Fitness consequences of chronic exposure to different light pollution wavelengths in nocturnal and diurnal rodents
Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).ADS
PubMed
PubMed Central
Google Scholar
Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682. https://doi.org/10.1016/j.tree.2010.09.007 (2010).Article
PubMed
Google Scholar
Kyba, C., Mohar, A. & Posch, T. How bright is moonlight?. Astron. Geophys. 58, 1.31-1.32 (2017).
Google Scholar
Hölker, F. et al. The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 150413 (2010).
Google Scholar
Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).PubMed
Google Scholar
Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 88, 912–927. https://doi.org/10.1111/brv.12036 (2013).Article
PubMed
Google Scholar
Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330. https://doi.org/10.1139/er-2014-0005 (2014).Article
Google Scholar
Gaston, K. J., Visser, M. E. & Hoelker, F. The biological impacts of artificial light at night: The research challenge. R. Soc. Philos. Trans. Biol. Sci. 370, 20140133–20140133 (2015).
Google Scholar
Ouyang, J. Q. et al. Stressful colours: Corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0517 (2016).Article
Google Scholar
Ouyang, J. Q., Davies, S. & Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: Linking endocrine mechanisms with function. J. Exp. Biol. https://doi.org/10.1242/jeb.156893 (2018).Article
PubMed
PubMed Central
Google Scholar
Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. 280(1756), 20123017. https://doi.org/10.1098/rspb.2012.3017 (2012).CAS
Article
Google Scholar
Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413–419 (2021).CAS
PubMed
Google Scholar
Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I., Avisar, D. & Levy, O. Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).ADS
Google Scholar
Amichai, E. & Kronfeld-Schor, N. Artificial light at night promotes activity throughout the night in nesting common swifts (Apus apus). Sci. Rep. 9, 11052 (2019).ADS
PubMed
PubMed Central
Google Scholar
Kronfeld-Schor, N. et al. Drivers of infectious disease seasonality: Potential implications for COVID-19. J. Biol. Rhythms 36, 35–54 (2021).CAS
PubMed
PubMed Central
Google Scholar
Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0248 (2017).Article
Google Scholar
Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. B 280, 20123088 (2013).PubMed
PubMed Central
Google Scholar
Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. Lond. B. https://doi.org/10.1098/rspb.2015.1453 (2015).Article
Google Scholar
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).PubMed
PubMed Central
Google Scholar
Liu, J. A., Meléndez-Fernández, O. H., Bumgarner, J. R. & Nelson, R. J. Effects of light pollution on photoperiod-driven seasonality. Horm. Behav. 141, 105150. https://doi.org/10.1016/j.yhbeh.2022.105150 (2022).Article
PubMed
Google Scholar
Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 11, 6400 (2019).CAS
Google Scholar
Stevenson, T. J. & Prendergast, B. J. Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol. 37, 76–88. https://doi.org/10.1016/j.yfrne.2014.10.002 (2015).Article
PubMed
Google Scholar
Bumgarner, J. R. & Nelson, R. J. Light at night and disrupted circadian rhythms alter physiology and behavior. Integr. Comp. Biol. 61, 1160–1169 (2021).PubMed
PubMed Central
Google Scholar
Mishra, I. et al. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci. Rep. 9, 1–12 (2019).
Google Scholar
Grunst, M. L. et al. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds. Environ. Pollut. 259, 113895 (2020).CAS
PubMed
Google Scholar
Bedrosian, T., Galan, A., Vaughn, C., Weil, Z. M. & Nelson, R. J. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J. Neuroendocrinol. 25, 590–596 (2013).CAS
PubMed
Google Scholar
Touzot, M. et al. Artificial light at night alters the sexual behaviour and fertilisation success of the common toad. Environ. Pollut. 259, 113883 (2020).CAS
PubMed
Google Scholar
de Jong, M. et al. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos. Trans. R. Soc. B 370, 20140128 (2015).
Google Scholar
Spoelstra, K. et al. Experimental illumination of natural habitat: An experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. Lond. B 370, 20140129 (2015).
