More stories

  • in

    Stable isotopes of C and N differ in their ability to reconstruct diets of cattle fed C3–C4 forage diets

    Animals, housing, and treatmentsAll procedures involving animals were approved by the University of Florida Institutional Animal Care and Use Committee (Protocol #201709925). All methods were performance in accordance with the relevant guidelines and regulations, and permission and informed consent was obtained from the University of Florida (owners) for the use of the steers in this experiment.The experiment was carried out during July and August of 2017 at the Feed Efficiency Facility of University of Florida, North Florida Research and Education Center, located in Marianna, Florida (30°52′N, 85°11″W, 35 m asl). Both ‘Argentine’ bahiagrass and ‘Florigraze’ rhizoma peanut hays were obtained from commercial producers. The hay bales were stored in enclosed barns throughout the duration of the experiment.Twenty-five Brahman × Angus crossbred steers (Bos sp.) were utilized (average BW = 341 ± 17 kg, approx. 16 months of age). The steers were grazing bermudagrass (Cynodon dactylon) pastures, a C4 grass, prior to the start of the study. The day prior to the start of the experiment (e.g. day-1), steers brought to working facilities, where they remained 16 h off feed and water, in order to obtain shrunk bodyweights. On day 0 of the experiment, steers were weighed, blocked by bodyweight, and allocated to five treatments (5 steers per treatment) and housed in grouped pens. Hay intake was recorded utilizing GrowSafe© systems (GrowSafe Systems Ltd., Calgary, AB, Canada), which utilize radio frequency identification to record feed intake by weight change measured to the nearest gram. Water was available ad libitum. Forage treatments were offered ad libitum by providing sufficient hay to maintain full feed troughs throughout each day of the experiment. Treatments were five proportions of ‘Florigraze’ rhizoma peanut hay in ‘Argentine’ bahiagrass hay: (1) 100% bahiagrass hay (0% RP); (2) 25% rhizoma peanut hay + 75% bahiagrass hay (25% RP); (3) 50% rhizoma peanut hay + 50% bahiagrass hay (50% RP); (4) 75% rhizoma peanut hay + 25% bahiagrass hay (75% RP); (5) 100% rhizoma peanut hay (100% RP). Diet chemical composition is presented in Table 1. All treatment proportions were weighed and mixed on as-fed basis. Mixing of diets was done manually; no hay mixers or choppers were used, to minimize leaf shatter.Sample collectionSteers were housed for 32 days and sampling occurred on 0, 8, 16, 24, and 32 days after initiation of treatment diets; exception was for feces, which were collected on d-1 given steers were fasted on d-0 of the experiment. The hay mixtures offered to the steers were collected (10 samples of each diet) and analyzed for nutritive value (Table 1), at the start of the experiment. All sampling occurred between 0700 and 1000 h on each of the sampling days.Fecal samples were collected directly from the rectum and placed in quart-sized plastic bags to avoid contamination. The feces were frozen at −20 °C. All fecal samples were thawed, dried at 55 °C for 72 h, and ground to pass a 2-mm stainless steel screen using a Wiley Mill (Model 4, Thomas-Wiley Laboratory Mill, Thomas Scientific, Swedesboro, NJ, USA). Samples were then ball milled using a Mixer Mill MM400 (Retsch GmbH, Haan, Germany) at 25 Hz for 9 min.Blood was obtained through jugular venipuncture using 10-mL K2 EDTA vials (Becton Dickinson and Company, Franklin Lakes, NJ, USA), and stored in ice until centrifugation. All tubes were centrifuged at 714 G for 20 min using an Allegra X-22R centrifuge (Beckman Coulter, Brea, CA, USA). A 10-mL sample of plasma was collected and placed in a separate glass vial, the remaining plasma, white blood cell, and platelet fractions were discarded. The remaining RBC pellet was re-suspended with 9 vol. 0.9% NaCl solution and mixed at room temperature for 15 min at 2 Hz orbital shaker. The tubes were then centrifuged at 714 G for 20 min. The saline solution from the centrifuged tubes was discarded after centrifugation. The rinse procedure was repeated two more times for a total of three rinses. After the third rinse procedure, a 500-µL sample was removed, frozen at −20 °C, and subsequently freeze-dried for isotopic analyses.Hair clippings were obtained from an area of 20 × 20 cm on the left hindquarter, utilizing veterinary hair clippers (Sunbeam-Oster Inc., Boca Raton, FL, USA). Hair clippings were collected, placed in nylon bags (Ankom Technology, Macedon, NY, USA), and frozen for subsequent analysis. Clippings were always collected in the same location from each animal in order to ensure new hair growth would be analyzed. All hair samples were cleaned using soapy water and defatted following protocols for other keratin-based tissues 31,34. Each sample was sonicated twice for 30 min in a methanol and chloroform solution (2:1, v/v), rinsed with distilled water, and oven dried overnight at 60 °C. Each hair sample was ball milled using a Mixer Mill MM400 (Retsch GmbH, Haan, Germany) at 25 Hz for 9 min.CalculationsAfter processing, all samples were analyzed for total C and N using a CHNS analyzer through the Dumas dry combustion method (Vario MicroCube, Elementar Americas Inc., Ronkonkoma, NY, USA) coupled to an isotope ratio mass spectrometer (IsoPrime 100, Elementar, Elementar Americas Inc., Ronkonkoma, NY, USA). Certified standards of L-glutamic acid (USGS40, USGS41; United States Geological Survey) were used for isotope ratio mass spectrometer calibration. Isotope ratios were as follows: δ13C of −26.39, + 37.63‰, and δ15N of −4.52, 47.57‰ for USGS40 and USGS41, respectively. Calibration of the IRMS was conducted according to Cook, et al. 35, with an accuracy of ≤ 0.06 ‰ for 15N and ≤ 0.08 ‰ for 13C.The isotope ratio for 13C/12C was calculated as:$$delta^{{{13}}} {text{C}} = , left( {^{{{13}}} {text{C}}/^{{{12}}} {text{C}}_{{{text{sample}}}} {-}^{{{13}}} {text{C}}/^{{{12}}} {text{C}}_{{{text{reference}}}} } right)/ , left( {^{{{13}}} {text{C}}/^{{{12}}} {text{C}}_{{{text{reference}}}} times { 1}000} right)$$
    (1)

