More stories

  • in

    Genetic and particle modelling approaches to assessing population connectivity in a deep sea lobster

    Farmery, A. K., Hendrie, G. A., O’Kane, G., McManus, A. & Green, B. S. Sociodemographic variation in consumption patterns of sustainable and nutritious seafood in Australia. Front. Nutr. 5, 118. https://doi.org/10.3389/fnut.2018.00118 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillen, J. et al. Global seafood consumption footprint. Ambio 48, 111–122. https://doi.org/10.1007/s13280-018-1060-9 (2019).Article 
    PubMed 

    Google Scholar 
    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320. https://doi.org/10.1016/j.marpol.2011.06.008 (2012).Article 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298. https://doi.org/10.1111/mec.13689 (2016).Article 
    PubMed 

    Google Scholar 
    Victorero, L., Watling, L., Deng Palomares, M. L. & Nouvian, C. Out of sight, but within reach: A global history of bottom-trawled deep-sea fisheries from > 400 m depth. Front. Mar. Sci. 5, 98. https://doi.org/10.3389/fmars.2018.00098 (2018).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466. https://doi.org/10.1146/annurev.marine.010908.163757 (2009).Article 
    PubMed 

    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: The deep-sea floor. Mol. Ecol. 26, 4872–4896. https://doi.org/10.1111/mec.14237 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).Article 
    PubMed 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417. https://doi.org/10.1038/srep43417 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman, F. C. & Williams, S. L. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity. Trends Ecol. Evol. 17, 40–44. https://doi.org/10.1016/S0169-5347(01)02330-8 (2002).Article 

    Google Scholar 
    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349. https://doi.org/10.1126/science.1230441 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).Article 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39. https://doi.org/10.1111/mec.12509 (2014).Article 
    PubMed 

    Google Scholar 
    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. et al. Guidelines for genetic data analysis. J. Cetac. Res. Manag. 18, 33–80 (2018).ADS 

    Google Scholar 
    Hauser, L., Adcock, G. J., Smith, P. J., Bernal Ramírez, J. H. & Carvalho, G. R. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. 99, 11742–11747. https://doi.org/10.1073/pnas.172242899 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laikre, L., Palm, S. & Ryman, N. Genetic population structure of fishes: Implications for coastal zone management. AMBIO A J. Hum. Environ. 34, 111–119. https://doi.org/10.1579/0044-7447-34.2.111 (2005).Article 

    Google Scholar 
    Gaggiotti, O. E. Population genetic models of source–sink metapopulations. Theor. Popul. Biol. 50, 178–208. https://doi.org/10.1006/tpbi.1996.0028 (1996).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Bracco, A., Liu, G., Galaska, M. P., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).Article 

    Google Scholar 
    Liu, S.-Y.V., Hsin, Y.-C. & Cheng, Y.-R. Using particle tracking and genetic approaches to infer population connectivity in the deep-sea scleractinian coral Deltocyathus magnificus in the South China sea. Deep Sea Res. Part I 161, 103297. https://doi.org/10.1016/j.dsr.2020.103297 (2020).Article 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344. https://doi.org/10.1111/maec.12343 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377. https://doi.org/10.1111/j.1467-2979.2008.00300.x (2008).Article 

    Google Scholar 
    Yan, R.-J., Schnabel, K. E., Rowden, A. A., Guo, X.-Z. & Gardner, J. P. A. Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the southwest Pacific Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00791 (2020).Article 

    Google Scholar 
    Breusing, C. et al. Biophysical and population genetic models predict the presence of “phantom” stepping stones connecting Mid-Atlantic Ridge vent ecosystems. Curr. Biol. 26, 2257–2267. https://doi.org/10.1016/j.cub.2016.06.062 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment: Scampi (SCI). https://fs.fish.govt.nz/Page.aspx?pk=113&dk=24443 (2017).Botsford, L. W. et al. Connectivity, sustainability, and yield: Bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fish. 19, 69–95. https://doi.org/10.1007/s11160-008-9092-z (2009).Article 

    Google Scholar 
    NIWA. Annual Distribution of Scampi. Ministry for Primary Industries, New Zealand. https://mpi.maps.arcgis.com/home/item.html?id=97da6c1a912b45a8855bf741211f5911 (2016).Heasman, K. G. & Jeffs, A. G. Fecundity and potential juvenile production for aquaculture of the New Zealand scampi, Metanephrops challengeri (Balss, 1914) (Decapoda: Nephropidae). Aquaculture 511, 634184. https://doi.org/10.1016/j.aquaculture.2019.05.069 (2019).Article 

    Google Scholar 
    Smith, P. J. Allozyme variation in scampi (Metanephrops challengeri) fisheries around New Zealand. NZ J. Mar. Freshw. Res. 33, 491–497. https://doi.org/10.1080/00288330.1999.9516894 (1999).Article 

    Google Scholar 
    Berry, P. The biology of Nephrops andamanicus Wood-Mason (Decapoda, Reptantia). Report No. 22, 1–55 (South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa, 1969).Major, R. N. & Jeffs, A. G. Orientation and food search behaviour of a deep sea lobster in turbulent versus laminar odour plumes. Helgol. Mar. Res. 71, 9. https://doi.org/10.1186/s10152-017-0489-8 (2017).Article 

    Google Scholar 
    Tuck, I. D., Parsons, D. M., Hartill, B. W. & Chiswell, S. M. Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES J. Mar. Sci. 72, i199–i210. https://doi.org/10.1093/icesjms/fsu244 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Booth, J. D. Sources and sinks of larval settlement in Jasus edwardsii around New Zealand: Where do larvae come from and where do they go?. Mar. Ecol. Prog. Ser. 354, 201–217. https://doi.org/10.3354/meps07217 (2008).ADS 
    Article 

    Google Scholar 
    Silva, C. N. S., Macdonald, H. S., Hadfield, M. G., Cryer, M. & Gardner, J. P. A. Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery. ICES J. Mar. Sci. 76, 1007–1018. https://doi.org/10.1093/icesjms/fsy201 (2019).Article 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: Understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237. https://doi.org/10.1002/ece3.4684 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C. & Willows-Munro, S. Between the current and the coast: Genetic connectivity in the spiny lobster Panulirus homarus rubellus, despite potential barriers to gene flow. Mar. Biol. 166, 36. https://doi.org/10.1007/s00227-019-3486-4 (2019).Article 

