More stories

  • in

    Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses

    Predictors of reservoir statusOur analyses include all known rodent reservoirs for zoonotic pathogens (282 species). These reservoirs harbour a total of 95 known zoonotic pathogens (34 viruses, 26 bacteria, 17 helminths, 12 protozoa and six fungi) employing all known modes of transmission (43 vector-borne, 32 close-contact, 28 non-close contact, and 13 using multiple transmission modes) (Supplementary DataĀ 2). Compared to presumed non-reservoirs (species currently not known to harbour any zoonotic pathogens), we observed that reservoir rodents are strikingly synanthropic (Figs.Ā 2, 3a, TableĀ 1). Despite potential geographic biases, and the general possibility that synanthropic species are better studied compared to non-synanthropic species (see Sampling bias and Supplementary Figs.Ā 1, 2), synanthropy emerged as a defining characteristic of nearly all (95%) currently known rodent reservoirs. Of the 155 synanthropic species, only six are considered as truly synanthropic, i.e., predominately, if not exclusively, occurring in or near human dwellings, while the remaining species only occasionally show synanthropic behaviour (Supplementary DataĀ 1).Fig. 2: Predictors of reservoir status.Final structural equation model linking reservoir status of rodent species (n = 269) with their synanthropy and hunting status, population fluctuations (s-index, log-transformed), and adult body mass, controlling for their occurrence in a range of habitats and the number of studies available per species. One-sided (directional) arrows represent a causal influence originating from the variable at the base of the arrow, with the width of the arrow and associated value representing the standardised strength of the relationship. The small double-sided arrows and numbers next to each response (endogenous) variable represent the error variance.Full size imageFig. 3: Characteristics of reservoir and synanthropic rodents.a Reservoir rodents are predominately synanthropic (n = 436 with n (non-reservoir) = 154, n (reservoir) = 282). b Synanthropic rodents display high population fluctuations (high s-index) (n = 269) and c, occur in multiple artificial habitats (n = 269) (TablesĀ 1–3). In a, estimated probability and 95% confidence intervals are shown and in b–c, estimated probability is shown and shaded areas show 95 % confidence intervals.Full size imageTable 1 Summary of best-fit generalized linear mixed effects model for reservoir status (n = 436)Full size tableCompared to non-reservoirs, we also found that rodent reservoirs are disproportionately exploited by humans (hunted for meat and fur). Seventy-two of the regularly hunted rodent species (n = 83) are reservoirs (87%), and hunted rodent species harbour on average five times the number of zoonotic pathogens than non-hunted species (TableĀ 2).Table 2 Summary of rodent characteristics divided by rodent group with respect to hunting, reservoir status, and synanthropic behaviourFull size tableWe explored causal pathways using a structural equation model (SEM) linking synanthropy, reservoir status, and their hypothesized predictors. The final model, which we established a priori, had 17 free parameters and 21 degrees of freedom (n = 269). The model fit, based on the SRMR (standardized root mean squared residual) and the RMSEA (root mean squared error of approximation) indicated a good fit (see Methods). From the initially formulated full model, the pathways linking reservoir status to population fluctuations (s-index, Methods), occurrence in grasslands, number of artificial habitats a species occurs in, and number of studies found per species were not significant and thus removed from the final model (Supplementary Fig.Ā 3). Similarly, pathways linking synanthropy and occurrence in grasslands were not significant and also removed. All reported coefficients for pathways are standardized to facilitate comparisons among the different relationships. The relationships and coefficients below all refer to those in the final model.The focal variable in the model was reservoir status, which was strongly and positively associated with synanthropy and had the highest estimated pathway coefficient (standardised estimate = 0.58, 95% CI 0.49–0.66, Fig.Ā 2). Controlling for synanthropy, species were more likely to be a reservoir with increasing adult weight (0.13, 0.04–0.22). Species that occur in savanna were less likely to be reservoirs (āˆ’0.13, āˆ’0.22 to āˆ’0.04), while hunted species were more likely to be reservoirs (Fig.Ā 2, 0.20, 0.11–0.30).Synanthropy was influenced by four habitat variables: a species was more likely to be synanthropic if it occurs in a higher number of artificial habitats (0.17, 0.04–0.31), and occurs in urban areas (0.14, 0.01–0.27), deserts (0.12, 0.01–0.23), or forests (0.13, 0.02–0.24). Notably, species with higher s-index, and thus larger population fluctuations, were more likely to be synanthropic (0.12, 0.01–0.22), and the s-index itself decreased as adult weight increased (āˆ’0.16, āˆ’0.27 to āˆ’0.04). Finally, hunted species were characterized by higher adult bodyweight (0.35, 0.25–0.44) (Fig.Ā 2).The number of studies per species was positively associated with both a species’ synanthropic behaviour (0.29, 0.19–0.39) and its reservoir status (0.09, 0.00– 0.19), albeit with weaker evidence for the latter effect (p = 0.054) (Fig.Ā 2),The confirmatory generalized linear mixed effects models (GLMMs) (TablesĀ 1, 3), which control for correlation among species within the same family, showed that our SEM results were robust. Indeed, synanthropy was a significant predictor of reservoir status. These models underscore synanthropy as the most important predictor of reservoir status in our analysis (TableĀ 1, Figs.Ā 2–3).Table 3 Summary of best-fit generalized linear mixed effects model for synanthropic status (n = 269)Full size tablePopulation fluctuations affect transmission riskOur newly compiled data on the magnitude of population fluctuations enabled comparative investigations beyond theoretically straightforward predictions that transmission risk increases with reservoir abundance for density-dependent systems. We show that while strong population fluctuations (measured as the s-index) are found frequently in both reservoir and non-reservoir rodents (TableĀ 2), synanthropic rodents exhibit much larger population fluctuations compared to non-synanthropic rodents (TableĀ 2, Figs.Ā 2–3). This pattern was apparent despite broad confidence intervals in the relationship between the s-index and the probability of being synanthropic (Fig.Ā 3b, TablesĀ 2, 3). Taken together, our results suggest that larger population fluctuations in reservoir species increase zoonotic transmission risk via synanthropic behaviours of rodents, thereby increasing the likelihood of zoonotic spillover infection to humans.Habitat generalism and habitat transformation increase transmission riskWe also find that reservoir species thrive in human-created (artificial) habitats (Fig.Ā 3a, c, TablesĀ 2–3), which reflects a general flexibility in their use of diverse habitat types compared to non-reservoir species (Fig.Ā 4a, TableĀ 2). In addition, the number of zoonotic pathogens harboured by a rodent species increased with habitat breadth (r436 = 0.34, p  More

  • in

    Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi

    Bacterial strains and cultivationAll marine bacteria used in this study were cultivated using the ½ YTSS (yeast-tryptone-sea salt) medium (DSMZ 974), containing yeast extract 2 g/L, tryptone 1.25 g/L and Sigma sea salts 20 g/L or the defined marine ammonium mineral salt (MAMS) medium (DSMZ 1313) where HEPES (10 mM, pH 8.0) replaced the phosphate buffer [16]. All cultures were grown at 30 °C aerobically in a shaker (150 rpm).For growth competition assays between the WT and the olsA mutant, cultures of bacteria were grown in 10 mL ½ YTSS medium for the WT strain, or with the addition of 10 µg/mL gentamicin for the olsA mutant since a gentamicin cassette was inserted to construct the mutant [4]. Cells were harvested at mid-late exponential phase and diluted to an optical density measured at 540 nm (OD540) of 1.0. These cells were then both inoculated at 1% (v/v) into 250 mL flasks containing 50 mL growth media (either ½ YTSS or MAMS + 0.5 mM Pi) in triplicate and grown at 30 °C with shaking at 140 rpm. At time point 0 h, 100 µL samples were removed in triplicate from each flask. These samples were then ten-fold serially diluted in the same growth media to a dilution of 10āˆ’9. From each serial dilution tube, 10 µL droplets were pipetted in triplicate onto agar plates containing either ½ YTSS agar (to count both the WT and the olsA mutant) or ½ YTSS agar + 10 µg/mL gentamicin (to count just the olsA mutant). Once the droplets were dry, plates were incubated at 30 °C for 3-4 days. Colony forming units (CFU) were determined by counting the number of colonies in the dilution number where single colonies were clearly visible. For the cultures grown in ½ YTSS medium, samples were removed and enumerated using the same method at time points 24 h and 96 h. For the cultures grown in MAMS media + 0.5 mM Pi, samples were removed and enumerated at time points 0 h, 48 h and 96 h.Membrane separation by sucrose density gradient ultracentrifugationThe WT strain and the olsA mutant were grown in ½ YTSS medium to OD540 ~0.8. One litre of culture was then collected by centrifugation at 12,300 Ɨ g at 4 °C for 10 minutes, using a JLA 10.5 rotor. Cells were washed and resuspended in 50 mL HEPES buffer (pH 8.0, 10 mM). Cells were then pelleted by centrifugation at 4,500 Ɨ g at 4 °C for 10 min, before resuspending the pellet in 3 mL HEPES buffer (pH 8.0, 10 mM), containing 1.6X cOmplete Protease Inhibitor cocktail (Roche), 3X DNAse I buffer (NEB) and 6 units/mL DNase I (NEB). Cells were then lysed using a French Press at 1000 PSI. Cell debris was removed by centrifugation at 4,500 Ɨ g at 4 °C for 10 min and the supernatant was transferred to a new Oakridge centrifuge tube for pelleting total membranes by centrifugation at 75,600 × g at 10 °C for 45 min in a JA25.5 rotor. Pelleted membranes were then washed and resuspended in 20% (w/v) sucrose in HEPES buffer (10 mM, pH 8.0). Resuspended membrane samples were then layered on top of a stepwise gradient containing 3.3 mL 73% (w/v) sucrose at the bottom and 6.7 mL 53% (w/v) sucrose in between. Inner (IM) and outer (OM) membranes were separated by centrifugation at 140,000 × g at 4 °C, for 16 hours in a SW40-Ti rotor. The IM resided in the interface between the 53% (w/v) and 20% (w/v) sucrose layers and the OM in the interface between the 53% (w/v) and 73% (w/v) sucrose layers. Both IM and OM samples were removed from the sucrose density interface, diluted with 30 mL HEPES buffer (10 mM, pH 8.0), and pelleted by centrifugation at 75,600 × g for 45 min. IM and OM were then resuspended in 1 mL of the same HEPES buffer before lipid and protein extractions.Proteomics sample preparation, in-gel digestion and nanoLC-MS analysisIM and OM samples were carefully dissolved in 100 μL 1X LDS loading buffer (Invitrogen) before loading on a precast Tris-Bis NuPAGE gel (Invitrogen) using 1X MOPS running solution (Invitrogen). SDS-polyacrylamide gel electrophoresis was run for approximately 5 min to purify polypeptides in the polyacrylamide gel by removing contaminants. Polyacrylamide gel bands containing the membrane proteome were excised and digested by trypsin (Roche) proteolysis. The resulting tryptic peptides were extracted using formic acid-acetonitrile (5%:25%, v/v) before resuspension in acetonitrile-trifluoroacetate (2.5%:0.05%, v/v). Tryptic peptides were separated by nano-liquid chromatography (nanoLC) using an Ultimate 3000 LC system with an Acclaim PepMap RSLC C18 reverse phase column (ThermoFisher) at the Proteomics Research Technology Platform (PRTP) at the University of Warwick. MS/MS spectra were collected using an Orbitrap Fusion mass spectrometer (ThermoFisher) in electrospray ionization (ESI) mode. Survey scans of peptides from m/z 350 to 1500 were collected for each sample in a 1.5-hr LC-MS run. This resulted in 12 mass spectra (3 biological replicates of IM and OM of WT and the olsA mutant) with a total of ~ 7.5 G of MS/MS data.MS/MS data search and statistical analysesCompiled MS/MS raw files were searched against the genome of Ruegeria pomeroyi DSS-3 using the MaxQuant software package [17, 18]. Default settings were used and samples were matched between runs. The software package Perseus (v1.6.5.0) was used to determine differentially expressed proteins with a false discovery rate (FDR) of 0.01 [19]. The LFQ (label-free quantitation) intensity of each protein was normalized by dividing the total peptide intensity of each sample by the length of each protein. Peptides were retained for further analyses only if they were consistently found in all three biological replicates in at least one set of the four samples (IM_WT, IM_olsA, OM_WT, OM_olsA). Missing values were imputed using the default parameters (width, 0.3; down-shift 1.8) and statistical analyses were performed using a two-sample Student’s t-test. Principle component analysis (PCA) plots and volcano plots were generated using default settings in the Perseus package.To analyse the pathways of differentially expressed proteins between the wild-type and the mutant, the sequences of those proteins that were significantly overrepresented (FDR  More