Google Scholar
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070. https://doi.org/10.1126/science.1069609 (2002).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, e23446 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Dhairykar, M., Singh, K. P., Kumar Jadav, K. & Rajput, N. Comparison of cortisol level in Asian elephants of different tiger reserves of Madhya Pradesh. Int. J. Vet. Sci. Anim. Husb. 5, 152–155 (2020).
Google Scholar
Sosnowski, M. J., Benítez, M. E. & Brosnan, S. F. Endogenous cortisol correlates with performance under pressure on a working memory task in capuchin monkeys. Sci. Rep. 12, 1–10. https://doi.org/10.1038/s41598-022-04986-6 (2022).CAS
Article
Google Scholar
Bewick, V., Cheek, L. & Ball, J. Statistics review 12: survival analysis. Crit. care 8, 1–6 (2004).
Google Scholar
Shkolnik, A. Studies in the Comparative Biology of Israel’s Two Species of Spiny Mice (genus Acomys). Hebrew (1966).Shkolnik, A. Diurnal activity in a small desert rodent. Int. J. Biometeorol. 15, 115–120 (1971).ADS
CAS
PubMed
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 24, 599–613. https://doi.org/10.1080/07420520701534640 (2007).Article
PubMed
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. Interspecific competition and torpor in golden spiny mice: Two sides of the energy-acquisition coin. Integr. Comp. Biol. 51, 441–448. https://doi.org/10.1093/icb/icr071 (2011).Article
PubMed
Google Scholar
Jones, M. & Dayan, T. Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor. J. Chem. Ecol. 26, 455–469 (2000).CAS
Google Scholar
Jones, M., Mandelik, Y. & Dayan, T. Coexistence of temporally partitioned spiny mice: Roles of habitat structure and foraging behavior. Ecology 82, 2164–2176 (2001).
Google Scholar
Kronfeld, N., Dayan, T., Zisapel, N. & Haim, A. Coexisting populations of Acomys cahirinus and A. russatus: A preliminary report. Isr. J. Zool. 40, 177–183 (1994).
Google Scholar
Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 (2003).Article
Google Scholar
Kronfeld-Schor, N. & Dayan, T. The dietary basis for temporal partitioning: Food habits of coexisting Acomys species. Oecologia 121, 123–128 (1999).ADS
PubMed
Google Scholar
Pinter-Wollman, N., Dayan, T., Eilam, D. & Kronfeld-Schor, N. Can aggression be the force driving temporal separation between competing common and golden spiny mice?. J. Mammal. 87, 48–53 (2006).
Google Scholar
Shargal, E., Kronfeld-Schor, N. & Dayan, T. Population biology and spatial relationships of coexisting spiny mice (Acomys) in Israel. J. Mammal. 81, 1046–1052 (2000).
Google Scholar
Pasco, R., Gardner, D. K., Walker, D. W. & Dickinson, H. A superovulation protocol for the spiny mouse (Acomys cahirinus). Reprod. Fertil. Dev. 24, 1117–1122 (2012).CAS
PubMed
Google Scholar
Lee, T. E., Watkins, J. F. & Cash, C. G. Acomys russatus. Mammal. Species 550, 1–4 (1998).
Google Scholar
Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 280, 20123017 (2013).PubMed
PubMed Central
Google Scholar
Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739. https://doi.org/10.1016/j.cub.2010.08.028 (2010).CAS
Article
PubMed
Google Scholar
Le Tallec, T., Théry, M. & Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 97, 753–760 (2016).