    Google Scholar 
    Thomas, L. & Bell, J. J. Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity 111, 345–354. https://doi.org/10.1038/hdy.2013.58 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baeza, J. A., Holstein, D., Umaña-Castro, R. & Mejía-Ortíz, L. M. Population genetics and biophysical modeling inform metapopulation connectivity of the Caribbean king crab Maguimithrax spinosissimus. Mar. Ecol. Prog. Ser. 610, 83–97 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Hedgecock, D., Barber, P. H. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).Article 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024. https://doi.org/10.1098/rstb.2021.0024 (2022).Article 

    Google Scholar 
    Sebastian, W. et al. Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish. Sci. Rep. 11, 20690. https://doi.org/10.1038/s41598-021-00129-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lal, M. M., Southgate, P. C., Jerry, D. R., Bosserelle, C. & Zenger, K. R. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: The case of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 11, e0161390. https://doi.org/10.1371/journal.pone.0161390 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, T. et al. Hidden historical habitat-linked population divergence and contemporary gene flow of a deep-sea patellogastropod limpet. Mol. Biol. Evol. 38, 5640–5654. https://doi.org/10.1093/molbev/msab278 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Souza, J. M. A. C. et al. Moana Ocean Hindcast—A 25+ years simulation for New Zealand Waters using the ROMS v3.9 model. EGUsphere https://doi.org/10.5194/egusphere-2022-41 (2022).Norrie, C., Dunphy, B., Roughan, M., Weppe, S. & Lundquist, C. Spill-over from aquaculture may provide a larval subsidy for the restoration of mussel reefs. Aquac. Environ. Interact. 12, 231–249 (2020).Article 

    Google Scholar 
    Larsson, J. et al. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuar. Coast. Shelf Sci. 195, 98–109. https://doi.org/10.1016/j.ecss.2016.06.016 (2017).ADS 
    Article 

    Google Scholar 
    Nicolle, A. et al. Modelling larval dispersal of Pecten maximus in the English Channel: A tool for the spatial management of the stocks. ICES J. Mar. Sci. 74, 1812–1825. https://doi.org/10.1093/icesjms/fsw207 (2017).Article 

    Google Scholar 
    Hold, N. et al. Using biophysical modelling and population genetics for conservation and management of an exploited species, Pecten maximus L. Fish. Oceanogr. 30, 740–756. https://doi.org/10.1111/fog.12556 (2021).Article 

    Google Scholar 
    Truelove, N. K. et al. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs 36, 233–244. https://doi.org/10.1007/s00338-016-1516-y (2017).ADS 
    Article 

    Google Scholar 
    Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I 167, 103427. https://doi.org/10.1016/j.dsr.2020.103427 (2021).Article 

    Google Scholar 
    Ross, P. M., Hogg, I. D., Pilditch, C. A. & Lundquist, C. J. Phylogeography of New Zealand’s coastal benthos. NZ J. Mar. Freshw. Res. 43, 1009–1027. https://doi.org/10.1080/00288330.2009.9626525 (2009).Article 

    Google Scholar 
    Tuck, I. D. Characterisation and a length-based assessment model for scampi (Metanephrops challengeri) at the Auckland Islands (SCI 6A). Report No. 2015/21, 160 (Ministry for Primary Industries, Wellington, 2015).Verry, A. J. F., Walton, K., Tuck, I. D. & Ritchie, P. A. Genetic structure and recent population expansion in the commercially harvested deepsea decapod, Metanephrops challengeri (Crustacea: Decapoda). NZ J. Mar. Freshw. Res. 54, 251–270. https://doi.org/10.1080/00288330.2019.1707696 (2020).CAS 
    Article 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: Contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19. https://doi.org/10.3354/meps11792 (2016).ADS 
    Article 

    Google Scholar 
    Hare, M. P. et al. Understanding and estimating effective population size for practical application in marine species management. Conserv. Biol. 25, 438–449. https://doi.org/10.1111/j.1523-1739.2010.01637.x (2011).Article 
    PubMed 

    Google Scholar 
    Ashry, N. A. Plant biodiversity and biotechnology. In From Plant Genomics to Plant Biotechnology (eds Poltronieri, P. et al.) 205–222 (Woodhead Publishing, 2013).Chapter 

    Google Scholar 
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337. https://doi.org/10.1111/j.1752-4571.2010.00157.x (2011).Article 
    PubMed 

    Google Scholar 
    Kerr, L. A., Cadrin, S. X. & Secor, D. H. Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES J. Mar. Sci. 67, 1631–1639. https://doi.org/10.1093/icesjms/fsq053 (2010).Article 

    Google Scholar 
    Carroll, E. L. et al. Perturbation drives changing metapopulation dynamics in a top marine predator. Proc. R. Soc. B Biol. Sci. 287, 20200318. https://doi.org/10.1098/rspb.2020.0318 (2020).Article 

    Google Scholar 
    Chiswell, S. M., Bostock, H. C., Sutton, P. J. H. & Williams, M. J. M. Physical oceanography of the deep seas around New Zealand: A review. NZ J. Mar. Freshw. Res. 49, 286–317. https://doi.org/10.1080/00288330.2014.992918 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Roemmich, D. The East Cape Current and two eddies: A mechanism for larval retention?. NZ J. Mar. Freshw. Res. 32, 385–397. https://doi.org/10.1080/00288330.1998.9516833 (1998).Article 

    Google Scholar 
    Condie, S. & Condie, R. Retention of plankton within ocean eddies. Glob. Ecol. Biogeogr. 25, 1264–1277. https://doi.org/10.1111/geb.12485 (2016).Article 

    Google Scholar 
    Lesser, J. H. R. Phyllosoma larvae of Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae) and their distribution off the east coast of the North Island, New Zealand. NZ J. Mar. Freshw. Res. 12, 357–370. https://doi.org/10.1080/00288330.1978.9515763 (1978).Article 

    Google Scholar 
    Kawecki, T. J. Ecological and evolutionary consequences of source-sink population dynamics. In Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 387–414 (Academic Press, 2004).Chapter 

    Google Scholar 
    Figueira, W. F. & Crowder, L. B. Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul. Ecol. 48, 215–224. https://doi.org/10.1007/s10144-006-0265-0 (2006).Article 

    Google Scholar 
    Heinrichs, J. A. et al. Recent advances and current challenges in applying source-sink theory to species conservation. Curr. Landsc. Ecol. Rep. 4, 51–60. https://doi.org/10.1007/s40823-019-00039-3 (2019).Article 

