Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882ā892, https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).ArticleĀ
Google ScholarĀ
Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, Vol 30 30, 1ā67 (2000).CASĀ
Google ScholarĀ
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties., (John Wiley & Sons, 2001).Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15, 295ā304, https://doi.org/10.1111/j.1654-1103.2004.tb02266.x (2004).ArticleĀ
Google ScholarĀ
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545ā556 (2002).ArticleĀ
Google ScholarĀ
PĆ©rez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167, https://doi.org/10.1071/bt12225 (2013).ArticleĀ
Google ScholarĀ
Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity. (Oxford University Press, 2016).Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085ā1100 (2004).ArticleĀ
Google ScholarĀ
DĆaz, S. et al. The global spectrum of plant form and function. Nature 529, 167ā171, https://doi.org/10.1038/nature16489 (2016).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Kattge, J. et al. TRY ā a global database of plant traits. Global Change Biology 17, 2905ā2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x (2011).ArticleĀ
ADSĀ
Google ScholarĀ
Kattge, J. et al. TRY plant trait database ā enhanced coverage and open access. Global Change Biology 26, 119ā188, https://doi.org/10.1111/gcb.14904 (2020).ArticleĀ
ADSĀ
Google ScholarĀ
Royal Botanic Gardens, Kew. The State of the Worldās Plants Report – 2016. (Royal Botanic Gardens, Kew, 2016).Kattge, J. et al. TRY – Categorical Traits Dataset. Data from: TRY – a global database of plant traits. TRY File Archive https://www.try-db.org/TryWeb/Data.php – 3 (2012).Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105, 298ā309, https://doi.org/10.1111/1365-2745.12698 (2016).ArticleĀ
Google ScholarĀ
Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335, https://doi.org/10.1071/bt02124 (2003).ArticleĀ
Google ScholarĀ
Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96, 1266ā1274, https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).ArticleĀ
Google ScholarĀ
Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 41, 653ā663, https://doi.org/10.1111/j.0021-8901.2004.00934.x (2004).ArticleĀ
Google ScholarĀ
Adler, P. B. A comparison of livestock grazing effects on sagebrush steppe, USA, and Patagonian steppe, Argentina. PhD thesis, Colorado State University, (2003).Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species. Plant Physiology 113, 961ā965, https://doi.org/10.1104/pp.113.3.961 (1997).ArticleĀ
CASĀ
Google ScholarĀ
Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176, 375ā389, https://doi.org/10.1111/j.1469-8137.2007.02183.x (2007).ArticleĀ
CASĀ
Google ScholarĀ
Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544ā554, https://doi.org/10.1007/s004420050889 (1999).ArticleĀ
ADSĀ
Google ScholarĀ
Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biology 9, 895ā910, https://doi.org/10.1046/j.1365-2486.2003.00611.x (2003).ArticleĀ
ADSĀ
Google ScholarĀ
Bahn, M. et al. in Land-use changes in European mountain ecosystems. ECOMONT- Concept and Results (eds A. Cernusca, U. Tappeiner, & N. Bayfield) 247-255 (Blackwell Wissenschaft, Berlin, 1999).Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281ā1296, https://doi.org/10.1046/j.1365-3040.1999.00479.x (1999).ArticleĀ
Google ScholarĀ
Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565ā578, https://doi.org/10.1093/treephys/20.9.565 (2000).ArticleĀ
Google ScholarĀ
Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23, 865ā877, https://doi.org/10.1093/treephys/23.13.865 (2003).ArticleĀ
Google ScholarĀ
Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13, 1338ā1347, https://doi.org/10.1111/j.1461-0248.2010.01517.x (2010).ArticleĀ
Google ScholarĀ
Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology 24, 208ā216, https://doi.org/10.1111/j.1365-2435.2009.01600.x (2010).ArticleĀ
Google ScholarĀ
Blonder, B. et al. The leaf-area shrinkage effect can bias paleoclimate and ecology research. American Journal of Botany 99, 1756ā1763, https://doi.org/10.3732/ajb.1200062 (2012).ArticleĀ
Google ScholarĀ
Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049, https://doi.org/10.1093/aobpla/plv049 (2015).ArticleĀ
Google ScholarĀ
Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101, 981ā989, https://doi.org/10.1111/1365-2745.12102 (2013).ArticleĀ
Google ScholarĀ
Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecology Letters 14, 91ā100, https://doi.org/10.1111/j.1461-0248.2010.01554.x (2010).ArticleĀ
Google ScholarĀ
Bond-Lamberty, B., Wang, C. & Gower, S. T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441ā1450, https://doi.org/10.1139/x02-063 (2002).ArticleĀ
Google ScholarĀ
Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology 22, 993ā1001, https://doi.org/10.1093/treephys/22.14.993 (2002).ArticleĀ