  • in

    The global spectrum of plant form and function: enhanced species-level trait dataset

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892, https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).ArticleĀ 

    Google ScholarĀ 
    Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, Vol 30 30, 1–67 (2000).CASĀ 

    Google ScholarĀ 
    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties., (John Wiley & Sons, 2001).Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15, 295–304, https://doi.org/10.1111/j.1654-1103.2004.tb02266.x (2004).ArticleĀ 

    Google ScholarĀ 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545–556 (2002).ArticleĀ 

    Google ScholarĀ 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167, https://doi.org/10.1071/bt12225 (2013).Article 

    Google ScholarĀ 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity. (Oxford University Press, 2016).Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).ArticleĀ 

    Google ScholarĀ 
    DĆ­az, S. et al. The global spectrum of plant form and function. Nature 529, 167–171, https://doi.org/10.1038/nature16489 (2016).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Kattge, J. et al. TRY – a global database of plant traits. Global Change Biology 17, 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x (2011).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Royal Botanic Gardens, Kew. The State of the World’s Plants Report – 2016. (Royal Botanic Gardens, Kew, 2016).Kattge, J. et al. TRY – Categorical Traits Dataset. Data from: TRY – a global database of plant traits. TRY File Archive https://www.try-db.org/TryWeb/Data.php – 3 (2012).Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105, 298–309, https://doi.org/10.1111/1365-2745.12698 (2016).ArticleĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335, https://doi.org/10.1071/bt02124 (2003).ArticleĀ 

    Google ScholarĀ 
    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96, 1266–1274, https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).ArticleĀ 

    Google ScholarĀ 
    Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 41, 653–663, https://doi.org/10.1111/j.0021-8901.2004.00934.x (2004).ArticleĀ 

    Google ScholarĀ 
    Adler, P. B. A comparison of livestock grazing effects on sagebrush steppe, USA, and Patagonian steppe, Argentina. PhD thesis, Colorado State University, (2003).Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species. Plant Physiology 113, 961–965, https://doi.org/10.1104/pp.113.3.961 (1997).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176, 375–389, https://doi.org/10.1111/j.1469-8137.2007.02183.x (2007).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biology 9, 895–910, https://doi.org/10.1046/j.1365-2486.2003.00611.x (2003).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Bahn, M. et al. in Land-use changes in European mountain ecosystems. ECOMONT- Concept and Results (eds A. Cernusca, U. Tappeiner, & N. Bayfield) 247-255 (Blackwell Wissenschaft, Berlin, 1999).Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281–1296, https://doi.org/10.1046/j.1365-3040.1999.00479.x (1999).ArticleĀ 

    Google ScholarĀ 
    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565–578, https://doi.org/10.1093/treephys/20.9.565 (2000).ArticleĀ 

    Google ScholarĀ 
    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23, 865–877, https://doi.org/10.1093/treephys/23.13.865 (2003).ArticleĀ 

    Google ScholarĀ 
    Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13, 1338–1347, https://doi.org/10.1111/j.1461-0248.2010.01517.x (2010).ArticleĀ 

    Google ScholarĀ 
    Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology 24, 208–216, https://doi.org/10.1111/j.1365-2435.2009.01600.x (2010).ArticleĀ 

    Google ScholarĀ 
    Blonder, B. et al. The leaf-area shrinkage effect can bias paleoclimate and ecology research. American Journal of Botany 99, 1756–1763, https://doi.org/10.3732/ajb.1200062 (2012).ArticleĀ 

    Google ScholarĀ 
    Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049, https://doi.org/10.1093/aobpla/plv049 (2015).ArticleĀ 

    Google ScholarĀ 
    Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101, 981–989, https://doi.org/10.1111/1365-2745.12102 (2013).ArticleĀ 

    Google ScholarĀ 
    Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecology Letters 14, 91–100, https://doi.org/10.1111/j.1461-0248.2010.01554.x (2010).ArticleĀ 

    Google ScholarĀ 
    Bond-Lamberty, B., Wang, C. & Gower, S. T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441–1450, https://doi.org/10.1139/x02-063 (2002).ArticleĀ 

    Google ScholarĀ 
    Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology 22, 993–1001, https://doi.org/10.1093/treephys/22.14.993 (2002).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Bond-Lamberty, B., Wang, C. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Canadian Journal of Forest Research 33, 101–105, https://doi.org/10.1139/x02-166 (2003).ArticleĀ 

    Google ScholarĀ 
    Brown, K. A. et al. Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics. PLoS ONE 6, e24107, https://doi.org/10.1371/journal.pone.0024107 (2011).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology 16, 244–253, https://doi.org/10.1556/168.2015.16.2.12 (2015).ArticleĀ 

    Google ScholarĀ 
    Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487, https://doi.org/10.1007/s00442-010-1741-y (2010).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology 101, 128–139, https://doi.org/10.1111/1365-2745.12016 (2012).ArticleĀ 

    Google ScholarĀ 
    Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment 145, 38–48, https://doi.org/10.1016/j.agee.2011.06.025 (2011).ArticleĀ 

    Google ScholarĀ 
    Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109–S122, https://doi.org/10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2 (2006).ArticleĀ 

    Google ScholarĀ 
    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecology 210, 253–261, https://doi.org/10.1007/s11258-010-9753-6 (2010).ArticleĀ 

    Google ScholarĀ 
    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany 109, 1047–1053, https://doi.org/10.1093/aob/mcs021 (2012).ArticleĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology 18, 779–786, https://doi.org/10.1111/j.0269-8463.2004.00900.x (2004).ArticleĀ 

    Google ScholarĀ 
    Quested, H. M. et al. Decomposition of sub-arctic plants with differenting nitogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221, https://doi.org/10.1890/02-0426 (2003).ArticleĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. The Journal of Ecology 84, 755, https://doi.org/10.2307/2261337 (1996).ArticleĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C., Werger, M. J. A. & CastroDiez, P. vanRheenen, J. W. A. & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14, 311, https://doi.org/10.1658/1100-9233(2003)014[0311:ftowpc]2.0.co;2 (2003).ArticleĀ 

    Google ScholarĀ 
    Castro-DĆ­ez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66, https://doi.org/10.1007/s004420050563 (1998).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255, https://doi.org/10.1007/s004420050725 (1999).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Cornelissen, J. H. C. An Experimental Comparison of Leaf Decomposition Rates in a Wide Range of Temperate Plant Species and Types. The Journal of Ecology 84, 573, https://doi.org/10.2307/2261479 (1996).ArticleĀ 

    Google ScholarĀ 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x (2008).ArticleĀ 

    Google ScholarĀ 
    Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170, 807–818, https://doi.org/10.1111/j.1469-8137.2006.01712.x (2006).ArticleĀ 

    Google ScholarĀ 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471, https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2 (2006).ArticleĀ 

    Google ScholarĀ 
    Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10, 135–145, https://doi.org/10.1111/j.1461-0248.2006.01006.x (2007).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109–126, https://doi.org/10.1890/07-1134.1 (2009).ArticleĀ 

    Google ScholarĀ 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980–992, https://doi.org/10.1111/j.1469-8137.2009.02917.x (2009).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117, https://doi.org/10.1007/s00442-011-1938-8 (2011).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil 356, 395–403, https://doi.org/10.1007/s11104-012-1141-7 (2012).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48, https://doi.org/10.1890/es11-00023.1 (2011).ArticleĀ 

    Google ScholarĀ 
    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19, https://doi.org/10.1890/04-1075 (2005).ArticleĀ 

    Google ScholarĀ 
    Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management 238, 335–346, https://doi.org/10.1016/j.foreco.2006.10.030 (2007).ArticleĀ 

    Google ScholarĀ 
    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).ArticleĀ 

    Google ScholarĀ 
    Bragazza, L. Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodiversity and Conservation 18, 2823–2835, https://doi.org/10.1007/s10531-009-9609-3 (2009).ArticleĀ 

    Google ScholarĀ 
    Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany 122, 11–21, https://doi.org/10.1007/s00035-012-0101-4 (2012).ArticleĀ 