    Google Scholar 
    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinrichs, J. A., Lawler, J. J. & Schumaker, N. H. Intrinsic and extrinsic drivers of source-sink dynamics. Ecol. Evol. 6, 892–904. https://doi.org/10.1002/ece3.2029 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilroy, J. J. & Edwards, D. P. Source-sink dynamics: A neglected problem for landscape-scale biodiversity conservation in the Tropics. Curr. Landsc. Ecol. Rep. 2, 51–60. https://doi.org/10.1007/s40823-017-0023-3 (2017).Article 

    Google Scholar 
    Lal, M. M., Bosserelle, C., Kishore, P. & Southgate, P. C. Understanding marine larval dispersal in a broadcast-spawning invertebrate: A dispersal modelling approach for optimising spat collection of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 15, e0234605. https://doi.org/10.1371/journal.pone.0234605 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chassé, J. & Miller, R. J. Lobster larval transport in the southern Gulf of St. Lawrence. Fish. Oceanogr. 19, 319–338. https://doi.org/10.1111/j.1365-2419.2010.00548.x (2010).Article 

    Google Scholar 
    Lindegren, M., Andersen, K. H., Casini, M. & Neuenfeldt, S. A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study. Ecol. Appl. 24, 1820–1832. https://doi.org/10.1890/13-0566.1 (2014).Article 
    PubMed 

    Google Scholar 
    Tuck, I. D. et al. Estimating the abundance of scampi in SCI 6A (Auckland Islands) in 2013. Report No. 2015/10, 48 (Ministry for Primary Industries, 2015).Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614. https://doi.org/10.1016/j.cub.2009.05.046 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196. https://doi.org/10.1038/s41586-018-0006-5 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230. https://doi.org/10.1038/s41586-018-0007-4 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    van Gennip, S. J. et al. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617. https://doi.org/10.1111/gcb.13586 (2017).ADS 
    Article 

    Google Scholar 
    Bashevkin, S. M. et al. Larval dispersal in a changing ocean with an emphasis on upwelling regions. Ecosphere 11, e03015. https://doi.org/10.1002/ecs2.3015 (2020).Article 

    Google Scholar 
    Gerber, L. R., Mancha-Cisneros, M. D. M., O’Connor, M. I. & Selig, E. R. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5, 1–18. https://doi.org/10.1890/es13-00336.1 (2014).Article 

    Google Scholar 
    Hoegh-Gulderg, O. & Pearse, J. Temperature, food availability, and the development of marine invertebrate larvae. Am. Zool. 35, 415–425. https://doi.org/10.1093/icb/35.4.415 (1995).Article 

    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA 104, 1266–1271. https://doi.org/10.1073/pnas.0603422104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cetina-Heredia, P., Roughan, M., van Sebille, E., Feng, M. & Coleman, M. A. Strengthened currents override the effect of warming on lobster larval dispersal and survival. Glob. Change Biol. 21, 4377–4386. https://doi.org/10.1111/gcb.13063 (2015).ADS 
    Article 

    Google Scholar 
    Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00362 (2020).Article 

    Google Scholar 
    Ogilvie, S. et al. Mātauranga Māori driving innovation in the New Zealand scampi fishery. NZ J. Mar. Freshw. Res. 52, 590–602. https://doi.org/10.1080/00288330.2018.1532441 (2018).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data v. 0.11.7 (Babraham Bioinformatics, 2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing v. 4.1.0 (R Studio v1.4.1106) (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.Díaz-Arce, N. & Rodríguez-Ezpeleta, N. Selecting RAD-seq data analysis parameters for population genetics: The more the better?. Front. Genet. 10, 533. https://doi.org/10.3389/fgene.2019.00533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 12, e0169774. https://doi.org/10.1371/journal.pone.0169774 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. & Jombart, T. hierfstat: Estimation and Tests of Hierarchical F-Statistics v. 0.04-22 (Comprehensive R Archive Network (CRAN), 2015). https://CRAN.R-project.org/package=hierfstat.Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259. https://doi.org/10.1111/j.1469-1809.1983.tb00993.x (1983).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An R package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11. https://doi.org/10.1111/1755-0998.12559 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 125, 269–280. https://doi.org/10.1038/s41437-020-0348-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788. https://doi.org/10.1111/2041-210x.12067 (2013).Article 

    Google Scholar 
    Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Dagestad, K. F., Röhrs, J., Breivik, Ø. & Ådlandsvik, B. OpenDrift v1.0: A generic framework for trajectory modelling. Geosci. Model Dev. 11, 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018 (2018).ADS 
    Article 

    Google Scholar 
    Jeffs, A., Daniels, C. & Heasman, K. In Fisheries and Aquaculture: Natural History of Crustacea, Vol. 9 (eds Lovrich, G. & Thiel, M.) 285–311 (Oxford University Press, 2020).Lundquist, C. J., Oldman, J. W. & Lewis, M. J. Predicting suitability of cockle Austrovenus stutchburyi restoration sites using hydrodynamic models of larval dispersal. NZ J. Mar. Freshw. Res. 43, 735–748. https://doi.org/10.1080/00288330909510038 (2009).Article 

    Google Scholar 
    Lundquist, C. J., Thrush, S. F., Oldman, J. W. & Senior, A. K. Limited transport and recolonization potential in shallow tidal estuaries. Limnol. Oceanogr. 49, 386–395. https://doi.org/10.4319/lo.2004.49.2.0386 (2004).ADS 
    Article 

    Google Scholar 
    Okubo, A. & Ebbesmeyer, C. C. Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res. Oceanogr. Abstr. 23, 349–352. https://doi.org/10.1016/0011-7471(76)90875-5 (1976).ADS 
    Article 

    Google Scholar 
    Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files v. 1.17 (Comprehensive R Archive Network (CRAN), 2019). https://CRAN.R-project.org/package=ncdf4.Coelho, S. C. C., Gherardi, D. F. M., Gouveia, M. B. & Kitahara, M. V. Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms. Sci. Rep. 12, 5286. https://doi.org/10.1038/s41598-022-09269-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demmer, J. et al. The role of wind in controlling the connectivity of blue mussels (Mytilus edulis L.) populations. Mov. Ecol. 10, 3. https://doi.org/10.1186/s40462-022-00301-0 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atalah, J., South, P. M., Briscoe, D. K. & Vennell, R. Inferring parental areas of juvenile mussels using hydrodynamic modelling. Aquaculture 555, 738227. https://doi.org/10.1016/j.aquaculture.2022.738227 (2022).Article 

