More stories

  • in

    Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

    Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:7–13Article 

    Google Scholar 
    Akashi HD, Cádiz Díaz A, Shigenobu S, Makino T, Kawata M (2016) Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban Anolis lizards. Mol Ecol 25:2273–2285CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen JA (1877) The influence of Physical conditions in the genesis of species. Radic Rev 1:108–140
    Google Scholar 
    Barghi N, Hermisson J, Schlötterer C (2020) Polygenic adaptation: A unifying framework to understand positive selection. Nat Rev Genet 21:769–781CAS 
    PubMed 
    Article 

    Google Scholar 
    Blem CR (1990) Avian energy storage. Curr Ornithol 7:59–113
    Google Scholar 
    Blix AS (2016) Adaptations to polar life in mammals and birds. J Exp Biol 219:1093–1105PubMed 
    Article 

    Google Scholar 
    Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: From polygenic to omnigenic. Cell 169:1177–1186CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cannon B, Nedergaard J (2010) Thyroid hormones: Igniting brown fat via the brain. Nat Med 16:965–967CAS 
    PubMed 
    Article 

    Google Scholar 
    Castruita JAS, Westbury MV, Lorenzen ED (2020) Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role. BMC Genom 21:1–8
    Google Scholar 
    Cherel Y, Gilles J, Handrich Y, Le Maho Y (1994) Nutrient reserve dynamics and energetics during long-term fasting in the king penguin (Aptenodytes patagonicus). J Zool 234:1–12Article 

    Google Scholar 
    Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cristofari R, Bertorelle G, Ancel A, Benazzo A, Le Maho Y, Ponganis PJ et al. (2016) Full circumpolar migration ensures evolutionary utility in the Emperor penguin. Nat Commun 7:1–9Article 

    Google Scholar 
    Cristofari R, Liu X, Bonadonna F, Cherel Y, Pistorius P, Le Maho Y et al. (2018) Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat Clim Change 8:245–251Article 

    Google Scholar 
    Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O et al. (2017) Climate change impacts on wildlife in a High Arctic archipelago-Svalbard, Norway. Glob Change Biol 23:490–502Article 

    Google Scholar 
    Díaz-Franulic I, Raddatz N, Castillo K, González-Nilo FD, Latorre R (2020) A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. PNAS 117:20298–20304PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duchamp C, Marmonier F, Denjean F, Lachuer J, Eldershaw TPD, Rouanet JL et al. (1999) Regulatory, cellular and molecular aspects of avian muscle non-shivering thermogenesis. Ornis Fennica 76:151–165
    Google Scholar 
    Elliott KH, Welcker J, Gaston AJ, Hatch SA, Palace V, Hare JF et al. (2013) Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds. Biol Open 2:580–586CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost PGH, Siegfried WR, Greenwood PJ (1975) Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J Zool 175:231–241Article 

    Google Scholar 
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F et al. (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ (2017) Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst Biol 66:57–73PubMed 

    Google Scholar 
    Geering K, Kraehenbuhl JP, Rossier BC (1987) Maturation of the catalytic alpha unit of Na, K-ATPase during intracellular transport. J Cell Biol 105:2613–2619CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Grémillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N. Y Acad Sci 1249:166–190PubMed 
    Article 

    Google Scholar 
    Goldsmith R, Sladen WJ (1961) Temperature regulation of some Antarctic penguins. J Physiol 157:251–262CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groscolas R (1990) Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology (LS Davis & JT Darby ed.), 269-296 San Diego: Academic PressGroscolas R, Robin JP (2001) Long-term fasting and re-feeding in penguins. Comp Biochem Physiol Part A Mol Integr Physiol 128:645–655CAS 

    Google Scholar 
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546CAS 
    PubMed 
    Article 

    Google Scholar 
    Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19:859–867CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao Y, Xiong Y, Cheng Y, Song G, Jia C, Qu Y et al. (2019) Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. PNAS 116:11851–11856CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunt BG, Ometto L, Wurm Y, Shoemaker D, Soojin VY, Keller L et al. (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. PNAS 108:15936–15941CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 8:231–251CAS 
    PubMed 
    Article 

    Google Scholar 
    Ishii S, Amano I, Koibuchi N (2021) The role of thyroid hormone in the regulation of cerebellar development. Endocrinol Metab 36:703–716CAS 
    Article 

    Google Scholar 
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C et al. (2014) Whole genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: Physiological roles beyond heat generation. Cell Metab 22:546–559CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kooyman GL, Gentry RL, Bergman WP, Hammel HT (1976) Heat loss in penguins during immersion and compression. Comp Bioch Physiol Part A 54:75–80CAS 
    Article 

    Google Scholar 
    Kumar V, Kutschera VE, Nilsson MA (2015) Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes. BMC Genom 16:1–13Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT et al. (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496PubMed 
    Article 

    Google Scholar 
    Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B et al. (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769CAS 
    PubMed 
    Article 

    Google Scholar 
    Li FG, Li H (2019) A time-dependent genome-wide SNP-SNP interaction analysis of chicken body weight. BMC Genom 20:1–9Article 

    Google Scholar 
    Li C, Zhang Y, Li J, Kong L, Hu H, Pan H et al. (2014) Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 3:2047–2217XArticle 

    Google Scholar 
    Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W et al. (2019) Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus). Science 364:eaav6312CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z et al. (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:785–794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MH, Heintzman PD et al. (2021) Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 184:4874–4885CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660CAS 
    PubMed 
    Article 

    Google Scholar 
    Löytynoja A (2013) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170Article 

    Google Scholar 
    Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI, Perry GH et al. (2015) Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep 12:217–228CAS 
    PubMed 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:636–641Article 

    Google Scholar 
    Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO (2017) Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep 21:3329–3337CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS (1995) Relationship of sidechain hydrophobicity and α-helical propensity on the stability of the single-stranded amphipathic α-helix. J Pept Sci 1:319–329CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers BR, Sigal YM, Julius D (2009) Evolution of Thermal Response Properties in a Cold-Activated TRP Channel. PloS one 4:e5741PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ et al. (2015) Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genom 16:1–16CAS 
    Article 

    Google Scholar 
    Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARg agonists induce a white-to-brown fat conversion through stabilisation of PRDM16 protein. Cell Metab 15:395–404CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. PNAS 103:17973–17978CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z et al. (2019) High-coverage genomes to elucidate the evolution of penguins. GigaScience 8:1–17Article 

    Google Scholar 
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543CAS 
    PubMed 
    Article 

    Google Scholar 
    Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P et al. (2001) Differential involvement of peroxi-some-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355:481–488CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pond SK, Frost S, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinform 21:676–679CAS 
    Article 

    Google Scholar 
    R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner DS et al. (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos B, González-Acuña D, Loyola DE, Johnson WE, Parker PG, Massaro M et al. (2018) Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genom 19:1–17Article 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res 47:191–198Article 

    Google Scholar 
    Rey B, Roussel D, Romestaing C, Belouze M, Rouanet JL, Desplanches D et al. (2010) Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiol 10:1–12Article 

    Google Scholar 
    Roussel D, Le Coadic M, Rouanet JL, Duchamp C (2020) Skeletal muscle metabolism in sea-acclimatised king penguins I Thermogenic mechanisms. J Exp Biol 223:pjeb233668Article 

    Google Scholar 
    Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal‐muscle‐based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90:1279–1297PubMed 
    Article 

    Google Scholar 
    Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM et al. (2021) Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 19:1–13Article 

    Google Scholar 
    Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26Article 

    Google Scholar 
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nuc Acids Res 33:382–388Article 

    Google Scholar 
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al. (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Investig 121:96–105CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith MD, Wertheim JO, Weaver S (2015) Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742CAS 
    PubMed 
    Article 

