieff, D. Canadian west coast fjords and inlets. Geol. Soc. Spec. Pub. 344, 143–162 (2010).
    Google Scholar 
    Schoch, G. C., Albert, D. M. & Shanley, C. S. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries Coasts 37, 160–176 (2014).
    Google Scholar 
    Rudnick, D. L. & Ferrari, R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283, 526–529 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).CAS 
    PubMed 

    Google Scholar 
    Webster, M. M., Atton, N., Hart, P. J. B. & Ward, A. J. W. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE 6, e21060 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish. Biol. 70, 1484–1503 (2007).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biol. J. Linn. Soc. 95, 505–516 (2008).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).CAS 
    PubMed 

    Google Scholar 
    Morris, M. R. J. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol. 23, 3226–3240 (2014).PubMed 

    Google Scholar 
    Ramler, D., Mitteroecker, P., Shama, L. N. S., Wegner, K. M. & Ahnelt, H. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J. Evol. Biol. 27, 497–507 (2014).CAS 
    PubMed 

    Google Scholar 
    Mazzarella, A. B., Voje, K. L., Hansson, T. H., Taugbøl, A. & Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 28, 667–677 (2015).CAS 
    PubMed 

    Google Scholar 
    Leinonen, T., Cano, J. M., Mäkinen, H. & Merilä, J. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J. Evol. Biol. 19, 1803–1812 (2006).CAS 
    PubMed 

    Google Scholar 
    Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and the genetics of adaptation in threespine stickleback. Phil. Trans. R. Soc. B 365, 2479–2486 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rogers, S. M. et al. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66, 2439–2450 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Jamniczky, H. A., Barry, T. N. & Rogers, S. M. Eco-evo-devo in the study of adaptive divergence: Examples from threespine stickleback (Gasterosteus aculeatus). Integr. Comp. Biol. 55, 166–178 (2015).PubMed 

    Google Scholar 
    Gow, J. L., Rogers, S. M., Jackson, M. & Schluter, D. Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can. J. Zool. 86, 564–571 (2008).
    Google Scholar 
    McPhail, J. D. Genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62, 1402–1408 (1984).
    Google Scholar 
    McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Origin of the species pairs. Can. J. Zool. 71, 515–523 (1993).
    Google Scholar 
    Kimmel, C. B., Aguirre, W., Ullmann, B., Currey, M. & Cresko, W. Allometric change accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour 145, 669–691 (2008).
    Google Scholar 
    Wootton, R. J. A Functional Biology of Sticklebacks (Croom Helm, 1984).
    Google Scholar 
    Kitano, J., Mori, S. & Peichel, C. L. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2, 336–349 (2007).
    Google Scholar 
    Aguirre, W. E., Ellis, K. E., Kusenda, M. & Bell, M. A. Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: Implications for postglacial adaptive radiation. Biol. J. Linn. Soc. 95, 465–478 (2008).
    Google Scholar 
    Davenne, E. & Masson, D. Water properties in the Straits of Georgia and Juan de Fuca. 41 http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/straitofgeorgia/JdFG_e.pdf (2001).Irvine, J. R. & Crawford, W. R. State of the Ocean Report for the Pacific North Coast Integrated Management Area (PNCIMA). 51 (2011).DFO. Data from British Columbia (BC) Lighthouses. Department of Fisheries and Oceans https://www.dfo-mpo.gc.ca/science/data-donnees/lightstations-phares/index-eng.html (2020).Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 25, 547–572 (1994).
    Google Scholar 
    Griffin, D. A. & LeBlond, P. H. Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast Shelf. Sci. 30, 275–297 (1990).ADS 

    Google Scholar 
    Vaz, N., Dias, J. M., Leitão, P. & Martins, I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 55, 416–429 (2005).ADS 