    Google ScholarĀ 
    de Araujo, A. C. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. (2011).Royal Botanical Gardens KEW. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (accessed May 2011). (2008).Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, ParĆ”, Brazil). Earth Interactions 9, 1–23, https://doi.org/10.1175/ei149.1 (2005).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern AmazĆ“nia, Brazil. Plant Ecology 193, 101–112, https://doi.org/10.1007/s11258-006-9251-z (2007).ArticleĀ 

    Google ScholarĀ 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment 33, 959–980, https://doi.org/10.1111/j.1365-3040.2010.02119.x (2010).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. The American Naturalist 168, E103–E122, https://doi.org/10.1086/507879 (2006).ArticleĀ 

    Google ScholarĀ 
    FagĆŗndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Botanica Gallica 157, 45–54, https://doi.org/10.1080/12538078.2010.10516188 (2010).ArticleĀ 

    Google ScholarĀ 
    Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168, 377–385, https://doi.org/10.1111/j.1469-8137.2005.01530.x (2005).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170, 835–848, https://doi.org/10.1111/j.1469-8137.2006.01704.x (2006).ArticleĀ 

    Google ScholarĀ 
    He, J.-S. et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155, 301–310, https://doi.org/10.1007/s00442-007-0912-y (2007).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Bocanegra, K., FernĆ”ndez, F. & Galvis, J. Grupos funcionales de arboles en bosques secundarios de la region Bajo Calima (Buenaventura, Colombia). BoletĆ­n CientĆ­fico. Centro de Museos. Museo de Historia Natural 19, 17–40, https://doi.org/10.17151/bccm.2015.19.1.2 (2015).ArticleĀ 

    Google ScholarĀ 
    Fitter, A. H. & Peat, H. J. The Ecological Flora Database. The Journal of Ecology 82, 415, https://doi.org/10.2307/2261309 (1994).ArticleĀ 

    Google ScholarĀ 
    Frenette-Dussault, C., Shipley, B., LĆ©ger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science 23, 208–222, https://doi.org/10.1111/j.1654-1103.2011.01350.x (2011).ArticleĀ 

    Google ScholarĀ 
    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27, 1254–1261, https://doi.org/10.1111/1365-2435.12116 (2013).ArticleĀ 

    Google ScholarĀ 
    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ā€˜plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).ArticleĀ 

    Google ScholarĀ 
    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits. New Phytologist 186, 879–889, https://doi.org/10.1111/j.1469-8137.2010.03228.x (2010).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39, 1757–1771, https://doi.org/10.1111/j.1365-2699.2012.02773.x (2012).ArticleĀ 

    Google ScholarĀ 
    Garnier, E. et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany 99, 967–985, https://doi.org/10.1093/aob/mcl215 (2007).ArticleĀ 

    Google ScholarĀ 
    Pakeman, R. J., LepÅ”, J., Kleyer, M., Lavorel, S. & Garnier, E. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20, 148–159, https://doi.org/10.1111/j.1654-1103.2009.05548.x (2009).ArticleĀ 

    Google ScholarĀ 
    Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96, 355–366 (2008).ArticleĀ 

    Google ScholarĀ 
    Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).ArticleĀ 

    Google ScholarĀ 
    Gillison, A. N. & Carpenter, G. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Ecology 11, 775–783, https://doi.org/10.1046/j.1365-2435.1997.00157.x (1997).ArticleĀ 

    Google ScholarĀ 
    Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT – attributes of British and Irish Plants: status, size, life history, geography and habitats. (Huntingdon: Centre for Ecology and Hydrology, 2004).Green, W. USDA PLANTS Compilation, version 1, 09-02-02. (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA 70874-74490 USA (2009).Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biology Letters 8, 882–886, https://doi.org/10.1098/rsbl.2012.0458 (2012).ArticleĀ 

    Google ScholarĀ 
    GutiĆ©rrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of ChiloĆ© Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics 14, 243–256, https://doi.org/10.1016/j.ppees.2012.01.004 (2012).ArticleĀ 

    Google ScholarĀ 
    Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography 21, 376–382, https://doi.org/10.1111/j.1466-8238.2011.00677.x (2011).ArticleĀ 

    Google ScholarĀ 
    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184, https://doi.org/10.1111/j.1600-0587.2011.06833.x (2011).ArticleĀ 

    Google ScholarĀ 
    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015 (2015).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytologist 190, 169–180, https://doi.org/10.1111/j.1469-8137.2010.03579.x (2010).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    He, T., Pausas, J. P., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194, 751–759, https://doi.org/10.1111/j.1469-8137.2012.04079.x (2012).ArticleĀ 

    Google ScholarĀ 
    He, T., Lamont, B. B. & Downs, K. S. Banksias born to burn. New Phytologist 191, 184–196, https://doi.org/10.1111/j.1469-8137.2011.03663.x. (2011).ArticleĀ 

    Google ScholarĀ 
    Hickler, T. Plant functional types and community characteristics along environmental gradients on Ɩland’s Great Alvar (Sweden) Master thesis, University of Lund, Sweden, (1999).Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82, 205–220, https://doi.org/10.1890/11-0416.1 (2012).ArticleĀ 

    Google ScholarĀ 
    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1106 (2012).Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755, https://doi.org/10.1038/nature11688 (2012).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a Digital African Flora. Taxon 54, 457, https://doi.org/10.2307/25065373 (2005).ArticleĀ 

    Google ScholarĀ 
    Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science 12, 327–336, https://doi.org/10.2307/3236846 (2001).ArticleĀ 

    Google ScholarĀ 
    Koike, F., Clout, M., Kawamichi, M., De Poorter, M. & Iwatsuki, K. Assessment and Control of Biological Invasion Risks. (Cambridge, UK and Shoukadoh Book Sellers, Kyoto, Japan, and IUCN, Gland, Switzerland, 2006).Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401–422, https://doi.org/10.1890/09-1672.1 (2010).ArticleĀ 

    Google ScholarĀ 
    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science 322, 580–582, https://doi.org/10.1126/science.1160662 (2008).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Kühn, I., Durka, W. & Klotz, S. BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution 10, 363–365 (2004).ArticleĀ 

    Google ScholarĀ 
    Otto, B. Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR – Eine Datenbank zu biologisch-ƶkologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn (2002).Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656, https://doi.org/10.1890/07-1352.1 (2008).ArticleĀ 

    Google ScholarĀ 
    Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176–181, https://doi.org/10.1139/cjb-2012-0162 (2013).ArticleĀ 

    Google ScholarĀ 
    Mishkolz, J. M. Selecting and evaluating native forage mixtures for the mixed grass prairie. (University of Saskatchewan, Saskatoon, SK., 2013).Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2009).ArticleĀ 

    Google ScholarĀ 
    Laughlin, D. C., FulĆ©, P. Z., Huffman, D. W., Crouse, J. & LalibertĆ©, E. Climatic constraints on trait-based forest assembly. Journal of Ecology 99, 1489–1499, https://doi.org/10.1111/j.1365-2745.2011.01885.x (2011).ArticleĀ 

    Google ScholarĀ 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708, https://doi.org/10.5194/bg-6-2677-2009 (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests. Biogeosciences 6, 297–307, https://doi.org/10.5194/bg-6-297-2009 (2009).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    PatiƱo, S. et al. Branch xylem density variations across the Amazon Basin. Biogeosciences 6, 545–568, https://doi.org/10.5194/bg-6-545-2009 (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Louault, F., Pillar, V. D., AufrĆØre, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science 16, 151–160, https://doi.org/10.1111/j.1654-1103.2005.tb02350.x (2005).ArticleĀ 

    Google ScholarĀ 
    Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590, https://doi.org/10.5194/bg-6-1577-2009 (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic and Applied Ecology 10, 300–308, https://doi.org/10.1016/j.baae.2008.08.004 (2009).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. Journal of Vegetation Science 25, 248–261, https://doi.org/10.1111/jvs.12068 (2013).ArticleĀ 

    Google ScholarĀ 
    Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal Variation in the Capacity for Plant Trait Measures to Predict Grassland Carbon and Water Fluxes. Ecosystems 17, 1095–1108, https://doi.org/10.1007/s10021-014-9779-z (2014).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124, 69–83, https://doi.org/10.1016/s0304-3800(99)00148-9 (1999).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149, 247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x (2001).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment 25, 343–357, https://doi.org/10.1046/j.0016-8025.2001.00811.x (2002).ArticleĀ 

    Google ScholarĀ 
    Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology 20, 179–186, https://doi.org/10.1093/treephys/20.3.179 (2000).ArticleĀ 

    Google ScholarĀ 
    Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology 192, 277–287, https://doi.org/10.1007/s11258-007-9320-y (2007).ArticleĀ 

    Google ScholarĀ 
    Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment 26, 163–182, https://doi.org/10.1046/j.1365-3040.2003.00991.x (2003).ArticleĀ 

    Google ScholarĀ 
    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13, 838–848, https://doi.org/10.1111/j.1461-0248.2010.01476.x (2010).ArticleĀ 

    Google ScholarĀ 
    Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany 107, 455–465, https://doi.org/10.1093/aob/mcq261 (2011).ArticleĀ 

    Google ScholarĀ 
    Minden, V. & Kleyer, M. Testing the effect-response framework: key response and effect traits determining above-ground biomass of salt marshes. Journal of Vegetation Science 22, 387–401, https://doi.org/10.1111/j.1654-1103.2011.01272.x (2011).ArticleĀ 

    Google ScholarĀ 
    Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14, 183–192, https://doi.org/10.1016/j.ppees.2012.01.002 (2012).ArticleĀ 

    Google ScholarĀ 
    Moles, A. T., Falster, D. S., Leishman, M. R. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92, 384–396, https://doi.org/10.1111/j.0022-0477.2004.00880.x (2004).ArticleĀ 

    Google ScholarĀ 
    Moles, A. T. et al. Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences 102, 10540–10544, https://doi.org/10.1073/pnas.0501473102 (2005).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Lavergne, S., Muenke, N. J. & Molofsky, J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105, 109–116, https://doi.org/10.1093/aob/mcp271 (2009).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences 104, 3883–3888, https://doi.org/10.1073/pnas.0607324104 (2007).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. American Journal of Botany 91, 228–246, https://doi.org/10.3732/ajb.91.2.228 (2004).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309, https://doi.org/10.1111/j.1600-0587.2008.05524.x (2009).ArticleĀ 