    Google Scholar 
    Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al. (2016) The genecards suite: From gene data mining to disease genome sequence analysis. Curr Protoc Bioinform 54:1–30Article 

    Google Scholar 
    Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637CAS 
    PubMed 
    Article 

    Google Scholar 
    Storey JD, Bass AJ, Dabney A, Robinson D (2017) qvalue: Q-value estimation for false discovery rate control R package version 2150Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarises and visualises long lists of gene ontology terms. PloS one 6:e21800CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B et al. (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE et al. (2012) Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr Physiol 2:2151–2202PubMed 
    Article 

    Google Scholar 
    Teulier L, Rouanet JL, Letexier D, Romestaing C (2010) Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency. J Exp Biol 213:2476–2482CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas DB, Fordyce RE (2008) The heterothermic loophole exploited by penguins. Aust J Zool 55:317–321Article 

    Google Scholar 
    Tigano A, Reiertsen TK, Walters JR, Friesen VL (2018) A complex copy number variant underlies differences in both colour plumage and cold adaptation in a dimorphic seabird. BioRxiv 507384. https://doi.org/10.1101/507384Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y (2002) Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett 529:313–318CAS 
    PubMed 
    Article 

    Google Scholar 
    Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC et al. (2014) King penguin demography since the last glaciation inferred from genome-wide data. Proc R Soc B 281:20140528PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trucchi E, Cristofari R, Le Bohec C (2019) Reply to: The role of ocean dynamics in king penguin range estimation. Nat Clim Change 9:122–122Article 

    Google Scholar 
    Vermillion KL, Anderson KJ, Hampton M, Andrews MT (2015) Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genom 47:58–74CAS 
    Article 

    Google Scholar 
    Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2015) Hormonal correlates and thermoregulatory consequences of moulting on metabolic rate in a northerly wintering shorebird. Physiol Biochem Zool 82:129–142Article 

    Google Scholar 
    Vianna JA, Fernandes FA, Frugone MJ, Figueiró HV, Pertierra LR, Noll D et al. (2020) Genome-wide analyses reveal drivers of penguin diversification. PNAS 117:22303–22310CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang Q, Tan X, Jiao S (2014) Analyzing cold tolerance mechanism in transgenic Zebrafish (Danio rerio). PloS one 9:e102492PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: Detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:820–832CAS 
    PubMed 
    Article 

    Google Scholar 
    Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J et al. (2014) A candidate multimodal functional genetic network for thermal adaptation. PeerJ 2:e578PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang Z (2007) PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang J, Bromage TG, Zhao Q, Xu BH, Gao WL, Tian HF et al. (2011) Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress. PloS one 6:e19833CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang S, Lu X, Wang Y, Xu L, Chen X, Yang F et al. (2020) A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. PNAS 117:8633–8638CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241CAS 
    PubMed 
    Article 

    Google Scholar 
    Yudin NS, Larkin DM, Ignatieva EV (2017) A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet 18:33–43Article 

    Google Scholar 
    Zelcer N, Sharpe LJ, Loregger A, Kristiana I, Cook EC, Phan L et al. (2014) The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol 34:1262–1270PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C et al. (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Seasonal challenges of tropical bats in temperate zones

    We analyzed a total of 2196 morbidity reports received in Israel between November 2018 and October 2021 (Fig. 1A). The majority of these were for adult bats 1,783 (81.2%), of which 1432 (80.3%) were from urban areas (settlements populated by 30,000 or more people) and the remaining 351 (19.7%) were from rural areas, including small villages, nature reserves, and army bases. Out of all these adult cases, the animal’s sex was identified in only 295 cases (16.6%), with 171 (58%) being females and 124 (42%) being males. 413 (18.8% of all cases) were pups, up to 4 months old, from throughout the country, without sex identification.We found a dramatic and significant increase in adult bat morbidity during winter (see Fig. 1B) (p  More

  • in

    Sperm whale acoustic abundance and dive behaviour in the western North Atlantic

    Data collectionBetween June 27 and August 25, 2016, 6600 km of simultaneous visual and passive acoustic line transect surveys were completed on the National Oceanic and Atmospheric Administration (NOAA) ship Henry B. Bigelow5. Survey effort was distributed along saw tooth track lines spanning the continental slope from Virginia (US) to the southern tip of Nova Scotia (Canada) (36–42 N) and on several larger track lines over the abyssal plain. Two teams of visual observers independently recorded sightings of marine mammals using high-powered Fujinon binoculars (25 × 150; Fujifilm, Valhalla, NY) as well as environmental conditions (e.g. sea state) every 30 min.The speed of sound in water was collected three times each day (morning, noon, evening) by measuring conductivity, temperature, and depth (CTD) at specific intervals in the water column. The sound speed closest to the depth of the towed hydrophone array was extracted. On alternating survey days, Simrad EK60 single beam scientific echosounders operating at frequencies of 18, 38, 70, 120 and 200 kHz were used to collect active acoustic data.When possible during daylight hours (06:00–18:00 ET), passive acoustic data were collected continuously using a custom-built linear array composed of eight hydrophone elements and a depth sensor (Keller America Inc. PA7FLE, Newport News, VA) within two oil-filled modular sections separated by 30 m of cable (Fig. 1). The array was towed 300 m behind the vessel at approximately 5–10 m depth while the vessel was in waters more than 100 m deep and underway at speeds of 16–20 km/h. For more details see DeAngelis et al.31, with the only change being that two APC hydrophones and one Reson hydrophone in the aft section were replaced with HTI-96-Min hydrophones (High Tech, Inc., Long Beach, MS). The HTI’s had a flat frequency response from 1 to 30 kHz (− 167 dB re V/uPa ± 1.5 dB). Recordings were made using the acoustical software PAMGuard (v.1.15.02)34. This analysis used the data recorded by the last two 192 kHz sampled hydrophones in the array (MF5 and MF6).Figure 1The linear towed array included eight hydrophone elements and a depth sensor within two oil-filled modular sections separated by 30 m of cable. Six hydrophones sampled at 192 kHz (MF1–MF6) and two sampled at 500 kHz. The hydrophones were connected to two National Instruments sound cards (NI-USB-6356). A high pass filter of 1 kHz was applied by the recording system to reduce the amount of vessel noise in the recordings. This analysis used the passive acoustic data from MF5 and MF6. The schematic is not to scale.Full size imageClick detection and 2D event localizationThe passive acoustic data were filtered using a Butterworth band pass filter (4th order) between 2 and 20 kHz and decimated to 96 kHz to improve sperm whale click resolution. Clicks were automatically detected using the PAMGuard (v.2.01.03) general sperm whale click detector with a trigger threshold of 12 dB.Using PAMGuard’s bearing time display, all detections were reviewed to classify click types and mark click trains as “events” based on consistent changes in bearing, audible sound, ICI and spectral characteristics. Each event was marked to an individual level, tracking a whale from the first to the last detected click15,35. All events containing usual clicks were localized with PAMGuard’s Target Motion Analysis (TMA) module’s 2D simplex optimization algorithm. For further analysis, events were truncated at a slant range of 6500 m (Supplementary Fig. S1).Echosounder analysisA regression analysis was run using the R package MASS36. To account for overdispersion, a negative binomial generalized linear model (GLM) with a log link function was applied to a dataset of the daily acoustic detections33. Echosounder state (active versus passive), month (June, July, August), and habitat type (slope or abyssal) were included as covariates, with the total number of daily detections as the response variable. The track line distance covered per day was used as an offset for effort. The best fitting model was selected based on backwards stepwise selection using Akaike’s information criterion (AIC) and the single-term deletion method using Chi-squared goodness-of-fit tests37.3D localizationExtracting a .wav clip for each click and attributing metadataAn automated process was developed using the R package PAMpal38 (v. 0.14.0) to extract the time of each click in the marked events from PAMGuard databases, generate a .wav clip for each click, and attribute all metadata (e.g., event 2D localization, array depth, radial distance, sea state, and sound speed) necessary for estimating the click depth.Slant delayUsing the methods established by DeAngelis et al.31 and custom Matlab R2021a (MathWorks Inc., Natick, NA) scripts, the multipath arrival of clicks and surface reflected echoes were used to mathematically convert the linear array into a 2D planar array and estimate 3D localizations. Using the .wav clips exported from PAMPal, the time delay between the click and the corresponding surface reflected echo, known as the slant delay, was measured via autocorrelation. Within the autocorrelation solution’s envelope of correlation values, the optimal slant delay was measured using the peak with the highest correlation value above a threshold of 0.02 and within an expected time window after the direct click of 0.0005–0.015 s. Although theoretically a surface reflected echo could have arrived less than a millisecond ( 5 min) were categorized as U shaped, and as shallow ( 1600 m) based on the maximum click depth (Fig. 3).Figure 3Example of click depths (m) over time (min) for events categorized as (a) U shaped and shallow ( 1600 m).Full size imageClick depths were then binned at 400 m intervals to account for an animal’s unknown horizontal movement over time as well as uncertainty in the estimated click depths, and the total time an animal spent within each depth bin was calculated. For each event with a U shaped click depth pattern, the depth bin in which the bottom phase occurred6 was determined. Finally, to assess if a whale was diving in the water column or close to the seafloor, the depth bin in which the 90th percentile of the click depths was recorded was compared to the bin including the seafloor depth. If the whale was more than 400 m above the seafloor, it was determined to be diving in the water column.Distance samplingDepth-corrected average horizontal perpendicular distancesFor each event, a depth-corrected average horizontal perpendicular distance was calculated using the TMA derived perpendicular slant range and the average depth or an assumed depth in the Pythagorean theorem19,31. The weighted mean, first quartile, and third quartile of the average depths were tested as assumed depths for events excluded from 3D localization. If depth was greater than or equal to the slant range the perpendicular distance was coerced to 0, indicating the whale was diving directly below the track line. The resulting distribution of depth-corrected perpendicular distances that aligned most with distance sampling theory was used in the final distance analysis.Acoustic density and abundance estimationThe R package Distance41,42 (v.1.0.4) was used to estimate two separate detection functions based on the uncorrected slant ranges and the depth-corrected perpendicular distances. Half-normal, uniform, and hazard rate key functions were tested with cosine, simple polynomial, and Hermite polynomial adjustment terms. The best fitting models were selected based on the AIC, the Kolmogorov–Smirnov (K–S) test, the Cramer-von Mises (CvM) test, quantile–quantile plots, and visual review of the fitted models43. The probability of detection, abundance, and effective strip half width (ESW) were then estimated for foraging sperm whales.Permitting authorityData used in this manuscript were collected during surveys that were completed under U.S. Marine Mammal Protection Act permit numbers 17355 and 21371 issued to the Northeast Fisheries Science Center. More

