More stories

  • in

    Continuous exchange of nectar nutrients in an Oriental hornet colony

    Anderson, M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 15, 165–189 (1984).Article 

    Google Scholar 
    Wilkinson, G. S. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).Article 

    Google Scholar 
    Feistner, A. & Mcgrew, W. Food-sharing in primates: a critical review. Perspect. Primate Biol 3, (1989).Hoelzel, A. R. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behav. Ecol. Sociobiol. 29, 197–204 (1991).Article 

    Google Scholar 
    Behmer, S. T. Animal behaviour: feeding the superorganism. Curr. Biol. 19, R366–R368 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Information flow during social feeding in ant societies. in Information Processing in Social Insects (eds. Detrain, C., Deneubourg, J. L. & Pasteels, J. M.) 69–81 (Birkhäuser, 1999). https://doi.org/10.1007/978-3-0348-8739-7_4.Hunt, J. H. Trophallaxis and the evolution of eusocial Hymenoptera. in The Biology of Social Insects (CRC Press, 1982).Sorensen, A. A., Busch, T. M. & Vinson, S. B. Trophallaxis by temporal subcastes in the fire ant, Solenopsis invicta, in response to honey. Physiol. Entomol. 10, 105–111 (1985).Article 

    Google Scholar 
    Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).Bodner, L. et al. Nutrient utilization during male maturation and protein digestion in the Oriental hornet. Biology 11, 241 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sorensen, A. A., Kamas, R. S. & Vinson, S. B. The influence of oral secretions from larvae on levels of proteinases in colony members of Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Insect Physiol. 29, 163–168 (1983).Article 
    CAS 

    Google Scholar 
    Erthal, M., Peres Silva, C. & Ian Samuels, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53, 1101–1111 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Went, F. W., Wheeler, J. & Wheeler, G. C. Feeding and digestion in some ants (Veromessor and Manica). BioScience 22, 82–88 (1972).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H. The evolution of social wasps. (Oxford University Press, USA, 2007).Abe, T., Yoshiya, T., Hiromitsu, M. & Kawasaki, Y. Y. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 99, 79–84 (1991).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Gluconeogenesis in the Oriental hornet Vespa orientalis F. Ecology 49, 169–171 (1968).Article 

    Google Scholar 
    Brock, R. E., Cini, A. & Sumner, S. Ecosystem services provided by aculeate wasps. Biol. Rev. 96, 1645–1675 (2021).Article 
    PubMed 

    Google Scholar 
    Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem., Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    Käfer, H., Kovac, H. & Stabentheiner, A. Respiration patterns of resting wasps (Vespula sp.). J. Insect Physiol. 59, 475–486 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodner, L., Bouchebti, S. & Levin, E. Allocation and metabolism of naturally occurring dietary amino acids in the Oriental hornet. Insect Biochem. Mol. Biol. 139, 103675 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Baker, I. & Baker, H. G. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36, 1318–1322 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Jeanne, R. L., Baker, I. & Grogan, D. E. Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75, 291–305 (1987).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50, 801–813 (1995).Article 

    Google Scholar 
    Buffin, A., Denis, D., Simaeys, G. V., Goldman, S. & Deneubourg, J.-L. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants. PLOS ONE 4, e5919 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quque, M. et al. Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. 28, 825–838 (2021).Article 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. A duration constant for worker-to-larva trophallaxis in fire ants. Ins. Soc. 43, 149–166 (1996).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999).Article 

    Google Scholar 
    Wilson, E. O. & Eisner, T. Quantitative studies of liquid food transmission in ants. Ins. Soc. 4, 157–166 (1957).Article 

    Google Scholar 
    Markin, G. P. Food distribution within laboratory colonies of the argentine ant, Tridomyrmex humilis (Mayr). Ins. Soc. 17, 127–157 (1970).Article 

    Google Scholar 
    Howard, D. F. & Tschinkel, W. R. The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study. Physiol. Entomol. 6, 297–306 (1981).Article 

    Google Scholar 
    Suryanarayanan, S. & Jeanne, R. L. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ethology 114, 1201–1209 (2008).Article 

    Google Scholar 
    Greenwald, E., Segre, E. & Feinerman, O. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci. Rep. 5, 12496 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baltiansky, L., Sarafian-Tamam, E., Greenwald, E. & Feinerman, O. Dual-fluorescence imaging and automated trophallaxis detection for studying multi-nutrient regulation in superorganisms. Methods Ecol. Evol. 12, 1441–1457 (2021).Article 

    Google Scholar 
    Feldhaar, H. et al. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. N. 13, 3–13 (2010).
    Google Scholar 
    Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. & Levin, E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci. Rep. 12, 7449 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motro, M., Motro, U., Ishay, J. S. & Kugler, J. Some social and dietary prerequisites of oocyte development in Vespa orientalis L. workers. Ins. Soc. 26, 155–164 (1979).Article 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B: Biol. Sci. 284, 20162126 (2017).Article 

    Google Scholar 
    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Helm, B. R. et al. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol. Open 6, 872–880 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paoli, P. P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecol. N. 29, 111–124 (2019).
    Google Scholar 
    Gottsberger, G., Schrauwen, J. & Linskens, H. F. Amino acids and sugars in nectar, and their putative evolutionary significance. Pl. Syst. Evol. 145, 55–77 (1984).Article 
    CAS 