    where δ13C is the C isotope ratio of the sample relative to Pee Dee Belemnite (PDB) standard (‰), 13C/12Csample is the C isotope ratio of the sample, and 13C/12Creference is the C isotope ratio of PDB standard 5. The isotope ratio for 15N/14N was calculated as:$$delta^{{{15}}} {text{N}} = , left( {^{{{15}}} {text{N}}/^{{{14}}} {text{N}}_{{{text{sample}}}} -^{{{15}}} {text{N}}/^{{{14}}} {text{N}}_{{{text{reference}}}} } right)/left( {^{{{15}}} {text{N}}/^{{{14}}} {text{N}}_{{{text{reference}}}} times { 1}000} right)$$
    (2)
    where δ15N is the N isotope ratio of the sample relative to atmospheric nitrogen (‰), 15N/14Nsample is the N isotope ratio of the sample, and 15N/14Nreference is the N isotope ratio of atmospheric N (standard) 5. The fraction factor (Δ) in this study was considered to be the difference between the diet isotopic composition (δ13C or δ15N) and that of the given sample 5.The dietary proportion of rhizoma peanut hay was back-calculated using δ13C and δ15N of each plant on a DM basis 3. This method is advantageous in that it does not require further tissue processing and facilitates implementation at the field scale. The proportion of rhizoma peanut was estimated using Eq. (3), described by Jones et al. 3:$$%RP=100-left{100 times frac{A-C}{B-C}right}$$
    (3)
    where %RP is the proportion of RP in the diet, A is the δ13C or δ15N of the sample obtained, B is the δ13C or δ15N of bahiagrass, and C is the δ13C or δ15N of RP.Statistical analysisAll response variables were analyzed using linear mixed model procedures as implemented in SAS PROC GLIMMIX (SAS/STAT 15.1, SAS Institute). Individual animals were considered the experimental unit. Treatment, collection day, and their interaction were considered fixed effects, and block was considered a random effect in the model. The data were analyzed as repeated measures, considering collection day as the repeated measure. The best covariance matrix was selected according to the lowest AICC fit statistic. Least squares treatment means were compared through pairwise t test using the PDIFF option of the LSMEAN statement in the aforementioned procedure. Based on the recommendations by Milliken and Johnson 36 and Saville 37, no adjustment for multiple comparisons was made. Orthogonal polynomial contrasts (linear and quadratic effects) were used to test effects of RP inclusion on isotopic responses. The slice option was used when the treatment × collection day interaction was significant (P ≤ 0.05), using collection day as the factor, to test treatment effects across collection days. Significance was declared at P ≤ 0.05. The contrast statement was used to test for linear or quadratic effects. Regression analyses for the dietary predictions were conducted using PROC REG from SAS.Predictions of dietary proportions based on Eq. (3) were generated for 16 subgroups reflecting combinations of isotope (13C or 15N), day (8 or 32), and sample type (feces, plasm, RBC, or hair). Analyses comparing predicted versus actual diet proportions included several components. First, we computed the concordance correlation coefficient (CCC) following the recommendations from Crawford, et al. 38. The CCC is a measure of agreement that encompasses both precision and accuracy, along with corresponding 95% bias accelerated and corrected (BCa) bootstrap confidence intervals. For comparative purposes we calculated the Pearson correlation coefficient which only reflects precision. Both correlation coefficients range from −1.0 to 1.0 and we interpreted values ≥ 0.80 as indicating strong positive agreement/correlation. Next, we regressed the actual percentages on the predicted percentages using linear regression. Perfect prediction corresponds to the estimated regression line having an intercept of zero and a slope of 1.0. We then partitioned the mean square error (MSE) of the predicted (from Eq. (3), not the above linear regression) versus actual percentages as described in Rice and Cochran 39. This partitioning entails calculating the proportion of MSE attributable to three sources of error: the difference in mean predicted and actual values (mean component, denoted “MC”), the error resulting from the slope of the above linear regression deviating from 1.0 (slope component, denoted “SC”), and random error (random component, denoted “RC”). The results from the above analyses were examined to identify subgroups whose predictions were sufficiently good to warrant hypothesis testing. In this context “good” means that the predicted percentages were strongly correlated with the actual percentages and the magnitudes of the predicted percentages were similar to the actual percentages. The objective of the hypothesis testing was to formally evaluate whether dietary proportions could be directly predicted from Eq. (3) (in contrast to generating predictions using the equation from regressing actual dietary percentages on the predicted percentages from Eq. (3)). Paired two one-sided test (TOST) equivalence tests were conducted for the selected subgroups with α = 0.0540. These tests are formulated such that the null hypothesis is “non-equivalence” and the alternative hypothesis is “equivalence”. An input parameter to the test is the equivalence region, a range for which we consider the mean actual minus predicted difference to be unimportant (“equivalent”) from a practical standpoint. For each equivalence test we also computed the 90% confidence interval for the mean actual minus predicted difference which we refer to as the “minimum equivalence region”. Based on the structure of TOST equivalence tests, to reject the null hypothesis at the 0.05 level, the equivalence region specified for the test must completely contain the minimum equivalence region. For example, if the pre-specified equivalence region is (−15%, 15%) and the computed minimum equivalence region is (−16%, −6%) the null hypothesis would not be rejected. Finally, we re-ran all of the analyses described above for the selected subgroups where, prior to analysis, predicted percentages outside of the valid range were assigned the appropriate boundary value (i.e., predicted percentages  100% were assigned a value of 100%). More