  • in

    Size-fractionated microbiome observed during an eight-month long sampling in Jiaozhou Bay and the Yellow Sea

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology 8, 593–599 (2010).CAS 
    Article 

    Google Scholar 
    Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. National Science Review 5, 481–499 (2018).CAS 
    Article 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proceedings of the National Academy of Sciences 115, E6799–E6807 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 15, 1695–1708 (2021).CAS 
    Article 

    Google Scholar 
    Ortega-Retuerta, E., Joux, F., Jeffrey, W. H. & Ghiglione, J. F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the beaufort sea (canadian arctic). Biogeosciences 10, 2747–2759 (2013). BG.ADS 
    Article 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal 8, 187–211 (2014).CAS 
    Article 

    Google Scholar 
    Chen, S. et al. Interactions between marine group ii archaea and phytoplankton revealed by population correlations in the northern coast of south china sea. Frontiers in Microbiology 12 (2022).Eloe, E. A. et al. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environmental Microbiology Reports 3, 449–458 (2011).Article 

    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24, 5692–706 (2015).Article 

    Google Scholar 
    Karner, M. & Herndl, G. J. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Marine Biology 113, 341–347 (1992).CAS 
    Article 

    Google Scholar 
    Grossart, H.-P., Tang, K. W., Kiørboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiology Letters 266, 194–200 (2007).CAS 
    Article 

    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal 6, 1007–1017 (2012).CAS 
    Article 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences 112, 10967–10972 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, Y. et al. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biology and Biochemistry 95, 233–242 (2016).CAS 
    Article 

    Google Scholar 
    Hou, S. et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. The ISME Journal 12, 981–996 (2018).CAS 
    Article 

    Google Scholar 
    Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).CAS 
    Article 

    Google Scholar 
    Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93 (2017).Xing, J. et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci Total Environ 576, 617–627 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, L., Xiong, L., Li, J. & Huang, X. Long-term changes of nutrients and biocenoses indicating the anthropogenic influences on ecosystem in Jiaozhou Bay and Daya Bay, China. Mar Pollut Bull 168, 112406 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, X. et al. Effects of organic nitrogen components from terrestrial input on the phytoplankton community in Jiaozhou Bay. Marine Pollution Bulletin 174, 113316 (2022).CAS 
    Article 

    Google Scholar 
    Sharp, J. et al. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Marine Chemistry 77 (2002).Walters, W. et al. Improved bacterial 16S rrna gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1 (2016).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    Article 

    Google Scholar 
    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–90 (2016).CAS 
    Article 

    Google Scholar 
    Yu, K. et al. Recovery of high-qualitied genomes from a deep-inland salt lake using BASALT. bioRxiv https://doi.org/10.1101/2021.03.05.434042 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–7 (2016).CAS 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat Methods 11, 1144–6 (2014).CAS 
    Article 

    Google Scholar 
    Nayfach, S. et al. New insights from uncultivated genomes of the global human gut microbiome. Nature 568 (2019).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–55 (2015).CAS 
    Article 

    Google Scholar 
    Olm, M. R, Brown, C. T. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME Journal 5 (2017).Albanese, D. & Donati, C. Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality. F1000Research 10 (2021).Bowers, R. M. et al. Minimum information about a single amplified genome (misag) and a metagenome-assembled genome (mimag) of bacteria and archaea. Nature Biotechnology 35, 725–731 (2017).CAS 
    Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 38, 1079–1086 (2020).CAS 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics (2019).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–7 (2004).CAS 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).CAS 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 25, e9490–e9490 (2010).ADS 
    Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367774 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367809 (2022).Tao, J. Jiaozhou bay 16S rDNA & metagenome dataset. figshare https://doi.org/10.6084/m9.figshare.19690459.v6 (2022). More

  • in

    Ornaments are equally informative in male and female birds

    Amundsen, T. In Animal Signals: Signalling and Signal Design in Animal Communication (eds. Espmark, Y., Amundsen, T. & Rosenqvist, G.) 133–154 (Tapir Academic Press, 2000).Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).PubMed 
    Article 

    Google Scholar 
    Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual size dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2009).PubMed 
    Article 

    Google Scholar 
    Nordeide, J. T., Kekäläinen, J., Janhunen, M. & Kortet, R. Female ornaments revisited—are they correlated with offspring quality? J. Anim. Ecol. 82, 26–38 (2013).PubMed 
    Article 

    Google Scholar 
    Prum, R. O. The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us (Doubleday, 2017).Clark, C. J. & Rankin, D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments. Evolution 74, 528–543 (2020).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R. Female finery is not for males. Trends Ecol. Evol. 21, 170–173 (2006).PubMed 
    Article 

    Google Scholar 
    Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. The evolution of mutual ornamentation. Anim. Behav. 74, 657–677 (2007).Article 