    Google Scholar 
    McGeady, R., Lordan, C. & Power, A. M. Long-term interannual variability in larval dispersal and connectivity of the Norway lobster (Nephrops norvegicus) around Ireland: When supply-side matters. Fish. Oceanogr. 31, 255–270. https://doi.org/10.1111/fog.12576 (2022).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: Extra Map Databases v. 2.3.0 (Comprehensive R Archive Network (CRAN), 2018). https://CRAN.R-project.org/package=mapdata.McIlroy, D., Brownrigg, R., Minka, T. P. & Bivan, R. mapproj: Map Projections v. 1.2.7 (Comprehensive R Archive Network (CRAN), 2020). https://CRAN.R-project.org/package=mapproj.South, A. rnaturalearth: World Map Data from Natural Earth v. 0.1.0 (Comprehensive R Archive Network (CRAN), 2017). https://CRAN.R-project.org/package=rnaturalearth. More

  • in

    A pachyderm perfume: odour encodes identity and group membership in African elephants

    Wyatt, T. Pheromones and Animal Behavior: Communication by Smell and Taste (Cambridge University Press, 2003).Book 

    Google Scholar 
    Wyatt, T. D. Fifty years of pheromones. Nature 457, 262–263 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. Does anal gland scent signal identity in the spotted hyena?. Anim. Behav. 77, 707–715 (2009).Article 

    Google Scholar 
    Kent, L. & Tang-Martínez, Z. Evidence of individual odors and individual discrimination in the raccoon, Procyon lotor. J. Mamm. 95, 1254–1262 (2014).Article 

    Google Scholar 
    Klücklich, M., Weiß, B. M., Birkemere, C., Einspanier, A. & Widdig, A. Chemical cues of female fertility states in a non-human primate. Sci. Rep. 9, 9–12 (2019).
    Google Scholar 
    Setchell, J. M. et al. Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): Influence of sex, male status, and individual identity. Chem. Sens. 35, 205–220 (2010).CAS 
    Article 

    Google Scholar 
    Marneweck, C., Jurgens, A. & Shrader, A. M. Dung odours signal sex, age, territorial and oestrous state in white rhinos. Proc. R. Soc. B 284, 20162376 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heth, G., Todrank, J., Busquet, N. & Baudoin, C. Genetic relatedness assessment through individual odour similarities (G-ratios) in mice. Biol. J. Lin. Soc. 78, 595–603 (2003).Article 

    Google Scholar 
    Heth, G., Todrank, J., Begall, S., Wegner, R. & Burda, H. Genetic relatedness discrimination in eusocial Cryptomys anselli mole-rats, Bathyergidae, Rodentia. Folia Zool. 53, 269–278 (2004).
    Google Scholar 
    Busquet, N. & Baudoin, C. Odour similarities as a basis for discriminating degrees of kinship in rodents: Evidence from Mus spicilegus. Anim. Behav. 70, 997–1002 (2005).Article 

    Google Scholar 
    Stoffel, M. A. et al. Chemical fingerprints encode mother–offspring similarity, colony membership, relatedness, and genetic quality in fur seals. PNAS 112(36), E5005–E5012 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charpentier, M., Boulet, M. & Drea, C. Smelling right: The scent of male lemurs advertises genetic quality and relatedness. Mol. Ecol. 17, 3225–3233 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boulet, M., Charpentier, M. J. E. & Drea, C. M. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in primates. BMC Evol. Biol. 9, 281 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kean, E. F., Bruford, M., Russo, I. R., Müller, C. & Chadwick, E. Odour dialects among wild mammals. Sci. Rep. 7, 13593 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A. J. MHC-dependent mate preferences in humans. Proc. Biol. Sci. 260, 245–249 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penn, D. & Potts, W. K. Untrained mice discriminate MHC-determined odors. Phys. Behav. 64(3), 235–243 (1998).CAS 
    Article 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Anal gland secretion codes for family membership in beaver. Behav. Ecol. Sociobiol. 44(3), 199–208 (1998).Article 

    Google Scholar 
    Bloss, J., Acree, T. E., Bloss, J. M., Hood, W. R. & Kunz, T. H. Potential use of chemical cues for colony-mate recognition in the big brown bat, Eptesicus fuscus. J. Chem. Ecol. 28(4), 819–834 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weiß, B. M. et al. A non-invasive method for sampling the body odour of mammals. Methods Ecol. Evol. 9, 420–429 (2018).Article 

    Google Scholar 
    O’Riain, M. J. & Jarvis, J. U. M. Colony member recognition and xenophobia in the naked mole-rat. Anim. Behav. 53, 487–498 (1997).Article 

    Google Scholar 
    Henkel, S. & Setchell, J. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. R. Soc. B. 285, 20181527 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henkel, S., Lambides, A. R., Berger, A., Thomsen, R. & Widdig, A. Rhesus macaques (Macaca mulatta) recognize group membership via olfactory cues alone. Behav. Ecol. Sociobiol. 69, 2019–2034 (2015).Article 

    Google Scholar 
    Tzur, S., Todrank, J., Jürgens, A., Nevo, E. & Heth, G. Odour–genes covariance within a natural population of subterranean Spalax galili blind mole rats. Biol. J. Lin. Soc. 96, 483–490 (2009).Article 

    Google Scholar 
    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    Archie, E. & Theis, K. Animal behavior meets microbial ecology. Anim. Behav. 82, 425–436 (2011).Article 

    Google Scholar 
    Sukumar, R. The Living Elephants: Evolutionary Ecology, Behavior and Conservation (Oxford University Press, 2003).
    Google Scholar 
    Jachowski, D. The Amboseli Elephants: A long-term perspective on a long-lived mammal by C. J. Moss; H. Croze; P. C. Lee. J. Mammal. 93, 294–295 (2012).Article 

    Google Scholar 
    Slotow, R., van Dyk, G., Poole, J., Page, B. & Klocke, A. Older bull elephants control young males. Nature 408, 425–426 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Niimura, Y., Matsui, A. & Touhara, K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24, 1485–1496 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goodwin, T. E., Broederdorf, L. J. & Burkert, B. A. Chemical signals of elephant musth: Temporal aspects of microbially-mediated modifications. J. Chem. Ecol. 38, 81–87 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulte, B. A. & Rasmussen, L. E. L. Musth, sexual selection, testosterone and metabolites. In Advances in Chemical Communication in Vertebrates (eds Johnston, R. E. et al.) 383–397 (Plenum Press, New York, 1999).
    Google Scholar 
    Rasmussen, L. E. L. Chemical communication: An integral part of functional Asian elephant (Elephas maximus) society. Ecoscience 5, 410–426 (1998).Article 