    Google Scholar 
    Rybkina, E. V., Ivanova, T. S., Ivanov, M. V., Kucheryavyy, A. V. & Lajus, D. L. Habitat preference of three-spined stickleback juveniles in experimental conditions and in wild eelgrass. J. Mar. Biol. Ass. UK 97, 1437–1445 (2017).
    Google Scholar 
    Flynn, S., Cadrin, C. & Filatow, D. Estuaries in British Columbia. 6 (2006).Kelly, J. R., Proctor, H. & Volpe, J. P. Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada. Hydrobiologia 596, 57–66 (2008).
    Google Scholar 
    Fagherazzi, S. et al. Ecogeomorphology of Salt Marshes. In The Ecogeomorphology of Tidal Marshes (eds Blum, L. K. & Marani, M.) 182–200 (American Geophysical Union, 2004).
    Google Scholar 
    Campbell, A. Vegetation-environment relationships and plant community classification and ordination in British Columbia coastal salt marshes. Master’s Thesis. (University of British Columbia, 1986).Kjerfve, B. Comparative oceanography of coastal lagoons. in Estuarine Variability (ed. Wolfe, D. A.) 63–81 (Academic Press, 1986). https://doi.org/10.1016/B978-0-12-761890-6.50009-5.Barnes, R. S. K. & de Villiers, C. J. Animal abundance and food availability in coastal lagoons and intertidal marine sediments. J. Mar. Biol. Ass. UK 80, 193–202 (2000).
    Google Scholar 
    Saimoto, R. K. Life history of marine stickleback in Oyster Lagoon, British Columbia. Master’s Thesis. (University of British Columbia, 1993).King, R. W. The threespine stickleback adaptive radiation: Salinity, plasticity, and the important of ancestry. Doctoral Dissertation. (Clark University, 2016).Ahnelt, H. Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392 (2018).
    Google Scholar 
    Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol. Biol. 18, 113 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S.-Y., Costa, M. M., Esteve-Codina, A. & Velando, A. Transcriptional mechanisms underlying life-history responses to climate change in the three-spined stickleback. Evol. Appl. 10, 718–730 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sambrook, R. J. Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh. Master’s Thesis. (University of British Columbia, 1990). https://doi.org/10.14288/1.0098704.Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. J. A. & Strange, C. D. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol. 20, 579–591 (1982).
    Google Scholar 
    Macdonald, J. S., Birtwell, I. K. & Kruzynski, G. M. Food and habitat utilization by juvenile salmonids in the Campbell River estuary. Can. J. Fish. Aquat. Sci. 44, 1233–1246 (1987).
    Google Scholar 
    Everest, F. H. & Chapman, D. W. Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J. Fish. Res. Bd. Can. 29, 91–100 (2011).
    Google Scholar 
    McPhail, J. D. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south-western British Columbia. In The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 399–471 (Oxford University Press, 1994).
    Google Scholar 
    Kimmel, C. B. et al. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66, 419–434 (2012).PubMed 

    Google Scholar 
    Østbye, K. et al. The temporal window of ecological adaptation in postglacial lakes: A comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evol. Biol. 16, 102 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, W. E. & Akinpelu, O. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 77, 802–821 (2010).CAS 
    PubMed 

    Google Scholar 
    Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274 (2004).CAS 
    PubMed 

    Google Scholar 
    Pistore, A. Ontogeny of population-specific phenotypic variation in the threespine stickleback. Master’s Thesis. (University of Calgary, 2018).Yurtseva, A. O. et al. Aging three-spined sticklebacks Gasterosteus aculeatus: Comparison of estimates from three structures. J. Fish Biol. 95, 802–811 (2019).PubMed 

    Google Scholar 
    Picard, P. Jr., Dodson, J. J. & FitzGerald, G. J. Habitat segregation among the age groups of Gasterosteus aculeatus (Pisces: Gasterosteidae) in the middle St. Lawrence estuary, Canada. Can. J. Zool. 68, 1202–1208 (1990).
    Google Scholar 
    Reimchen, T. E., Bergström, C. A. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).
    Google Scholar 
    Raeymaekers, J. A. M., Delaire, L. & Hendry, A. P. Genetically based differences in nest characteristics between lake, inlet, and hybrid threespine stickleback from the Misty system, British Columbia, Cananda. Evol. Ecol. Res. 11, 905–919 (2009).
    Google Scholar 
    Di Poi, C., Lacasse, J., Rogers, S. M. & Aubin-Horth, N. Evolution of stress reactivity in stickleback. Evol. Ecol. Res. 17, 395–405 (2016).
    Google Scholar 
    Weber, J. N., Bradburd, G. S., Stuart, Y. E., Stutz, W. E. & Bolnick, D. I. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 71, 342–356 (2017).PubMed 