    Google Scholar 
    Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 367, 2274–2293 (2012).Article 

    Google Scholar 
    Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 1464–7931 (2019).Article 

    Google Scholar 
    Hernández, A., Martínez-Gómez, M., Beamonte-Barrientos, R. & Montoya, B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol. Lett. 17, 20210283 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. & Kolm, N. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol. Ecol. 26, 171–185 (2012).Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).Doutrelant, C., Fargevieille, A. & Grégoire, A. Evolution of female coloration: what have we learned from birds in general and blue tits in particular. Adv. Study Behav. 52, 123–202 (2020).Article 

    Google Scholar 
    Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771–783 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Rands, S. A. & Evans, M. R. Sexual selection and condition-dependence. J. Evol. Biol. 22, 2387–2394 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Heightened condition dependence is not a general feature of male eyespan in stalk-eyed flies (Diptera: Diopsidae). J. Evol. Biol. 17, 1310–1316 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    David, P. et al. Male sexual ornament size but not asymmetry reflects condition in stalk-eyed flies. Proc. R. Soc. Lond. B 265, 2211–2216 (1998).Article 

    Google Scholar 
    Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zahavi, A. Mate selection-a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, J., Figueiredo Pinto, S., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).Article 

    Google Scholar 
    Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White, T. E. Structural colours reflect individual quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Taylor & Francis Inc., 1988)Andersson, M. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375–393 (1982).Article 

    Google Scholar 
    Walther, B. A. & Clayton, D. H. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 16, 89–95 (2005).Article 

    Google Scholar 
    Folstad, I. & Karter, A. K. Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).Article 

    Google Scholar 
    Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B 274, 819–825 (2007).CAS 

    Google Scholar 
    Weaver, R. J., Koch, R. E. & Hill, G. E. What maintains signal honesty in animal colour displays used in mate choice? Philos. Trans. R. Soc. B 372, 20160343 (2017).Article 

    Google Scholar 
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huhta, E. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84, 1793–1799 (2003).Article 

    Google Scholar 
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 18–222 (2004).Article 

    Google Scholar 
    Webster, M. S., Ligon, R. A. & Leighton, G. M. Social costs are an underappreciated force for honest signalling in animal aggregations. Anim. Behav. 143, 167–176 (2018).Article 

    Google Scholar 
    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).PubMed 
    Article 

    Google Scholar 
    Promislow, D. E. L., Montgomerie, R. & Martin, T. E. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250, 143–150 (1992).ADS 
    Article 

    Google Scholar 
    Guindre-Parker, S. & Love, O. P. Revisiting the condition-dependence of melanin-based plumage. J. Avian Biol. 45, 29–33 (2014).Article 

    Google Scholar 
    Roulin, A. & Dijkstra, C. Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jawor, J. M. & Breitwisch, R. Melanin ornaments, honesty, and sexual selection. Auk 120, 249–265 (2003).Article 

    Google Scholar 
    Gunderson, A. R., Frame, A. M., Swaddle, J. P. & Forsyth, M. H. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 39, 539–545 (2008).Article 

    Google Scholar 
    Ruiz-de-Castañeda, R., Burtt, E. H. Jr., González-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol. J. Linn. Soc. 105, 409–419 (2012).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68, 216–229 (2014).PubMed 
    Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. The handicap process favors exaggerated, rather than reduced, sexual ornaments. Evolution 68, 2534–2549 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peters, J. L. et al. Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. J. R. Stat. Soc. Ser. A. 173, 575–591 (2010).MathSciNet 
    Article 

    Google Scholar 
    Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. Biol. Sci. 268, 1971–1976 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P. & Irestedt, M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc. R. Soc. B Biol. Sci. B 283, 20160409 (2016).Article 

    Google Scholar 
    Ord, T. J. & Stuart-Fox, D. Ornament evolution in dragon lizards: multiple gains and widespread losses reveal a complex history of evolutionary change. J. Evol. Biol. 19, 797–808 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R., Hockham, L. R. & Ritchie, M. G. Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. Proc. R. Soc. Lond. B 270, 2159–2165 (2003).Article 

    Google Scholar 
    Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. Software version 4.5. https://automeris.io/WebPlotDigitizer (2000).Sidney, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill,1956).Friedman, H. Simplified determination of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 42, 521–526 (1982).Article 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B 363, 399–410 (2008).Article 

    Google Scholar 
    Brown, M. E. In Current Ornithology (eds. Nolan, V. & Ketterson, E. D.) 67–135 (Plenum Press, 1996).Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol. Lett. 20, 1869–1884 (2018).Article 

    Google Scholar 
    Arnholt, A. T. & Evans, B. BSDA: Basic statistics and data analysis. R package version 1.2.0. https://cran.r-project.org/package=BSDA (2017).Jackson, D., White, I. R., Price, M., Copas, J. & Riley, R. D. Borrowing of strength and study weights in multivariate and network meta-analysis. Stat. Methods Med. Res. 26, 2853–2868 (2017).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).PubMed 
    Article 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modeling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).Article 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2000). More

  • in

    Experimental considerations of acute heat stress assays to quantify coral thermal tolerance

    Pörtner, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Cimate (2019).Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 25, 2338–2351 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Chang. Biol. 26, 68–79 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).ADS 
    Article 

    Google Scholar 
    Brown, B. E., Dunne, R. P., Scoffin, T. P. & Le Tissier, M. D. A. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 105, 219–230 (1994).ADS 
    Article 

    Google Scholar 
    Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Glob. Chang. Biol. 17, 45–55 (2011).ADS 
    Article 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Weis, V. M. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mol. Ecol. 19, 1515–1517 (2010).PubMed 
    Article 

    Google Scholar 
    Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80-.) 348, 1460–1462 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, 1–17 (2021).Article 

    Google Scholar 
    Evensen, N. et al. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs 41, 239–252 (2022).Article 

    Google Scholar 
    Song, M. et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 14, 1–23 (2019).Article 

    Google Scholar 
    Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).PubMed 
    Article 

    Google Scholar 
    Juárez, O. E. et al. Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar. Genomics 42, 1–13 (2018).PubMed 
    Article 

    Google Scholar 
    Pallarés, S., Arribas, P., Céspedes, V., Millán, A. & Velasco, J. Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol. Entomol. 37, 508–520 (2012).Article 

    Google Scholar 
    Qin, G. et al. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation. Biol. Open 7, 1–7 (2018).CAS 

    Google Scholar 
    Zanuzzo, F. S., Bailey, J. A., Garber, A. F. & Gamperl, A. K. Comparative Biochemistry and Physiology, Part A The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia ☆. Comp. Biochem. Physiol. Part A 233, 30–38 (2019).CAS 
    Article 

    Google Scholar 
    Cunning, R. et al. Census of heat tolerance among Florida ’ s threatened staghorn corals finds resilient individuals throughout existing nursery populations. (2021).Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article 

    Google Scholar 
    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl. Acad. Sci. U. S. A. 116, 10586–10591 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution (N. Y.) 72, 82–94 (2018).
    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Klepac, C. N. & Barshis, D. J. High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. Coral Reefs https://doi.org/10.1007/s00338-022-02276-1 (2022).Article 

    Google Scholar 
    Gardner, S. G. et al. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol. 15, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 
    Article 

    Google Scholar 
    Suggett, D. J. et al. Toward bio-optical phenotyping of reef-forming corals using light-induced fluorescence transient-fast repetition rate fluorometry. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10479 (2022).Article 

    Google Scholar 
    Krueger, T. et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 15–25 (2015).CAS 
    Article 

    Google Scholar 
    Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nitschke, M. R. et al. Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5, 1–18 (2018).Article 