CASĀ
Google ScholarĀ
Bond-Lamberty, B., Wang, C. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Canadian Journal of Forest Research 33, 101ā105, https://doi.org/10.1139/x02-166 (2003).ArticleĀ
Google ScholarĀ
Brown, K. A. et al. Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics. PLoS ONE 6, e24107, https://doi.org/10.1371/journal.pone.0024107 (2011).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology 16, 244ā253, https://doi.org/10.1556/168.2015.16.2.12 (2015).ArticleĀ
Google ScholarĀ
Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477ā487, https://doi.org/10.1007/s00442-010-1741-y (2010).ArticleĀ
ADSĀ
Google ScholarĀ
Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology 101, 128ā139, https://doi.org/10.1111/1365-2745.12016 (2012).ArticleĀ
Google ScholarĀ
Campetella, G. et al. Patterns of plant traitāenvironment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment 145, 38ā48, https://doi.org/10.1016/j.agee.2011.06.025 (2011).ArticleĀ
Google ScholarĀ
Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109āS122, https://doi.org/10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2 (2006).ArticleĀ
Google ScholarĀ
Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecology 210, 253ā261, https://doi.org/10.1007/s11258-010-9753-6 (2010).ArticleĀ
Google ScholarĀ
Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany 109, 1047ā1053, https://doi.org/10.1093/aob/mcs021 (2012).ArticleĀ
Google ScholarĀ
Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology 18, 779ā786, https://doi.org/10.1111/j.0269-8463.2004.00900.x (2004).ArticleĀ
Google ScholarĀ
Quested, H. M. et al. Decomposition of sub-arctic plants with differenting nitogen economies: a functional role for hemiparasites. Ecology 84, 3209ā3221, https://doi.org/10.1890/02-0426 (2003).ArticleĀ
Google ScholarĀ
Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. The Journal of Ecology 84, 755, https://doi.org/10.2307/2261337 (1996).ArticleĀ
Google ScholarĀ
Cornelissen, J. H. C., Werger, M. J. A. & CastroDiez, P. vanRheenen, J. W. A. & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460ā469 (1997).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14, 311, https://doi.org/10.1658/1100-9233(2003)014[0311:ftowpc]2.0.co;2 (2003).ArticleĀ
Google ScholarĀ
Castro-DĆez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57ā66, https://doi.org/10.1007/s004420050563 (1998).ArticleĀ
ADSĀ
Google ScholarĀ
Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248ā255, https://doi.org/10.1007/s004420050725 (1999).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Cornelissen, J. H. C. An Experimental Comparison of Leaf Decomposition Rates in a Wide Range of Temperate Plant Species and Types. The Journal of Ecology 84, 573, https://doi.org/10.2307/2261479 (1996).ArticleĀ
Google ScholarĀ
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065ā1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x (2008).ArticleĀ
Google ScholarĀ
Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170, 807ā818, https://doi.org/10.1111/j.1469-8137.2006.01712.x (2006).ArticleĀ
Google ScholarĀ
Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465ā1471, https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2 (2006).ArticleĀ
Google ScholarĀ
Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10, 135ā145, https://doi.org/10.1111/j.1461-0248.2006.01006.x (2007).ArticleĀ
CASĀ
Google ScholarĀ
Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109ā126, https://doi.org/10.1890/07-1134.1 (2009).ArticleĀ
Google ScholarĀ
Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980ā992, https://doi.org/10.1111/j.1469-8137.2009.02917.x (2009).ArticleĀ
CASĀ
Google ScholarĀ
Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109ā1117, https://doi.org/10.1007/s00442-011-1938-8 (2011).ArticleĀ
ADSĀ
Google ScholarĀ
Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil 356, 395ā403, https://doi.org/10.1007/s11104-012-1141-7 (2012).ArticleĀ
CASĀ
Google ScholarĀ
Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48, https://doi.org/10.1890/es11-00023.1 (2011).ArticleĀ
Google ScholarĀ
Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12ā19, https://doi.org/10.1890/04-1075 (2005).ArticleĀ
Google ScholarĀ
Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management 238, 335ā346, https://doi.org/10.1016/j.foreco.2006.10.030 (2007).ArticleĀ
Google ScholarĀ
Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643ā1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).ArticleĀ
Google ScholarĀ
Bragazza, L. Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodiversity and Conservation 18, 2823ā2835, https://doi.org/10.1007/s10531-009-9609-3 (2009).ArticleĀ
Google ScholarĀ
Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany 122, 11ā21, https://doi.org/10.1007/s00035-012-0101-4 (2012).ArticleĀ
Google ScholarĀ
