Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers
Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article
ADS
CAS
PubMed
Google Scholar
Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392. https://doi.org/10.1126/sciadv.1501392 (2016).Article
ADS
PubMed
PubMed Central
Google Scholar
Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography 42, 1–11 (2019).Article
Google Scholar
de Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).Article
PubMed
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article
ADS
CAS
PubMed
Google Scholar
Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456 (2017).Article
ADS
Google Scholar
Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 114, 118–128 (2017).Article
Google Scholar
Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manag. 432, 860–867 (2019).Article
Google Scholar
Richter, R., Hutengs, C., Wirth, C., Bannehr, L. & Vohland, M. Detecting tree species effects on forest canopy temperatures with thermal remote sensing: The role of spatial resolution. Remote Sens. 13, 135. https://doi.org/10.3390/rs13010135 (2021).Article
ADS
Google Scholar
IPCC. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In Press, 2021).Rahman, M. A. et al. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article
Google Scholar
Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst. 22, 683–697 (2019).Article
Google Scholar
Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).Article
CAS
PubMed
Google Scholar
Lindo, Z. & Winchester, N. Out on a limb: microarthropod and microclimate variation in coastal temperate rainforest canopies. Insect Conserv. Divers. 6, 513–521 (2013).Article
Google Scholar
Pincebourde, S., Murdock, C. C., Vickers, M. & Sears, M. W. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 56, 45–61 (2016).Article
PubMed
Google Scholar
Janssen, P., Fuhr, M. & Bouget, C. Beyond forest habitat qualities: Climate and tree characteristics as the major drivers of epiphytic macrolichen assemblages in temperate mountains. J. Veg. Sci. 30, 42–54 (2019).Article
Google Scholar
Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).Article
Google Scholar
Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net photosynthesis: The role of component processes. Tree Physiol. 32, 219–231 (2012).Article
CAS
PubMed
Google Scholar
Simon, H. et al. Modeling transpiration and leaf temperature of urban trees: A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40 (2018).Article
Google Scholar
Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3, 2711–2729 (2013).Article
PubMed
PubMed Central
Google Scholar
Eichenberg, D. et al. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J. Plant Ecol. 10, 170–178 (2017).Article
Google Scholar
Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035 (2017).Article
Google Scholar
Martínez Pastur, G., Perera, A. H., Peterson, U. & Iverson, L. R. In Ecosystem Services from Forest Landscapes (eds Perera, A. H. et al.) 1–10 (Springer International Publishing, 2018).
Google Scholar
Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).Article
Google Scholar
Shashua-Bar, L., Tsiros, I. X. & Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 57, 110–119 (2012).Article
Google Scholar
Song, J. & Wang, Z.-H. Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Build. Environ. 94, 558–568 (2015).Article
Google Scholar
Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).Article
ADS
CAS
PubMed
Google Scholar
Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).Article
ADS
Google Scholar
Pfleiderer, P., Schleussner, C.-F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).Article
ADS
Google Scholar
Selten, F. M., Bintanja, R., Vautard, R. & van den Hurk, B. J. J. M. Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology. Sci. Rep. 10, 4721. https://doi.org/10.1038/s41598-020-61721-9 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J. & Leitgeb, E. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For. Ecol. Manag. 258, 590–599 (2009).Article
Google Scholar
Speak, A., Montagnani, L., Wellstein, C. & Zerbe, S. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 197, 103748. https://doi.org/10.1016/j.landurbplan.2020.103748 (2020).Article
Google Scholar
Rahman, M. A., Armson, D. & Ennos, A. R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18, 371–389 (2015).Article
Google Scholar
Bowden, J. D. & Bauerle, W. L. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. Tree Physiol. 28, 1675–1683 (2008).Article
PubMed
Google Scholar
Panferov, O. et al. The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Trans. Geosci. Remote Sens. 39, 241–253 (2001).Article
ADS
Google Scholar
Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 31, 2202–2211 (2017).Article
Google Scholar
Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant Cell Environ. 41, 1618–1631 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PloS ONE 7, e47882. https://doi.org/10.1371/journal.pone.0047882 (2012).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Gallego, H. A., Rico, M., Moreno, G. & Santa Regina, I. Leaf water potential and stomatal conductance in Quercus pyrenaica Willd. forests: Vertical gradients and response to environmental factors. Tree Physiol. 14, 1039–1047 (1994).Article