    Google Scholar 
    Rasmussen, L. E. L. & Krishnamurthy, V. How chemical signals integrate Asian elephant society: The known and the unknown. Zool. Biol. 19, 405–423 (2000).CAS 
    Article 

    Google Scholar 
    Greenwood, D. R., Comesky, D., Hunt, M. B. & Rasmussen, L. E. L. Chirality in elephant pheromones. Nature 438, 1097–1098 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H. & Huchard, E. Social competition and selection in males and females. Phil. Trans. R. Soc. 368, 20130074 (2013).CAS 
    Article 

    Google Scholar 
    Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants Loxodonta africana. Anim. Behav. 73, 671–681 (2007).Article 

    Google Scholar 
    Moss, C. Elephant memories (William Morrow, 1988).
    Google Scholar 
    Buss, I. O., Rasmussen, L. E. L. & Smuts, G. L. Role of stress and individual recognition in the function of the African elephants’ temporal gland. Mammalia 40(3), 437–451 (1976).Article 

    Google Scholar 
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: Analysis of the processes creating multi-tiered social structures. Anim. Behav. 69(6), 1357–1371 (2005).Article 

    Google Scholar 
    Bates, L. A. et al. African elephants have expectations about the locations of out-of-sight family members. Biol. Lett. 4(1), 34–36 (2008).PubMed 
    Article 

    Google Scholar 
    Bates, L. A. et al. Elephants classify human ethnic groups by odor and garment color. Curr. Biol 17(22), 1938–1942 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Plotnik, J. M. et al. Elephants have a nose for quantity. PNAS 116(25), 12566–12571 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Silva, S., Schmid, V. & Wittemyer, G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav. Ecol. https://doi.org/10.1093/beheco/arw153 (2016).Article 

    Google Scholar 
    Archie, E. A., Moss, C. J. & Alberts, S. C. The ties that bind: Genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proc. R. Soc. Lond. 273, 513–522 (2006).CAS 

    Google Scholar 
    Allen, C. R. B., Brent, L. J. N., Motsentwa, T., Weiss, M. N. & Croft, D. P. Importance of old bulls: Leaders and followers in collective movements of all-male groups in African savannah elephants (Loxodonta africana). Sci. Rep. https://doi.org/10.1038/s41598-020-70682-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodwin, T. et al. The Role of Bacteria in Chemical Signals of Elephant Musth. In Chemical Signals in Vertebrates Vol. 13 (eds Schulte, B. et al.) (Springer, 2016).
    Google Scholar 
    Wittemyer, G. et al. Where sociality and relatedness diverge: The genetic basis for hierarchical social organization in African elephants. Proc. Biol. Sci. 7(276), 3513–3521 (2009).
    Google Scholar 
    Stoeger, A. & Baotic, A. Information content and acoustic structure of male African elephant social rumbles. Sci. Rep. 6, 27585 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McComb, K., Reby, D., Baker, L., Moss, C. & Sayialel, S. Long-distance communication of social identity in African elephants. Anim. Behav. 65, 317–329 (2003).Article 

    Google Scholar 
    Archie, E. A. et al. Behavioural inbreeding avoidance in wild African elephants. Molec. Ecol 16, 4138–4148 (2007).CAS 
    Article 

    Google Scholar 
    von Dürckheim, K. Olfaction and scent discrimination in African elephants. PhD thesis, Stellenbosch University, South Africa (2021).Goodwin, T. E. et al. African elephant sesquiterpenes. II. Identification and synthesis of new derivatives of 2,3-dihydrofarnesol. J. Nat. Prod. 65, 1319–1322 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodwin, T. E. et al. Chemical analysis of African elephant urine: A search for putative pheromones. In Chemical Signals in Vertebrates 10 (eds Mason, R. T. et al.) 128–139 (Springer Press, 2005).Chapter 

    Google Scholar 
    Goodwin, T. E. et al. Insect pheromones and precursors in female African elephant urine. J. Chem. Ecol. 32, 1849–1853 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burger, B. V. Mammalian semiochemicals. In The chemistry of Pheromones and Other Semiochemicals II. Topics in Current Chemistry Vol. 240 (ed. Schulz, S.) 231–278 (Springer, 2005).
    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: Roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar 
    Apps, P., Weldon, P. & Kramer, M. Chemical signals in terrestrial vertebrates: Search for design features. Nat. Prod. Rep. 32, 1131–1153 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burgener, N., East, M., Hofer, H. & Dehnhard, M. Do spotted hyena scent marks code for clan membership? In Chemical Signals in Vertebrates XI (eds Hurst, J. L. et al.) 169–178 (Springer, 2008).Chapter 

    Google Scholar 
    Lukas, D. & Clutton-Brock, T. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134. https://doi.org/10.1111/ele.13079 (2018).Article 
    PubMed 

    Google Scholar 
    Meyer, J. M., Goodwin, T. E. & Schulte, B. A. Intrasexual chemical communication and social responses of captive female African elephants, Loxodonta africana. Anim. Behav. 76, 163–174 (2008).Article 

    Google Scholar 
    Soltis, J., Leong, K. & Savage, A. African elephant vocal communication II: Rumble variation reflects the individual identity and emotional state of callers. Anim. Behav. 70(3), 589–599 (2005).Article 

    Google Scholar 
    Scordato, E. S. & Drea, C. M. Scents and sensibility: Information content of olfactory signals in the ringtailed lemur, Lemur catta. Anim. Behav. 73, 301–314 (2007).Article 

    Google Scholar 
    Palagi, E. & Dapporto, L. Beyond odor discrimination: Demonstrating individual recognition by scent in Lemur catta. Chem. Sens. 31, 437–443 (2006).Article 

    Google Scholar 
    Johnston, R. E., Derzie, A., Chiang, G., Jernigan, P. & Lee, H. C. Individual scent signatures in golden hamsters: Evidence for specialization of function. Anim. Behav. 45, 1061–1070 (1993).Article 

    Google Scholar 
    Coffin, H., Watters, J. & Mateo, J. Odor-based recognition of familiar and related conspecifics: A first test conducted on captive Humboldt Penguins (Spheniscus humboldti). PLoS ONE 6, e25002 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leclaire, S. et al. An individual and a sex odor signature in kittiwakes? Study of the semiochemical composition of preen secretion and preen down feathers. Naturwissenschaften 98, 615–624 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    von Dürckheim, K. et al. African elephants (Loxodonta africana) display remarkable olfactory acuity in human scent matching to sample performance. Appl. Anim. Behav. 200, 123–129 (2018).Article 