    Google Scholar 
    Ozimek, L. et al. Nutritive value of protein extracted from honey bees. J. Food Sci. 50, 1327–1329 (1985).Article 
    CAS 

    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. in Nectaries and Nectar (eds. Nicolson, S. W., Nepi, M. & Pacini, E.) 215–264 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-5937-7_5.Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Koedam, D. Trophallaxis and reproductive conflicts in social bees. Insect Soc. 57, 125–132 (2010).Article 

    Google Scholar 
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B: Biol. Sci. 280, 20122573 (2013).Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    Werenkraut, V., Arbetman, M. P. & Fergnani, P. N. The Oriental hornet (Vespa orientalis L.): a threat to the Americas? Neotrop. Entomol. 51, 330–338 (2022).Article 
    PubMed 

    Google Scholar 
    Darchen, R. Biologie de Vespa orientalis. Les premiers stades de développement. Ins. Soc. 11, 141–157 (1964).Article 

    Google Scholar 
    Van Itterbeeck, J. et al. Rearing techniques for hornets with emphasis on Vespa velutina (Hymenoptera: Vespidae): A review. J. Asia-Pac. Entomol. 24, 103–117 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Bouchebti, S., Bodner,L. & Levin, E. Continuous exchange of nectar nutrients in an Oriental hornet colony- Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7135100 (2022). More

  • in

    Chill coma recovery of Ceratitis capitata adults across the Northern Hemisphere

    De Meyer, M., Robertson, M., Peterson, A. & Mansell, M. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J. Biogeogr. 35, 270–281 (2008).
    Google Scholar 
    Nguyen, A. D. et al. Trade-offs in cold resistance at the northern range edge of the common woodland ant Aphaenogaster picea (Formicidae). Am. Nat. 194, E151–E163 (2019).Article 
    PubMed 

    Google Scholar 
    Gilioli, G. et al. Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol. Invasions 24, 261–279 (2022).Article 

    Google Scholar 
    Lancaster, L. T., Dudaniec, R. Y., Hansson, B. & Svensson, E. I. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J. Biogeogr. 42, 1953–1963 (2015).Article 

    Google Scholar 
    Hallas, R., Schiffer, M. & Hoffmann, A. A. Clinal variation in Drosophila serrata for stress resistance and body size. Genet. Res. 79, 141–148 (2002).Article 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article 

    Google Scholar 
    Ragland, G. & Kingsolver, J. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii. J. Evol. Biol. 20, 2144–2153 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Neilson, E. W. et al. There’sa storm a-coming: Ecological resilience and resistance to extreme weather events. Ecol. Evol. 10, 12147–12156 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article 

    Google Scholar 
    Maysov, A. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species. J. Exp. Biol. 217, 2650–2658 (2014).Article 
    PubMed 

    Google Scholar 
    David, R. J. et al. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. therm. biol. 23, 291–299 (1998).Article 

    Google Scholar 
    Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 233, 10–16 (2019).Article 
    CAS 

    Google Scholar 
    Macdonald, S., Rako, L., Batterham, P. & Hoffmann, A. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. J. Insect Physiol. 50, 695–700 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gibert, P., Moreteau, B., Pétavy, G., Karan, D. & David, J. R. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55, 1063–1068 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article 

    Google Scholar 
    Castañeda, L. E., Lardies, M. A. & Bozinovic, F. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J. Insect Physiol. 51, 1346–1351 (2005).Article 
    PubMed 

    Google Scholar 
    Tonione, M. A., Cho, S. M., Richmond, G., Irian, C. & Tsutsui, N. D. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant Prenolepis imparis. Ecol. Evol. 10, 4749–4761 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, I., Janowitz, S. A. & Fischer, K. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos 117, 778–788 (2008).Article 

    Google Scholar 
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 
    PubMed 

    Google Scholar 
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. In Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 739–745 (2000).Poikela, N., Tyukmaeva, V., Hoikkala, A. & Kankare, M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC ecol. Evol. 21, 1–20 (2021).
    Google Scholar 
    Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article 

    Google Scholar 
    Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).Article 

    Google Scholar 
    Malacrida, A. et al. Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131, 1–9 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Egartner, A., Lethmayer, C., Gottsberger, R. A. & Blümel, S. In Joint Meeting of the IOBC-WPRS Working Groups “Pheromones and other semiochemicals in integrated production” & “Integrated Protection of Fruit Crops” at. 143–152.Nyamukondiwa, C., Kleynhans, E. & Terblanche, J. S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35, 565–575 (2010).Article 

    Google Scholar 
    Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    Pujol-Lereis, L. M., Rabossi, A. & Quesada-Allué, L. A. Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: effects of population heterogeneity and age. J. Insect Physiol. 71, 156–163 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pujol-Lereis, L. M., Fagali, N. S., Rabossi, A., Catalá, Á. & Quesada-Allué, L. A. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. J. Insect Physiol. 87, 53–62 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Sci. Rep. 8, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mitchell, K. A., Boardman, L., Clusella-Trullas, S. & Terblanche, J. S. Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 212, 15–23 (2017).Article 
    CAS 

    Google Scholar 
    Hoffmann, A. A. & Ross, P. A. Rates and patterns of laboratory adaptation in (mostly) insects. J. Econ. Entomol. 111, 501–509 (2018).Article 
    PubMed 

    Google Scholar 
    Popa-Báez, Á. -D. et al. Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet. 21, 1–19 (2020).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    Kozak, K. H., Graham, C. H. & Wiens, J. J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 23, 141–148 (2008).Article 
    PubMed 