PubMed
Google Scholar
Hölscher, D., Koch, O., Korn, S. & Leuschner, C. Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees 19, 628–637 (2005).Article
Google Scholar
Li, S. et al. Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiol. 36, 179–192 (2016).CAS
PubMed
Google Scholar
Schnabel, F. et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob. Change Biol. 28, 1870–1883 (2022).Article
CAS
Google Scholar
Sastry, A., Guha, A. & Barua, D. Leaf thermotolerance in dry tropical forest tree species: Relationships with leaf traits and effects of drought. AoB Plants 10, plx070. https://doi.org/10.1093/aobpla/plx070 (2018).Article
CAS
PubMed
Google Scholar
Banerjee, T. & Linn, R. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9, 198. https://doi.org/10.3390/f9040198 (2018).Article
Google Scholar
Leuzinger, S. & Körner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 146, 29–37 (2007).Article
ADS
Google Scholar
Yi, K. et al. High heterogeneity in canopy temperature among co-occurring tree species in a temperate forest. J. Geophys. Res. Biogeosci. 125, e05892. https://doi.org/10.1029/2020JG005892 (2020).Article
Google Scholar
Hagemeier, M. & Leuschner, C. Functional crown architecture of five temperate broadleaf tree species: Vertical gradients in leaf morphology, leaf angle, and leaf area density. Forests 10, 265. https://doi.org/10.3390/f10030265 (2019).Article
Google Scholar
Raabe, K., Pisek, J., Sonnentag, O. & Annuk, K. Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric. For. Meteor. 214–215, 2–11 (2015).Article
Google Scholar
Kafuti, C. et al. Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest. Forests 11, 35. https://doi.org/10.3390/f11010035 (2020).Article
Google Scholar
Peiffer, M., Bréda, N., Badeau, V. & Granier, A. Disturbances in European beech water relation during an extreme drought. Ann. For. Sci. 71, 821–829 (2014).Article
Google Scholar
Stratópoulos, L. M. F. et al. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 63, 197–208 (2019).Article
ADS
PubMed
Google Scholar
McGloin, R. et al. Available energy partitioning during drought at two Norway spruce forests and a European beech forest in Central Europe. J. Geophys. Res. Atmos. 124, 3726–3742 (2019).Article
ADS
Google Scholar
Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153. https://doi.org/10.1038/s41598-020-71055-1 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 10, 12207. https://doi.org/10.1038/s41598-020-68872-9 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lyon, T. L., Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn. (Pearson, 2017).
Google Scholar
Zweifel, R., Böhm, J. P. & Häsler, R. Midday stomatal closure in Norway spruce—reactions in the upper and lower crown. Tree Physiol. 22, 1125–1136 (2002).Article
CAS
PubMed
Google Scholar
Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 633, 100–111 (2018).Article
ADS
CAS
PubMed
Google Scholar
Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).Article
Google Scholar
Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: A plant-environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).Article
CAS
PubMed
Google Scholar
Leuschner, C., Wedde, P. & Lübbe, T. The relation between pressure–volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Ann. For. Sci. 76, 60. https://doi.org/10.1007/s13595-019-0838-7 (2019).Article
Google Scholar
Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 15, 393–405 (2012).Article
PubMed
Google Scholar
Hartmann, H., Link, R. M. & Schuldt, B. A whole-plant perspective of isohydry: Stem-level support for leaf-level plant water regulation. Tree Physiol. 41, 901–905 (2021).Article
PubMed
PubMed Central
Google Scholar
Alonso-Forn, D. et al. Revisiting the functional basis of sclerophylly within the leaf economics spectrum of oaks: Different roads to Rome. Curr. For. Rep. 6, 260–281 (2020).
Google Scholar
Hirons, A. D. & Thomas, P. A. Applied Tree Biology (John Wiley & Sons Ltd, 2017).Book
Google Scholar
Richter, R., Reu, B., Wirth, C., Doktor, D. & Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 52, 464–474 (2016).ADS
Google Scholar
Qiu, G. et al. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 12, 1307–1315 (2013).Article
Google Scholar
Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384 (2012).Article
ADS
Google Scholar
Landsberg, J. J. & James, G. B. Wind profiles in plant canopies: Studies on an analytical model. J. Appl. Ecol. 8, 729–741 (1971).Article
Google Scholar
Gromke, C. & Ruck, B. Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry 81, 243–258 (2008).Article
Google Scholar
Baldocchi, D. D. Turbulent transfer in a deciduous forest. Tree Physiol. 5, 357–377 (1989).Article
CAS
PubMed
Google Scholar
Derby, R. W. & Gates, D. M. The temperature of tree trunks—Calculated and observed. Am. J. Bot. 53, 580–587 (1966).