    Google ScholarĀ 
    Niinemets, U. Global-Scale Climatic Controls of Leaf Dry Mass per Area, Density, and Thickness in Trees and Shrubs. Ecology 82, 453, https://doi.org/10.2307/2679872 (2001).ArticleĀ 

    Google ScholarĀ 
    Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144, 35–47, https://doi.org/10.1046/j.1469-8137.1999.00466.x (1999).ArticleĀ 

    Google ScholarĀ 
    Ciocarlan, V. The illustrated Flora of Romania. Pteridophyta et Spermatopyta. 1141 (Editura Ceres, 2009).Sanda, V., Bita-Nicolae, C. D. & Barabas, N. The flora of spontane and cultivated cormophytes from Romania. (Editura ā€œIon Borceaā€, Bacau, 2003).Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecology Letters 14, 301–312, https://doi.org/10.1111/j.1461-0248.2010.01582.x (2011).ArticleĀ 

    Google ScholarĀ 
    OrdoƱez, J. C. et al. Plant Strategies in Relation to Resource Supply in Mesic to Wet Environments: Does Theory Mirror Nature? The American Naturalist 175, 225–239, https://doi.org/10.1086/649582 (2010).ArticleĀ 

    Google ScholarĀ 
    OrdoƱez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology, 100413130925016, https://doi.org/10.1890/09-1509 (2010).Pahl, A. T., Kollmann, J., Mayer, A. & Haider, S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Annals of Botany 112, 1921–1930, https://doi.org/10.1093/aob/mct246 (2013).ArticleĀ 

    Google ScholarĀ 
    Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90, 1420–1420, https://doi.org/10.1890/08-1309.1 (2009).ArticleĀ 

    Google ScholarĀ 
    Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543–552, https://doi.org/10.1111/j.1365-2745.2008.01359.x (2008).ArticleĀ 

    Google ScholarĀ 
    Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic and Applied Ecology 6, 175–183, https://doi.org/10.1016/j.baae.2005.01.002 (2005).ArticleĀ 

    Google ScholarĀ 
    Ogaya, R. & PeƱuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany 50, 137–148, https://doi.org/10.1016/s0098-8472(03)00019-4 (2003).ArticleĀ 

    Google ScholarĀ 
    Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum 50, 373–382, https://doi.org/10.1007/s10535-006-0052-y (2006).ArticleĀ 

    Google ScholarĀ 
    Ogaya, R. & PeƱuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecology 189, 291–299, https://doi.org/10.1007/s11258-006-9184-6 (2006).ArticleĀ 

    Google ScholarĀ 
    Ogaya, R. & PeƱuelas, J. Changes in leaf Ī“13C and Ī“15N for three Mediterranean tree species in relation to soil water availability. Acta Oecologica 34, 331–338, https://doi.org/10.1016/j.actao.2008.06.005 (2008).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Sardans, J., PeƱuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. Forest Science 54, 513–522 (2008).
    Google ScholarĀ 
    Sardans, J., PeƱuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. Journal of Geophysical Research 113, https://doi.org/10.1029/2008jg000795 (2008).PeƱuelas, J. et al. Faster returns on ā€˜leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology 16, 2171–2185, https://doi.org/10.1111/j.1365-2486.2009.02054.x (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    PeƱuelas, J. et al. Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology 36, 1255–1270, https://doi.org/10.1007/s10886-010-9862-7 (2010).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27, 1002–1010, https://doi.org/10.1111/1365-2435.12095 (2013).ArticleĀ 

    Google ScholarĀ 
    Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 141, 337–343, https://doi.org/10.1080/11263500701627695 (2007).ArticleĀ 

    Google ScholarĀ 
    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95, 698–706, https://doi.org/10.1111/j.1365-2745.2007.01242.x (2007).ArticleĀ 

    Google ScholarĀ 
    Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant Functional Types of Woody Species Related to Fire Disturbance in Forest–Grassland Ecotones. Plant Ecology 189, 1–14, https://doi.org/10.1007/s11258-006-9162-z (2006).ArticleĀ 

    Google ScholarĀ 
    Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14, 323–332, https://doi.org/10.1111/j.1654-1103.2003.tb02158.x (2003).ArticleĀ 

    Google ScholarĀ 
    Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland-forest mosaic. Journal of Vegetation Science 18, 847–858, https://doi.org/10.1111/j.1654-1103.2007.tb02601.x (2007).ArticleĀ 

    Google ScholarĀ 
    Blanco, C., Sosinski, E., Santos, B., Silva, M. & Pillar, V. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8, 57–65, https://doi.org/10.1556/comec.8.2007.1.8 (2007).ArticleĀ 

    Google ScholarĀ 
    Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16, 655, https://doi.org/10.1658/1100-9233(2005)016[0655:fpdisb]2.0.co;2 (2005).Article 

    Google ScholarĀ 
    Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants 202, 27–49, https://doi.org/10.1016/j.flora.2005.11.004 (2007).ArticleĀ 

    Google ScholarĀ 
    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565–588, https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).ArticleĀ 

    Google ScholarĀ 
    Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology 24, 927–936, https://doi.org/10.1111/j.1365-2435.2010.01701.x (2010).ArticleĀ 

    Google ScholarĀ 
    Price, C. A. & Enquist, B. J. Scaling of mass and morphology in Dicotyledonous leaves: an extension of the WBE model. Ecology 88, 1132–1141, https://doi.org/10.1890/06-1158 (2007).ArticleĀ 

    Google ScholarĀ 
    Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences 104, 13204–13209, https://doi.org/10.1073/pnas.0702242104 (2007).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, no-no, https://doi.org/10.1111/j.1600-0587.2009.05975.x (2009).Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212, https://doi.org/10.1007/s00442-009-1291-3 (2009).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11, 793–801, https://doi.org/10.1111/j.1461-0248.2008.01185.x (2008).ArticleĀ 

    Google ScholarĀ 
    Cavender-Bares, J., Sack, L. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology 27, 611–620, https://doi.org/10.1093/treephys/27.4.611 (2007).ArticleĀ 

    Google ScholarĀ 
    Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J. & Sack, L. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 4, 302–306, https://doi.org/10.1098/rsbl.2008.0094 (2008).ArticleĀ 

    Google ScholarĀ 
    Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology 21, 1063–1071, https://doi.org/10.1111/j.1365-2435.2007.01323.x (2007).ArticleĀ 

    Google ScholarĀ 
    Dunbar‐Co, S., Sporck, Margaret, J. & Sack, L. Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal of Plant Sciences 170, 61–75, https://doi.org/10.1086/593111 (2009).ArticleĀ 

    Google ScholarĀ 
    Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology 24, 731–740, https://doi.org/10.1111/j.1365-2435.2010.01724.x (2010).ArticleĀ 

    Google ScholarĀ 
    Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica 0, 070606001740001-???, https://doi.org/10.1111/j.1744-7429.2007.00325.x (2007).ArticleĀ 

    Google ScholarĀ 
    Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400, https://doi.org/10.1007/s00442-006-0604-z (2006).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Nakahashi, C. D., Frole, K. & Sack, L. Bacterial Leaf Nodule Symbiosis in Ardisia (Myrsinaceae): Does it Contribute to Seedling Growth Capacity. Plant Biology 7, 495–500, https://doi.org/10.1055/s-2005-865853 (2005).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology 35, 725, https://doi.org/10.1071/fp08149 (2008).ArticleĀ 

    Google ScholarĀ 
    Sack, L. Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation. Oikos 107, 110–127, https://doi.org/10.1111/j.0030-1299.2004.13184.x (2004).ArticleĀ 

    Google ScholarĀ 
    Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491, https://doi.org/10.1890/05-0710 (2006).ArticleĀ 

    Google ScholarĀ 
    Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167, 403–413, https://doi.org/10.1111/j.1469-8137.2005.01432.x (2005).ArticleĀ 

    Google ScholarĀ 
    Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ā€˜hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment 26, 1343–1356, https://doi.org/10.1046/j.0016-8025.2003.01058.x (2003).ArticleĀ 

    Google ScholarĀ 
    Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees. American Journal of Botany 93, 829–839, https://doi.org/10.3732/ajb.93.6.829 (2006).ArticleĀ 

    Google ScholarĀ 
    Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment 31, 1803–1812, https://doi.org/10.1111/j.1365-3040.2008.01884.x (2008).ArticleĀ 

    Google ScholarĀ 
    Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, https://doi.org/10.1890/ES10-00175.1 (2011).Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE. Perspectives in Plant Ecology, Evolution and Systematics 9, 53–70, https://doi.org/10.1016/j.ppees.2007.08.002 (2007).ArticleĀ 

    Google ScholarĀ 
    Schweingruber, F. H. & Landolt, W. The Xylem Database. (Swiss Federal Research Institute WSL, 2005).Schweingruber, F. H. & Poschlod, P. Growth rings in herbs and shrubs: Life span, age determination and stem anatomy. Forest, Snow and Landscape Research 79, 195–415 (2005).
    Google ScholarĀ 
    Sheremetev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). (KMK Scientific Press Ltd, Moscow, 2005).Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology 24, 121–133, https://doi.org/10.1017/s0266467407004725 (2008).ArticleĀ 

    Google ScholarĀ 
    Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology 16, 682–689, https://doi.org/10.1046/j.1365-2435.2002.00672.x (2002).ArticleĀ 

    Google ScholarĀ 
    Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology 13, 611–622, https://doi.org/10.1046/j.1365-2435.1999.00359.x (1999).ArticleĀ 

    Google ScholarĀ 
    McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Ɖcoscience 6, 286–296, https://doi.org/10.1080/11956860.1999.11682529 (1999).ArticleĀ 

    Google ScholarĀ 
    Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist 153, 359–364, https://doi.org/10.1046/j.0028-646x.2001.00320.x (2002).ArticleĀ 

    Google ScholarĀ 
    Shipley, B. & Parent, M. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate. Functional Ecology 5, 111, https://doi.org/10.2307/2389561 (1991).ArticleĀ 

    Google ScholarĀ 
    Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in40 wetland species. Ɖcoscience 7, 183–194, https://doi.org/10.1080/11956860.2000.11682587 (2000).ArticleĀ 

    Google ScholarĀ 
    Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143, 131–142, https://doi.org/10.1046/j.1469-8137.1999.00435.x (1999).ArticleĀ 