  • in

    Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease

    The pathosystemPlantago lanceolata L. is a perennial monoecious ribwort plantain that reproduces both clonally via the production side rosettes, and sexually via wind pollination. Seeds drop close to the mother plant and usually form a long-term seed bank47. Podospharea plantaginis (Castagne; U. Braun and S. Takamatsu) (Erysiphales, Ascomycota) is an obligate biotrophic powdery mildew that infects only P. lanceolata and requires living host tissue through its life cycle48. It completes its life cycle as localized lesions on host leaves, only the haustorial feeding roots penetrating the leaf tissue to feed nutrients from its host. Infection causes significant stress for host plant and may increase the host mortality31. The interaction between P. lanceolata and P. plantaginis is strain-specific, whereby the same host genotype may be susceptible to some pathogen genotypes while being resistant to others49. The putative resistance mechanism includes two steps. First, resistance occurs when the host plant first recognizes the attacking pathogen and blocks its growth. When the first step fails and infection takes place, the host may mitigate infection development. Both resistance traits vary among host genotypes49.Approximately 4000 P. lanceolata populations form a network covering an area of 50 × 70 km in the Åland Islands, SW of Finland. Disease incidence (0/1) in these populations has been recorded systematically every year in early September since 2001 by approximately 40 field assistants, who record the occurrence of the fungus P. plantaginis in the local P. lanceolata populations30. At this time, disease symptoms are conspicuous as infected plants are covered by white mycelia and conidia. The coverage (m2) of P. lanceolata in the meadows was recorded between 2001 and 2008 and is used as an estimate of host population size. In the field survey two technicians estimate Plantago population size by visually estimating how much ground/other vegetation P. lanceolata foliage covers (m2) in each meadow. The proportion of P. lanceolata plants in each population suffering from drought is also estimated annually in the survey. Data on average rainfall (mm) in July and August was estimated separately for each population using detailed radar-measured rainfall (obtained by Finnish Meteorological Institute) and it was available for years 2001–2008.Host population connectivity (SH)27 for each local population i was computed with the formula that takes into account the area of host coverage (m²) of all host populations surveyed, denoted with (Aj), and their spatial location compared to other host populations. We assume that the distribution of dispersal distances from a location are described by negative exponential distribution. Under this assumption, the following formula (1) quantifies for a focal population i, the effect of all other host populations, taking into account their population sizes and how strongly they are connected through immigration to it:$${S}_{i}^{H}=mathop{sum}limits_{jne i}{{{{{rm{e}}}}}}^{{-alpha d}_{{ij}}}sqrt{{A}_{j}}.$$
    (1)
    here, dij is the Euclidian distance between populations i and j and 1/α equals the mean dispersal distance, which was set to be two kilometres based on results from a previous study16.The annual survey data has demonstrated that P. plantaginis infects annually 2–16% of all host populations and persists as a highly dynamic metapopulation through extinctions and re-colonizations of local populations16. The number of host populations has remained relatively stable over the study period49. The first visible symptoms of P. plantaginis infection appear in late June as white-greyish lesions consisting of mycelium supporting the dispersal spores (conidia) that are carried by wind to the same or new host plants. Six to eight clonally produced generations follow one another in rapid succession, often leading to local epidemic with substantial proportion of the infected hosts by late summer within the host local population. Podosphaera plantaginis produces resting structures, chasmothecia, that appear towards the end of growing season in August–September31. Between 20% and 90% of the local pathogen populations go extinct during the winter, and thus the recolonization events play an important role in the persistence of the pathogen regionally16.Inoculation assay: Effect of connectivity and disease history on phenotypic disease resistanceHost and pathogen material for the experimentTo examine whether the diversity and level of resistance vary among host populations depending on their degree of connectivity (SH) and disease history, we selected 20 P. lanceolata populations for an inoculation assay. These populations occur in different locations in the host network, and were selected based on their connectivity values (S H of selected populations was 37–110 in isolated and 237–336 in highly connected category, Fig. 1). We did not include host populations in the intermediate connectivity category that was used in the population dynamic analyses in the inoculation assay due to logistic constraints. Podosphaera plantaginis is an obligate biotrophic pathogen that requires living host tissue throughout its life cycle, and obtaining sufficient inoculum for experiments is extremely time and space consuming. In both isolated and highly connected categories, half of the populations (IDs 193, 260, 311, 313, 337, 507, 1821, 1999, 2818 and 5206) were healthy during the study years 2001–2014, while half of the populations (IDs 271, 294, 309, 321, 490, 609, 1553, 1556, 1676 and 1847) were infected by P. plantaginis for several years during the same period. We collected P. lanceolata seeds from randomly selected ten individual plants around the patch area from each host population in August 2014.To acquire inoculum for the assay, we collected the pathogen strains as infected leaves, one leaf from ten plant individuals from four additional host populations (IDs 3301, 4684, 1784, and 3108) in August 2014. None of the pathogen populations were same as the sampled host populations and hence, the strains used in the assay all represent allopatric combinations. Both host and pathogen populations selected for the study were separated by at least two kilometres. The collected leaves supporting infection were placed in Petri dishes on moist filter paper and stored at room temperature until later use.Seeds from ten mother plants from each population were sown in 2:1 mixture of potting soil and sand, and grown in greenhouse conditions at 20 ± 2 °C (day) and 16 ± 2 °C (night) with 16:8 L:D photoperiod. Due to the low germination rate of collected seeds, population 260 (isolated and healthy population) was excluded from the study. Seedlings of ten different mother plants were randomly selected among the germinated plants for each population (n = 190), and grown in individual pots until the plants were eight weeks old.The pathogen strains were purified through three cycles of single colony inoculations and maintained on live, susceptible leaves on Petri dishes in a growth chamber 20 ± 2 °C with 16:8 L:D photoperiod. Every two weeks, the strains were transferred to fresh P. lanceolata leaves. Purified powdery mildew strains (M1–M4), one representing each allopatric population (3301, 4684, 1784 and 3108), were used for the inoculation assay. To produce enough sporulating fungal material, repeated cycles of inoculations were performed before the assay.Inoculation assay quantifying host resistance phenotypesIn order to study how the phenotypic resistance of hosts varies depending on population connectivity and infection history, we scored the resistance of 190 host genotypes, ten individuals from each study populations (n = 19), in an inoculation assay. Here, one detached leaf from each plant was exposed to a single pathogen strain (M1–M4) by brushing spores gently with a fine paintbrush onto the leaf. Leaves were placed on moist filter paper in Petri dishes and kept in a growth chamber at 20 ± 2 with a 16/8D photoperiod. All the inoculations were repeated on two individual Petri plates, leading to 760 host genotype—pathogen genotype combinations and a total of 1520 inoculations (19 populations * 10 plant genotypes * 4 pathogen strains * 2 replicates). We then observed and scored the pathogen infection on day 12 post inoculation, under dissecting microscope. The resulting plant phenotypic response was scored as 0 = susceptible (infection) when mycelium and conidia were observed on the leaf surface, and as 1 = resistance (no infection), when no developing lesions could be detected under a dissecting microscope. A genotype was defined resistant only if both inoculated replicates showed similar response (1), and susceptible if one or both replicates became infected (0).Statistical analysesBayesian spatio-temporal INLA model of the changes in host population sizeTo study how the pathogen infection influences on host population growth, we analyzed the relative change in host population size (m2) (defined as population size (t) − population size (t−1))/population size (t−1)) between consecutive years utilizing data from 2001 to 2008 in response to pathogen presence-absence status at t−1 (Supplementary Table 2). To assess whether this depends on host population connectivity, we estimated the separate effects of pathogen presence/absence in the previous year for connectivity categories—high-, low, and intermediate—that were based on the 0.2 and 0.8 quantiles of the host-connectivity values (Fig. 1A and Supplementary Figs. 1, 2). This allowed us to directly assess and compare the effect of the pathogen on host population growth in the extreme categories between isolated and highly connected host populations which were represented in the sampling for the inoculation study (Fig. 2).As covariates, we included the proportion (0–100%) of dry host plants measured each year within each local population as well as data on the amount of rainfall at the summer months (June, July, and August) obtained from the satellite images, as these were suggested be relevant for this pathosystem in an earlier analysis16. Observations where the change in host population size, or the host population coverage had absolute values larger than their 0.99 quantiles in the whole data, were regarded as outliers and omitted from the analysis. Before the analyses, all the continuous covariates were scaled and centred, and the categorical variables were transformed into binary variables.The relative changes in local host population size between consecutive years was analyzed by a Bayesian spatio-temporal statistical model that simultaneously considers the effects of a set of biologically meaningful predictors. The linear predictor thus consists of two parts (2,3):$$beta {X}_{t}+{z}_{t}{A}_{t}$$
    (2)
    where (beta) represents the correlation coefficients corresponding to the effects of environmental covariates, ({z}_{t}) corresponds to the spatiotemporal random effect, and ({X}_{t}) and ({A}_{t}) project these to the observation locations. For ({z}_{t}) we assume that the observations from a location in consecutive time points (t−1) and t are described by 1st order autoregressive process:$${z}_{t}=varphi {z}_{t-1}+{w}_{t}$$
    (3)