de Araujo, A. C. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. (2011).Royal Botanical Gardens KEW. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (accessed May 2011). (2008).Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, ParĆ”, Brazil). Earth Interactions 9, 1ā23, https://doi.org/10.1175/ei149.1 (2005).ArticleĀ
ADSĀ
Google ScholarĀ
Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern AmazĆ“nia, Brazil. Plant Ecology 193, 101ā112, https://doi.org/10.1007/s11258-006-9251-z (2007).ArticleĀ
Google ScholarĀ
Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment 33, 959ā980, https://doi.org/10.1111/j.1365-3040.2010.02119.x (2010).ArticleĀ
CASĀ
Google ScholarĀ
Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. The American Naturalist 168, E103āE122, https://doi.org/10.1086/507879 (2006).ArticleĀ
Google ScholarĀ
FagĆŗndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Botanica Gallica 157, 45ā54, https://doi.org/10.1080/12538078.2010.10516188 (2010).ArticleĀ
Google ScholarĀ
Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168, 377ā385, https://doi.org/10.1111/j.1469-8137.2005.01530.x (2005).ArticleĀ
CASĀ
Google ScholarĀ
He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170, 835ā848, https://doi.org/10.1111/j.1469-8137.2006.01704.x (2006).ArticleĀ
Google ScholarĀ
He, J.-S. et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155, 301ā310, https://doi.org/10.1007/s00442-007-0912-y (2007).ArticleĀ
ADSĀ
Google ScholarĀ
Bocanegra, K., FernĆ”ndez, F. & Galvis, J. Grupos funcionales de arboles en bosques secundarios de la region Bajo Calima (Buenaventura, Colombia). BoletĆn CientĆfico. Centro de Museos. Museo de Historia Natural 19, 17ā40, https://doi.org/10.17151/bccm.2015.19.1.2 (2015).ArticleĀ
Google ScholarĀ
Fitter, A. H. & Peat, H. J. The Ecological Flora Database. The Journal of Ecology 82, 415, https://doi.org/10.2307/2261309 (1994).ArticleĀ
Google ScholarĀ
Frenette-Dussault, C., Shipley, B., LĆ©ger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grimeās C-S-R theory. Journal of Vegetation Science 23, 208ā222, https://doi.org/10.1111/j.1654-1103.2011.01350.x (2011).ArticleĀ
Google ScholarĀ
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27, 1254ā1261, https://doi.org/10.1111/1365-2435.12116 (2013).ArticleĀ
Google ScholarĀ
Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the āplant economics spectrumā in a subarctic flora. Journal of Ecology 98, 362ā373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).ArticleĀ
Google ScholarĀ
Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits. New Phytologist 186, 879ā889, https://doi.org/10.1111/j.1469-8137.2010.03228.x (2010).ArticleĀ
CASĀ
Google ScholarĀ
Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39, 1757ā1771, https://doi.org/10.1111/j.1365-2699.2012.02773.x (2012).ArticleĀ
Google ScholarĀ
Garnier, E. et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany 99, 967ā985, https://doi.org/10.1093/aob/mcl215 (2007).ArticleĀ
Google ScholarĀ
Pakeman, R. J., LepÅ”, J., Kleyer, M., Lavorel, S. & Garnier, E. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20, 148ā159, https://doi.org/10.1111/j.1654-1103.2009.05548.x (2009).ArticleĀ
Google ScholarĀ
Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96, 355ā366 (2008).ArticleĀ
Google ScholarĀ
Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598ā611 (2009).ArticleĀ
Google ScholarĀ
Gillison, A. N. & Carpenter, G. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Ecology 11, 775ā783, https://doi.org/10.1046/j.1365-2435.1997.00157.x (1997).ArticleĀ
Google ScholarĀ
Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT – attributes of British and Irish Plants: status, size, life history, geography and habitats. (Huntingdon: Centre for Ecology and Hydrology, 2004).Green, W. USDA PLANTS Compilation, version 1, 09-02-02. (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA 70874-74490 USA (2009).Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biology Letters 8, 882ā886, https://doi.org/10.1098/rsbl.2012.0458 (2012).ArticleĀ
Google ScholarĀ
GutiĆ©rrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of ChiloĆ© Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics 14, 243ā256, https://doi.org/10.1016/j.ppees.2012.01.004 (2012).ArticleĀ
Google ScholarĀ
Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in Chinaās terrestrial plants. Global Ecology and Biogeography 21, 376ā382, https://doi.org/10.1111/j.1466-8238.2011.00677.x (2011).ArticleĀ
Google ScholarĀ
Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178ā184, https://doi.org/10.1111/j.1600-0587.2011.06833.x (2011).ArticleĀ
Google ScholarĀ
Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339ā5352, https://doi.org/10.5194/bg-12-5339-2015 (2015).ArticleĀ
ADSĀ
Google ScholarĀ
Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytologist 190, 169ā180, https://doi.org/10.1111/j.1469-8137.2010.03579.x (2010).ArticleĀ