    Google ScholarĀ 
    Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment 22, 447–459, https://doi.org/10.1046/j.1365-3040.1999.00423.x (1999).ArticleĀ 

    Google ScholarĀ 
    Shipley, B. Structured Interspecific Determinants of Specific Leaf Area in 34 Species of Herbaceous Angiosperms. Functional Ecology 9, 312, https://doi.org/10.2307/2390579 (1995).ArticleĀ 

    Google ScholarĀ 
    Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20, 21–30, https://doi.org/10.1111/j.1365-2435.2006.01080.x (2006).ArticleĀ 

    Google ScholarĀ 
    Vile, D. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations PhD thesis, UniversitĆ© de Sherbrooke, Sherbrooke (Quebec), (2005).Auger, S. L’importance de la variabilitĆ© interspĆ©cifique des traits fonctionnels par rapport Ć  la variabilitĆ© intraspĆ©cifique chez les jeunes arbres en forĆŖt mature Msc thesis, UniversitĆ© de Sherbrooke, Sherbrooke (Quebec) (2012).Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24, 419–428, https://doi.org/10.1111/j.1654-1103.2012.01473.x (2012).ArticleĀ 

    Google ScholarĀ 
    Soudzilovskaia, N. A. et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences 110, 18180–18184, https://doi.org/10.1073/pnas.1310700110 (2013).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Elumeeva, T. G. et al. Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alpine Botany 123, 77–85, https://doi.org/10.1007/s00035-013-0122-7 (2013).ArticleĀ 

    Google ScholarĀ 
    Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100, 652–661, https://doi.org/10.1111/j.1365-2745.2011.01945.x (2012).ArticleĀ 

    Google ScholarĀ 
    Swaine, E. K. Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest PhD thesis, University of Aberdeen, (2007).Zheng, W. Silva Sinica: Volume 1-4. (China Forestry Publishing House, Beijing 1983).Pan, Y., Cieraad, E. & van Bodegom, P. M. Are ecophysiological adaptive traits decoupled from leaf economics traits in wetlands. Functional Ecology 33, 1202–1210, https://doi.org/10.1111/1365-2435.13329 (2019).ArticleĀ 

    Google ScholarĀ 
    Douma, J. C., Bardin, V., Bartholomeus, R. P. & van Bodegom, P. M. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Functional Ecology 26, 1355–1365, https://doi.org/10.1111/j.1365-2435.2012.02054.x (2012).ArticleĀ 

    Google ScholarĀ 
    van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204, https://doi.org/10.1890/07-0390.1 (2008).ArticleĀ 

    Google ScholarĀ 
    Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology 185, 19–28, https://doi.org/10.1007/s11258-005-9080-5 (2006).ArticleĀ 

    Google ScholarĀ 
    Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275, 111–122 (2005).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition PhD thesis, Ghent University, Ghent, Belgium, (2012).Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563, https://doi.org/10.1111/j.0030-1299.2004.12597.x (2004).ArticleĀ 

    Google ScholarĀ 
    Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil, Dataset. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1104 (2012).ArticleĀ 

    Google ScholarĀ 
    Wirth, C. & Lichstein, J. W. in Old-Growth Forests 81–113 (Springer Berlin Heidelberg, 2009).Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88, 964–977, https://doi.org/10.1046/j.1365-2745.2000.00506.x (2000).ArticleĀ 

    Google ScholarĀ 
    McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17, 50–57, https://doi.org/10.1046/j.1365-2435.2003.00698.x (2003).ArticleĀ 

    Google ScholarĀ 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827, https://doi.org/10.1038/nature02403 (2004).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Wright, I. J. et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169, 309–319, https://doi.org/10.1111/j.1469-8137.2005.01590.x (2005).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Wright, I. J. et al. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany 99, 1003–1015, https://doi.org/10.1093/aob/mcl066 (2006).ArticleĀ 

    Google ScholarĀ 
    Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions. Functional Ecology 26, 1390–1398, https://doi.org/10.1111/1365-2435.12001 (2012).ArticleĀ 

    Google ScholarĀ 
    Wright, S. J. et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098, https://doi.org/10.1890/09-2335 (2010).Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecology Letters 14, 1117–1124, https://doi.org/10.1111/j.1461-0248.2011.01680.x (2011).ArticleĀ 

    Google ScholarĀ 
    Zanne, A. E. et al. in Data from: Towards a worldwide wood economics spectrum. Dataset, https://doi.org/10.5061/dryad.234 (Dryad, 2009).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).ArticleĀ 

    Google ScholarĀ 
    Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2) 500–500 https://doi.org/10.1002/ecy.2091 (2018).ArticleĀ 

    Google ScholarĀ 
    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, https://doi.org/10.1186/1471-2105-14-16 (2013).The Taxonomic Name Resolution Service [Internet]. iPlant Collaborative. Version 4.0 [Accessed: Sep 2015]. Available from: http://tnrs.iplantcollaborative.org.Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. Journal of Vegetation Science 25, 967–977, https://doi.org/10.1111/jvs.12165 (2014).ArticleĀ 

    Google ScholarĀ 
    Page, C. N. The ferns of Britain and Ireland. (Cambridge Univ. Press, 1997).Lloyd, R. M. Spore morphology of the Hawaiian genus Sadleria (Blechnaceae). Am. Fern J. 66, 1–7 (1976).ArticleĀ 

    Google ScholarĀ 
    Conway, E. Spore production in bracken (Pteridium aquilinum (L.) Kuhn). J. Ecol. 45, 273–284 (1957).ArticleĀ 

    Google ScholarĀ 
    Stoor, A. M., Boudrie, M., JĆ©rƶme, C., Horn, K. & Bennert, H. W. Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new lycopod species from Central Europe and France. Feddes Repert. 107, 149–157 (1996).ArticleĀ 

    Google ScholarĀ 
    Shan, H. et al. Trait prediction using hierarchical probabilistic matrix factorization. In J. Langford (Ed.) Proceedings of the International Conference for Machine Learning (ICML). Edinburgh: International Conference on Machine Learning, 1303–1310 (2012).Fazayeli F, Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. 13th International Conference on Machine Learning and Applications (ICMLA), Detroit, USA December 3–6, https://doi.org/10.1109/ICMLA.2014.56 (2014).Schrodt, F. et al. BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, https://doi.org/10.1111/geb.12335 (2015).DĆ­az, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. TRY File Archive https://doi.org/10.17871/TRY.81 (2022).New, M., Hulme, M. & Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology. Journal of Climate 12, 829–856, https://doi.org/10.1175/1520-0442(1999)0122.0.CO;2 (1999).Whittaker, R. J. Communities and Ecosystems. (Macmillan, 1975).Weigelt, P., Kƶnig, C. & Kreft, H. The Global Inventory of Floras and Traits (GIFT) database. Available: http://gift.uni-goettingen.de (2018).Weigelt, P., Kƶnig, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography 47(1) 16–43 https://doi.org/10.1111/jbi.13623 (2020)ArticleĀ 

    Google ScholarĀ  More

  • in

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Processes 25, 25 (2011).
    Google ScholarĀ 
    Myster, R. W. The Andean Cloud Forest. Andean Cloud Forest https://doi.org/10.1007/978-3-030-57344-7 (2021).ArticleĀ 

    Google ScholarĀ 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Hu, J. & Riveros-Iregui, D. A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).ArticleĀ 

    Google ScholarĀ 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).ArticleĀ 

    Google ScholarĀ 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).ArticleĀ 

    Google ScholarĀ 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 00, 1–12 (2015).
    Google ScholarĀ 
    Lourenço, J. et al. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. https://doi.org/10.1111/nph.17944 (2022).Article 

    Google ScholarĀ 
    Fonti, P., von Arx, G., GarcĆ­a-GonzĆ”lez, I. & Sass-Klaassen, U. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).ArticleĀ 

    Google ScholarĀ 
    Jupa, R., KrabičkovĆ”, D., Plichta, R., Mayr, S. & Gloser, V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?. Physiol. Plant. 20, 1–11. https://doi.org/10.1111/ppl.13435 (2021).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 20, 1–22. https://doi.org/10.1111/gcb.15641 (2021).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Rita, A., Borghetti, M., Todaro, L. & Saracino, A. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events. Front. Plant Sci. 7, 1–11 (2016).ArticleĀ 

    Google ScholarĀ 
    RodrĆ­guez-RamĆ­rez, E. C., VĆ”zquez-GarcĆ­a, J. A., GarcĆ­a-GonzĆ”lez, I., AlcĆ”ntara-Ayala, O. & Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 13, 331–340. https://doi.org/10.1093/jpe/rtaa019 (2020).ArticleĀ 

    Google ScholarĀ 
    Aide, T. M. & Grau, H. R. Globalization, migration and Latin American ecosystems. Science 305, 1915–1917 (2004).ArticleĀ 

    Google ScholarĀ 
    Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L. & Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113, 909–920 (2014).ArticleĀ 

    Google ScholarĀ 
    Pereyra-Espinoza, M. J., Inga-Guillen, G. J., Santos-Morales, M. & RodrĆ­guez-ArismĆ©ndiz, R. Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del PerĆŗ. Rev. Biol. Trop. 62, 783–793 (2014).ArticleĀ 

    Google ScholarĀ 
    Layme-Huaman, E. T., Ferrero, M. E., Palacios-Lazaro, K. S. & Requena-Rojas, E. J. Cedrela nebulosa: A novel species for dendroclimatological studies in the montane tropics of South America. Dendrochronologia 50, 105–112 (2018).ArticleĀ 

    Google ScholarĀ 
    Rodríguez-Ramírez, E. C., Valdez-Nieto, J. A., VÔzquez-García, J. A., Dieringer, G. & Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican cloud forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 11, 25 (2020).Article 

    Google ScholarĀ 
    Carlquist, S. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64, 887–896 (2020).ArticleĀ 

    Google ScholarĀ 
    Speer, B. J. H. Fundamentals of tree-ring research. 509 (2010). https://doi.org/10.1002/gea.20357.Rita, A., Cherubini, P., Leonardi, S., Todaro, L. & Borghetti, M. Functional adjustments of xylem anatomy to climatic variability: Insights from long-Term Ilex aquifolium tree-ring series. Tree Physiol. 35, 817–828 (2015).ArticleĀ 

    Google ScholarĀ 
    Paredes-Villanueva, K., López, L. & Navarro Cerrillo, R. M. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees Struct. Funct. 30, 1581–1593 (2016).ArticleĀ 