    Google Scholar 
    Warner, M. E., Fittt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fitt, W. K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    Tolosa, I., Treignier, C., Grover, R. & Ferrier-Pagès, C. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30, 763–774 (2011).ADS 
    Article 

    Google Scholar 
    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).Article 

    Google Scholar 
    Nielsen, J. J. V. et al. Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. Coral Reefs 39, 259–269 (2020).Article 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).Article 

    Google Scholar 
    Edmunds, P. J. & Burgess, S. C. Correction: Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2 (J. Exp. Biol. (2016) 219 (3896-3906) doi: 10.1242/jeb.146381). J. Exp. Biol. 221, 3896–3906 (2018).Article 

    Google Scholar 
    Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pausch, R. E., Williams, D. E. & Miller, M. W. Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. Mar. Ecol. Prog. Ser. 592, 109–117 (2018).ADS 
    Article 

    Google Scholar 
    Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).ADS 
    Article 

    Google Scholar 
    Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O. & Dove, S. Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J. Exp. Biol. 213, 1026–1034 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    Marhoefer, S. R. et al. Signatures of adaptation and acclimatization to reef flat and slope habitats in the coral pocillopora damicornis. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.704709 (2021).Article 

    Google Scholar 
    Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. Elife 10, 1–15 (2021).Article 

    Google Scholar 
    McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).Article 

    Google Scholar 
    Magozzi, S. & Calosi, P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Glob. Chang. Biol. 21, 181–194 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, 1–21 (2017).Article 

    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. G. A review of coral bleaching specimen collection, preservation, and laboratory processing methods. PeerJ 9, 1–21 (2021).Article 

    Google Scholar 
    Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363 (2007).Article 

    Google Scholar 
    Bruno, J. F. Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals?. J. Exp. Mar. Bio. Ecol. 230, 169–181 (1998).Article 

    Google Scholar 
    Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).Article 

    Google Scholar 
    Howlett, L., Camp, E. F., Edmondson, J., Henderson, N. & Suggett, D. J. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).Article 

    Google Scholar 
    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dove, S. et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51, 1149–1158 (2006).ADS 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumb, S. Early tracriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.690607 (2021).Article 

    Google Scholar 
    Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).Article 

    Google Scholar 
    Teague, J., Willans, J., Allen, M. J., Scott, T. B. & Day, J. C. C. Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. Spectrosc. Eur. 31, 13–17 (2019).CAS 

    Google Scholar 
    Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the Coral Siderastrea siderea Is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14 (2018).Article 

    Google Scholar 
    Tang, J. et al. Increased ammonium assimilation activity in the scleractinian coral pocillopora damicornis but not its symbiont after acute heat stress. Front. Mar. Sci. 7, 1–10 (2020).ADS 
    Article 

    Google Scholar 
    Sweet, M. et al. Species-specific variations in the metabolomic profiles of Acropora hyacinthus and Acropora millepora mask acute temperature stress effects in adult coral colonies. Front. Mar. Sci. 8, 1–15 (2021).Article 

    Google Scholar 
    Newton, J. R., Smith-Keune, C. & Jerry, D. R. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308, S128–S132 (2010).Article 

    Google Scholar 
    Waltham, N. J. & Sheaves, M. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. Estuar. Coast. Shelf Sci. 196, 173–181 (2017).ADS 
    Article 

    Google Scholar 
    Iwabuchi, B. L. & Gosselin, L. A. Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. Ecol. Evol. 10, 7739–7754 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, J., Schubert, A. M., Travisano, M. & Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-10-75 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 1–17 (2017).Article 

    Google Scholar 
    Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00214-3 (2021).Article 

    Google Scholar 
    Cocciardi, J. M. et al. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol. Evol. 2019, 1339–1346 (2019).Article 

    Google Scholar 
    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).ADS 
    Article 

    Google Scholar 
    Bainbridge, S. J. Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. J. Oper. Oceanogr. 10, 16–29 (2017).
    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS 
    Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science (80-.) 344, 895–899 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saxby, T., Dennison, W. C. & Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248, 85–97 (2003).ADS 
    Article 

    Google Scholar 
    Deschaseaux, E. S. M., Deseo, M. A., Shepherd, K. M., Jones, G. B. & Harrison, P. L. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J. Exp. Mar. Bio. Ecol. 448, 146–148 (2013).CAS 
    Article 

    Google Scholar 
    Holmes, G., Ortiz, J., Kaniewska, P. & Johnstone, R. Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. Mar. Biol. 155, 421–427 (2008).Article 

    Google Scholar 
    Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).ADS 
    Article 

    Google Scholar 
    Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Licthenthaler, H. K. Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (2020).Hartig, F. & Lohse, L. Package ‘DHARMa’ residual diangonstics for hierarchical (multi-level/mixed) regression models (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packaages for zero-inflated generalized linear mixed modelling. R Journal 9, 378–400 (2017).Article 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan (2020).Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).MATH 
    Book 

    Google Scholar  More

  • in

    A real-time rural domestic garbage detection algorithm with an improved YOLOv5s network model