CASĀ
Google ScholarĀ
He, T., Pausas, J. P., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194, 751ā759, https://doi.org/10.1111/j.1469-8137.2012.04079.x (2012).ArticleĀ
Google ScholarĀ
He, T., Lamont, B. B. & Downs, K. S. Banksias born to burn. New Phytologist 191, 184ā196, https://doi.org/10.1111/j.1469-8137.2011.03663.x. (2011).ArticleĀ
Google ScholarĀ
Hickler, T. Plant functional types and community characteristics along environmental gradients on Ćlandās Great Alvar (Sweden) Master thesis, University of Lund, Sweden, (1999).Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82, 205ā220, https://doi.org/10.1890/11-0416.1 (2012).ArticleĀ
Google ScholarĀ
Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1106 (2012).Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752ā755, https://doi.org/10.1038/nature11688 (2012).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15, 976ā991, https://doi.org/10.1111/j.1365-2486.2008.01744.x (2009).ArticleĀ
ADSĀ
Google ScholarĀ
Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a Digital African Flora. Taxon 54, 457, https://doi.org/10.2307/25065373 (2005).ArticleĀ
Google ScholarĀ
Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science 12, 327ā336, https://doi.org/10.2307/3236846 (2001).ArticleĀ
Google ScholarĀ
Koike, F., Clout, M., Kawamichi, M., De Poorter, M. & Iwatsuki, K. Assessment and Control of Biological Invasion Risks. (Cambridge, UK and Shoukadoh Book Sellers, Kyoto, Japan, and IUCN, Gland, Switzerland, 2006).Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401ā422, https://doi.org/10.1890/09-1672.1 (2010).ArticleĀ
Google ScholarĀ
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science 322, 580ā582, https://doi.org/10.1126/science.1160662 (2008).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Kühn, I., Durka, W. & Klotz, S. BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution 10, 363ā365 (2004).ArticleĀ
Google ScholarĀ
Otto, B. Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR – Eine Datenbank zu biologisch-ƶkologischen Merkmalen der GefƤĆpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn (2002).Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645ā2656, https://doi.org/10.1890/07-1352.1 (2008).ArticleĀ
Google ScholarĀ
Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176ā181, https://doi.org/10.1139/cjb-2012-0162 (2013).ArticleĀ
Google ScholarĀ
Mishkolz, J. M. Selecting and evaluating native forage mixtures for the mixed grass prairie. (University of Saskatchewan, Saskatoon, SK., 2013).Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493ā501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2009).ArticleĀ
Google ScholarĀ
Laughlin, D. C., FulĆ©, P. Z., Huffman, D. W., Crouse, J. & LalibertĆ©, E. Climatic constraints on trait-based forest assembly. Journal of Ecology 99, 1489ā1499, https://doi.org/10.1111/j.1365-2745.2011.01885.x (2011).ArticleĀ
Google ScholarĀ
Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677ā2708, https://doi.org/10.5194/bg-6-2677-2009 (2009).ArticleĀ
ADSĀ
Google ScholarĀ
Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests. Biogeosciences 6, 297ā307, https://doi.org/10.5194/bg-6-297-2009 (2009).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
PatiƱo, S. et al. Branch xylem density variations across the Amazon Basin. Biogeosciences 6, 545ā568, https://doi.org/10.5194/bg-6-545-2009 (2009).ArticleĀ
ADSĀ
Google ScholarĀ
Louault, F., Pillar, V. D., AufrĆØre, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science 16, 151ā160, https://doi.org/10.1111/j.1654-1103.2005.tb02350.x (2005).ArticleĀ
Google ScholarĀ
Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577ā1590, https://doi.org/10.5194/bg-6-1577-2009 (2009).ArticleĀ
ADSĀ
Google ScholarĀ
Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic and Applied Ecology 10, 300ā308, https://doi.org/10.1016/j.baae.2008.08.004 (2009).ArticleĀ
CASĀ
Google ScholarĀ
Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. Journal of Vegetation Science 25, 248ā261, https://doi.org/10.1111/jvs.12068 (2013).ArticleĀ
Google ScholarĀ
Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal Variation in the Capacity for Plant Trait Measures to Predict Grassland Carbon and Water Fluxes. Ecosystems 17, 1095ā1108, https://doi.org/10.1007/s10021-014-9779-z (2014).ArticleĀ
CASĀ
Google ScholarĀ
Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124, 69ā83, https://doi.org/10.1016/s0304-3800(99)00148-9 (1999).ArticleĀ
CASĀ
Google ScholarĀ
Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475ā1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).ArticleĀ
CASĀ
Google ScholarĀ
Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149, 247ā264, https://doi.org/10.1046/j.1469-8137.2001.00028.x (2001).ArticleĀ
CASĀ
Google ScholarĀ
Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment 25, 343ā357, https://doi.org/10.1046/j.0016-8025.2001.00811.x (2002).ArticleĀ
Google ScholarĀ
Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology 20, 179ā186, https://doi.org/10.1093/treephys/20.3.179 (2000).ArticleĀ
Google ScholarĀ
Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology 192, 277ā287, https://doi.org/10.1007/s11258-007-9320-y (2007).ArticleĀ
Google ScholarĀ
Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment 26, 163ā182, https://doi.org/10.1046/j.1365-3040.2003.00991.x (2003).ArticleĀ
Google ScholarĀ
Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13, 838ā848, https://doi.org/10.1111/j.1461-0248.2010.01476.x (2010).ArticleĀ
Google ScholarĀ
Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany 107, 455ā465, https://doi.org/10.1093/aob/mcq261 (2011).ArticleĀ
Google ScholarĀ
Minden, V. & Kleyer, M. Testing the effect-response framework: key response and effect traits determining above-ground biomass of salt marshes. Journal of Vegetation Science 22, 387ā401, https://doi.org/10.1111/j.1654-1103.2011.01272.x (2011).ArticleĀ
Google ScholarĀ
Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant traitāenvironment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14, 183ā192, https://doi.org/10.1016/j.ppees.2012.01.002 (2012).ArticleĀ
Google ScholarĀ
Moles, A. T., Falster, D. S., Leishman, M. R. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92, 384ā396, https://doi.org/10.1111/j.0022-0477.2004.00880.x (2004).ArticleĀ
Google ScholarĀ
Moles, A. T. et al. Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences 102, 10540ā10544, https://doi.org/10.1073/pnas.0501473102 (2005).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Lavergne, S., Muenke, N. J. & Molofsky, J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105, 109ā116, https://doi.org/10.1093/aob/mcp271 (2009).ArticleĀ
CASĀ
Google ScholarĀ
Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences 104, 3883ā3888, https://doi.org/10.1073/pnas.0607324104 (2007).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. American Journal of Botany 91, 228ā246, https://doi.org/10.3732/ajb.91.2.228 (2004).ArticleĀ
CASĀ
Google ScholarĀ
Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299ā309, https://doi.org/10.1111/j.1600-0587.2008.05524.x (2009).ArticleĀ
Google ScholarĀ
Niinemets, U. Global-Scale Climatic Controls of Leaf Dry Mass per Area, Density, and Thickness in Trees and Shrubs. Ecology 82, 453, https://doi.org/10.2307/2679872 (2001).ArticleĀ
Google ScholarĀ
Niinemets, Ć. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144, 35ā47, https://doi.org/10.1046/j.1469-8137.1999.00466.x (1999).ArticleĀ
Google ScholarĀ
Ciocarlan, V. The illustrated Flora of Romania. Pteridophyta et Spermatopyta. 1141 (Editura Ceres, 2009).Sanda, V., Bita-Nicolae, C. D. & Barabas, N. The flora of spontane and cultivated cormophytes from Romania. (Editura āIon Borceaā, Bacau, 2003).Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecology Letters 14, 301ā312, https://doi.org/10.1111/j.1461-0248.2010.01582.x (2011).ArticleĀ
Google ScholarĀ
OrdoƱez, J. C. et al. Plant Strategies in Relation to Resource Supply in Mesic to Wet Environments: Does Theory Mirror Nature? The American Naturalist 175, 225ā239, https://doi.org/10.1086/649582 (2010).ArticleĀ
Google ScholarĀ
OrdoƱez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology, 100413130925016, https://doi.org/10.1890/09-1509 (2010).Pahl, A. T., Kollmann, J., Mayer, A. & Haider, S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Annals of Botany 112, 1921ā1930, https://doi.org/10.1093/aob/mct246 (2013).ArticleĀ
Google ScholarĀ
Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90, 1420ā1420, https://doi.org/10.1890/08-1309.1 (2009).ArticleĀ
Google ScholarĀ
Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543ā552, https://doi.org/10.1111/j.1365-2745.2008.01359.x (2008).ArticleĀ
Google ScholarĀ
Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic and Applied Ecology 6, 175ā183, https://doi.org/10.1016/j.baae.2005.01.002 (2005).ArticleĀ
Google ScholarĀ
Ogaya, R. & PeƱuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany 50, 137ā148, https://doi.org/10.1016/s0098-8472(03)00019-4 (2003).ArticleĀ
Google ScholarĀ
Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum 50, 373ā382, https://doi.org/10.1007/s10535-006-0052-y (2006).ArticleĀ
Google ScholarĀ
Ogaya, R. & PeƱuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecology 189, 291ā299, https://doi.org/10.1007/s11258-006-9184-6 (2006).ArticleĀ
Google ScholarĀ
Ogaya, R. & PeƱuelas, J. Changes in leaf Ī“13C and Ī“15N for three Mediterranean tree species in relation to soil water availability. Acta Oecologica 34, 331ā338, https://doi.org/10.1016/j.actao.2008.06.005 (2008).ArticleĀ
ADSĀ
Google ScholarĀ
Sardans, J., PeƱuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. Forest Science 54, 513ā522 (2008).