    where ({w}_{t}) corresponds to spatially structured zero-mean random noise, for which a Matern covariance function is assumed. Statistical inference then targets jointly the covariate effects (beta), the temporal autocorrelation (varphi), and the hyperparameters describing the spatial autocorrelation in wt. From these the overall variance, as well as spatial range—a distance after which spatial autocorrelation ceases to be significant—can be inferred (Supplementary Fig. 3). For more detailed description of the structure of the statistical model and how to do efficient inference with it using R-INLA, we refer to refs. 16,50.Identification of resistance phenotypesThe phenotype composition of each study population was defined by individual plant responses to the four pathogen strains, where each response could be “susceptible = 0” or “resistant = 1”. For example, a phenotype “1111” refers to a plant resistant to all four pathogen strains. The diversity of distinct resistance phenotypes within populations was estimated using the Shannon diversity index as implemented in the vegan software package51. The Shannon diversity index for all four study groups was then analyzed using a linear model with class predictors population type (well-connected or isolated), infection history (healthy or infected), and their interaction.Analysis of population connectivity and infection history effects on host resistanceTo test whether host population resistance varied depending on connectivity (SH) and infection history, we analyzed the inoculation responses (0 = susceptible, 1=resistant) of each host-pathogen combination by using a logit mixed-effect model in the lme4 package52. The model included the binomial dependent variable (resistance-susceptible; 1/0), and class predictors population type (well-connected or isolated), infection history (healthy or infected), mildew strain (M1, M2, M3, and M4) and their interactions. Plant individual and population were defined as random effects, with plant genotype (sample) hierarchically nested under population. Model fit was assessed using chi-square tests on the log-likelihood values to compare different models and significant interactions, and the best model was selected based on AIC-values. P-values for regression coefficients were obtained by using the car package53. We ran all the analyses in R software54.The metapopulation modelWe model the ecological and co-evolutionary dynamics of host and pathogen metapopulations to understand key features of the experimental system that impact on the qualitative patterns observed. The structure and parameters in our model are therefore not estimated using experimental data, but rather are chosen to cover a range of possibilities (e.g., low vs high transmission rates, variation in trade-off shapes for fitness costs). We construct the metapopulations in two stages to account for relatively well and poorly connected demes. All demes are identical in quality (i.e., no differences in intrinsic birth or death rates between demes) and only differ in their connectivity. Our metapopulation consists of an outer network of 20 demes, equally spaced around the unit square (0.2 units apart), and a 7×7 inner lattice of demes at a minimum distance of 0.2 units from the outer network (Fig. 3A), giving a total of 69 demes. Demes that are separated by a Euclidean distance of at most 0.2 are then connected to each other. This means that populations near the centre of the metapopulation are highly connected, while those on the boundary of the metapopulation are poorly connected. This also has the effect of making connections between well and poorly connected demes assortative (i.e., well/poorly connected demes tend to be connected to well/poorly connected demes). We relax the assumption of assortativity in a second type of network by randomly reassigning connections between demes, while maintaining the same degree distribution. (i.e., the probability of two demes being connected is proportionate to their degree). While well connected demes still have more connections to other well connected demes than to poorly connected demes, they are not more likely to be connected to a well connected deme than by chance based on the degree distribution. In both types of network structure, we classify a deme as well-connected if it is in the top 20% of the degree distribution and poorly connected if it is in the bottom 20%.We model the genetics using a multilocus gene-for-gene framework with haploid host and pathogen genotypes characterized by (L) biallelic loci, where 0 and 1 represent the presence and absence, respectively, of resistance and infectivity alleles. Host genotype (i) and pathogen genotype (j) are represented by binary strings: ({x}_{i}^{1}{x}_{i}^{2}ldots {x}_{i}^{L}) and ({y}_{j}^{1}{y}_{j}^{2}ldots {y}_{j}^{L}). Resistance acts multiplicatively such that the probability of host (i) being infected when challenged by pathogen (j) is ({Q}_{{ij}}={sigma }^{{d}_{{ij}}}), where (sigma) is the reduction in infectivity per effective resistance allele and ({d}_{{ij}}={sum }_{k=1}^{L}{x}_{i}^{k}big(1-{y}_{j}^{k}big)) is the number of effective resistance alleles (i.e., the number of loci where hosts have a resistance allele but pathogens do not have a corresponding infectivity allele). Hosts and pathogens with more resistance or infectivity alleles are assumed to pay higher fitness costs, ({c}_{H}left(iright)) eq. (4) and ({c}_{P}left(jright)) eq. (5) with:$${c}_{H}left(iright)={c}_{H}^{1}left(frac{1-{{{{{rm{e}}}}}}^{frac{{c}_{H}^{2}}{L}{sum }_{k=1}^{L}{x}_{i}^{k}}}{1-{{{{{rm{e}}}}}}^{{c}_{H}^{2}}}right)$$
    (4)
    and$${c}_{P}left(jright)={c}_{P}^{1}left(frac{1-{{{{{rm{e}}}}}}^{frac{{c}_{P}^{2}}{L}{sum }_{k=1}^{L}{y}_{j}^{k}}}{1-{{{{{rm{e}}}}}}^{{c}_{P}^{2}}}right)$$
    (5)
    where (0 , < , {c}_{H}^{1},; {c}_{P}^{1},le, 1) control the overall strength of the costs (i.e., the maximum proportional reduction in reproduction (hosts) or transmission rate (pathogens)) and ({c}_{H}^{2},; {c}_{P}^{2}in {{mathbb{R}}}_{ne 0}) control the shape of the trade-off. When ({c}_{H}^{2},; {c}_{P}^{2}, < , 0) the costs decelerate (increasing returns) and when ({c}_{H}^{2},; {c}_{P}^{2}, > , 0) the costs accelerate the costs accelerate (decreasing returns) (Supplementary Fig. 4). This formulation, therefore, allows for a wide-range of trade-off shapes that may occur in nature.The dynamics of the (finite) host and pathogen populations are modelled stochastically using the tau-leap method with a fixed step size of (tau=1). For population (p), the mean host birth rate at time (t) for host (i) (6) is$${B}_{i}^{p}left(tright)=left(aleft(1-{c}_{H}left(iright)right)-q{N}_{p}left(tright)right){S}_{i}^{p}left(tright)$$
    (6)
    where (a) is the maximum per-capita birth rate, (q) is the strength of density-dependent competition on births, ({N}_{p}left(tright)={S}_{i}^{p}left(tright)+{I}_{icirc }^{p}left(tright)) is the local host population size, ({S}_{i}^{p}left(tright)) and ({I}_{icirc }^{p}left(tright)={sum }_{j=1}^{n}{I}_{{ij}}^{p}left(tright)) are the local sizes of susceptible and infected individuals of genotype (i), and ({I}_{{ij}}^{p}left(tright)) is the local size of hosts of genotype (i) infected by pathogen (j). Host mutations occur at an average rate of ({mu }_{H}) per loci (limited to at most one mutation per time step), so that the mean number of mutations from host type (i) to ({i}^{{prime} }) is ({mu }_{H}{m}_{i{i}^{{prime} }}{B}_{i}^{p}left(tright)), where ({m}_{i{i}^{{prime} }}=1) if genotypes (i) and ({i}^{{prime} }) differ at exactly one locus, and is 0 otherwise.The mean local mortalities for susceptible and infected individuals are (b{S}_{i}^{p}left(tright)) and (left(b+alpha right){I}_{{ij}}^{p}left(tright)), respectively, where (b) is the natural mortality rate and (alpha) is the disease-associated mortality rate. The average number of infected hosts that recover is (gamma {I}_{{ij}}^{p}left(tright)), where (gamma) is the recovery rate.The mean number of new local infections of susceptible host type (i) by pathogen (j) eq. (7) is:$${INF}_{{ij}}^{p}left(tright)=beta left(1-{c}_{P}left(jright)right){Q}_{{ij}}{S}_{i}^{p}left(tright){Y}_{j}^{p}left(tright)$$
    (7)
    where (beta) is the baseline transmission rate and ({Y}_{j}^{p}left(tright)) is the local number of pathogen propagules following mutation and dispersal. Pathogen mutations occur in a similar manner to host mutations, with mutations from type (j) to ({j}^{{prime} }) occurring at rate ({mu }_{P}{m}_{j{j}^{{prime} }}{I}_{circ j}^{p}left(tright)) where ({mu }_{P}) is the mutation rate per loci (limited to at most one mutation per timestep) and ({I}_{circ j}^{p}left(tright)={sum }_{i=1}^{n}{I}_{{ij}}^{p}left(tright)) is the local number of pathogen (j.) Following mutation, the local number of pathogens of type (j) eq. (8) is:$${W}_{j}^{p}left(tright)={I}_{circ j}^{p}left(tright)left(1-{mu }_{P}Lright)+{mu }_{P}{m}_{j{j}^{{prime} }}{I}_{circ j}^{p}left(tright)$$
    (8)
    Pathogen dispersal occurs following mutation at a rate of (rho) between connected demes, given by the adjacency matrix ({G}_{{pr}}), with ({G}_{varSigma p}) the total number of connections for deme (p). The mean local number of pathogen propagules following mutation and dispersal eq. (9) is therefore:$${Y}_{j}^{p}left(tright)={W}_{j}^{p}left(tright)left(1-rho {G}_{varSigma p}right)+rho mathop {sum }limits_{r=1}^{{M}_{varSigma }}{G}_{{pr}}{W}_{j}^{r}left(tright)$$
    (9)
    We focus our parameter sweep on: (i) the structure of the network (assortative or random connections); (ii) the strength (left({c}_{H}^{1},; {c}_{P}^{1}right)) and shape (left({c}_{H}^{2},; {c}_{P}^{2}right)) of the trade-offs; (iii) the transmission rate (left(beta right)); and (iv) the dispersal rate (left(rho right)), fixing the remaining parameters as described in Supplementary Table 1 (preliminary investigations suggested they had less of an impact on the qualitative outcome) and conducting 100 simulations per parameter set. For each simulation we initially seed all populations with the most susceptible host type and place the least infective pathogen type in one of the well-connected populations to minimize the risk of early extinction. We then solve the dynamics for 10,000 time steps (preliminary investigations indicated this was a sufficient period for the metapopulations to reach a quasi-equilibrium in terms of overall resistance). We calculate the average level of resistance (proportion of loci with a resistance allele) between time steps 4001 and 5000 (transient dynamics) and over the final 1000 time steps (long-term dynamics) for well and poorly connected demes, categorized according to whether the disease is present in (infected) or absent from (uninfected) the local population at a given time point and discarding simulations where the pathogen is driven globally extinct.We compare the mean level of resistance in infected/uninfected poorly/well-connected populations across all simulations to the empirical results. We say that a simulation is a qualitative ‘match’ for the empirical findings if: (i) in poorly connected demes, the infected populations are on average at least 5% more resistant than uninfected populations; and (ii) in well-connected demes, the uninfected populations are on average at least 5% more resistant than infected populations. In other words, if ({R}_{{CS}}) is the mean resistance for a population with connectivity (C) ((C=W) and (C=P) for well and poorly connected demes, respectively) and infection status (S) ((S=U) and (S=I) for uninfected and infected populations, respectively), then a parameter set is a qualitative ‘match’ for the empirical findings if ({R}_{{WU}} > 1.05{R}_{{WI}}) and (1.05{R}_{{PI}}, > , 1.05{R}_{{PU}}). If these criteria are not met, then the parameter set is a qualitative ‘mismatch’ for the empirical findings. The model is not intended to be a replica of an empirical metapopulation, but rather is used to reveal the key factors which lead to qualitatively similar distributions of resistance and disease incidences observed in the study of the Åland islands. Hence, the purpose of the model is to determine which biological factors are likely to be crucial to the patterns observed herein.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The deglacial forest conundrum