    Google Scholar 
    Oyen, K. J. et al. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J. Comp. Physiol. B. 191, 843–854 (2021).Article 
    PubMed 

    Google Scholar 
    Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).Article 

    Google Scholar 
    Terblanche, J. S. & Hoffmann, A. A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. insect sci. 41, 7–16 (2020).Article 
    PubMed 

    Google Scholar 
    Kourti, A. Patterns of variation within and between Greek populations of Ceratitis capitata suggest extensive gene flow and latitudinal clines. J. Econ. Entomol. 97, 1186–1190 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hangartner, S., Lasne, C., Sgrò, C. M., Connallon, T. & Monro, K. Genetic covariances promote climatic adaptation in Australian Drosophila. Evolution 74, 326–337 (2020).Article 
    PubMed 

    Google Scholar 
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Let. 3, 55–68 (2019).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 1–8 (2018).
    Google Scholar 
    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).Article 

    Google Scholar 
    Ma, Q., Huang, J. G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manrakhan, A., Daneel, J.-H., Stephen, P. R. & Hattingh, V. Cold Tolerance of Immature Stages of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 115(2), 482–492 (2022).Article 
    PubMed 

    Google Scholar 
    Papadopoulos, N. T., Carey, J. R., Katsoyannos, B. I. & Kouloussis, N. A. Overwintering of the mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 89, 526–534 (1996).Article 

    Google Scholar 
    Papadopoulos, N. T., Katsoyannos, B. I. & Carey, J. R. Temporal changes in the composition of the overwintering larval population of the Mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 91, 430–434 (1998).Article 

    Google Scholar 
    Katsoyannos, B. I., Kouloussis, N. A. & Carey, J. R. Seasonal and annual occurrence of Mediterranean fruit flies (Diptera: Tephritidae) on Chios Island, Greece: Differences between two neighboring citrus orchards. Ann. Entomol. Soc. Am. 91, 43–51 (1998).Article 

    Google Scholar 
    Mavrikakis, P. G., Economopoulos, A. P. & Carey, J. R. Continuous winter reproduction and growth of the mediterranean fruit fly (Diptera: Tephritidae) in Heraklion, crete Southern Greece. Environ. Entomol. 29, 1180–1187 (2000).Article 

    Google Scholar 
    Israely, N., Ziv, Y. & Oman, S. D. Spatiotemporal distribution patterns of Mediterranean fruit fly (Diptera: Tephritidae) in the central region of Israel. Ann. Entomol. Soc. Am. 98, 77–84 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Lauritzen, J. M., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).Article 
    PubMed 

    Google Scholar 
    Sinclair, B. J. & Roberts, S. P. Acclimation, shock and hardening in the cold. J. Therm. Biol. 30, 557–562 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Gertsen, S., Pertoldi, C. & Kristensen, T. N. Investigating thermal acclimation effects before and after a cold shock in Drosophila melanogaster using behavioural assays. Biol. J. Lin. Soc. 117, 241–251 (2016).Article 

    Google Scholar 
    Sarmad, M., Ishfaq, A., Arif, H. & Zaka, S. M. Effect of short-term cold temperature stress on development, survival and reproduction of Dysdercus koenigii (Hemiptera: Pyrrhocoridae). Cryobiology 92, 47–52 (2020).Article 
    PubMed 

    Google Scholar 
    Steyn, V. M., Mitchell, K. A., Nyamukondiwa, C. & Terblanche, J. S. Understanding costs and benefits of thermal plasticity for pest management: Insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). Bull. Entomol. Res., 1–11 (2022).Davis, H. E., Cheslock, A. & MacMillan, H. A. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Noh, S., Everman, E. R., Berger, C. M. & Morgan, T. J. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long-and short-term phenotypic plasticity. Ecol. Evol. 7, 5248–5257 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruins, H. J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 86, 28–42 (2012).Article 

    Google Scholar 
    Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003).Article 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).Article 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Mazerolle, M. J. Model selection and multimodel inference using the AICcmodavg package (2020).Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-13.(2021. (2021).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Survminer: Drawing Survival Curves using’ggplot2′. R package version 0.4. 9. 2021. (2021).Lenth, R. V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. (2022). More

  • in

    Chemical forms of cadmium in soil and its distribution in French marigold sub-cells in response to chelator GLDA

    Sarwar, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lin, H. M. et al. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul.: Int. J. Nat. Synthetic Regul. 81(1), 91–101 (2017).Article 
    CAS 

    Google Scholar 
    Pan, F. S. et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytorem. 19(1/6), 281–289 (2017).Article 
    CAS 

    Google Scholar 
    Puangprasert, S. & Prueksasit, T. Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252, 109601 (2019).Article 
    CAS 

    Google Scholar 
    Tipu, M. I. et al. Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J. Plant Growth Regul. 40(2), 774–786 (2021).Article 
    CAS 

    Google Scholar 
    Chaturvedi, N., Dhal, N. K. & Patra, H. K. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: A comparative study. Int. J. Min. Reclam. Environ. 29(1), 33–46 (2015).Article 
    CAS 

    Google Scholar 
    Wang, G. Y. et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 569–570, 557–568 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kołodyńska, D. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267(2–3), 175–183 (2011).Article 