Google Scholar
Vonshak, M., Dayan, T. & Kronfeld-Schor, N. Arthropods as a prey resource: Patterns of diel, seasonal, and spatial availability. J. Arid Environ. 73, 458–462. https://doi.org/10.1016/j.jaridenv.2008.11.013 (2009).ADS
Article
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. Adaptive thermoregulation in golden spiny mice: The influence of season and food availability on body temperature. Physiol. Biochem. Zool. 84, 175–184 (2011).PubMed
Google Scholar
Levy, O., Dayan, T., Rotics, S. & Kronfeld-Schor, N. Foraging sequence, energy intake and torpor: An individual-based field study of energy balancing in desert golden spiny mice. Ecol. Lett. 15, 1240–1248. https://doi.org/10.1111/j.1461-0248.2012.01845.x (2012).Article
PubMed
Google Scholar
Katz, N., Dayan, T. & Kronfeld-Schor, N. Fitness effects of interspecific competition between two species of desert rodents. Zoology 128, 62–68 (2018).PubMed
Google Scholar
Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 336, 186–195 (1997).CAS
PubMed
Google Scholar
Hastings, M., Vance, G. & Maywood, E. Some reflections on the phylogeny and function of the pineal. Experientia 45, 903–909 (1989).CAS
PubMed
Google Scholar
Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).CAS
PubMed
Google Scholar
Mora, F., Segovia, G., Del Arco, A., de Blas, M. & Garrido, P. Stress, neurotransmitters, corticosterone and body–brain integration. Brain Res. 1476, 71–85 (2012).CAS
PubMed
Google Scholar
Farrell, M. R. Sex Differences and Stress Effects in Corticolimbic Structure and Function (Indiana University, 2013).
Google Scholar
Son, G. H., Chung, S. & Kim, K. The adrenal peripheral clock: Glucocorticoid and the circadian timing system. Front. Neuroendocrinol. 32, 451–465 (2011).CAS
PubMed
Google Scholar
Schradin, C. Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Horm. Behav. 53, 573–579 (2008).CAS
PubMed
Google Scholar
Zatra, Y. et al. Seasonal changes in plasma testosterone and cortisol suggest an androgen mediated regulation of the pituitary adrenal axis in the Tarabul’s gerbil Gerbillus tarabuli (Thomas, 1902). Gen. Comp. Endocrinol. 258, 173–183 (2018).CAS
PubMed
Google Scholar
Richardson, C. S., Heeren, T. & Kunz, T. H. Seasonal and sexual variation in metabolism, thermoregulation, and hormones in the big brown bat (Eptesicus fuscus). Physiol. Biochem. Zool. 91, 705–715 (2018).PubMed
Google Scholar
Touitou, S., Heistermann, M., Schülke, O. & Ostner, J. Triiodothyronine and cortisol levels in the face of energetic challenges from reproduction, thermoregulation and food intake in female macaques. Horm. Behav. 131, 104968 (2021).CAS
PubMed
Google Scholar
Rotics, S., Dayan, T. & Kronfeld-Schor, N. Effect of artificial night lighting on temporally partitioned spiny mice. J. Mammal. 92, 159–168. https://doi.org/10.1644/10-mamm-a-112.1 (2011).Article
Google Scholar
Rotics, S., Dayan, T., Levy, O. & Kronfeld-Schor, N. Light masking in the field: An experiment with nocturnal and diurnal spiny mice under semi-natural field conditions. Chronobiol. Int. 28, 70–75. https://doi.org/10.3109/07420528.2010.525674 (2011).Article
PubMed
Google Scholar
Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).CAS
PubMed
Google Scholar
Khansari, D. N., Murgo, A. J. & Faith, R. E. Effects of stress on the immune system. Immunol. Today 11, 170–175 (1990).CAS
PubMed
Google Scholar
Zozaya, S. M., Alford, R. A. & Schwarzkopf, L. Invasive house geckos are more willing to use artificial lights than are native geckos. Austral. Ecol. 40, 982–987 (2015).
Google Scholar
Komine, H., Koike, S. & Schwarzkopf, L. Impacts of artificial light on food intake in invasive toads. Sci. Rep. 10, 1–8 (2020).
Google Scholar
Murphy, S., Vyas, D., Sher, A. & Grenis, K. Light pollution affects invasive and native plant traits important to plant competition and herbivorous insects. Biol. Invasions 24, 599–602. https://doi.org/10.1007/s10530-021-02670-w (2022).Article
Google Scholar
Murphy, S. M. et al. Streetlights positively affect the presence of an invasive grass species. Ecol. Evol. 11, 10320–10326 (2021).PubMed
PubMed Central
Google Scholar More