    Google Scholar 
    Rohlf, F. J. Package: tpsUtil, tps file utility program. Version 1. 61. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2015).Rohlf, F. J. Package: tpsDig, digitize landmarks and outlines. Version 2. 05. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2005).Adams, D. C., Collyer, M. L. & Kaliontzopoupou, A. Geomorph: Software for geometric morphometric analysis (2020).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2012).MATH 

    Google Scholar 
    Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F.-X. Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014).
    Google Scholar 
    Scheipl, F., Greven, H. & Kuechenhoff, H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 52, 3283–3299 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Robinson, J. James Robinson’s functions. Version 0. 0. 0. 1. Retrieved from https://rdrr.io/github/jpwrobinson/funk/. (2019).Bartoń, K. R Package: MuMIn: Multi-model inference. Version 1. 43. 17. Retrieved from https://CRAN.R-project.org/package=MuMIn. (2020).Frank, A. Diagnosing collinearity in mixed models from lme4 R package, vif.mer function [R script]. Retrieved from https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. GitHub https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. (2011).Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impacts of Lysinibacillus sphaericus on mosquito larval community composition and larval competition between Culex pipiens and Aedes albopictus

    Project 1: mesocosm field experimentsMesocosm experiments took place at Lockwood Farm located in Hamden, Connecticut. Individual mesocosms were composed of black 20 L cylindrical plastic containers filled with 12 L tap water and seeded with 10 mg of a 3:2 ratio liver powder/brewer’s yeast mixture and 1 g of grass hay. Drain-holes were drilled into the sides of each container 5 mm from the 12 L surface to allow flooding for Aedes spp. egg emergence and to allow overflow beyond this level due to precipitation. Four experimental mesocosm clusters were dispersed throughout the Lockwood Farm in microhabitats previously sampled in Eastwood et al.22. Clusters contained 4 mesocosms spaced 3 m apart in a 2 × 2 grid. We utilized four L. sphaericus treatment levels in each cluster: no L. sphaericus, the LC50 (0.053 ITU/ml) and LC95 (1.0 ITU/ml) for Culex pipiens derived from Burtis et al.3, and the label rate of L. sphaericus (~ 1.2 ITU/ml). All treatments were derived from VectoLex WDG. Prior to insecticide application, we prepared 1 L of a 1000 ITU/ml stock solution. To inoculate each mesocosm, we measured the depth of the container’s water column, calculated water volume, and applied the appropriate amount of stock to achieve the target LC value. Replicate insecticide treatments were randomized within each cluster, and insecticides were applied 30-days post mesocosm seeding with nutrients. All mesocosms in each cluster were rotated within the 2 × 2 grid each week. Two clusters were then randomly chosen for a second application of L. sphaericus 30-days post initial insecticide application.To sample the larval habitat of each mesocosm, we performed a figure-8 sweep with an aquarium fish net (4 × 3-in. opening, Penn-Plax) each Monday and Thursday of the week for each week of the experiment. Sweep contents were washed from the net into a white photo development pan, and pupae were removed for in-lab identification after eclosion following a dichotomous key23. All larvae were then returned to the mesocosm. This sampling protocol minimized destruction of larval habitats and influence of interspecific interactions due to removal sampling.In addition to sampling containers for pupae, we collected water samples from each container for an in-lab bioassay to determine the realized mortality of the larval environment. Due to time constraints of the field crew, a 50% randomized sample of containers were sampled on Monday with the remaining 50% sampled on Thursday of each sampling week. Bioassay procedures followed McMillan et al.24 for Cx. pipiens with the addition of screening mortality in CAES’ Ae. albopictus colonies. We finally performed in-lab susceptibility trials to L. sphaericus with larvae from CAES’ Cx. pipiens and Ae. albopictus colonies to confirm each species’ colony varied in their sensitivity to the product. Briefly, 15 3rd to 4th instar larvae of each species per replicate dose were exposed to a wide range of L. sphaericus