    Google Scholar 
    Guo, X. F. et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 18(2), 835–844 (2017).
    Google Scholar 
    Wang, X. et al. Subcellular distribution and chemical forms of cadmiun in Bechmeria nivea L. Gaud. Environ. Exp. Bot. 62(3), 389–395 (2008).Article 
    CAS 

    Google Scholar 
    Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46 (2012).Article 
    CAS 

    Google Scholar 
    Clemens, S., Aarts, M. G. M., Thomine, S. & Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, J. T. et al. Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Front. Plant Sci. 8, 966 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, L. P., Zhu, J., Wang, P., Lyu, D. G. & Li, H. F. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol. Environ. Saf. 160, 10–18 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, W. J., Zhang, M. Z. & Liu, J. N. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int. J. Phytorem. 20(11), 1087–1095 (2017).Article 

    Google Scholar 
    Weigel, H. J. & Jäger, H. J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65(3), 480–482 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R. & Ahmad, P. Agroecotoxicological aspect of Cd in soil–plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29, 30908–30934 (2022).Article 
    CAS 

    Google Scholar 
    Wei, Z. B., Chen, X. H., Wu, Q. T. & Tan, M. Biodegradable chelator GLDA induced remediation of heavy metal contaminated soil in Southeast Jingtian. Environ. Sci. 36(5), 1864–1869 (2015).CAS 

    Google Scholar 
    Wang, K., Liu, Y. H., Song, Z. G., Wang, D. & Qiu, W. W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237, 124480 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meng, N., Wang, M., Chen, L., Zheng, H. & Chen, S. B. Remediation effects of different herbaceous plants intercropping on Cd-contaminated soil. China Environ. Sci. 38(7), 2618–2624 (2018).CAS 

    Google Scholar 
    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (don) and dissolved organic carbon (doc) in soil. Soil Biol. Biochem. 38(5), 991–999 (2006).Article 
    CAS 

    Google Scholar 
    Su, F. L. et al. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ. Monit. Assess.: Int. J. 190(6), 1–9 (2018).Article 
    CAS 

    Google Scholar 
    Shahid, M., Dumat, C. & Khalid, S. Reviews of Environmental Contamination and Toxicology Vol. 241, 3–137 (Springer, 2016).
    Google Scholar 
    Yuliya, V. et al. Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Sci. Hortic. 192, 89–96 (2015).Article 

    Google Scholar 
    Liu, Q. Q., Chen, Y. H., Shen, Z. G. & Zheng, L. Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol. J. 50(5), 605–611 (2014).
    Google Scholar 
    Zhen, S. et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 770, 145302 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shi, Y. X. et al. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 37(10), 3996–4003 (2016).
    Google Scholar 
    Yan, X. X. et al. Effect of foliar application of different manganese fertilizers on cadmium accumulation and subcellular distribution in pak choi. J. Agro Environ. Sci. 38(8), 1872–1881 (2019).
    Google Scholar 
    He, S., Wu, Q. & He, Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93(11), 2782–2788 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. C. et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil 384(1/2), 201–212 (2014).Article 
    CAS 

    Google Scholar 
    Li, D., He, T., Saleem, M. & He, G. Metalloprotein-specific or critical amino acid residues: Perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int. J. Mol. Sci. 23(3), 1734 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perriguey, J., Sterckeman, T. & Morel, J. L. Effect of rhizosphere and plantrelated factors on the cadmium uptake by maize(Zea mays L.). Environ. Exp. Bot. 63(1/3), 333–341 (2008).Article 
    CAS 

    Google Scholar 
    Dai, S. et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 24(7), 1887–1900 (2018).Article 
    CAS 

    Google Scholar 
    Hou, S., Zheng, N., Tang, L., Ji, X. F. & Li, Y. Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 191(10), 634 (2019).Article 
    PubMed 

    Google Scholar 
    Wu, H. J. et al. Effects of Astragalus smicuson cadmium effectiveness in paddy soil and cadmium accumulation in rice plant. Chin. Agric. Sci. Bull. 33(16), 105–111 (2017).ADS 

    Google Scholar 
    Jin, P. K., Liu, K. J. & Wang, X. B. Conversion and utilization of slowly biodegradable organic matter. Chin. J. Environ. Eng. 10(5), 2168–2174 (2016).CAS 

    Google Scholar 
    Kopáček, J. et al. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52(11), 6291–6299 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Anwar, S. et al. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int. J. Phytorem. 19(6), 505–513 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. M., Xi, M. & Kong, F. L. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils. Geol. Rev. 59(5), 953–961 (2013).CAS 

    Google Scholar 
    AkzoNobel. Dissolvine GL® Technichal Brochure 1–5 (AkzoNobel Amsterdam, 2010).
    Google Scholar 
    Beygi, M. & Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337, 1009–1020 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gul, I. et al. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J. Soils Sediments 19(5), 2346–2356 (2019).Article 
    CAS 

    Google Scholar 
    Wang, H., Sun, L. N., Li, H. B. & Sun, T. Y. Effect of different chelators application on Cd accumulation in metal polluted soils by Beta vulgaris var. cicla L. Ecol. Environ. 17(6), 2249–2252 (2008).
    Google Scholar 
    Zhang, G. X. et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 218, 513–522 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu, M. H. et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil. Ecol. Environ. Sci. 229(2), 360–368 (2020).
    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    A sustainable pathway to increase soybean production in Brazil

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. https://doi.org/10.1038/s41893-022-00968-8 (2022). More