    Attention combination mechanismDue to the difficulty in extracting features from target areas in images, the high computational effort of the model and the low accuracy of detection are addressed. As shown in Fig. 3, we introduce a lightweight feedforward convolutional attention module CBAM after the backbone network Focus module of the YOLOv5s network model. The SE-Net (Squeeze and Excitation Networks) channel attention module is posted at the end of the backbone network. We propose an attention combination mechanism based on the YOLOv5s network model and name the improved network model YOLOv5s-CS. Where the CBAM module has a channel number of 128, a convolutional kernel size of 3 and a step size of 2, the SELayer has a channel number of 1024 and a step size of 4.Figure 3YOLOv5 backbone network structure before and after improvement.Full size imageConvolutional block attention module networkIn 2018, Woo et al.25 proposed the lightweight feedforward convolutional attention module CBAM. The CBAM module focuses on feature information from both channels and space dimensions and combines feature information to some extent to obtain more comprehensive reliable attentional information26. CBAM consists of two submodules, the channel attention module (CAM) and spatial attention module (SAM), and its overall module structure is shown in Fig. 4a.Figure 4Principle of CBAM.Full size imageThe working principle of the CAM is shown in Fig. 4b. First, the feature map F is input at the input entrance. Second, the global maximum pooling operation and the global average pooling operation are applied to the width and height of the feature map respectively to obtain two feature maps of the same size. Third, two feature maps of the same size are input to the shared parameter network MLP at the same time. Finally, the new feature map output from the shared parameter network is subjected to a summation operation and a sigmoid activation function to obtain the channel attention features ({M}_{c}).The channel attention module CAM is calculated as shown in Formula (1):$${text{M}}_{rm{c}}({text{F}}){=sigma}({text{MLP (AvgPool (F))}}+ {text MLP (MaxPool (F)))}{=sigma}({rm{W}}_{1}({text{W}}_{0}({text{F}}_{{{rm{avg}}}^{rm{c}}}))+{rm{W}}_{0}({rm{W}}_{1}({rm{F}}_{{{rm{max}}}^{rm{c}}})))$$
    (1)
    where σ represents the sigmoid function, MLP represents the shared parameter network, ({text{W}}_{0}) and ({text{W}}_{1}) represent the shared weights, ({text{F}}_{text{avg}}^{text{c}}) is the result of feature map F after global average pooling, and ({text{F}}_{text{max}}^{text{c}}) is the result of feature map F after global maximum pooling.The working principle of SAM is shown in Fig. 4c. The feature map F’ is regarded as the input of the SAM. F’ is obtained by multiplying the input of SAM with the output of CAM. First, the global maximum pooling operation and the global average pooling operation are applied to the channels of the feature map to obtain two feature maps of the same size. Second, two feature maps that have completed the pooling operation are stitched at the channels and the feature channels are dimensioned down using the convolution operation to obtain a new feature map. Finally, spatial attention features ({text{M}}_{text{s}}) are generated using the sigmoid activation function.The spatial attention module (SAM) is calculated, as shown in Formula (2):$${text{M}}_{text{s}}left({text{F}}right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{AvgPool}}left({text{F}}right)text{;MaxPool}left({text{F}}right)right]right)right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{F}}_{text{avg}}^{text{s}} ; {text{F}}_{text{max}}^{text{s}}right]right)right)$$
    (2)
    where σ is the sigmoid function, ({text{f}}^{7 times 7}) denotes the convolution operation with a filter size of 7 × 7, ({text{F}}_{text{avg}}^{text{s}}) is the result of the feature map after global average pooling, and ({text{F}}_{text{max}}^{text{s}}) is the result of the feature map after global maximum pooling.Squeeze and excitation networkIn 2018, Hu et al.27 proposed a single-path attention network structure SE-Net. SE-Net uses the idea of an attention mechanism to analyze the relationship feature maps by modeling and adaptively learning to obtain the importance of each feature map28 and then assigns different weights to the original feature map for updating according to the importance. In this way, SE-Net pays more attention to the features that are useful for the target task while suppressing useless feature information and allocates computational resources rationally to different channels to train the model to achieve better results.The SE-Net attention module is mainly composed of two parts: the squeeze operation and excitation operation. The structure of the SE-Net module is shown in Fig. 5.Figure 5The SE-Net module structure.Full size imageThe squeeze operation uses global average pooling to encode all spatial features on the channel as local features. Second, each feature map is compressed into a real number that has global information on the feature maps. Finally, the squeeze results of each feature map are combined into a vector as the weights of each group of feature maps. It is calculated as shown in Eq. (3):$${text{Z}}_{text{c}}={text{F}}_{text{sq}}left({text{u}}_{text{c}}right)=frac{1}{text{H} times {text{W}}}sum_{text{i=1}}^{text{H}}sum_{text{j=1}}^{text{W}}{{text{u}}}_{text{c}}left(text{i,j}right) , , , $$
    (3)
    where H is the height of the feature map, W is the feature map width, u is the result after convolution, z is the global attention information of the corresponding feature map, and the subscript c indicates the number of channels.After completing the squeeze operation to obtain the channel information, the feature vector is subjected to the excitation operation. First, it passes through two fully connected layers. Second, it uses the sigmoid function. Finally, the output weights are assigned to the original features. It is calculated as follows:$$text{s} = {text{F}}_{text{ex}}left(text{z,W}right){=sigma}left({text{g}}left(text{z,W}right)right){=sigma}left({text{W}}_{2}{delta}left({text{W}}_{1}{text{z}}right)right)$$
    (4)
    $$widetilde{{text{x}}_{rm{c}}}={text{F}}_{rm{scale}}left({text{u}}_{rm{c}}, {text{s}}_{rm{c}}right)={text{s}}_{rm{c}}{{text{u}}}_{rm{c}}$$
    (5)
    where σ is the ReLU activation function, δ represents the sigmoid activation function, and ({text{W}}_{1}) and ({text{W}}_{2}) represent two different fully connected layers. The vector s represents the set of feature mapping weights obtained through the fully connected layer and the activation function. (widetilde{{x}_{c}}) is the feature mapping of the x feature channel, ({text{s}}_{text{c}}) is a weight, and ({text{u}}_{text{c}}) is a two-dimensional matrix.Target detection layerThe garbage in rural areas is a smaller target and has fewer pixel characteristics, such as capsule, button butteries. Therefore, we insert a small target detection layer to improve the head network structure based on the original YOLOv5s network model for detecting objects with small targets to optimize the problem of missed detection in the original network model. The YOLOv5s network structure with the addition of the small target detection layer is shown in Fig. 6 and named YOLOv5s-STD.Figure 6The YOLOv5s-STD network structure.Full size imageIn the seventeenth layer of the neck network, operations such as upsampling are performed on the feature maps so that the feature maps continue to expand. Meanwhile, in the twentieth layer, the feature maps obtained from the neck network are fused with the feature maps extracted from the backbone network. We insert a detection layer capable of predicting small targets in the thirty-first layer. To improve the detection accuracy, we use a total of four detection layers for the output feature maps, which are capable of detecting smaller target objects. In addition to the three initial anchor values based on the original model, an additional set of anchor values is added as a way to detect smaller targets. The anchor values of the improved YOLOv5s network model are set to [5, 6, 8, 14, 15, 11], [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119] and [116, 90, 156, 198, 373, 326].Bounding box regression loss functionThe loss function is an important indicator of the generalization ability of a model. In 2016, Yu et al.29 proposed a new joint intersection loss function IoU for bounding box prediction. IoU stands for intersection over union, which is a frequently used metric in target detection. It is used not only to determine the positive and negative samples, but also to determine the similarity between the predicted bounding box and the ground truth bounding box. It can be described as shown in the Eq. (6):$$text{IoU} = frac{left|text{A} capleft.{text{B}}right|right.}{left|{text{A}} cupleft.{text{B}}right|right.}$$
    (6)
    where the value domain of IoU ranges from [0,1]. A and B are the areas of arbitrary regions. Additionally, when IoU is used as a loss function, it has to scale invariance, as shown in Eq. (7):$$text{IoU_Loss} = 1-frac{left|text{A} cap left.{text{B}}right|right.}{left|{text{A}} cup left.{text{B}}right|right.}$$
    (7)
    However, when the prediction bounding box and the ground truth bounding box do not intersect, namely IoU = 0, the distance between the arbitrary region area of A and B cannot be calculated. The loss function at this point is not derivable and cannot be used to optimize the two disjoint bounding boxes. Alternatively, when there are different intersection positions, where the overlapping parts are the same but in different overlapping directions, the IoU loss function cannot be predicted.To address these issues, the idea of GIoU (Generalized Intersection over Union)30, in which a minimum rectangular Box C of A and B is added, was proposed in 2019 by Rezatofighi et al. Suppose the prediction bounding box is B, the ground truth bounding box is A, the area where A and B intersect is D, and the area containing two bounding boxes is C, as shown in Fig. 7.Figure 7GIoU evaluation chart.Full size imageThen, the GIoU calculation, as shown in Formula (8), is:$$text{GIoU}= text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (8)
    The GIoU_Loss is calculated as (9):$$text{GIoU_Loss=1}-{text{IoU}}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (9)
    The original YOLOv5 algorithm uses GIoU_Loss as the loss function. Comparing Eqs. (6) and (8), it can be seen that GIoU is a new penalty term (frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}) that is added to IoU and is clearly represented by Fig. 7.Although the GIoU loss function solves the problem that the gradient of the IoU loss function cannot be updated in time and the prediction bounding box, the direction of the ground truth bounding box is not consistent when predicting, but there are still disadvantages, as shown in Fig. 8.Figure 8Comparsion of loss values.Full size imageFigure 8 shows three different position relationships formed when the predicted bounding box and the ground truth bounding box overlap exactly. Among them, the ratio of the length to width of the green grounding truth bounding box is 1:2, and the red predicted bounding box has the same aspect ratio as the ground truth bounding box, but the size is only one-half of the green ground truth bounding box. When the prediction bounding box and the ground truth bounding box completely overlap, the GIoU degenerates to the IoU, and the GIoU value and IoU value for the three different position cases are 0.45 at this time. The GIoU loss function does not directly reflect the distance between the prediction bounding box and the ground truth bounding box. Therefore, we introduce the CIoU (Complete Intersection over Union)31 loss function to replace the original GIoU loss function in the YOLOv5 algorithm and continue to optimize the prediction bounding box.Therefore, the CIoU is calculated as (10):$$text{GIoU_Loss}=1-text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (10)
    where b and ({text{b}}^{text{gt}}) denote the centroids of the prediction bounding box and the ground truth bounding box, respectively, ({rho}) is the Euclidean distance between the two centroids, and c is the diagonal length of the minimum closed area formed by the prediction bounding box and the ground truth bounding box.(alpha) is the parameter used to balance the scale, and v is the scale consistency used to measure the aspect ratio between the prediction bounding box and the ground truth bounding box, as shown in Eqs. (11) and (12).$$alpha =frac{text{v}}{left(1-text{IoU}right)+{text{v}}^{{prime}}}$$
    (11)
    $$text{v} = frac{4}{{pi}^{2}}{left({text{arctan}}frac{{omega}^{text{gt}}}{{text{h}}^{text{gt}}}- text{arctan}frac{{omega}^{text{p}}}{{text{h}}^{text{p}}}right)}^{2}$$
    (12)
    Therefore, the expression of CIoU_Loss can be obtained according to Eqs. (10), (11) and (12).$$text{CIoU_Loss} =1-text{CIoU}=1-text{IoU}+frac{{rho}^{2}left(text{b,}{text{b}}^{text{gt}}right)}{{text{c}}^{2}}{+ alpha v }$$
    (13)
    Optimization algorithmAfter optimizing the loss function of the network model, the next step is to optimize the hyperparameters of the network model. The function of the optimizer is to adjust the hyperparameters to the most appropriate values while making the loss function converge as much as possible32. In the target detection algorithm, the optimizer is mainly used to calculate the gradient of the loss function and to iteratively update the parameters.The optimizer used in YOLOv5 is stochastic gradient descent (SGD). Since a large number of problems in deep learning satisfy the strict saddle function, all the local optimal solutions obtained are almost as ideal. Therefore, SGD algorithm is not trapped in the saddle point and has strong generality. However, the slow convergence speed and the number of iterations of SGD algorithm are still problems that need to be improved. Adam algorithm has both the first-order momentum in the SGD algorithm and combines the second-order momentum in AdaGrad algorithm and AdaDelta algorithm, Adaptive&Momentum. Adam formula can be described as follows:$${m}_{t}={beta }_{1}{m}_{t-1}+left(1-{beta }_{1}right){g}_{t}$$
    (14)
    $${v}_{t}={beta }_{2}{v}_{t-1}+left(1-{beta }_{2}right){g}_{t}^{2}$$
    (15)
    $${widehat{m}}_{t}=frac{{m}_{t}}{1-{beta }_{1}^{t}}$$
    (16)
    $${widehat{v}}_{t}=frac{{v}_{t}}{1-{beta }_{2}^{t}}$$
    (17)
    where ({beta }_{1}) and ({beta }_{2}) parameters are hyperparameters and g is the current gradient value of the error function, ({m}_{t}) is the gradient of the first-order momentum and ({v}_{t}) is the gradient of the second-order momentum.Adam is an adaptive one-step random objective function optimization algorithm based on a low-order moment. It can replace the traditional first-order optimization algorithm for the stochastic gradient descent process. It is able to update the weights of the neural network adaptively based on the data trained during the iterative process. The Adam optimizer occupies fewer memory resources during the training process and is suitable for solving the problems of sparse gradients and large fluctuations in loss values33. Therefore, we use the Adam optimization algorithm instead of the SGD optimization algorithm to train the network model based on the YOLOv5s network model. The calculation is shown in Table 3.Table 3 Computing method of the Adam optimizer.Full size tablewhere ({alpha}) is a factor controlling the learning rate of the network, ({beta}^{{prime}}) is the exponential decay rate of the first-order moment estimate, ({beta}^{{primeprime}}) is the exponential decay rate of the second-order moment estimate, and ({varepsilon}) is a constant that tends to zero infinitely as the denominator. More