concentrations and mortality was recorded 24-h post-exposure. Lethal concentrations were then estimated from a generalized linear model with mortality (corrected for mortality in untreated control replicates) as the response term and the log10-dose as the predictor term.Primary endpoints from the field experiment included the number and species identity of pupae collected from each mesocosm. We compared total weekly pupal collections per mesocosm using a generalized linear mixed model (GLMM) framework with treatment level and cluster ID as fixed effects, species ID and week of collection as a random effect, and a Poisson-error distribution. We repeated this analysis excluding all collected Culex spp. to examine how the L. sphaericus treatments impacted the more tolerant Aedes spp. The primary endpoint for the mortality assays was the corrected larval mortality. We initially compared mortality using a species-specific GLMM with L. sphaericus treatment concentration and treatment period as fixed effects, week of collection as a random effect, and a binomial-error distribution. Preliminary analyses revealed negligible variance attributed to week of collection, so all subsequent models were a GLM. All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, ggplot228, ggeffects29, and glmmTMB30.Project 2: laboratory competition assaysCompetition assays took place at CAES’ main facility in New Haven, CT. This facility contains an Ae. albopictus colony (founded circa 2014 from Stratford, CT) and a Cx. pipiens colony (founded circa 2018 from New Haven, CT;). Colony maintenance for each species was similar: larval rearing pans consisted of approx. 200 eggs (on papers, Ae. albopictus, or as egg rafts, Cx. pipiens) in ~ 2 L RO water and initiated with ~ 20 ml of a 1% 3:2 liver powder/brewer’s yeast slurry. Pans were held at 25.5 °C and 80% humidity and fed ~ 20 ml of the 1% slurry every other day. Pupae were removed to an eclosion chamber and adults were allowed access to 10% sucrose solution ad libitum. Aedes albopictus females were given access to defibrinated sheep’s blood (HemoStat©) through a Hemotek membrane feeder for 1 h every 2–3 weeks and moistened, fluted filter paper was provided to collect eggs. Culex pipiens females were given access to a live, restrained buttonquail overnight once per week and a small cup seeded with 5 ml 1% slurry and 15 RO ml water was provided to collect egg rafts. The use of buttonquail was reviewed and approved in accordance with CAES Institutional Animal Care and Use Committee.We performed two experiments. All experiments consisted of the following treatments: variable ratios of Ae:Cx larvae and two L. sphaericus treatments (no treatment and 0.01 ITU/ml). Larval density (40 per container) remained constant across all replicate treatments, but Ae:Cx ratios varied from 40/0, 30/10, 20/20, 10/30, and 0/40. Nutrients supplied were a low concentration (3 mg larva−1) of a 3:2 liver powder/brewer’s yeast mix applied at the beginning of the experiment. Temperature was held constant at the colony maintenance level. Assays took place in 300 ml disposable plastic cups filled with 100 ml of RO water. The first experiments consisted of the addition of the 40 larvae as newly hatched individuals (+/− 1 day between species’ hatch) at the appropriate ratios, the larval diet, and the 0.01 ITU/ml concentration (diluted from a lab stock of 1000 ITU/ml). Assays were monitored daily until all larvae were dead and/or all larvae pupated. Experiment 2 consisted of the addition of only the Cx. pipiens larvae and the larval diet. After all Cx. pipiens had pupated, containers were treated with L. sphaericus and then the Ae. Albopictus larvae were added.Primary endpoints included species-specific pupation success. Preliminary analyses in a GLMM framework revealed negligible variance attributed to a replicate ID random effect; replicate as a random term also interfered with model convergence. Preliminary analyses further revealed there was neither a significant interaction nor an improvement in the Akaike Information Criterion between the L. sphaericus treatment and initial starting condition terms. Thus, we adopted a GLM rather than a GLMM framework in all further analyses, and species-specific mortality was analyzed as a binomial response term with treatment and initial starting conditions included as fixed effects All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, and ggplot228. More