  • in

    More losses than gains during one century of plant biodiversity change in Germany

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crossley, M. S. et al. No net insect abundance and diversity declines across US long term ecological research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020).Article 
    PubMed 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).Article 

    Google Scholar 
    Vellend, M. The biodiversity conservation paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Beck, J. J., Larget, B. & Waller, D. M. Phantom species: adjusting estimates of colonization and extinction for pseudo-turnover. Oikos 127, 1605–1618 (2018).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere 10, e02881 (2019).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J. Veg. Sci. 30, 187–202 (2019).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gini, C. Il diverso accrescimento delle classi sociali e la concentrazione della ricchezza. Giornale degli Economisti38, 27–83 (1909).Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung (Wehry-Druck OHG, 2001).Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jansen, F., Bonn, A., Bowler, D. E., Bruelheide, H. & Eichenberg, D. Moderately common plants show highest relative losses. Conserv. Lett. 13, e12674 (2020).Article 

    Google Scholar 
    Bruelheide, H. et al. Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends. Divers. Distrib. 26, 782–794 (2020).Article 

    Google Scholar 
    Sperle, T. & Bruelheide, H. Climate change aggravates bog species extinctions in the Black Forest (Germany). Divers. Distrib. 27, 282–295 (2020).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).Article 

    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: effects of sheep-grazing and its removal on British upland vegetation. Ecol. Indic. 68, 89–101 (2016).Baskin, Y. Winners and losers in a changing world. BioScience 48, 788–792 (1998).Article 

    Google Scholar 
    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol. Conserv. 143, 848–855 (2010).Article 

    Google Scholar 
    Heinrichs, S. & Schmidt, W. Biotic homogenization of herb layer composition between two contrasting beech forest communities on limestone over 50 years. Appl. Veg. Sci. 20, 271–281 (2017).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Metzing, D. et al. Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Trachaeophyta) Deutschlands (Landwirtschaftsverlag, 2018).Poschlod, P. Geschichte der Kulturlandschaft (Ulmer, 2017).Sukopp, H. ‘Rote Liste’ der in der Bundesrepublik Deutschland gefährdeten Arten von Farn- und Blütenpflanzen. (1. Fassung). Nat. Landsch. 49, 315–322 (1974).
    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jandt, U., von Wehrden, H. & Bruelheide, H. Exploring large vegetation databases to detect temporal trends in species occurrences. J. Veg. Sci. 22, 957–972 (2011).Article 

    Google Scholar 
    Jones, F. A. M. & Magurran, A. E. Dominance structure of assemblages is regulated over a period of rapid environmental change. Biol. Lett. 14, 20180187 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chytrý, M., Tichý, L., Hennekens, S. M. & Schaminée, J. H. J. Assessing vegetation change using vegetation-plot databases: a risky business. Appl. Veg. Sci. 17, 32–41 (2014).Article 

    Google Scholar 
    Jandt, U. et al. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany. Sci. Data, https://doi.org/10.1038/s41597-022-01688-6 (2022)Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001 (Landwirtschaftsverlag, 2008).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg Vol. 97 (eds. Schreiber, K.-F. et al.) 243–288 (2009).Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Chytrý, M. et al. EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl. Veg. Sci. 12, e12562 (2021).Jansen, F. & Dengler, J. GermanSL—eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. J. Veg. Sci. 21, 1179–1186 (2010).Article 

    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016—Wege zur Erhaltung der Bergwiesen (Mountain grasslands vegetation change after research from 1954 to 2016—ways to preserve mountain meadows). Abh. Berichte Aus Dem Mus. Heine. 11, 35–101 (2018).
    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Weiner, J. & Solbrig, O. T. The meaning and measurement of size hierarchies in plant populations. Oecologia 61, 334–336 (1984).Article 
    ADS 
    PubMed 

    Google Scholar 
    Signorell, A. et al. DescTools: tools for descriptive statistics. R version 0.99.32 https://CRAN.R-project.org/package=DescTools (2020).BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).INSPIRE. D2.8.III.18 Data Specification on Habitats and Biotopes—Technical Guidelines https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HB_v3.0rc2.pdf (2013).Jandt, U. & Bruelheide, H. German Vegetation Reference Database (GVRD). Biodivers. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, 1995).Chytrý, M., Tichý, L., Holt, J. & Botta‐Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co‐occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021).Sabatini, F. M., Jiménez‐Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta‐diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    MacArthur, R. On the relative abundance of species. Am. Nat. 94, 25–36 (1960).Article 

    Google Scholar 
    Prado, P. I., Miranda, M. D. & Chalom, A. sads: maximum likelihood models for species abundance distributions. R version 0.4.2. https://CRAN.R-project.org/package=sads (2018).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayer. Landesanst. Für Landwirtsch. 3, 1–161 (2011).
    Google Scholar  More

  • in

    Introducing African cheetahs to India is an ill-advised conservation attempt

    Jhala, Y. V. et al. Action Plan for Introduction of Cheetah in India (Wildlife Insititute of India, National Tiger Conservation Authority and Madhya Pradesh Forest Department, 2021).Durant, S. M. et al. Proc. Natl Acad. Sci. USA 114, 528–533 (2017).Article 
    CAS 