Google ScholarĀ
Sardans, J., PeƱuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. Journal of Geophysical Research 113, https://doi.org/10.1029/2008jg000795 (2008).PeƱuelas, J. et al. Faster returns on āleaf economicsā and different biogeochemical niche in invasive compared with native plant species. Global Change Biology 16, 2171ā2185, https://doi.org/10.1111/j.1365-2486.2009.02054.x (2009).ArticleĀ
ADSĀ
Google ScholarĀ
PeƱuelas, J. et al. Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology 36, 1255ā1270, https://doi.org/10.1007/s10886-010-9862-7 (2010).ArticleĀ
CASĀ
Google ScholarĀ
Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27, 1002ā1010, https://doi.org/10.1111/1365-2435.12095 (2013).ArticleĀ
Google ScholarĀ
Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 141, 337ā343, https://doi.org/10.1080/11263500701627695 (2007).ArticleĀ
Google ScholarĀ
Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95, 698ā706, https://doi.org/10.1111/j.1365-2745.2007.01242.x (2007).ArticleĀ
Google ScholarĀ
Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant Functional Types of Woody Species Related to Fire Disturbance in ForestāGrassland Ecotones. Plant Ecology 189, 1ā14, https://doi.org/10.1007/s11258-006-9162-z (2006).ArticleĀ
Google ScholarĀ
Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14, 323ā332, https://doi.org/10.1111/j.1654-1103.2003.tb02158.x (2003).ArticleĀ
Google ScholarĀ
Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland-forest mosaic. Journal of Vegetation Science 18, 847ā858, https://doi.org/10.1111/j.1654-1103.2007.tb02601.x (2007).ArticleĀ
Google ScholarĀ
Blanco, C., Sosinski, E., Santos, B., Silva, M. & Pillar, V. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8, 57ā65, https://doi.org/10.1556/comec.8.2007.1.8 (2007).ArticleĀ
Google ScholarĀ
Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16, 655, https://doi.org/10.1658/1100-9233(2005)016[0655:fpdisb]2.0.co;2 (2005).ArticleĀ
Google ScholarĀ
Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants 202, 27ā49, https://doi.org/10.1016/j.flora.2005.11.004 (2007).ArticleĀ
Google ScholarĀ
Poorter, H., Niinemets, Ć., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565ā588, https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).ArticleĀ
Google ScholarĀ
Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology 24, 927ā936, https://doi.org/10.1111/j.1365-2435.2010.01701.x (2010).ArticleĀ
Google ScholarĀ
Price, C. A. & Enquist, B. J. Scaling of mass and morphology in Dicotyledonous leaves: an extension of the WBE model. Ecology 88, 1132ā1141, https://doi.org/10.1890/06-1158 (2007).ArticleĀ
Google ScholarĀ
Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences 104, 13204ā13209, https://doi.org/10.1073/pnas.0702242104 (2007).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, no-no, https://doi.org/10.1111/j.1600-0587.2009.05975.x (2009).Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesisānitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207ā212, https://doi.org/10.1007/s00442-009-1291-3 (2009).ArticleĀ
ADSĀ
Google ScholarĀ
Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11, 793ā801, https://doi.org/10.1111/j.1461-0248.2008.01185.x (2008).ArticleĀ
Google ScholarĀ
Cavender-Bares, J., Sack, L. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology 27, 611ā620, https://doi.org/10.1093/treephys/27.4.611 (2007).ArticleĀ
Google ScholarĀ
Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J. & Sack, L. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 4, 302ā306, https://doi.org/10.1098/rsbl.2008.0094 (2008).ArticleĀ
Google ScholarĀ
Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology 21, 1063ā1071, https://doi.org/10.1111/j.1365-2435.2007.01323.x (2007).ArticleĀ
Google ScholarĀ
DunbarāCo, S., Sporck, Margaret, J. & Sack, L. Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal of Plant Sciences 170, 61ā75, https://doi.org/10.1086/593111 (2009).ArticleĀ
Google ScholarĀ
Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology 24, 731ā740, https://doi.org/10.1111/j.1365-2435.2010.01724.x (2010).ArticleĀ
Google ScholarĀ
Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica 0, 070606001740001-???, https://doi.org/10.1111/j.1744-7429.2007.00325.x (2007).ArticleĀ
Google ScholarĀ
Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387ā400, https://doi.org/10.1007/s00442-006-0604-z (2006).ArticleĀ
ADSĀ
Google ScholarĀ
Nakahashi, C. D., Frole, K. & Sack, L. Bacterial Leaf Nodule Symbiosis in Ardisia (Myrsinaceae): Does it Contribute to Seedling Growth Capacity. Plant Biology 7, 495ā500, https://doi.org/10.1055/s-2005-865853 (2005).ArticleĀ
CASĀ
Google ScholarĀ
Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology 35, 725, https://doi.org/10.1071/fp08149 (2008).ArticleĀ
Google ScholarĀ
Sack, L. Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation. Oikos 107, 110ā127, https://doi.org/10.1111/j.0030-1299.2004.13184.x (2004).ArticleĀ
Google ScholarĀ
Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483ā491, https://doi.org/10.1890/05-0710 (2006).ArticleĀ
Google ScholarĀ
Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167, 403ā413, https://doi.org/10.1111/j.1469-8137.2005.01432.x (2005).ArticleĀ
Google ScholarĀ
Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The āhydrologyā of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment 26, 1343ā1356, https://doi.org/10.1046/j.0016-8025.2003.01058.x (2003).ArticleĀ
Google ScholarĀ
Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees. American Journal of Botany 93, 829ā839, https://doi.org/10.3732/ajb.93.6.829 (2006).ArticleĀ
Google ScholarĀ
Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment 31, 1803ā1812, https://doi.org/10.1111/j.1365-3040.2008.01884.x (2008).ArticleĀ
Google ScholarĀ
Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, https://doi.org/10.1890/ES10-00175.1 (2011).Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE. Perspectives in Plant Ecology, Evolution and Systematics 9, 53ā70, https://doi.org/10.1016/j.ppees.2007.08.002 (2007).ArticleĀ
Google ScholarĀ
Schweingruber, F. H. & Landolt, W. The Xylem Database. (Swiss Federal Research Institute WSL, 2005).Schweingruber, F. H. & Poschlod, P. Growth rings in herbs and shrubs: Life span, age determination and stem anatomy. Forest, Snow and Landscape Research 79, 195ā415 (2005).