    Google ScholarĀ 
    Köhl, M., Lotfiomran, N. & Gauli, A. Influence of local climate and ENSO on the growth of Cedrela odorata L. in Suriname. Atmosphere 13, 1119 (2022).Article 
    ADSĀ 

    Google ScholarĀ 
    Menezes, I. R. N., Aragão, J. R. V., Pagotto, M. A. & Lisi, C. S. Teleconnections and edaphoclimatic effects on tree growth of Cedrela odorata L in a seasonally dry tropical forest in Brazil. Dendrochronologia 72, 125923 (2022).Article 

    Google ScholarĀ 
    JimĆ©nez-RodrĆ­guez, C. D., Coenders-Gerrits, M., Schilperoort, B., GonzĆ”lez-Angarita, A. D. P. & Savenije, H. Vapor plumes in a tropical wet forest: Spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 25, 619–635 (2021).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    BrƤuning, A. et al. Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63, 337–345 (2009).ArticleĀ 

    Google ScholarĀ 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).ArticleĀ 

    Google ScholarĀ 
    Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).ArticleĀ 

    Google ScholarĀ 
    Pandey, S., Carrer, M., Castagneri, D. & Petit, G. Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect. Plant Ecol. Evol. Syst. 33, 34–41 (2018).ArticleĀ 

    Google ScholarĀ 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct. Funct. 29, 25 (2015).ArticleĀ 

    Google ScholarĀ 
    Venegas-GonzĆ”lez, A., von Arx, G., Chagas, M. P. & Filho, M. T. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct. Funct. 29, 423–435 (2015).ArticleĀ 

    Google ScholarĀ 
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).ArticleĀ 

    Google ScholarĀ 
    Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?. Front. Plant Sci. 4, 1–11 (2013).ArticleĀ 

    Google ScholarĀ 
    GarcĆ­a-GonzĆ”lez, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: a review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).ArticleĀ 

    Google ScholarĀ 
    Scholz, A., Stein, A., Choat, B. & Jansen, S. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35, 337–355 (2014).ArticleĀ 

    Google ScholarĀ 
    von Arx, G., Kueffer, C. & Fonti, P. Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J. 34, 433–445 (2013).ArticleĀ 

    Google ScholarĀ 
    Koecke, A. V., Muellner-Riehl, A. N., Pennington, T. D., Schorr, G. & Schnitzler, J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). Am. J. Bot. 100, 1800–1810 (2013).ArticleĀ 

    Google ScholarĀ 
    Sperry, J. S. & Saiendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant. Cell Environ. 17, 1233–1241 (1994).ArticleĀ 

    Google ScholarĀ 
    RodrĆ­guez-RamĆ­rez, E. C., CrispĆ­n-DelaCruz, D. B., Ticse-Otarola, G. & Requena-Rojas, E. J. Assessing the hydric deficit on two Polylepis species from the Peruvian Andean mountains: Xylem vessel anatomic adjusting. Forest 13, 633 (2022).
    Google ScholarĀ 
    Islam, M., Rahman, M. & BrƤuning, A. Xylem anatomical responses of diffuse porous Chukrasia tabularis to climate in a South Asian moist tropical forest. For. Ecol. Manage. 412, 9–20 (2018).ArticleĀ 

    Google ScholarĀ 
    Abrantes, J., Campelo, F., GarcĆ­a-GonzĆ”lez, I. & Nabais, C. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function. Trees Struct. Funct. 27, 655–662 (2013).ArticleĀ 

    Google ScholarĀ 
    Fahey, T. J., Sherman, R. E. & Tanner, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 20, 1–13 (2015).
    Google ScholarĀ 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Kƶppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    FAO-UNESCO. Soil Map of the World: Revised Legend (World Soil Resources Report 60. FAO-UNESCO, 1998).Stokes, M. & Smiley, T. L. An Introduction to Tree-Ring Dating (University of Arizona Press, 1996).
    Google ScholarĀ 
    Speer, J. H. Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian region. Science 20, 257 (2001).
    Google ScholarĀ 
    Schulman, E. Dendroclimatic Changes in Semiarid America (University of Arizona Press, 1956).
    Google ScholarĀ 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google ScholarĀ 
    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57, 205–221 (2001).
    Google ScholarĀ 
    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Cook, E. RCSigFree, Software Specialized in Dendrochronology (2017).Barichivich, J., Sauchyn, D. J. & Lara, A. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 320–333 (2009).ArticleĀ 

    Google ScholarĀ 
    Briffa, K. R. Interpreting high-resolution proxy climate data-The example of dendroclimatology. In Analysis of Climate Variability vol 0500 (eds von Storch, H. et al.) 77–94 (Springer, 1999).ChapterĀ 

    Google ScholarĀ 
    Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B Biol. Sci. 363, 1773–1778 (2008).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 25 (2018).ArticleĀ 

    Google ScholarĀ 
    Gloor, M. et al. Recent Amazon climate as background for possible ongoing Special Section. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Mooney, C. Z., Mooney, C. F., Duval, R. D. & Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference (Sage Publications, 1993).BookĀ 

    Google ScholarĀ 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).ArticleĀ 

    Google ScholarĀ 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests Published by Wiley on behalf of Nordic Society Oikos Stable. https://www.jstor.org/stable/41316009 Linked references are available on JSTOR for. Oikos 120, 1909–1920 (2011).Baker, J. C. A., Santos, G. M., Gloor, M. & Brienen, R. J. W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees Struct. Funct. 31, 1999–2009 (2017).ArticleĀ 

    Google ScholarĀ 
    Palacios, W. A., Santiana, J. & Iglesias, J. A new species of Cedrela (Meliaceae) from the eastern flanks of Ecuador. Phytotaxa 393, 84–88 (2019).ArticleĀ 

    Google ScholarĀ 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Souto-Herrero, M., Rozas, V. & GarcĆ­a-GonzĆ”lez, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).ArticleĀ 

    Google ScholarĀ 
    Oksanen, J. et al. Vegan: Community ecology package. R Package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html. (2016).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media Vol 35 (Springer, 2016).BookĀ 
    MATHĀ 

    Google ScholarĀ 
    Ver Hoef, J. M. & Boveng, P. L. Binomial Regression: How should we model overdispersed count data?. Ecology 88, 2766–2772 (2007).ArticleĀ 

    Google ScholarĀ 
    Karger, D., Nobis, M., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. https://doi.org/10.5194/cp-2021-30 (2021).Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).ArticleĀ 
    MathSciNetĀ 
    MATHĀ 

    Google ScholarĀ 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011). https://doi.org/10.1007/978-1-4419-7976-6.BookĀ 
    MATHĀ 

    Google ScholarĀ 
    ā€˜glm2’, P. http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf. Accessed 20 Mar 2020. 4–11 http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf (2020).Bates, D., MƤchler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 25 (2015).ArticleĀ 

    Google ScholarĀ 
    Barton, K. Package ā€˜ MuMIn ’ Version 1.46.0. R Package (2022). More

  • in

    Author Correction: Adult sex ratios: causes of variation and implications for animal and human societies

    Department of Anthropology, East Carolina University, Greenville, NC, USARyan SchachtDepartment of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USASteven R. BeissingerDepartment of Ecology and Evolution, University of Lausanne, 1015, Lausanne, SwitzerlandClaus WedekindEcology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, AustraliaMichael D. JennionsMARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, FranceBenjamin GeffroyELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, VeszprƩm, HungaryAndrƔs LikerBehavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, VeszprƩm, HungaryAndrƔs LikerBehavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Gƶttingen, GermanyPeter M. KappelerDepartment of Sociobiology/Anthropology, University of Gƶttingen, 37077, Gƶttingen, GermanyPeter M. KappelerGroningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The NetherlandsFranz J. WeissingDepartment of Anthropology, University of Utah, Salt Lake City, UT, USAKaren L. KramerInstitute of Global Health, University College London, London, UKTherese HeskethCentre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. ChinaTherese HeskethIHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, FranceJƩrƓme BoissierStockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, SwedenCaroline UgglaKem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USAMike HollingshausMilner Centre for Evolution, University of Bath, Bath, BA2 7AY, UKTamƔs SzƩkelyELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, HungaryTamƔs SzƩkely More

  • in

    The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex

    Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R et al. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Alekseev V, Lampert W (2001) Maternal control of resting – egg production in Daphnia. Nature 414:899–901ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutritional Biochem 23:853–859ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60–63ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Busshe JV, Vanhaecke L, Janssen CR, De Schamphelaere KAC (2015) Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol 34:5
    Google ScholarĀ 
    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105ArticleĀ 

    Google ScholarĀ 
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665CASĀ 

    Google ScholarĀ 
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–398ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Boersma M (1995) The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology 76(4):121–1261ArticleĀ 

    Google ScholarĀ 
    Boersma M (1997) Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360:79–88ArticleĀ 

    Google ScholarĀ 
    Boycott AE, Diver C (1923) On the inheritance of the sinistrality in Limnea peregra. Proc R Soc Lond B 95:207–213ArticleĀ 

    Google ScholarĀ 
    Brett MT (1993) Resource quality effects on Daphnia longispina offspring fitness. J Plankton Res 15(4):403–412ArticleĀ 

    Google ScholarĀ 
    Burns CW (1995) Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101:234–244ArticleĀ 

    Google ScholarĀ 
    Cameron NM, Shahrokh D, Del Corpo A, Dhir SK, Szyf M, Champagne FA, Meaney MJ (2008) Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J Neuroendocrinol 20:795–801ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Champagne FA (2012) Epigenetics and developmental plasticity across species. Dev Psychobiol 55:33–41ArticleĀ 

    Google ScholarĀ 
    Chan SY, Vasilopoulou E, Kilby MD (2009) The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab 5:45–54ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14(6):692–696ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Clark J, Garbutt JS, McNally L, Little TJ (2017) Disease spread in age structured populations with maternal age effects. Ecol Lett 20:445–451ArticleĀ 

    Google ScholarĀ 
    Colbourne JK, Herbert PDN, Taylor DJ (1997) Evolutionary origins of phenotypic diversity. In: Givnish TJ, Systma KJ (eds) Daphnia in molecular evolution and adaptive radiation. Cambridge University Press. p 163–188Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Desmarais KH (1997) Keeping Daphnia out of the surface film with cetyl alcohol. J Plankton Res 19(1):149–154ArticleĀ 