    Google Scholar 
    Broekhuis, F. et al. Ecography 44, 358–369 (2021).Article 

    Google Scholar 
    Lindsey, P. et al. (eds) Cheetah (Acinonyx jubatus) Population Habitat Viability Assessment Workshop Report. Conservation Breeding Specialist Group (SSC / IUCN) / CBSG Southern Africa (Endangered Wildlife Trust, 2009)Mills, M. G. L. & Mills, M. E. J. Kalahari Cheetahs: Adaptation to an Arid Region (Oxford Univ. Press, 2017).Weise, F. J. et al. PeerJ 5, e4096 (2017).Article 

    Google Scholar 
    Clavel, J., Robert, A., Devictor, V. & Juilliard, R. J. Wildl. Mgmt. 72, 1203–1210 (2008).Article 

    Google Scholar 
    Cheetah Conservation Fund. Project Cheetah: Mission Fact Sheet (Cheetah Conservation Fund, 2022).Boast, L. K. et al. in Cheetahs: Biology and Conservation (eds Marker, L. et al.) 275–289 (Elsevier Science, 2018).PTI. Have to be realistic about losses; not easy to bring back animal from extinction: cheetah expert. thehindu.com, https://www.thehindu.com/sci-tech/energy-and-environment/have-to-be-realistic-about-losses-not-easy-to-bring-back-animal-from-extinction-cheetah-expert/article65909157.ece (September 2022).Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Melzheimer, J. et al. Proc. Natl Acad. Sci. USA 117, 33325–33333 (2020).Article 
    CAS 

    Google Scholar 
    Khalatbari, L. et al. Science 362, 1255 (2018).Article 
    CAS 

    Google Scholar 
    Gopalaswamy, A. M. et al. Proc. Natl Acad. Sci. USA 119, e2203244119 (2022).Article 
    CAS 

    Google Scholar 
    Madhusudan, M. D. & Vanak, A. T. J. Biogeography https://doi.org/10.1111/jbi.14471 (2022).Article 

    Google Scholar  More

  • in

    Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin

    Basic characteristics of river sedimentsA considerable variation was found in the distribution of clay (81 to 48.4 g kg−1), silt (145 to 656 g kg−1), and sand (38 to 821 g kg−1) particles among sediment materials. The associated coefficient of variations (CV) was 57, 59.5, and 41%, respectively. Statistical data related to the physicochemical properties of sediments and their main elements are reported in Table 2. The variations in particle size distribution located sediment material in seven textural classes ranging from loamy sand to silty clay. The high variability in particle size distribution suggests that different sets of geogenic and anthropogenic processes are enacted in the development and distribution of sediments in the rivers. The pH and CCE ranged from 7.4 to 8.2 and 31 to 251 g kg−1, respectively, indicating the dominancy of alkaline-calcareous condition. None of the sediment samples exhibited salinity conditions (EC  > 4 dS m−1) with EC in the range of 0.3 to 1.4 dS m−1. A relatively low range of OM was found in all samples ranging from 7 to 61 g kg−1 with a mean value of 19 g kg−1. This range of OM coincides with the corresponding values in regional soils47. Except for pH, other sediments properties demonstrated above 35% of CV illustrating a wide range of variability in sediments’ physicochemical properties across the study rivers.Table 2 Summary statistics of sediment properties.Full size tableThe highest concentration among major elements was observed in SiO2, varying between 37.5 and 55.2%, with a mean percentage of 44.9%. This element followed in magnitude by Al2O3 (8.9–15.9%), CaO (5–14.3%), Fe2O3 (4.8–10%), MgO (2.4–17.2%), K2O (1.2–3.1%), Na2O (0.68–2.7%), SO3 (0.01–4.8% g kg−1) (Table 2). Considering the semi-arid climatic condition of the study region, higher levels of SiO2 and lower levels of Al2O3 may indicate that the silicate minerals forming the sediments of the area have not been subjected to severe weathering processes. Likewise, the Na2/K2O ratio was greater than 1 in the majority of sediment samples, implying an enrichment of potassium feldspar and the relatively intense weathering of Na-bearing minerals in the region48,49. The CIA value was in the range of 64.9 to 85.7% with a mean percentage of 72.9%, representing a moderate chemical weathering intensity of lithological materials (65%  Pb  > Cu  > Cd which varied largely among the sampling points. The level of Zn, Cu, Cd, Pb, and Ni varied in the ranges of 32.6–87.5, 14.2–33.3, 0.42–4.8, 14.5–69.5, and 20.1–183.5 mg kg-1, respectively, for winter, and 35.3–92.5, 15.6–35.1, 0.47–5.1, 15.5–73.1, 23.2–188.3 mg kg−1 for summer. The obtained ranges are comparable with data found in previous studies in Asia4,54,55,54.Figure 2The comparison of the mean concentration of Zn, Cu, Cd, Pb, and Ni elements in the study rivers’ sediments during summer and winter. Different letters show significant differences in metal content among rivers pooled over seasons at P  More

  • in

    Autotoxicity of Ambrosia artemisiifolia and Ambrosia trifida and its significance for the regulation of intraspecific populations density

    Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).Article 

    Google Scholar 
    Greer, M. J., Wilson, G. W., Hickman, K. R. & Wilson, S. M. Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: Chemical warfare in nature. Plant Soil 385, 165–179 (2014).Article 
    CAS 

    Google Scholar 
    Möhler, H., Diekötter, T., Herrmann, J. D. & Donath, T. W. Allelopathic vs. autotoxic potential of a grassland weed-evidence from a seed germination experiment. Plant Ecol. Divers. 11, 539–549 (2018).Article 