  • in

    Applying genomic approaches to delineate conservation strategies using the freshwater mussel Margaritifera margaritifera in the Iberian Peninsula as a model

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496. https://doi.org/10.1016/j.tree.2012.05.012 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82. https://doi.org/10.1111/mec.15720 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helyar, S. J. et al. Application of SNPs for population genetics of nonmodel organisms: New opportunities and challenges. Mol. Ecol. Resour. 11, 123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430. https://doi.org/10.1111/mec.13948 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 21, 38. https://doi.org/10.1186/s12864-020-06783-9 (2020).CAS 
    Article 

    Google Scholar 
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinman-Ruiz, D. et al. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics 18, 556. https://doi.org/10.1186/s12864-017-3946-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88. https://doi.org/10.1007/s10750-010-0190-2 (2010).Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).Article 
    PubMed 

    Google Scholar 
    Outeiro, A., Ondina, P., Fernández, C., Amaro, R. & Miguel, E. S. Population density and age structure of the freshwater Pearl mussel, Margaritifera margaritifera, in two Iberian rivers. Freshw. Biol. 53, 485–496. https://doi.org/10.1111/j.1365-2427.2007.01913.x (2008).CAS 
    Article 

    Google Scholar 
    Clements, E. A., Thomas, R. & Adams, C. E. An investigation of salmonid host utilisation by the endangered freshwater pearl mussel (Margaritifera margaritifera) in north-west Scotland. Aquat. Conserv.: Mar. Freshw. Ecosyst. 28, 764–768. https://doi.org/10.1002/aqc.2900 (2018).Taeubert, J-E. & Geist, J. The relationship between the Freshwater Pearl Mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73. https://doi.org/10.1134/S1062359017010149 (2017).Sousa, R. et al. Conservation status of the freshwater pearl mussel Margaritifera margaritifera in Portugal. Limnologica 50, 4–10. https://doi.org/10.1016/j.limno.2014.07.004 (2015).Article 

    Google Scholar 
    Almodóvar, A., Nicola, G. G., Ayllón, D. & Elvira, B. Global warming threatens the persistence of Mediterranean brown trout. Glob. Change Biol. 18, 1549–1560. https://doi.org/10.1111/j.1365-2486.2011.02608.x (2012).ADS 
    Article 

    Google Scholar 
    Nicola, G. G., Elvira, B., Johnson, B., Ayllón, D. & Almodóvar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 198, 78–85. https://doi.org/10.1016/j.fishres.2017.10.012 (2018).Article 

    Google Scholar 
    da Silva, J. P. et al. Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshw. Biol. 00, 1–15. https://doi.org/10.1111/fwb.13885 (2022).Article 

    Google Scholar 
    Strayer, D. L., Geist, J., Haag, W. R., Jackson, J. K. & Newbold, J. D. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 43, e53. https://doi.org/10.1111/csp2.53 (2009).Article 

    Google Scholar 
    Geist, J., Bayerl, H., Stoeckle, B. C. & Kuehn, R. Securing genetic integrity in freshwater pearl mussel propagation and captive breeding. Sci. Rep. 11, 16019. https://doi.org/10.1038/s41598-021-95614-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes dos Santos, A. et al. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res. 28, dsab002. https://doi.org/10.1093/dnares/dsab002 (2021).Bouza, C. et al. Threatened freshwater pearl mussel Margaritifera margaritifera L. in NW Spain: low and very structured genetic variation in southern peripheral assessed using microsatellite markers. Conserv. Genet. 8: 937–948. https://doi.org/10.1007/s10592-006-9248-0 (2007).Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157. https://doi.org/10.1007/s10592-016-0889-3 (2017).Geist, J., Söderberg, H., Karllberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Genet. 11, 1339–1350. https://doi.org/10.1007/s10592-009-9963-4 (2010).Article 

    Google Scholar 
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 239–425. https://doi.org/10.1111/j.1365-294X.2004.02420.x (2005).CAS 
    Article 