    Birks, H. J. B. Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).Article 

    Google Scholar 
    Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).Article 

    Google Scholar 
    Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dyn. 37, 775–802 (2011).Article 

    Google Scholar 
    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).Article 

    Google Scholar 
    Harrison, S. BIOME 6000 DB classified plotfile version 1. https://doi.org/10.17864/1947.99. (2017).Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed 
    Article 

    Google Scholar 
    Neilson, R. P. et al. Forecasting regional to global plant migration in response to climate change. BioScience 55 https://academic.oup.com/bioscience/article/55/9/749/285963 (2005).Normand, S. et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B: Biol. Sci. 278, 3644–3653 (2011).Article 

    Google Scholar 
    Seltzer, A. M. et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021).Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, N. & Adams, J. M. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).Birks, H. J. B. & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Article 

    Google Scholar 
    Roberts, D. R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B: Biol. Sci. 282, 20142903 (2015).Clark, J. S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, S. & Overpeck, J. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Harrison, S. P. & Goñi, M. F. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).ADS 
    Article 

    Google Scholar 
    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).Article 

    Google Scholar 
    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).PubMed 
    Article 

    Google Scholar 
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).Article 

    Google Scholar 
    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).Article 

    Google Scholar 
    Jackson, S. T. & Williams, J. W. Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annu. Rev. Earth Planet. Sci. 32, 495–537 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 
    Article 

    Google Scholar 
    He, F. Simulating transient climate evolution of the last deglaciation with CCSM3 Dissertation at the University of Wisconsin – Madison (2011).Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. in Quaternary Science Reviews vol. 19 213–226 (Pergamon, 2000).He, C. et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Modeling Earth Syst. 5, 459–482 (2013).Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M. & Brovkin, V. Harmonising plant functional type distributions for evaluating Earth system models. Clim 15, 335–366 (2019).
    Google Scholar 
    Ni, J., Cao, X., Jeltsch, F. & Herzschuh, U. Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 33–47 (2014).Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Sobol, M. K., Scott, L. & Finkelstein, S. A. Reconstructing past biomes states using machine learning and modern pollen assemblages: a case study from Southern Africa. Quat. Sci. Rev. 212, 1–17 (2019).ADS 
    Article 

    Google Scholar 
    Marinova, E. et al. Pollen‐derived biomes in the Eastern Mediterranean–Black Sea–Caspian‐Corridor. J. Biogeogr. 45, 484–499 (2018).Article 

    Google Scholar 
    Cao, X. et al. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim. Past 15, 1503–1536 (2019).Article 

    Google Scholar 
    Geng, R. et al. Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for major taxa. Front. Ecol. Evol. 10, 508 (2022).Article 

    Google Scholar 
    Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).ADS 
    Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241 (2007).ADS 
    Article 

    Google Scholar 
    Githumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: Methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).ADS 
    Article 

    Google Scholar 
    Snell, R. S. et al. Using dynamic vegetation models to simulate plant range shifts. Ecography 37, 1184–1197 (2014).Article 

    Google Scholar 
    Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).Article 

    Google Scholar 
    Svenning, J. C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).Article 

    Google Scholar 
    Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Herzschuh, U. Legacy of the Last Glacial on the present‐day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 29, 198–206 (2020).Article 

    Google Scholar 
    Väliranta, M. et al. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Schulte, L., Li, C., Livsovski, S. & Herzschuh, U. Forest-permafrost feedbacks and glacial refugia help explain the unequal distribution of larch across continents. J. Biogeogr. 9, 0305–0270 (2022).
    Google Scholar 
    Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).Article 

    Google Scholar 
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).Article 

    Google Scholar 
    Pennington, W. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67, 105–118 (1986).Article 

    Google Scholar 
    MacDonald, G. M., Kremenetski, K. V. & Beilman, D. W. Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B: Biol. Sci. 363, 2285–2299 (2008).CAS 
    Article 

    Google Scholar 
    Prentice, I. C., Bartlein, P. J. & Webb, T. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).Article 

    Google Scholar 
    Cao, X. Y., Herzschuh, U., Telford, R. J. & Ni, J. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Rev. Palaeobot. Palynol. 211, 87–96 (2014).Article 

    Google Scholar 
    Leroy, S. A. G., Arpe, K., Mikolajewicz, U. & Wu, J. Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum. Clim 16, 2039–2054 (2020).
    Google Scholar 
    Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020).Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reick, C. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Hamburg: MPI für Meteorologie. Berichte zur Erdsystemforsch. (2021).Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).ADS 
    Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).ADS 
    Article 

    Google Scholar 
    Loana Meccia, V. & Mikolajewicz, U. Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2). Geosci. Model Dev. 11, 4677–4692 (2018).ADS 
    Article 

    Google Scholar 
    Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geosci. Model Dev. 11, 4291–4316 (2018).ADS 
    Article 

    Google Scholar 
    Kapsch, M., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice‐sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).ADS 
    Article 

    Google Scholar 
    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18, 389–404 (2011).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Cao, X. Y., Ni, J., Herzschuh, U., Wang, Y. B. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).Article 

    Google Scholar 
    Bigelow, N. H. et al. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. Atmos. 108, 8170 (2003).Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wessel, P. et al. Generic mapping tools: improved version released. EOS Trans. AGU 94, 409–410 (2013).ADS 
    Article 

    Google Scholar  More

  • in

    First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea

    Schmidt, J. Breeding places and migrations of the eel. Nature 111, 51–54 (1923).ADS 
    Article 

    Google Scholar 
    Tucker, D. W. A new solution to the Atlantic eel problem. Nature 183, 495–501 (1959).ADS 
    Article 

    Google Scholar 
    Voorhis, A. D. & Hersey, J. B. Oceanic thermal fronts in the Sargasso Sea. J. Geophys. Res. 69(18), 3809–3814 (1964).ADS 
    Article 

    Google Scholar 
    Kleckner, R. C. & McCleave, J. D. The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J. Mar. Res. 46, 647–667 (1988).Article 

    Google Scholar 
    Ullman, D. S., Cornillon, P. C. & Shan, Z. On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res: Oceans 112, C01010 (2007).ADS 

    Google Scholar 
    Miller, M. J. et al. Spawning by the European eel across 2000 km of the Sargasso Sea. Biol. Lett. 15, 20180835 (2019).Article 

    Google Scholar 
    Westerberg, H. et al. Larval abundance across the European eel spawning area: An analysis of recent and historic data. Fish. 19, 890–902 (2018).
    Google Scholar 
    Halliwell, G. R. Jr., Olson, D. B. & Peng, G. Stability of the Sargasso Sea subtropical frontal zone. J. Phys. Oceanogr. 24(6), 1166–1183 (1994).ADS 
    Article 

    Google Scholar 
    van Ginneken, V. J. T. & Maes, G. E. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: A literature review. Rev. Fish Biol. Fish. 15, 367–398 (2005).Article 

    Google Scholar 
    Friedland, K. D., Miller, M. J. & Knights, B. Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J. Mar. Sci. 64, 519–530 (2007).Article 

    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).Article 

    Google Scholar 
    Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199 (2018).Article 