    Google Scholar 
    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290, 521–523 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Karban, R. & Callaway, R. M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 26, 655–662 (2011).Article 
    PubMed 

    Google Scholar 
    Meiners, S. J., Kong, C. H., Ladwig, L. M., Pisula, N. L. & Lang, K. A. Developing an ecological context for allelopathy. Plant Ecol. 213, 1221–1227 (2012).Article 

    Google Scholar 
    Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nunez, M. A. & Wardle, D. A. Biological invasions in forest ecosystems. Biol. Invasions 19, 3437–3458 (2017).Article 

    Google Scholar 
    Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: Evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Gallet, C. & Zackrisson, O. An ecosystem-level perspective of allelopathy. Biol. Rev. 73, 305–319 (2010).Article 

    Google Scholar 
    Hierro, J. L. & Callaway, R. M. Allelopathy and exotic plant invasion. Plant Soil 256, 29–39 (2003).Article 
    CAS 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Harun, M. A. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Thiébaut, G., Tarayre, M. & Rodríguez-Pérez, H. Allelopathic effects of native versus invasive plants on one major invader. Front. Plant Sci. 2, 854 (2019).Article 

    Google Scholar 
    Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparijae, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant Sci. 36, 1–40 (2017).Article 

    Google Scholar 
    Zeng, K., Zhu, Y. Q. & Liu, J. X. Research progress on ragweed (Ambrosia). Acta Prataculturae Sin. 19, 212–219 (2010).
    Google Scholar 
    Jacobs, R. L. et al. Responses to ragweed pollen in a pollen challenge chamber versus seasonal exposure identify allergic rhinoconjunctivitis endotypes. J. Allergy Clin. Immun. 130, 122-127.e8 (2012).Article 
    PubMed 

    Google Scholar 
    Lake, R. I. et al. Climate change and future pollen allergy in Europe. Environ. Health Perspect. 125, 385–391 (2017).Article 
    PubMed 

    Google Scholar 
    Wang, J. J., Zhao, B. Y., Li, M. T. & Li, R. Ecological invasion plant-bitter weed (Ambrosia artemisiifolia) and integrated control strategy. Pratacultural Sci. 023, 71–75 (2006).CAS 

    Google Scholar 
    Deng, Z. Z., Bai, J. D., Zhao, C. Y. & Li, J. S. Advance in invasion mechanisms of Ambrosia artemisiifolia. Pratacultural Sci. 32, 54–63 (2015).
    Google Scholar 
    Dong, H. G. et al. Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. J. Arid Land Resour. Environ. 31, 175–180 (2017).
    Google Scholar 
    Vink, J. P. et al. Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol. 26, 422–428 (2012).Article 
    CAS 

    Google Scholar 
    Simard, M. J. & Benoit, D. L. Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann. Agric. Environ. Med. 18, 55–62 (2011).PubMed 

    Google Scholar 
    Goplen, J. J. et al. Seedbank depletion and emergence patterns of giant ragweed (Ambrosia trifida) in Minnesota cropping systems. Weed Sci. 65, 52–60 (2017).Article 

    Google Scholar 
    Jurik, T. W. Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87, 539–550 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Patracchini, C., Vidotto, F. & Ferrero, A. Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technol. 25, 268–276 (2011).Article 

    Google Scholar 
    Kazinczi, G. Ragweed seed bank in the soils of arable fields of Transdanubia, Hungary. Hung. Weed Res. Technol. 19(1), 21–36 (2018).
    Google Scholar 
    Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    Goplen, J. J. Giant Ragweed (Ambrosia trifida) Seed Bank Dynamics and Management. (Master’s dissertation, University of Minnesota.) Retrieved from https://hdl.handle.net11299174767 (2015).Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. 14, 107–129 (1963).
    Google Scholar 
    Friedman, J. & Waller, G. R. Allelopathy and autotoxicity. Trends Biochem. Sci. 10, 47–50 (1985).Article 
    CAS 

    Google Scholar 
    Weller, D. E. The interspecific size-density relationship among crowded plant stands and its implications for the −3/2 power rule of self-thinning. Am. Nat. 133, 20–41 (1989).Article 

    Google Scholar 
    Deng, J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082 (2017).Article 
    CAS 

    Google Scholar 
    Sudatti, D. B., Duarte, H. M., Soares, A. R., Salgado, L. T. & Pereira, R. C. New ecological role of seaweed secondary metabolites as autotoxic and allelopathic. Front. Plant Sci. 11, 347 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, H. P., Batish, D. & Kohil, R. Autotoxicity: Concepts, organisms, and ecological significance. Plant Sci. 18, 757–772 (1999).CAS 

    Google Scholar 
    Chon, S. U. et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21, 1077–1082 (2002).Article 
    CAS 

    Google Scholar 
    Chen, B. M., D’Antonio, C. M., Molinari, N. & Peng, S. L. Mechanisms of influence of invasive grass litter on germination and growth of coexisting species in California. Biol. Invasions 20, 1881–1897 (2018).Article 

    Google Scholar 
    Chen, L. C., Wang, S. L., Wang, P. & Kong, C. H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata) plantations. Plant Soil 374, 793–801 (2014).Article 
    CAS 

    Google Scholar 
    Perry, L. G. et al. Retracted: Dual role for an allelochemical: catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135 (2005).Article 
    CAS 