    Google Scholar 
    Bates, L. A., Poole, J. H. & Byrne, R. W. Elephant cognition. Curr. Biol. 18, 544–546. https://doi.org/10.1016/j.cub.2008.04.019 (2008).CAS 
    Article 

    Google Scholar 
    Kean, E., Müller, C. & Chadwick, E. Otter scent signals age, sex, and reproductive status. Chem. Sens. 36, 555–564 (2011).CAS 
    Article 

    Google Scholar 
    Kioko, J., Taylor, K., Milne, H. J., Hayes, K. Z. & Kiffner, C. Temporal gland secretion in African elephants (Loxodonta africana). Mamm. Biol. 82, 34–44 (2017).Article 

    Google Scholar 
    Macdonald, E., Fernandez-Duque, E., Sian, E. & Hagey, L. Sex, age, and family differences in the chemical composition of owl monkey (Aotus nancymaae) subcaudal scent secretions. Am. J. Primatol. 70, 12–18 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, J. et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J. Chem. Ecol. 34, 398–407 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110(49), 19832–19837 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Merritt, G. C., Goodrich, B. S., Hesterman, E. R. & Myktowycz, R. Microflora and volatile fatty acids present in the inguinal pouches of the wild rabbit, Oryctolagus cuniculus in Australia. J. Chem. Ecol. 8, 217–1225 (1982).Article 

    Google Scholar 
    Müller-Schwarze, D. & Heckman, S. The social role of scent in beaver (Castor canadensis). J. Chem. Ecol. 6, 81–95 (1980).Article 

    Google Scholar 
    Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. Anal sac secretion of red fox (Vulpes vulpes), its chemistry and microbiology: Comparison with anal sac secretion of lion (Panthera leo). Life Sci. 14, 387–400 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorman, M. L. A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim. Behav. 24, 141–145 (1976).Article 

    Google Scholar 
    Theis, K. R., Schmidt, M. S. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Theis, K. R., Heckla, A. L., Verge, J. R. & Holekamp, K. E. The ontogeny of pasting behavior in free-living spotted hyenas, Crocuta crocuta. In Chemical Signals in Vertebrates Vol. 11 (eds Hurst, J. L. et al.) 179–188 (Springer, 2008).
    Google Scholar 
    Chiyo, P. I. et al. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. PLoS ONE 9(4), e93408 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Archie, E. A., Moss, C. J. & Alberts, S. C. Characterization of tetranucleotide microsatellite loci in the African Savannah elephant (Loxodonta africana africana). Mol. Ecol. Notes. 3, 244–246 (2003).CAS 
    Article 

    Google Scholar 
    Comstock, K. E., Wasser, S. K. & Ostrander, E. A. Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol. Ecol. 9, 1004–1006 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eggert, L. S., Eggert, J. A. & Woodruff, D. S. Estimating population sizes for elusive animals: The forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12, 1389–1402 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on an ABI PRISM 377 automated sequencer using a membrane comb and STRand software. Biotechniques 6, 1320–1324 (2001).
    Google Scholar 
    Belkhir, K., Castric, V. & Bonhomme, F. IDENTIX, a software to test for relatedness in a population using permutation methods. Mol. Ecol. Notes 2, 611–614 (2002).Article 

    Google Scholar 
    Queller, D. & Goodnight, K. Estimating relatedness using genetic markers. Evolution 43(2), 258–275 (1989).PubMed 
    Article 

    Google Scholar 
    Marshall, T. C., Slate, J., Kruuk, L. E. B. & Pemberton, J. M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottensmann, M., Stoffel, M. A., Nichols, H. J. & Hoffman, J. I. GCalignR: An R Package for aligning gas-chromatography data for ecological and evolutionary studies. PLoS ONE 13(6), e0198311 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morelli, T. et al. Relatedness communicated in lemur scent. Naturwissenschaften 100, 769–777 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J., Blanchet, F., Guillaume. F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R.B., Simpson, G., Solymos, P., Stevens, M.H.H., Wagner, H. Vegan: community ecology package. R package vegan, vers. 2.2-1. (2015). More

  • in

    Saving the Amazon: how science is helping Indigenous people protect their homelands

    One thing that the team at Los Amigos did not do is peer deeper into the reserve to try to determine where the Mashco Piro are camped out. Gutiérrez says the decision on whether to establish some kind of monitoring system for isolated communities rests with governments and Indigenous groups, but few doubt that it is possible.
    Some researchers worry about the implications of this kind of work. Greg Asner, an ecologist at Arizona State University in Tempe, regularly captured evidence of encampments of isolated groups more than a decade ago, when his team was surveying the Peruvian Amazon in a plane equipped with a powerful laser-based system that provides 3D images of the forest. He flagged the images to his sources at Peru’s environment ministry, but never saw the groups themselves as a legitimate research topic. Even today, he doesn’t see the value in actively tracking them.
    “It’s creepy, like describing the home range of jaguars, but human rights are different than jaguar rights,” says Asner. “If we know they are in there, why do we need to know exactly where they are sleeping at night?”
    Despite the ethical worries about monitoring, some Indigenous leaders are open to the idea. Knowing where isolated groups are could help surrounding Indigenous communities to prevent unintended and dangerous contact, but “it is the Indigenous organizations that should implement and execute any system of control and surveillance of the Indigenous peoples in isolation,” says Julio Cusurichi, president of FENAMAD, which has worked with the Peruvian government to prevent contact and conflict since the Mashco Piro began to emerge.
    FENAMAD was also instrumental in pushing for the creation of the Madre de Dios reserve in 2002. Twenty years later, however, the reserve’s borders have yet to be finalized, and the Indigenous organization is still pushing to expand the eastern boundary to cover areas where the Mashco Piro are known to roam. The problem is that these same areas are currently occupied by logging concessions, which would be costly for the government to cancel.