    Google Scholar 
    Righton, D. et al. Important questions to progress science and sustainable management of anguillid eels. Fish 22, 762–788 (2021).
    Google Scholar 
    Aoyama, J. Life history and evolution of migration in catadromous eels (genus Anguilla). Aquat. Bio Sci. Monogr. 2, 1–42 (2009).
    Google Scholar 
    Tsukamoto, K., Aoyama, J. & Miller, M. J. Migration, speciation, and the evolution of diadromy in anguillid eels. Can. J. Fish. Aquat. Sci. 59, 1989–1998 (2002).Article 

    Google Scholar 
    Tesch, F.-W. Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Env. Biol. Fish. 3, 203–209 (1978).Article 

    Google Scholar 
    Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Westerberg, H. et al. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).ADS 
    Article 

    Google Scholar 
    Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).ADS 
    Article 

    Google Scholar 
    Verhelst, P. et al. Mapping silver eel migration routes in the North Sea. Sci Rep. 12, 318 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroki, M. et al. Hatching time and larval growth of Atlantic eels in the Sargasso Sea. Mar. Biol. 164, 118. https://doi.org/10.1007/s00227-017-3150-9 (2017).Article 

    Google Scholar 
    Acton, L. et al. What is the Sargasso Sea? The problem of fixing space in a fluid ocean. Polit. Geogr. 68, 86–100 (2019).Article 

    Google Scholar 
    GEBCO Compilation Group. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).Miller, M. J. & Hanel, R. The Sargasso Sea Subtropical Gyre: The spawning and larval development area of both freshwater and marine eels. Sargasso Sea Alliance Science Report Series, 7, 20 pp (2011).Munk, P. et al. Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc. Biol. Sci. 277, 3593–3599 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Béguer-Pon, M., Castonguay, M., Shan, S., Benchetrit, J. & Dodson, J. J. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea. Nat. Commun. 6, 8705 (2015).ADS 
    Article 

    Google Scholar 
    Westin, L. The spawning migration of European silver eel (Anguilla anguilla L.) with particular reference to stocked eel in the Baltic. Fish. Res. 38(3), 257–270 (1998).
    Article 

    Google Scholar 
    Tesch, F.-W., Wendt, T. & Karlsson, L. Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol. Freshw. Fish 1(1), 52–60 (1992).Article 

    Google Scholar 
    Tesch, F.-W. The Eel (Blackwell Science, Oxford, UK, 2003).Book 

    Google Scholar 
    Durif, C. M. F. et al. Magnetic compass orientation in the European eel. PLoS ONE 8(3), e59212 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Schabetsberger, R. et al. Hydrographic features of anguillid spawning areas: Potential signposts for migrating eels. Mar. Ecol. Prog. Ser. 554, 141–155 (2016).ADS 
    Article 

    Google Scholar 
    Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).CAS 
    Article 

    Google Scholar 
    Dekker, W. Status of the European eel stock and fisheries. In Eel Biology (eds Aida, K. et al.) 237–254 (Springer, New York, 2003).Chapter 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish (Oxf) 19, 903–930 (2018).Article 

    Google Scholar 
    ICES. Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). ICES Scientific Reports. 2(85) (2020).Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species 2020: e.T60344A152845178 (2020).Durif, C., Dufour, S. & Elie, P. The silvering process of Anguilla anguilla: A new classification from the yellow resident to the silver migrating stage. J. Fish. Biol. 66, 1025–1043 (2005).Article 

    Google Scholar 
    Pankhurst, N. W. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla Anguilla (L.). J. Fish Biol. 21, 127–140 (1982).Article 

    Google Scholar 
    Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelem. 1, 3 (2013).Article 

    Google Scholar  More

  • in

    Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs

    Birkeland, C. Coral Reefs in the Anthropocene (Springer, 2015).Book 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39(1), 146–159. https://doi.org/10.1093/icb/39.1.146 (1999).Article 

    Google Scholar 
    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432. https://doi.org/10.1007/s00338-003-0330-5 (2003).Article 

    Google Scholar 
    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878. https://doi.org/10.1071/mf99121 (1999).Article 

    Google Scholar 
    Mies, M. et al. South atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 514. https://doi.org/10.3389/fmars.2020.00514 (2020).Article 

    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefsin a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116. https://doi.org/10.1590/S1679-875920160916064sp2 (2016).Article 

    Google Scholar 
    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126. https://doi.org/10.1007/s11160-013-9319-5 (2014).Article 

    Google Scholar 
    Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 118. https://doi.org/10.1890/ES11-00185.1 (2011).Article 

    Google Scholar 
    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Glob. Change Biol. 12, 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x (2006).ADS 
    Article 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. https://doi.org/10.1038/s43017-020-0068-4 (2020).ADS 
    Article 

    Google Scholar 
    Bleuel, J., Pennino, M. G. & Longo, G. O. Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci. Rep. 11, 12833. https://doi.org/10.1038/s41598-021-92202-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fontoura, L. et al. The macroecology of reef fish agonistic behaviour. Ecography 43, 1278–1290. https://doi.org/10.1111/ecog.05079 (2020).Article 

    Google Scholar 
    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Change Biol. 26, 6805–6812. https://doi.org/10.1111/gcb.15346 (2020).ADS 
    Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296. https://doi.org/10.1201/9781420065756.ch6 (2008).Article 

    Google Scholar 
    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x (2007).Article 
    PubMed 

    Google Scholar 
    Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. R. Soc. B 288, 20210274. https://doi.org/10.1098/rspb.2021.0274 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClenachan, L. Extinction risk in reef fishes 199–207 (Cambridge University Press, 2015).
    Google Scholar 
    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620. https://doi.org/10.2307/1312990 (1996).Article 

    Google Scholar 
    Pereira, P. H. C. et al. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol. Res. 61, 375–384. https://doi.org/10.1007/s10228-014-0409-8 (2014).Article 

    Google Scholar 
    Coni, E. O. C. et al. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fish. 96, 45–55. https://doi.org/10.1007/s10641-012-0021-6 (2013).Article 

    Google Scholar 
    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, 7650. https://doi.org/10.1126/sciadv.aay7650 (2020).ADS 
    Article 

    Google Scholar 
    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148. https://doi.org/10.1016/j.marenvres.2019.03.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452. https://doi.org/10.1371/journal.pone.0198452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and Coral Reefs of Brazil 9–52 (Elsevier Publisher, 2003).
    Google Scholar 
    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965. https://doi.org/10.1111/ddi.12729 (2018).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x (2008).Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169(5), 61. https://doi.org/10.1007/s00227-022-04045-8 (2022).Article 

    Google Scholar 
    Leal, I. C. S., Araújo, M. E. D., Cunha, S. R. D. & Pereira, P. H. C. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar. Environ. Res. 108, 45–54. https://doi.org/10.1016/j.marenvres.2015.04.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. A. Applied hierarchical modeling in ecology: Analysis of distribution abundance and species richness in R and BUGS. In Prelude and Static Models Vol. 1 (eds Kéry, M. & Royle, J. A.) (Academic Press, 2016).MATH 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.640619 (2021).Article 

    Google Scholar 
    McLean, M. et al. Trait similarity in reef fish faunas across the world’s oceans. PNAS 118(12), e2012318118. https://doi.org/10.1073/pnas.2012318118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf S. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).ADS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974).
    Google Scholar 
    Garcia, G. S., Dias, M. S. & Longo, G. O. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. J. Fish Biol. 99(3), 896–904. https://doi.org/10.1111/jfb.14776 (2021).Article 
    PubMed 

    Google Scholar 
    Quimbayo, J. P. et al. Life-history traits, geographical range, and conservation aspects ofreef fishes from the Atlantic and Eastern Pacific. Ecology 102, e03298. https://doi.org/10.1002/ecy.3298 (2021).Article 
    PubMed 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat. Biol. 16, 31–52. https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. https://doi.org/10.1890/07-1206.1 (2008).Article 
    PubMed 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740. https://doi.org/10.1111/geb.12299 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021)Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. R package version 1.5.2. https://CRAN.R-project.org/package=jagsUI (2021)Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish. 61, 353–369 (2001).Article 

    Google Scholar 
    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 21, 700–717. https://doi.org/10.1111/faf.12455 (2020).Article 