    Google ScholarĀ 
    Dorts J, Falisse E, Schoofs E, Flamion E, Kestermont P, Silvestre F (2016) DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep 6:34254ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ducker GS, Rabinowitz JD (2016) One-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08Dudycha JL, Brandon CS, Deitz KC (2012) Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources. Ecol Evol 2:329–340Dzialowski EM, Reed WL, Sotherland PR (2009) Effects of egg size on double-crested cormorant (Phalacrocorax auritus) egg composition and hatchling phenotype. Comp Biochem Physiol A Mol Integr Physiol 152:262–267ArticleĀ 

    Google ScholarĀ 
    Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162(4):865–872ArticleĀ 

    Google ScholarĀ 
    Gabsi F, Glazier DS, Hammers-Wirtz M, Ratte HT, Preuss TG (2014) How to interactive maternal traits and environmental factors determine offspring size in Daphnia magna?. Ann Limnol 50:9–18ArticleĀ 

    Google ScholarĀ 
    Garbutt JS, Little TJ (2016) Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecol Evolution 7:1403–1409ArticleĀ 

    Google ScholarĀ 
    Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Gillis MK, Walsh MR (2019) Individual variation in plasticity dulls transgenerational responses to stress. Funct Ecol 33:1993–2002Glazier DS (1992) Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73(3):910–926ArticleĀ 

    Google ScholarĀ 
    Gliwicz ZM, Guisande C (1992) Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oceologia 91:463–467ArticleĀ 

    Google ScholarĀ 
    Goos JM, Swain CJ, Munch SB, Walsh MR (2018) Maternal diet and age alter direct and indirect relationships between lifer-history traits across multiple generations. Funct Ecol 33:491–502ArticleĀ 

    Google ScholarĀ 
    Goulden CE, Horning LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci USA 77:1716–1720ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Groothuis TG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species at different food levels. J Plankton Res 14(7):997–1007ArticleĀ 

    Google ScholarĀ 
    Hearn J, Chow FW-N, Barton H, Tung M, Wilson P, Blaxter M et al. (2018) Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 27:1402–1412ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hearn J, Pearson M, Blaxter M, Wilson PJ, Little TJ (2019) Genome-wide methylation is modified by caloric restriction in Daphnia magna. BCM Genetics 20:197Hearn J, Plenderleith F, Little TJ (2021) DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 14:4. https://doi.org/10.1186/s13072-020-00379-zHead JA (2014) Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol 54:77–86ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hebert PDN (1981) Obligate asexuality in Daphnia. Am Nate 117:784–789ArticleĀ 

    Google ScholarĀ 
    Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 283(1838):20160988. https://doi.org/10.1098/rspb.2016.0988ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18:833–840ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ho DH (2008) Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Diss: University of North TexasInnes DJ, Fox CJ, Winsor GL (2000) Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proc: Biol Sci 267(1447):991–997CASĀ 

    Google ScholarĀ 
    Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, GonƧalves FJM, Pereira JL, Asselman J (2018) Transgenerational inheritance of dna hypomethylation in Daphnia magna in response to salinity stress. Environ Sci Technol 52(17):10114–10123ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Jian X, Yang W, Zhao S, Liang H, Zhao Y, Chen L et al. (2013) Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata. Environ Pollut 178:142–146ArticleĀ 

    Google ScholarĀ 
    Keating KI (1985) The influence of vitamin-B12 deficiency on the reproduction of Daphnia-Pulex Leydig (Cladocera). J Crustacean Biol 5:30–136ArticleĀ 

    Google ScholarĀ 
    Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimulie. Oikos 65:197–206ArticleĀ 

    Google ScholarĀ 
    Kusari F, O’Doherty AM, Hodges NJ, Wojewodzic MW (2017) Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 7:11872ArticleĀ 

    Google ScholarĀ 
    Kvist J, Athanasio CG, Solari OS, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L (2018) Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evolution 10(8):1988–2007ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR (2022) Epigenetics in ecology, evolution, and conservation. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.871791LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen. Ecol Lett 4:64–71ArticleĀ 

    Google ScholarĀ 
    Li Q, Jiang X (2014) Offspring tolerance to toxic Microcystis aeruginosa in Daphnia pulex shaped by maternal food availability and age. Fundam Appl Limnol 185:315–319ArticleĀ 

    Google ScholarĀ 
    Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini Fet al. (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203ArticleĀ 

    Google ScholarĀ 
    Mkee D, Ebert D (1996) The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia 107(2):189–196ArticleĀ 

    Google ScholarĀ 
    Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2020) Caloric restriction upregulates the expression of DNMT3.1, lacking the conserved catalytic domain, in Daphnia magna. Genesis 58:12ArticleĀ 

    Google ScholarĀ 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2021) DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep 11:7326ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Pieters BJ, Liess M (2006) Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term fenvalerate exposure. Aquat Toxicol 76:286–277ArticleĀ 

    Google ScholarĀ 
    R Core Team (2021) R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Stollewerk A (2010) The water flea Daphnia – a new model system for ecology and evolution? J Biol 9(2):21ArticleĀ 

    Google ScholarĀ 
    Sturtevant AH (1923) Inheritance of direction of coiling in Limnea. Science 58:269ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH et al. (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26:5106–5114ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Tessier AJ, Consolatti NL (1989) Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56:269–276ArticleĀ 

    Google ScholarĀ 
    Tessier AJ, Consolatti NL (1991) Resource quantity and offspring quality in Daphnia. Ecology 72(2):468–478ArticleĀ 

    Google ScholarĀ 
    Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9(1):17. https://doi.org/10.1186/s40246-015-0041-3ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F (2018) Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol 52(7):4331–4339ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Urabe J, Sterner RW (2001) Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct Ecol 15:165–174ArticleĀ 

    Google ScholarĀ 
    Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009a) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35(4):700–706ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Vandegehuchte MB, Lemiere F, Janssen CR (2009b) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C Toxicol Pharmacol 150:343–348ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Vandegehuchte MB, Janssen CR (2011) Epigenetics and its implications for ecotoxicology. Ecotoxicology 20:607–624ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764–765:36–45ArticleĀ 

    Google ScholarĀ 
    Walsh MR, La Pierre KJ, Post DM (2014) Phytoplankton composition modifies predator-driven life history evolution in Daphnia. Evol Ecol 28:397–411ArticleĀ 

    Google ScholarĀ 
    Walsh MR, Cooley F, Biles K, Munch SB (2015) Predator-induced phenotypic plasticity within- and across generations: a challenge for theory? Proc R Soc B Biol Sci 282:20142205ArticleĀ 

    Google ScholarĀ 
    Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.orgWolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364(1520):1107–1115ArticleĀ 

    Google ScholarĀ 
    Zaffagnini F (1987) Reproduction in Daphnia. Mem Ist Ital Idrobiol 45:245–284
    Google ScholarĀ 
    Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1045–1062ArticleĀ 

    Google ScholarĀ  More

  • in

    The application of a CART model for forensic human geolocation using stable hydrogen and oxygen isotopes

    The isotopic spread for each study siteThe overall linear relationship between Ī“2H and Ī“18O values for hair (n = 81) and toenails (n = 39), respectively, were (Fig.Ā 2):$$delta^{2} {text{H}}_{{text{hair(VSMOW)}}} = , 0.89 times delta^{18} {text{O}}_{{text{hair(VSMOW)}}} {-} , 86.16,;{text{R}}^{2} = , 0.19,;p , < , 0.01$$ (1) $$delta^{2} {text{H}}_{{text{toenail(VSMOW)}}} = , 0.15 times delta^{18} {text{O}}_{{text{toenail(VSMOW)}}} {-} , 91.69,;{text{R}}^{2} = , 0.00,;p , = , 0.69$$ (2) Figure 2Ī“2H and Ī“18O values (‰) of all samples for both hair (Ī“2H: n = 81, Ī“18O: n = 82) and toenails (Ī“2H and Ī“18O: n = 39). The solid black line represents the Global Meteoric Water Line (GMWL) [Ī“2H = 8 (times) Ī“18O + 10] and is included in the graph for comparison purposes. The regression lines between oxygen and hydrogen values for hair [Ī“2Hhair(VSMOW) = 0.89 × Γ18Ohair(VSMOW)ā€‰āˆ’ā€‰86.16, R2 = 0.19, pā€‰ā€‰āˆ’ā€‰82‰ were then split further where any samples with Ī“2Hhair values less than āˆ’ā€‰73‰ were initially classified as Site 2. These samples were then split again to either Site 2 (Ī“2Hhair ≄ 76‰) or Site 4 (Ī“2Hhairā€‰ā€‰āˆ’ā€‰73‰ were classified as Site 4. No samples could be classified as originating from Site 3. The second CART model was built for stable hydrogen and oxygen isotopes of toenails (Model 2) (Fig.Ā 5b). The model included only two decision nodes in which the first predictor variable was Ī“2Htoenail value, where samples with values less than āˆ’ā€‰93‰ were predicted to be from Site 1. For toenail samples with hydrogen values greater than āˆ’ā€‰93‰, oxygen values were used to determine whether they could be classified as Site 2 or Site 4. Those samples with Ī“18Otoenail values less than 9.6‰ were classified as Site 2 and those with values greater than 9.6‰ were predicted as Site 4. No samples were predicted to be from Site 3 purely from stable hydrogen and oxygen isotopes in toenails. Finally, the third model consisted of stable hydrogen and oxygen isotope values in both hair and toenail samples (Model 3) (Fig.Ā 5c). Model 3 selected toenails as the best attribute for classification, which indicates that toenail isotope values are the better predictor when both hair and toenail samples are present for analysis from Sites 1–4. The model was similar to that of Model 2.Figure 5Decision trees developed from both Ī“2H and Ī“18O values of (a) hair [Model 1, trained with n = 65], (b) toenails [Model 2, trained with n = 32] and (c) of both hair and toenails [Model 3, trained with n = 28]. The predicted study site numbers are shown on the first row within each bubble. The proportions of samples in each node are shown as decimals for Sites 1, 2, 3, 4, respectively. The percentages indicate the proportion of samples within each sub-partition.Full size imageConfusion matrices (Table 1) were constructed for all three models to evaluate the performance of the classification models. Of the three models, Model 3 proved to be the most accurate model with an overall accuracy of 71.4% (see Supplementary Fig S2. online). The performance evaluation summary, including measures for sensitivity, specificity, positive predictive value, and negative predictive value for all three models, is provided in (see Supplementary Table S3. online).Intra-individual differencesBoth hair and toenail samples were retrieved from 35 of the 86 individuals. The paired difference between Ī“2H values in hair and toenails of the same individual was tested using the Wilcoxon Signed Rank's test for non-normal data as the dataset failed the Shapiro–Wilk's normality test at the α = 0.05 significance level. Significant differences were found between Ī“2H values of hair (n = 35, mean =ā€‰āˆ’ā€‰78.0‰, s.d. = 3.06) and toenails (n = 35, mean =ā€‰āˆ’ā€‰90.9‰, s.d. = 3.27) from the same individual (p  0.05. Overall, the isotopic values of Ī“2H in hair were higher than those of toenail from the same individual by 13.0‰, on average, with a standard deviation of 8.4‰. For Ī“18O, the average was 1.5‰ with a standard deviation of 4.6‰ (Fig.Ā 6).Figure 6(a) Ī“2H and (b) Ī“18O values in hair and toenails for all individuals that provided both tissue types (n = 35). Study site information are also shown by shapes. The standard deviations of each sample, ran in either duplicates or triplicates, are shown by error bars. Note that error bars cannot be seen for some samples due to small standard deviations. The average difference between the isotopic values of hair and toenail from the same individual were 13.0‰ with a standard deviation of 8.4‰ for Ī“2H and 1.5‰ with a standard deviation of 4.6‰ for Ī“18O.Full size imageThe linear relationships between Ī“2H in hair and toenails for all individuals were (see Supplementary Fig S3. online):$$delta^{2} {text{H}}_{{{text{hair}}}} = , 0.48 times delta^{2} {text{H}}_{{text{toenail }}} {-} , 34.72,;{text{R}}^{2} = , 0.16,;p , < , 0.05$$ (19) and for Ī“18O:$$delta^{18} {text{O}}_{{{text{hair}}}} = , 0.55 times delta^{18} {text{O}}_{{{text{toenail}}}} + , 5.16,;{text{R}}^{2} = , 0.13,;p , < 0.05$$ (20) Overall, both equations showed a weak relationship, as seen by the small R2 values. More