Google ScholarĀ
Sheremetev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). (KMK Scientific Press Ltd, Moscow, 2005).Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology 24, 121ā133, https://doi.org/10.1017/s0266467407004725 (2008).ArticleĀ
Google ScholarĀ
Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology 16, 682ā689, https://doi.org/10.1046/j.1365-2435.2002.00672.x (2002).ArticleĀ
Google ScholarĀ
Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology 13, 611ā622, https://doi.org/10.1046/j.1365-2435.1999.00359.x (1999).ArticleĀ
Google ScholarĀ
McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Ćcoscience 6, 286ā296, https://doi.org/10.1080/11956860.1999.11682529 (1999).ArticleĀ
Google ScholarĀ
Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist 153, 359ā364, https://doi.org/10.1046/j.0028-646x.2001.00320.x (2002).ArticleĀ
Google ScholarĀ
Shipley, B. & Parent, M. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate. Functional Ecology 5, 111, https://doi.org/10.2307/2389561 (1991).ArticleĀ
Google ScholarĀ
Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in40 wetland species. Ćcoscience 7, 183ā194, https://doi.org/10.1080/11956860.2000.11682587 (2000).ArticleĀ
Google ScholarĀ
Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143, 131ā142, https://doi.org/10.1046/j.1469-8137.1999.00435.x (1999).ArticleĀ
Google ScholarĀ
Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment 22, 447ā459, https://doi.org/10.1046/j.1365-3040.1999.00423.x (1999).ArticleĀ
Google ScholarĀ
Shipley, B. Structured Interspecific Determinants of Specific Leaf Area in 34 Species of Herbaceous Angiosperms. Functional Ecology 9, 312, https://doi.org/10.2307/2390579 (1995).ArticleĀ
Google ScholarĀ
Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20, 21ā30, https://doi.org/10.1111/j.1365-2435.2006.01080.x (2006).ArticleĀ
Google ScholarĀ
Vile, D. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations PhD thesis, UniversitĆ© de Sherbrooke, Sherbrooke (Quebec), (2005).Auger, S. Lāimportance de la variabilitĆ© interspĆ©cifique des traits fonctionnels par rapport Ć la variabilitĆ© intraspĆ©cifique chez les jeunes arbres en forĆŖt mature Msc thesis, UniversitĆ© de Sherbrooke, Sherbrooke (Quebec) (2012).Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24, 419ā428, https://doi.org/10.1111/j.1654-1103.2012.01473.x (2012).ArticleĀ
Google ScholarĀ
Soudzilovskaia, N. A. et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences 110, 18180ā18184, https://doi.org/10.1073/pnas.1310700110 (2013).ArticleĀ
ADSĀ
Google ScholarĀ
Elumeeva, T. G. et al. Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alpine Botany 123, 77ā85, https://doi.org/10.1007/s00035-013-0122-7 (2013).ArticleĀ
Google ScholarĀ
Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100, 652ā661, https://doi.org/10.1111/j.1365-2745.2011.01945.x (2012).ArticleĀ
Google ScholarĀ
Swaine, E. K. Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest PhD thesis, University of Aberdeen, (2007).Zheng, W. Silva Sinica: Volume 1-4. (China Forestry Publishing House, Beijing 1983).Pan, Y., Cieraad, E. & van Bodegom, P. M. Are ecophysiological adaptive traits decoupled from leaf economics traits in wetlands. Functional Ecology 33, 1202ā1210, https://doi.org/10.1111/1365-2435.13329 (2019).ArticleĀ
Google ScholarĀ
Douma, J. C., Bardin, V., Bartholomeus, R. P. & van Bodegom, P. M. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Functional Ecology 26, 1355ā1365, https://doi.org/10.1111/j.1365-2435.2012.02054.x (2012).ArticleĀ
Google ScholarĀ
van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193ā204, https://doi.org/10.1890/07-0390.1 (2008).ArticleĀ
Google ScholarĀ
Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology 185, 19ā28, https://doi.org/10.1007/s11258-005-9080-5 (2006).ArticleĀ
Google ScholarĀ
Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275, 111ā122 (2005).ArticleĀ
CASĀ
Google ScholarĀ
Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition PhD thesis, Ghent University, Ghent, Belgium, (2012).Von Holle, B. & Simberloff, D. Testing Foxās assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551ā563, https://doi.org/10.1111/j.0030-1299.2004.12597.x (2004).ArticleĀ