    Google Scholar 
    Yu, J. Q., Ye, S. F., Zhang, M. F. & Hu, W. H. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139 (2003).Article 
    CAS 

    Google Scholar 
    Kong, C. H., Wang, P. & Xu, X. H. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agric. Ecosyst. Environ. 119, 416–420 (2007).Article 
    CAS 

    Google Scholar 
    Béres, I., Kazinczi, G. & Narwal, S. S. Allellopathic plants. 4. Common ragweed (Ambrosia elatior L. syn. A. artemisiifolia). Allelopathy J. 9, 27–34 (2002).
    Google Scholar 
    Bauer, J. T., Shannon, S. M., Stoops, R. E. & Reynolds, H. L. Context dependency of the allelopathic effects of Lonicera maackii on seed germination. Plant Ecol. 213, 1907–1916 (2012).Article 

    Google Scholar 
    Renne, I. J., Sinn, B. T., Shook, G. W., Sedlacko, D. M. & Hierro, J. L. Eavesdropping in plants: Delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    Loydi, A., Donath, T. W., Eckstein, R. L. & Otte, A. Non-native species litter reduces germination and growth of resident forbs and grasses: Allelopathic, osmotic or mechanical effects?. Biol. Invasions 17, 581–595 (2014).Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bonea, D., Bonciu, E., Niculescu, M. & Olaru, A. L. The allelopathic, cytotoxic and genotoxic effect of Ambrosia artemisiifolia on the germination and root meristems of Zea mays. Caryologia 71, 24–28 (2017).Article 

    Google Scholar 
    Dadkhah, A. Allelopathic effect of sugar beet (Beta vulgaris) and eucalyptus (Eucalyptus camaldulensis) on seed germination and growth of Portulaca oleracea. Russ. Agric. Sci. 39, 117–123 (2013).Article 

    Google Scholar 
    Zheng, L. & Feng, Y. L. Allelopathic effects of Eupatorium adenophorum Spreng on. seed germination and seedling growth in ten herbaceous species. Acta Ecol. Sin. 25, 2782–2787 (2005).CAS 

    Google Scholar 
    Brückner, D. J. The allelopathic effect of ragweed (Ambrosia artemisiifolia L.) on the germination of cultivated plants. Novenytermeles 47, 635–644 (1998).
    Google Scholar 
    Qin, R. M. et al. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol. 197, 979–988 (2012).Article 
    PubMed 

    Google Scholar 
    Zheng, Y. L. et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 205, 1350–1359 (2015).Article 
    PubMed 

    Google Scholar 
    Kaushal, R., Verma, K. S. & Singh, K. N. Effect of Grewia optiva and Populus deltoides leachatesv on field crops. Allelopathy J. 11, 229–234 (2003).
    Google Scholar 
    Kumari, A. & Kohli, R. Autotoxicity of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 35, 629–632 (1987).Article 

    Google Scholar 
    Einhellig, F. A. Allelopathy: Current status and future goals. In Allelopathy: Organisms, processes and applications (ed. Inderjit Dakshini, K. M. M.) 1–24 (Am Chem. Soc, Washington, 1995).
    Google Scholar 
    Hadack, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 21, 273–322 (2002).Article 

    Google Scholar 
    Rice, E. L. Biological Control of Weeds and Plant Diseases (Oklahomka Press, 1995).
    Google Scholar 
    Choi, B. et al. Common ragweed-derived phenolic compounds and their effects on germination and seedling growth of weed species. Weed Turfgrass Sci. 30, 396–404 (2010).
    Google Scholar 
    Friedman, J. & Waller, G. R. Seeds as allelopathic agents. Chem. Ecol. 9, 1107–1117 (1983).Article 
    CAS 

    Google Scholar 
    Canals, R. M., Emeterio, L. S. & Peralta, J. Autotoxicity in Lolium rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235, 402–407 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    San Emeterio, L., Damgaard, C. & Canals, R. M. Modelling the combined effect of chemical interference and resource competition on the individual growth of two herbaceous populations. Plant Soil 292, 95–103 (2007).Article 
    CAS 

    Google Scholar 
    Dickerson, C. T. Studies on the germination, growth, development and control of Common Ragweed (Ambrosia artemisiifolia L.). PhD thesis, Cornell University, Ann Arbor (1968).Nuutinen, V. & Butt, K. R. Homing ability widens the sphere of influence of the earthworm Lumbricus terrestris L. Soil Biol. Biochem. 37, 805–807 (2005).Article 
    CAS 

    Google Scholar 
    Favaretto, A., Scheffer-basso, S. M. & Perez, N. B. Autotoxicity in tough lovegrass (Eragrostis plana). Planta Daninha 35(35), e017164046 (2017).
    Google Scholar 
    Sinkkonen, A. Modelling the effect of autotoxicity on density-dependent phytotoxicity. J. Theor. Biol. 244, 218–227 (2007).Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Zhang, S. S., Shi, F. Q., Yang, W. Z., Xiang, Z. Y. & Duan, Z. L. Autotoxicity as a cause for natural regeneration failure in Nyssa yunnanensis and its implications for conservation. Isr. J. Plant Sci. 62, 187–197 (2015).Article 

    Google Scholar 
    Liu, Y. et al. Relationship between seed germination and invasion of Ambrosia artemisiifolia and A. trifida at different positions. Acta Ecol. Sin. 39, 9079–9088 (2019).

    Google Scholar  More