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    For Cusurichi, the killing of the logger in August is yet another reminder of the precarious situation along the border of the reserve and the risks to both outsiders and the Mashco Piro. Too often, he contends, the government is more concerned with protecting economic interests than the rights of isolated peoples.
    Tauli-Corpuz, the former UN rapporteur, has little doubt that scientists mean well, but she worries about any efforts to document the precise location of isolated groups. “If this information falls into the wrong hands, these people will be disturbed in ways they could never imagine,” she says.
    Officials from the culture ministry acknowledged these dangers in discussions with Nature, and said they were looking at potential regulations to control the flow of information and restrict who can peer into the reserves.
    Although Forsyth says the ministry is full of people who want to do the right thing, he is wary of assuming that government officials always mean well. In Brazil, critics have accused President Bolsonaro, a right-wing populist, of sidelining scientists at FUNAI and attempting to appoint a former Christian missionary to head the division that handles isolated peoples. In the Madre de Dios region, the former governor, Luis Hidalgo Okimura, disappeared in February just before he was to be jailed in connection with an investigation into an illegal logging ring.
    “In some cases, the government may not be trustworthy,” Forsyth warns. He places more faith in Indigenous organizations and their advocates. “Giving them access to whatever information they would like or can’t generate themselves ought to be the priority.” More

  • in

    Asteroid smash and poaching decline

    As the Italian probe LICIACube whizzed past asteroids Didymos (bottom) and Dimorphos (top), it captured a debris plume spraying out from the DART spacecraft as it smashed into Dimorphos.Credit: ASI/NASA

    Astronomers see fireworks as spacecraft ploughs into asteroidTelescopes in space and across Earth captured the spectacular aftermath of NASA’s Double Asteroid Redirection Test (DART) spacecraft crashing into the asteroid Dimorphos on 26 September.The goal was to knock the harmless space rock into a slightly different orbit to test whether humanity could do such a thing if a dangerous asteroid were ever detected heading for Earth. The smash-up was “the first human experiment to deflect a celestial body”, says Thomas Zurbuchen, NASA’s associate administrator for science, and “an enormous success”.A ringside view came from LICIACube, a tiny Italian spacecraft that flew along with DART and photographed the impact, which took place 11 million kilometres from Earth. LICIACube’s first images, released by the Italian Space Agency on 27 September, show a large fireworks-like plume of rocks and other debris coming off Dimorphos (pictured, top) after DART had ploughed into it.It will take days to weeks before mission scientists can confirm whether the test worked, and did in fact cut the time it takes Dimorphos to orbit its partner asteroid, Didymos (pictured, bottom), by 10–15 minutes.

    The shell of the endangered hawksbill sea turtle (pictured) is prized for trinkets and jewellery.Credit: Reinhard Dirscherl/SPL

    Sea turtles swim more freely as poaching declinesPoaching is less of a threat to the survival of sea turtles than it once was, an analysis suggests (J. F. Senko et al. Glob. Change Biol. https://doi.org/gqrzzn; 2022). Illegal sea-turtle catch has dropped sharply since 2000, and most current exploitation occurs in areas with relatively healthy turtle populations.The analysis is the first worldwide estimate of the number of adult sea turtles that are moved on the black market. The authors surveyed sea-turtle specialists and sifted through documents to derive an estimate that around 1.1 million sea turtles were illegally harvested between 1990 and 2020. Nearly 90% of them were funnelled into China and Japan. Of the species that could be identified, the critically endangered hawksbill turtle (Eretmochelys imbricata; pictured), prized for its beautiful shell, was among the most frequently exploited.But the team also found that the illegal catch from 2010 to 2020 was nearly 30% lower than in the previous decade. “The silver lining is that, despite the seemingly large illegal take, exploitation is not having a negative impact on sea-turtle populations on a global scale,” says co-author Jesse Senko, a marine-conservation scientist at Arizona State University in Tempe. More

  • in

    Author Correction: Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    National Center for Theoretical Sciences, Taipei, 10617, TaiwanChun-Wei Chang & Chih-hao HsiehResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanChun-Wei Chang, Fuh-Kwo Shiah & Chih-hao HsiehFaculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiInstitute of Oceanography, National Taiwan University, Taipei, 10617, TaiwanTakeshi Miki, Fuh-Kwo Shiah & Chih-hao HsiehCenter for Biodiversity Science, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiHealth Science Center Libraries, University of Florida, Gainesville, FL, 32611, USAHao YeUniv. Lille, CNRS, Univ, Littoral Côte D’Opale, IRD, UMR 8187, LOG— Laboratoire D’Océanologie et de Géosciences, Station Marine de Wimereux, F- 59000, Lille, FranceSami SouissiLeibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, 12587, Berlin, GermanyRita AdrianFreie Universität Berlin, Department of Biology, Chemistry and Pharmacy, 14195, Berlin, GermanyRita AdrianNational Research Institute for Agriculture, Food and Environment (INRAE), CARRTEL, Université Savoie Mont Blanc, 74200, Thonon les Bains, FranceOrlane AnnevilleCentre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, 51014, Tartu, EstoniaHelen Agasild & Peeter NõgesDepartment of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, JapanSyuhei Ban & Xin LiuKinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, P.O. Box 447, 14950, Migdal, IsraelYaron Be’eri-Shlevin, Gideon Gal & Tamar ZoharyBiodiversity Research Center, Academia Sinica, Taipei, 11529, TaiwanYin-Ru Chiang & Jiunn-Tzong WuUK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire, LA1 4AP, UKHeidrun Feuchtmayr & Stephen J. ThackerayLake Biwa Environmental Research Institute, Otsu, 520-0022, JapanSatoshi Ichise & Michio KumagaiFaculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8502, Kanagawa, JapanMaiko KagamiDepartment of Environmental Science, Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, JapanMaiko KagamiResearch Center for Lake Biwa & Environmental Innovation, Ritsumeikan University, Kusatsu, 525-0058, Shiga, JapanMichio KumagaiBiodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanShin-Ichiro S. MatsuzakiCNR Water Research Institute (IRSA), L.go Tonolli 50, 28922, Verbania, Pallanza, ItalyMarina M. Manca, Roberta Piscia & Michela RogoraPlymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UKClaire E. WiddicombeInstitute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, 10617, TaiwanChih-hao Hsieh More

  • in

    The impact of restoration methods for Solidago-invaded land on soil invertebrates

    Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).Article 

    Google Scholar 
    Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).CAS 
    Article 

    Google Scholar 
    Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).Article 

    Google Scholar 
    Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).CAS 
    Article 

    Google Scholar 
    Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).Article 

    Google Scholar 
    Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).Article 

    Google Scholar 
    Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).Article 

    Google Scholar 
    de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).Article 

    Google Scholar 
    Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).Article 

    Google Scholar 
    Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).Article 

    Google Scholar 
    Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).Article 

    Google Scholar 
    Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).Article 