Google Scholar
Jayalakshmy, M. S. & Philip, J. Thermophysical properties of plant leaves and their influence on the environment temperature. Int. J. Thermophys. 31, 2295–2304 (2010).Article
ADS
CAS
Google Scholar
Pieruschka, R., Huber, G. & Berry, J. A. Control of transpiration by radiation. Proc. Natl. Acad. Sci. U.S.A. 107, 13372–13377 (2010).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Meili, N. et al. Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. Urban For. Urban Green. 58, 126970. https://doi.org/10.1016/j.ufug.2020.126970 (2021).Article
Google Scholar
Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063. https://doi.org/10.1016/j.agrformet.2020.108063 (2020).Article
ADS
Google Scholar
Betts, M. G., Phalan, B., Frey, S. J. K., Rousseau, J. S. & Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 24, 439–447 (2018).Article
Google Scholar
Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. For. Rep. 4, 35–50 (2018).
Google Scholar
de Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).Article
ADS
Google Scholar
Woods, C. L., Cardelús, C. L. & DeWalt, S. J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 103, 421–430 (2015).Article
Google Scholar
Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).Article
PubMed
Google Scholar
European State of the Climate 2020, Copernicus Climate Change Service, Full report: climate.copernicus.eu/ESOTC/2020Munzi, S. et al. Lichens as ecological indicators in urban areas: beyond the effects of pollutants. J. Appl. Ecol. 51, 1750–1757 (2014).Article
Google Scholar
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).Article
ADS
Google Scholar
Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).Article
PubMed
Google Scholar
Merinero, S., Dahlberg, C. J., Ehrlén, J. & Hylander, K. Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 101, e02999. https://doi.org/10.1002/ecy.2999 (2020).Article
PubMed
Google Scholar
Ben-Yakir, D. & Fereres, A. The effects of UV radiation on arthropods: A review of recent publications (2010–2015). Acta Hortic. 1134, 335–342 (2016).Vanhaelewyn, L., van der Straeten, D., de Coninck, B. & Vandenbussche, F. Ultraviolet radiation from a plant perspective: The plant-microorganism context. Front. Plant Sci. 11, 597642. https://doi.org/10.3389/fpls.2020.597642 (2020).Article
PubMed
PubMed Central
Google Scholar
Jansen, E. Das Naturschutzgebiet Burgaue; Staatliches Umweltfachamt: Leipzig, Germany (1999).Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LFULG) & DWD Deutscher Wetterdienst (2019) [ed.]: 2018 Wetter trifft auf Klima. Dresden, Leipzig. https://www.klima.sachsen.de/download/Jahresrueckblick2018_A5_OeA.pdf.Haase, D. & Gläser, J. Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. For. Ecol. Manag. 258, 887–894 (2009).Article
Google Scholar
Patzak, R., Richter, R., Engelmann, R. A. & Wirth, C. Tree crowns as meeting points of diversity generating mechanisms: A test with epiphytic lichens in a temperate forest. Preprint at: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.01.03.894303v1.full (2020).Meinen, C., Leuschner, C., Ryan, N. T. & Hertel, D. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23, 941–950 (2009).Article
Google Scholar
van der Zande, D., Stuckens, J., Verstraeten, W. W., Muys, B. & Coppin, P. Assessment of light environment variability in broadleaved forest canopies using terrestrial laser scanning. Remote Sens. 2, 1564–1574. https://doi.org/10.3390/rs2061564 (2010).Article
ADS
Google Scholar
Köstner, B., Granier, A. & Cermák, J. Sapflow measurements in forest stands: Methods and uncertainties. Ann. For. Sci. 55, 13–27 (1998).Article
Google Scholar
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).Article
CAS
PubMed
Google Scholar
Metzger, J. M. & Oren, R. The effect of crown dimension on transparency and the assessment of tree health. Ecol. Appl. 11, 1634–1640 (2001).Article
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1-151, https://CRAN.R-project.org/package=nlme.Dornelas, M. et al. Quantifying temporal change in biodiversity: Challenges and opportunities. Proc. Biol. Sci. 280, 20121931. https://doi.org/10.1098/rspb.2012.1931 (2013).Article
PubMed
PubMed Central
Google Scholar
Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).Article
PubMed
Google Scholar
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. More