    Google Scholar 
    Farrington, S. J., King, R. W., Baker, J. A. & Gibbons, J. G. Population genetics of freshwater pearl mussel (Margaritifera margaritifera) in central Massachusetts and implications for conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30, 1945–1958. https://doi.org/10.1002/aqc.3439 (2020).Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. Lond., 123, 850–863. https://doi.org/10.1093/biolinnean/bly010. (2018)Garrison, N. L., Johnson, P. D. & Whelan, N. V. Conservation genomics reveals low genetic diversity and multiple parentage in the threatened freshwater mussel Margaritifera hembeli. Conser. Genet. 22, 217–231. https://doi.org/10.1007/s10592-020-01329-8 (2021).Article 

    Google Scholar 
    Roe, K. & Kim, K. S. Genome-wide SNPs redefine species-boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America. Sci. Rep. 11, 10752. https://doi.org/10.1038/s41598-021-90325-0 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338. https://doi.org/10.12688/f1000research.15931.2 (2018).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paris, R. J., Stevens, J. R. & Catchen, J. M. Lost in parameter space: A road map for STACKS. Methods Ecol. Evol. 8, 1360–1373. https://doi.org/10.1111/2041-210X.12775 (2017).Article 

    Google Scholar 
    Limin, F., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2. https://doi.org/10.48550/arXiv.1303.3997 (2013).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907v2. https://doi.org/10.48550/arXiv.1207.3907 (2012)Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evol. 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).Article 

    Google Scholar 
    Alexander, D. H, Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frankham, R. et al. A practical guide for genetic management of fragmented animal and plant populations. Oxford University Press, New York. 174. https://doi.org/10.1093/oso/9780198783411.001.0001 (2019).Wacker, S., Larson, B., Jakobsen, P. & Karlssona, S. Multiple paternity promotes genetic diversity in captive breeding of a freshwater mussel. Glob. Ecol. Cons. 17, e00564. https://doi.org/10.1016/j.gecco.2019.e00564 (2019).Article 

    Google Scholar 
    Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley Western Australia. Conserv. Genet. 21, 421–429. https://doi.org/10.1007/s10592-020-01259-5 (2020).Article 

    Google Scholar 
    Escalante, M. A. et al. Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican Golden trout (Oncorhynchus chrysogaster). Conserv. Genet. 21, 907–926. https://doi.org/10.1371/journal.pone.0141775 (2020).CAS 
    Article 

    Google Scholar 
    Bauer, G. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. J. Anim. Ecol. 56, 691–704. https://doi.org/10.2307/5077 (1987).Article 

    Google Scholar 
    Machordom, A., Araujo, R., Erpenbeck, D. & Ramos, M. A. Phylogeography and conservation genetics of endangered European Margaritiferidae (Bibalvia: Unionoidae). Biol. J. Linn. Soc. 78, 235–252. https://doi.org/10.1046/j.1095-8312.2003.00158.x (2003).Article 

    Google Scholar 
    Viveen, W., Schoorl, J. M., Veldkamp, A., van Balen, R. T. & Vidal-Romani, J. R. Fluvial terraces of the northwest Iberian lower Miño River. J. Maps 9, 513–522. https://doi.org/10.1080/17445647.2013.821096 (2013).Article 

    Google Scholar 
    Pérez-Granados, C., López-Iborra, G. & Seoane, J. A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti. Bird Conserv. Intern. 27, 398–413. https://doi.org/10.1017/S0959270916000356 (2017).Article 

    Google Scholar 
    Sanz Ball-Llosera, N., Garcìa-Marìn, J. & Pla, C. Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conserv. Genet. 3, 385–400. https://doi.org/10.1023/A:1020527420654 (2002).Vila, M. et al. Phylogeography and Conservation Genetics of the Ibero-Balearic Three-Spined Stickleback (Gasterosteus aculeatus). PLoS One 12, e0170685. https://doi.org/10.1371/journal.pone.0170685 (2017)Hamed, Y. et al. Climate impacto n Surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterr. J. Environ. Integr. 3, 25. https://doi.org/10.1007/s41207-018-0067-8 (2018).Article 

    Google Scholar 
    Krijgsman, W. et al. The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Mar. Geol. 403, 238–246. https://doi.org/10.1016/j.margeo.2018.06.008 (2018).ADS 
    Article 

    Google Scholar 
    Zanatta, D. T. & Wilson, C. C. Testing congruency of geographic and genetic population structure for a freshwater mussel Bivalvia: Unionoida) and its host fish. Biol. J. Linn. Soc. 102, 669–685. https://doi.org/10.1111/j.1095-8312.2010.01596.x (2011).Article 

    Google Scholar 
    Österling, E. M., Ferm, J. & Piccolo, J.J. Parasitic freshwater pearl mussel larvae (Margaritifera margaritifera L.) reduce the drift-feeding rate of juvenile brown trout (Salmo trutta L.). Environ. Biol. Fish. 97, 543–549. https://doi.org/10.1007/s10641-014-0251-x (2014).Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933. https://doi.org/10.1002/aqc.2913 (2018)Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Rep. 9, 10409 (2019).Machordom, A., Suárez, J., Almodóvar, A. & Bautista, J. Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol. Ecol. 9, 1325–1338. https://doi.org/10.1046/j.1365-294x.2000.01015.x (2000).CAS 
    Article 

    Google Scholar 
    Suárez, J., Bautista, J. M., Almodóvar, A. & Machordom, A. Evolution of the mitocondrial control region in Paleartic brown trout (Salmo trutta) populations: The biogeographical role of the Iberian Peninsula. Heredity 87, 198–206. https://doi.org/10.1046/j.1365-2540.2001.00905.x (2001).Article 
    PubMed 

    Google Scholar 
    Velasco, J. C. et al. Descubiertos algunos ejemplares de Margaritifera margaritifera (L.) (Bivalvia, Unionoida) en el alto Duero (Soria, España). Iberus 32(2), 97–104 (2014).Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: the roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008. https://doi.org/10.1111/j.1365-294X.2007.03636.x. (2008)Ledoux, J.-B., et al. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. Divers. Distrib. 27, 2104–2123 https://doi.org/10.1111/ddi.13382 (2021).Hervella F, & Caballero P. Inventario piscícola dos ríos galegos. Consellería de Medio Ambiente. Xunta de Galicia. Santiago de Compostela (1999).Saura, M., Caballero, P. & Morán, P. Are there Atlantic salmon in the River Tambre?. J. Fish Biol. 72, 1223–1229. https://doi.org/10.1111/j.1095-8649.2007.01782.x (2008).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566. https://doi.org/10.1016/j.gecco.2019.e00566 (2019).Article 

    Google Scholar 
    Muniz, F. L. et al. Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): Insights from conservation of a broadly distributed species. Conserv. Genet. 19, 599–610. https://doi.org/10.1007/s10592-017-1035-6 (2018).Article 

    Google Scholar 
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing of juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. 21, 743–751. https://doi.org/10.1002/aqc.1222 (2011).Thomas, G. R., Taylor, J. & García de Leaniz, C. Captive breeding of the endangered freshwater Pearl mussel Margaritifera margaritifera. Endanger. Species Res. 12, 1–9. https://doi.org/10.3354/esr00286 (2010).Wilson, C. D. et al. The importance of population genetic information in formulating ex situ conservation strategies for the freshwater pearl mussel (Margaritifera margaritifera L.) in Northern Ireland. Anim. Conserv. 15, 595–602. https://doi.org/10.1111/j.1469-1795.2012.00553.x (2012).Pires, D., Reis, J., Benites, L. & Rodrigues, P. Minimizing dams impacts on biodiversity by way of translocations: the case of freshwater mussels. Impact Assess. Proj. Apprais. 39, 110–117. https://doi.org/10.1080/14615517.2020.1836710. (2021) More