Google ScholarĀ
Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil, Dataset. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1104 (2012).ArticleĀ
Google ScholarĀ
Wirth, C. & Lichstein, J. W. in Old-Growth Forests 81ā113 (Springer Berlin Heidelberg, 2009).Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88, 964ā977, https://doi.org/10.1046/j.1365-2745.2000.00506.x (2000).ArticleĀ
Google ScholarĀ
McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17, 50ā57, https://doi.org/10.1046/j.1365-2435.2003.00698.x (2003).ArticleĀ
Google ScholarĀ
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821ā827, https://doi.org/10.1038/nature02403 (2004).ArticleĀ
ADSĀ
CASĀ
Google ScholarĀ
Wright, I. J. et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169, 309ā319, https://doi.org/10.1111/j.1469-8137.2005.01590.x (2005).ArticleĀ
CASĀ
Google ScholarĀ
Wright, I. J. et al. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany 99, 1003ā1015, https://doi.org/10.1093/aob/mcl066 (2006).ArticleĀ
Google ScholarĀ
Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions. Functional Ecology 26, 1390ā1398, https://doi.org/10.1111/1365-2435.12001 (2012).ArticleĀ
Google ScholarĀ
Wright, S. J. et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098, https://doi.org/10.1890/09-2335 (2010).Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecology Letters 14, 1117ā1124, https://doi.org/10.1111/j.1461-0248.2011.01680.x (2011).ArticleĀ
Google ScholarĀ
Zanne, A. E. et al. in Data from: Towards a worldwide wood economics spectrum. Dataset, https://doi.org/10.5061/dryad.234 (Dryad, 2009).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351ā366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).ArticleĀ
Google ScholarĀ
Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2) 500ā500 https://doi.org/10.1002/ecy.2091 (2018).ArticleĀ
Google ScholarĀ
Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, https://doi.org/10.1186/1471-2105-14-16 (2013).The Taxonomic Name Resolution Service [Internet]. iPlant Collaborative. Version 4.0 [Accessed: Sep 2015]. Available from: http://tnrs.iplantcollaborative.org.Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. Journal of Vegetation Science 25, 967ā977, https://doi.org/10.1111/jvs.12165 (2014).ArticleĀ
Google ScholarĀ
Page, C. N. The ferns of Britain and Ireland. (Cambridge Univ. Press, 1997).Lloyd, R. M. Spore morphology of the Hawaiian genus Sadleria (Blechnaceae). Am. Fern J. 66, 1ā7 (1976).ArticleĀ
Google ScholarĀ
Conway, E. Spore production in bracken (Pteridium aquilinum (L.) Kuhn). J. Ecol. 45, 273ā284 (1957).ArticleĀ
Google ScholarĀ
Stoor, A. M., Boudrie, M., JĆ©rƶme, C., Horn, K. & Bennert, H. W. Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new lycopod species from Central Europe and France. Feddes Repert. 107, 149ā157 (1996).ArticleĀ
Google ScholarĀ
Shan, H. et al. Trait prediction using hierarchical probabilistic matrix factorization. In J. Langford (Ed.) Proceedings of the International Conference for Machine Learning (ICML). Edinburgh: International Conference on Machine Learning, 1303ā1310 (2012).Fazayeli F, Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. 13th International Conference on Machine Learning and Applications (ICMLA), Detroit, USA December 3ā6, https://doi.org/10.1109/ICMLA.2014.56 (2014).Schrodt, F. et al. BHPMF ā a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, https://doi.org/10.1111/geb.12335 (2015).DĆaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. TRY File Archive https://doi.org/10.17871/TRY.81 (2022).New, M., Hulme, M. & Jones, P. Representing Twentieth-Century SpaceāTime Climate Variability. Part I: Development of a 1961ā90 Mean Monthly Terrestrial Climatology. Journal of Climate 12, 829ā856, https://doi.org/10.1175/1520-0442(1999)0122.0.CO;2 (1999).Whittaker, R. J. Communities and Ecosystems. (Macmillan, 1975).Weigelt, P., Kƶnig, C. & Kreft, H. The Global Inventory of Floras and Traits (GIFT) database. Available: http://gift.uni-goettingen.de (2018).Weigelt, P., Kƶnig, C. & Kreft, H. GIFT ā A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography 47(1) 16ā43 https://doi.org/10.1111/jbi.13623 (2020)ArticleĀ
Google ScholarĀ More