    Google Scholar 
    Ferreira, L. C. L. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168, 54. https://doi.org/10.1007/s00227-021-03863-6 (2021).CAS 
    Article 

    Google Scholar 
    Lonzetti, B. C., Vieira, E. A. & Longo, G. O. Ocean warming can help zoanthids outcompete branching hydrocorals. Coral Reefs 41, 175–189. https://doi.org/10.1007/s00338-021-02212-9 (2022).Article 

    Google Scholar 
    Grillo, A. C., Candido, C. F., Giglio, V. J. & Longo, G. O. Unusual high coral cover in a Southwestern Atlantic subtropical reef. Mar. Biodivers. 51, 77. https://doi.org/10.1007/s12526-021-01221-9 (2021).Article 

    Google Scholar 
    Matheus, Z. et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE 14(1), e0210664. https://doi.org/10.1371/journal.pone.0210664 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirelles, P. M. et al. Baseline assessment of mesophotic reefs of the vitória-trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6), e0130084. https://doi.org/10.1371/journal.pone.0130084 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x (2004).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol.-Prog. Ser. 367, 249–260. https://doi.org/10.3354/meps07580 (2008).ADS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a Tropical Western Atlantic reef ecosystem. Ecosystems 25, 843–857. https://doi.org/10.1007/s10021-021-00691-z (2022).Article 

    Google Scholar 
    Fogliarini, C. O., Longo, G. O., Francini-Filho, R. B., McClenachan, L. & Bender, M. G. Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. PECON 20(3), 231–239. https://doi.org/10.1007/10.1016/j.pecon.2022.05.003 (2022).Article 

    Google Scholar 
    Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. Marine ornamental trade in Brazil. Biodivers. Conserv. 14, 2883–2899. https://doi.org/10.1007/s10531-004-0222-1 (2005).Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Brazil 163–198 (Springer, 2019).
    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901. https://doi.org/10.1111/brv.12259 (2017).Article 
    PubMed 

    Google Scholar 
    Nunes, L. T. et al. Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago. Coral Reefs 38, 955–960. https://doi.org/10.1007/s00338-019-01822-8 (2019).ADS 
    Article 

    Google Scholar 
    Liedke, A. et al. Abundance, diet, foraging and nutritional condition of the banded butterflyfish (Chaetodon striatus) along the western Atlantic. Mar. Biol. 163, 6. https://doi.org/10.1007/s00227-015-2788-4 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Vapour pressure deficit determines critical thresholds for global coffee production under climate change

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P. & Grab, S. W. Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric. For. Meteorol. 207, 1–10 (2015).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biol. 25, 390–403 (2019).ADS 
    Article 

    Google Scholar 
    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).PubMed 
    Article 

    Google Scholar 
    Kath, J. et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biol. 26, 3677–3688 (2020).ADS 
    Article 

    Google Scholar 
    Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).PubMed 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 8, 723–729 (2018).ADS 
    Article 

    Google Scholar 
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schneider, S. H. Abrupt non-linear climate change, irreversibility and surprise. Global Environ. Change 14, 245–258 (2004).Article 

    Google Scholar 
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).ADS 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature. 575, 592–595 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigden, A., Mueller, N., Holbrook, N., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinclair, T. R. et al. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260, 109–118 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biol. 27, 1704–1720 (2021).ADS 
    Article 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1–7 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 10, 407–412 (2011).
    Google Scholar 
    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).ADS 
    Article 

    Google Scholar 
    IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32, 945–952 (2005).PubMed 
    Article 

    Google Scholar 
    Martins, M. Q. et al. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front. Plant Sci. 7, 947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodrigues, W. P. et al. Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biol. 22, 415–431 (2016).ADS 
    Article 

    Google Scholar 
    Ghini, R. et al. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Change 132, 307–320 (2015).ADS 
    Article 

    Google Scholar 
    Rakocevic, M. et al. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regul. 91, 305–316 (2020).CAS 
    Article 

    Google Scholar 
    Hammer, G. L. et al. Designing crops for adaptation to the drought and high‐temperature risks anticipated in future climates. Crop Sci. 60, 605–621 (2020).Article 

    Google Scholar 
    Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).PubMed 
    Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. Hot coffee: the identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 5, 740137 (2021).Article 

    Google Scholar 
    Sarmiento-Soler, A. et al. Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative growth in smallholder coffee systems. Agric. Ecosyst. Environ. 326, 107786 (2022).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. M. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Future 6, 410–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ovalle-Rivera, O. et al. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor. Syst. 94, 2033–2051 (2020).Article 

    Google Scholar 
    Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 1–8 (2006).Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Son, H. & Fong, Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models. Environmetrics 32, e2664 (2021).MathSciNet 
    Article 

    Google Scholar 
    Wintgens, J. N. et al. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers (Wiley, 2004). More