  • in

    Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts

    Barbosa, P., Krischik, V. A. & Jones, C. G. Microbial mediation of plant-herbivore interactions (John Wiley & Sons, 1991).
    Google ScholarĀ 
    Berenbaum, M. R. Allelochemicals in insect–microbe–plant interactions; agents provocateurs in the
    coevolutionary arms race. In Nov. Asp. Insect-Plant Interact. (eds Barbosa, P. & Letourneau, D. K.) 97–123 (1988).Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42, 1078–1086 (2019).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Sugio, A., Dubreuil, G., Giron, D. & Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 66, 467–478 (2015).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496 (2014).ArticleĀ 

    Google ScholarĀ 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Pineda, A. et al. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507–514 (2010).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Liu, H. et al. An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).ArticleĀ 

    Google ScholarĀ 
    Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ferrari, J. et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).ArticleĀ 

    Google ScholarĀ 
    McLean, A. H. et al. Insect symbionts in food webs. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150325 (2016).ArticleĀ 

    Google ScholarĀ 
    Giron, D., Dedeine, F., Dubreuil, G. et al. Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257 (2017).Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 1–11 (2019).ArticleĀ 

    Google ScholarĀ 
    Xu, T.-T., Jiang, L.-Y., Chen, J. & Qiao, G.-X. Host plants influence the symbiont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11, 217. https://doi.org/10.3390/insects11040217 (2020).ArticleĀ 

    Google ScholarĀ 
    Qin, M. et al. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): Diversity, host species specificity and phylosymbiosis. Environ. Microbiol. 23(4), 2184–2198. https://doi.org/10.1111/1462-2920.15391 (2021).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Douglas, A. E. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39, 952–961 (2013).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Chung, S. H. et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7, 1–13 (2017).
    Google ScholarĀ 
    Holt, J. R. et al. Differences in microbiota between two multilocus lineages of the sugarcane aphid (Melanaphis sacchari) in the continental United States. Ann. Entomol. Soc. Am. 113(4), 257–265 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    McLean, A. H., Godfray, H. C. J., Ellers, J. & Henry, L. M. Host relatedness influences the composition of aphid microbiomes. Environ. Microbiol. Rep. 11, 808–816 (2019).ArticleĀ 

    Google ScholarĀ 
    Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218 (2013).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Najar-RodrĆ­guez, A. J. et al. The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J. Invertebr. Pathol. 100, 123–126. https://doi.org/10.1016/j.jip.2008.10.005 (2009).ArticleĀ 

    Google ScholarĀ 
    Blankenchip, C. L., Michels, D. E., Braker, H. E. & Goffredi, S. K. Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ. Prepr. 6, e26692v1 (2018).
    Google ScholarĀ 
    Gauthier, J.-P., Outreman, Y., Mieuzet, L. & Simon, J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10, e0120664 (2015).ArticleĀ 

    Google ScholarĀ 
    Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).ArticleĀ 

    Google ScholarĀ 
    Guidolin, A. S. & CĆ“nsoli, F. L. Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb. Ecol. 73, 201–210 (2017).ArticleĀ 

    Google ScholarĀ 
    Leonardo, T. E. & Muiru, G. T. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc. R. Soc. Lond. B Biol. Sci. 270, S209–S212 (2003).ArticleĀ 

    Google ScholarĀ 
    Xu, S., Jiang, L., Qiao, G. & Chen, J. The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb. Ecol. 79, 971–984. https://doi.org/10.1007/s00248-019-01435-2 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x (2012).ArticleĀ 

    Google ScholarĀ 
    Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195–204. https://doi.org/10.1007/s00248-013-0314-0 (2014).ArticleĀ 

    Google ScholarĀ 
    Henry, L. M., Maiden, M. C., Ferrari, J. & Godfray, H. C. J. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18, 516–525 (2015).ArticleĀ 

    Google ScholarĀ 
    Simon, J.-C. et al. Host–based divergence in populations of the pea aphid: Insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270, 1703–1712. https://doi.org/10.1098/rspb.2003.2430 (2003).ArticleĀ 

    Google ScholarĀ 
    Brady, C. M. & White, J. A. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol. Entomol. 38, 433–437. https://doi.org/10.1111/een.12020 (2013).ArticleĀ 

    Google ScholarĀ 
    Blackman, R. L. & Eastop, V. F. Aphids on the world’s herbaceous plants and shrubs, 2 Vol. set (John Wiley & Sons, 2008).
    Google ScholarĀ 
    Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30, 547–556 (2016).ArticleĀ 

    Google ScholarĀ 
    Zytynska, S. E. & Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13–26 (2016).ArticleĀ 

    Google ScholarĀ 
    Harrison, J. S. & Mondor, E. B. Evidence for an invasive aphid ā€œSupercloneā€: Extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the Southern United States. PLoS ONE 6, e17524. https://doi.org/10.1371/journal.pone.0017524 (2011).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Mooney, K., Jones, P. & Agrawal, A. Coexisting congeners: Demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458 (2008).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Groeters, F. R. Geographic and clonal variation in the milkweed-oleander aphid, Aphis nerii (Homoptera: Aphididae), for winged morph production, life history, and morphology in relation to host plant permanence. Evol. Ecol. 3, 327–341 (1989).ArticleĀ 

    Google ScholarĀ 
    Dolan, R. W., Moore, M. E. Indiana Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), USF Water Institute. University of South Florida]. Butler University Friesner Herbarium, Indianapolis, Indiana (2022).McMartin, K. A., Malcolm, S. B. Defense expression in the aphid Myzocallis asclepiadis. Final Report. Pierce Cedar Creek Institute, Hastings, MI (2008).Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in Midwestern Milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356. https://doi.org/10.1093/biosci/biw186 (2017).ArticleĀ 

    Google ScholarĀ 
    Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 12, 268 (2019).ArticleĀ 

    Google ScholarĀ 
    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).ArticleĀ 
    ADSĀ 

    Google ScholarĀ 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).ArticleĀ 

    Google ScholarĀ 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Jousselin, E. et al. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol. Ecol. Resour. 16, 628–640. https://doi.org/10.1111/1755-0998.12478 (2016).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ArticleĀ 
    ADSĀ 
    CASĀ 

    Google ScholarĀ 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).ArticleĀ 

    Google ScholarĀ 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).ArticleĀ 

    Google ScholarĀ 
    Wright, E. S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8(1), 352 (2016).ArticleĀ 

    Google ScholarĀ 
    Schliep, K., Potts, A. A., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks (No. e2054v1). PeerJ Preprints (2016).Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Gomes, S. I. et al. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2, 1–12 (2020).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 31, 723–735. https://doi.org/10.1111/mec.16285 (2022).ArticleĀ 

    Google ScholarĀ 
    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Pons, I., Renoz, F., Noël, C. & Hance, T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front. Microbiol. 10, 764. https://doi.org/10.3389/fmicb.2019.00764 (2019).Article 

    Google ScholarĀ 
    Li, Q. et al. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377. https://doi.org/10.1021/acs.jafc.8b04828 (2018).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Jousselin, E., CĆø eur d’Acier, A., Vanlerberghe-Masutti, F. & Duron, O. Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol. Ecol. 22, 260–270 (2013).ArticleĀ 

    Google ScholarĀ 
    NovÔkovÔ, E., HypŔa, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143 (2009).Article 

    Google ScholarĀ 
    Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908 (2018).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Wulff, J. A. & White, J. A. The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ. Entomol. 44, 574–581 (2015).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Ivens, A. B., Gadau, A., Kiers, E. T. & Kronauer, D. J. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27, 1898–1914 (2018).ArticleĀ 

    Google ScholarĀ 
    Fischer, C. Y. et al. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25, 223–232 (2015).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Smith, R. A., Mooney, K. A. & Agrawal, A. A. Coexistence of three specialist aphids on common Milkweed, Asclepias syriaca. Ecology 89, 2187–2196 (2009).ArticleĀ 

    Google ScholarĀ 
    Katayama, N., Tsuchida, T., Hojo, M. K. & Ohgushi, T. aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106, 761–770 (2013).ArticleĀ 
    CASĀ 

    Google ScholarĀ 
    Hansen, T. E. & Enders, L. S. Host Plant species influences the composition of milkweed and Monarch microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.840078 (2022).ArticleĀ 

    Google ScholarĀ  More