  • in

    Early-season plant-to-plant spatial uniformity can affect soybean yields

    Sites description and field operationsA total of six field studies were conducted in two different regions over two seasons. Four studies (two dryland and two irrigated) were in Kansas, United States (dryland: 39°4′30″ N, − 96°44′43″ W, irrigated: 39°4′25″N, − 96°43′12″ W) during the 2019 and 2020 growing seasons (hereafter referred to as USDry19, USIrr19, USDry20, and USIrr20 studies). The remaining two studies (dryland) were in Entre Rios, Argentina (31°50′49″ S; 60°32′16″ W) during the 2018/2019 and 2019/2020 growing seasons (hereafter referred to as Arg19 and Arg20 studies). The soils were Fluventic Hapludolls [silt loam, 40% sand, 13% clay, 47% silt, organic matter (OM) 1.7%, 7.7 pH, 31.1 ppm P (Bray−1)] at the US dryland studies, and Pachic Argiudolls [silty clay loam, 10.1% sand, 30.6% clay and 59.3% silt, OM 3.2%, 6.8 pH, 34.7 ppm P (Bray−1)] at the US irrigated studies. At the Argentinian studies soil was a Vertic Argiudoll in 2019 [silty clay loam to clay loam, 3.9% sand, 27.6% clay, 67.9% silt, OM 2.65%, 7.2 pH, 12.5 ppm P (Bray−1)] and an Acuic Argiudoll in 2020 [silt loam to silty-clay-loam, 5.6% sand, 28.6% clay, 65.8% silt, OM 3.33%].The US dryland and irrigated studies were sown on June 4, 2019, and May 20, 2020. In 2019, the dryland study was replanted on June 29 due to poor emergence after the first sowing. The studies in Argentina were sown on December 5 in 2018 and November 20 in 2019. At all six studies, plots were kept free of weeds, pests, and diseases through recommended chemical control.The genotypes used in the US were P40A47X (MG 4.0) and P39A58X (MG 3.9) (Corteva Agriscience, Johnston, IA, USA) in 2019 and 2020, respectively. Both varieties are tolerant to glyphosate and dicamba herbicides (RR2X) and have low lodging probability. For the northeast region of Kansas, recommended sowing dates range from May 15 to June 15 along with MG 421. In addition, recommended seeding rates are between 270 and 355 thousand seeds ha−1 for low-yielding environments and 190 to 285 thousand seeds ha−1 for medium- and high-yielding environments13. In Argentina, the genotype AW5815IPRO (MG 5.8, Bayer, Leverkusen, Germany) was used both in 2020 and 2021, it is tolerant to glyphosate and sulfonylureas, and has low lodging probability. Recommended sowing dates for Entre Rios considering soybeans as a single crop range from October 20 to December 10, and MG usually range from 4 to 6; lastly, seeding rate recommendations are between 200 and 250 thousand seeds ha−1 in the region22.Study designThe studies carried out in the US were arranged as a split plot design with three replicates in both 2019 and 2020. In 2019, the main plot treatment factor was planter type with two levels [John Deere (Moline, Illinois, US) Max Emerge planter (ME, 12 rows), and John Deere Exact Emerge Planter (EE, 16 rows)], and the split-plot treatment factor was seeding rate with two levels (160 and 321 thousand seeds ha−1). In 2020 the main plot treatment factor was also planter type with two levels (ME and EE), and the split-plot treatment factor was seeding rate with four levels (160, 215, 270 and 321 thousand seeds ha−1). Planting speed was 7 km h−1 in both studies and years, plots were 24 and 32 rows wide when planted with ME and EE, respectively, with 0.76 m row spacing. Plot length was 80 m in the dryland studies and 160 m in the irrigated studies. The studies in Argentina were arranged as a single replicate of each seeding rate (100, 230, 360 and 550 thousand seeds ha−1) in both years. Planting speed was 5.5 km h−1 in both years, and plots were 10 rows wide with 0.52 m row spacing and 350 m in length.All treatment factors in US studies were evaluated with the overall goal of producing substantial variation in the variable of interest, plant-to-plant spatial uniformity, rather than to make an inference of their effect on yield. The Argentinian studies were only used for selection of stand uniformity variables due to the single replicate. Plant spatial uniformity variables were first fitted using the data from US studies (details below), and then the best explanatory metrics were selected to re-fit the relationships combining both data sets from US and Argentina. Finally, sowing dates, maturity groups, and seeding rates evaluated in this study at both locations (Arg and US) were aligned with those recommended for each region.Data collection and spacing uniformity variablesTwo segments of 2 m in length were established early in the season inside each plot. At the V5 (US studies) and R1 (Arg studies) soybean development stage23, the cumulative distance of the plants within each segment was measured and then used to calculate multiple derived variables. Plant spacing (cm) was calculated as the average distance between neighboring plants. In addition, the distance from a plant to each neighboring plant was classified as shorter or longer than the plant spacing (named nearest and farthest neighbor distance, respectively). Achieved versus Target Evenness Index (ATEI, dimensionless) was calculated as the ratio between the observed plant spacing and the theoretical plant spacing (TPS, cm), where TPS is the expected plant spacing derived from a specific seeding rate and row width (Eq. 1).$$ATEI = frac{Spacing;(cm) }{{TPS;(cm)}}$$
    (1)
    The ATEI index was designed to account for the proximity of the observed plant spacing to the TPS. Values closer to 1 indicate that the plant spacing is close to the TPS and values that are below or above 1 indicate that the plant spacing is lower or higher than the TPS, respectively; thereby departing from an ideal plant spacing. Hence, ATEI values greater than 1 depict both (i) non-uniform plant-to-plant spacing distribution and (ii) plant densities below the target (seeding rate). To further understand the meaning of ATEI, the relative density (rd) was calculated as the ratio between plant density (based on the number of plants in the 2 m segment) and seeding rate.To account for the unevenness of distance from a plant to both neighboring plants within the row, we used the Evenness Index (EI, dimensionless), calculated as the ratio between the distance to the nearest neighbor (cm) and the plant spacing (cm) of a given plant (Eq. 2). The Evenness Index values range from 0 to 1, a value closer to 1 indicates that a plant is equidistantly spaced to both of its neighboring plants within the row, if zero then those plants are occupying the same position (as doubles). It is important to note that EI does not provide information on the spacing (in distance, cm) or how close the spacing is compared to the TPS, but only describes the unevenness distance of a plant to its neighboring plants within a row.$$Evenness ;Index; (EI) = frac{nearest; neighbor ;(cm)}{{Spacing; (cm)}}$$
    (2)
    In addition, the distance from a plant to its preceding neighboring plant, and the TPS were used to classify the position of each plant into one of eight classes (Fig. 1). Plants were classified in classes ranging from “double” (preceding plant distance  Double-skip) as a function of seeding rate, planter type and their interaction (fixed effects), and block nested in site-year (random effect) (Tables 1 and 2). Independent models for each of the 4 US studies were built assessing the effects of planter type, seeding rate, and their interaction (fixed effects), and seeding rate nested in planter type, and in block (random effects) on the same variables previously mentioned (Supplementary Table 1). The models were run using the lmer function from lme4 package in R (R Core Team, 2021). In addition, the US and Arg studies were combined to evaluate the effect of site-year on yield, plant density, and all stand uniformity variables (Supplementary Fig. 1) using the lm function from package stats. Means separation were performed using Fisher’s LSD (Least Significance Difference) test (alpha = 0.05) with emmeans function from package emmeans.Table 1 Effect of planter type, seeding rate, and their interaction on variables from plant position classification for all US studies. References: percentage of perfectly spaced plants (Perfect), percentage of plants misplaced by 66% (Mis 66), percentage of plants misplaced by 33% (Mis 33), percentage of double plants (Double), percentage of short skips plants (Short-skip), percentage of long skip plants (Long-skip), percentage of double skips plants (Double-skip), and percentage of greater than double skip plants ( > Double-skip).Full size tableTable 2 Effect of planter type, seeding rate, and their interaction on yield and stand uniformity variables for all US studies. References: Spacing between plants standard deviation (Spacing sd), achieved versus targeted evenness index mean and standard deviation (ATEI and ATEI sd, respectively), and evenness index mean and standard deviation (EI and EI sd, respectively).Full size tableCommunity-scale data from the four US studies were combined and fitted to bivariate linear regression models with yield as the response variable and each of the stand spatial uniformity variables as the explanatory variable. Significant models (alpha = 0.05) were further evaluated by calculating the coefficient of determination (R2) and root mean squared error (RMSE) (Fig. 2). Models with the lower RMSE and higher R2 were selected as those that best captured the effect of non-uniform stands on soybean yield. After variables were selected, both US and Arg data sets were combined and the linear regressions between the selected variables and yield were re-fitted to assess the consistency of the relationships when an independent data set was included. Community-scale yield from US and Arg studies was modelled as a function of the selected stand uniformity variable, country (US and Arg), and their interaction (fixed effects) (Fig. 3). The spatial uniformity metric showing the most consistent relationship for both US and Arg studies (i.e., non-significant interaction between stand uniformity metric and country), was selected to continue the analysis. The bivariate linear regression models were run with function lm.Figure 2Relationship between stand uniformity variables and soybean yield for US studies. ATEI mean and sd achieved versus targeted evenness index mean and standard deviation, EI mean and sd evenness index mean and standard deviation, Perfect percentage of perfectly spaced plants, R2 coefficient of determination, RMSE root mean square error. All stand uniformity variables presented a significant slope at alpha = 0.05.Full size imageFigure 3Relationship of spacing standard deviation (Spacing sd, cm) and achieved versus targeted evenness index standard deviation (ATEI sd) to soybean yield. Different colors and line types denote different countries (Argentina, Arg—full line, red points; United States, US—dashed line, blue points). R2 coefficient of determination, RMSE root mean square error.Full size imageDifferent environmental conditions and seeding rate levels may modify the effect of plant spatial uniformity on yield. To explore this, each of the studies from Arg and US were separated into low- (USDry19 and ArgDry20, mean of 2.7 Mg ha−1), medium- (USIrr19, USDry20 and ArgDry19, mean of 3.0 Mg ha−1), and high- (USIrr20, mean of 4.3 Mg ha−1) yield environments based on the effect of site-year on yield (Supplementary Fig. 1). Additionally, the tested seeding rates were separated in low ( 300 thousand seeds ha−1) levels based on the current optimal seeding rate for medium yielding environments (235 thousand seeds ha−1, 4 Mg ha−1)13 and the extreme values proposed by Suhre et al.11 (148 and 445 thousand seeds ha−1). This classification was used to model yield as a function of (i) the selected stand uniformity metric, yield environment, and their interaction, and (ii) the selected stand uniformity metric, seeding rate levels, and their interaction. These models were tested to obtain a robust conclusion on the overall effect of yield environment and seeding rate levels, and their interactions (all treated as fixed effects) with plant-to-plant spatial uniformity relative to the response variable, soybean yield. The Akaike information criteria (AIC) was used to compare the full (with interactions) relative to the reduced models (single effects).Ethics declarationsExperimental research and field studies on plants including the collection of plant material, complied with relevant institutional, national, and international guidelines and legislation. More