    Google Scholar 
    Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).Article 

    Google Scholar 
    Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).Article 

    Google Scholar 
    Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).Article 

    Google Scholar 
    Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).Article 

    Google Scholar 
    Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).CAS 
    Article 

    Google Scholar 
    Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).Article 

    Google Scholar 
    Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).Article 

    Google Scholar 
    Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).
    Google Scholar 
    Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).Article 

    Google Scholar 
    Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).ADS 
    Article 

    Google Scholar 
    Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).Article 
    PubMed 

    Google Scholar 
    Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).Article 

    Google Scholar 
    Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).Article 

    Google Scholar 
    Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).Article 

    Google Scholar 
    Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).Article 

    Google Scholar 
    Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).Article 

    Google Scholar 
    Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).CAS 
    Article 

    Google Scholar 
    Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).ADS 
    Article 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).Chapter 

    Google Scholar 
    Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).
    Google Scholar 
    Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).CAS 
    Article 

    Google Scholar 
    Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).Article 

    Google Scholar 
    van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).Article 

    Google Scholar 
    Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).Article 

    Google Scholar 
    Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).Article 

    Google Scholar 
    Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).ADS 
    Article 

    Google Scholar 
    de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).CAS 
    Article 

    Google Scholar 
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).
    Google Scholar 
    Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).CAS 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).CAS 
    Article 

    Google Scholar 
    Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).CAS 
    Article 

    Google Scholar 
    Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).CAS 
    Article 

    Google Scholar 
    Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).CAS 
    Article 

    Google Scholar 
    Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).Article 

    Google Scholar 
    Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).Article 

    Google Scholar 
    Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).Article 

    Google Scholar 
    Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).Article 
    PubMed 

    Google Scholar  More

  • in

    Intraspecies characterization of bacteria via evolutionary modeling of protein domains

    Protein domains show a Gompertzian growthThe protein domain RSA distributions of 3368 bacterial genomes were obtained as detailed in the “Materials and methods” section. Briefly, for each bacterial genome we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein domains belonging to each protein domain family.Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike Information Criterion (AIC)30, in (99.97%) of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). This model performed better than both the Log-Series and the Negative Binomial and described the data well, with an average (R^2) of 0.97 (minimum (R^2)=0.86). The selection of the Poisson Log-Normal model instead of the Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a Gompertzian density regulation function ((g(x)=gamma ln (x+epsilon ))) rather than a linear one ((g(x)=eta x)). This suggests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for the high abundant ones.Figure 1Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial genome (text {GCA}_000717515). The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion parameter (alpha) of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the dispersion parameter obtained for the 3368 bacterial genomes are ({2.67times 10^{-4}}) and ({2.62times 10^{-7}}), in agreement with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 bacterial genomes.Full size imageProtein domains deactivation is faster than duplicationThe examination of the Poisson Log-Normal scale ((mu)) and location ((sigma ^2)) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein domains.First of all, Fig. 2 shows that (mu) has negative values in all bacterial genomes. Recalling that (mu =r/gamma), where r is the growth rate and (gamma) is the multiplicative constant of the Gompertzian function, which must be positive, this implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed as the difference between the birth and the death rate, (r=b-d). Hence, a negative r means that the death rate is greater than the birth rate ((d > b)). In the evolutionary model of protein domains, the birth rate b has the meaning of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain sequence within the genome.Figure 2Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal parameters (mu) versus (sigma ^2) obtained fitting the protein domains RSAs. Only species represented by at least 10 different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different species. Different colors represent different species as indicated in the legend.Full size imageFurthermore, the plot of (mu) as a function of (sigma ^2) (Fig. 2) highlights the negative linear relationship between (mu) and (sigma ^2). Such relationship can also be deduced mathematically.Starting from the expressions (mu =r/gamma) and (sigma ^2=sigma _e^2 / 2gamma), and after simple algebraic manipulation, we can in fact obtain that (mu = 2rsigma ^2 / sigma _e^2), which explains the negative linear relationship between the two parameters.Besides the negative relationship, the plot of (mu) versus (sigma ^2) also highlights the presence of clusters of bacterial genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny based on the ecological modeling of protein domains and the consequent estimation of the parameters (mu) and (sigma ^2).Protein domain RSA and evolutionary distanceWe propose to calculate the pairwise evolutionary distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters discussed above ((mu) and (sigma)), and the density of protein domains in the bacterial genome. Such density describes to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an additional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance between bacteria is specifically computed as the 3D euclidean distance in the scaled space of (mu), (sigma), and protein domain density. In the following, we refer to such distance as ‘RSA distance’.To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared with the bacterial taxonomic classification.Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit the complementary information that these two approaches provide, despite their intrinsic connection. Namely, modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships at the intraspecies level, for which the taxonomic classification is not available.As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent to the number of taxa available at the selected taxonomic level.At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval (left[ 0,1right]), NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, signifying that 65% of bacteria are correctly classified.Figure 3Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent the baselines of NMI score and are based on simulations.Full size imageTo assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein domains, we randomly selected subsamples of protein domains in different proportions (from (10%) to 90% of all protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained using all protein domains (see Materials and Methods for details), and the correlation between the trees was calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsampling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling height of the branches correlates with the full-data height only at larger subsampling proportions.To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of species for which at least 10 different strains were present in our data (48 species). Among them, we selected the species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the “Materials and methods” section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correlation (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial species in more details.Figure 4(Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and (hbox {A}^{mathrm{W}}) (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular chromosomes Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb) (magenta). 2 strains have one (sim)4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ((sim)3 Mb), Chr2 ((sim)1 Mb) and Chr3 ((sim)1 Mb) (violet).Full size imageRSA-based method distinguishes subspecies infecting different hostsXanthomonas citri subsp. citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not detected comparing the 16S rRNA gene sequences.Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* and (hbox {A}^{mathrm{W}}), have a much more limited host range with XCC pathotype (hbox {A}^{mathrm{W}}) infecting only Key lime (C. aurantifolia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC pathotype (hbox {A}^{mathrm{W}})2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and (hbox {A}^{mathrm{W}}) have different hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of XCC included in our data set have diverse geographical origin. While all (hbox {A}^{mathrm{W}}) strains were sampled from USA, strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of strain jx-6 ((text {GCA}_001028285)) coming from China.For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread in human population and causes acute respiratory disease. Besides humans, different animal species can be infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based clustering (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived isolates and the koala strain LPCoLN ((text {GCA}_000024145)) through whole-genome sequencing showed a much higher variation between human and koala-derived strains than within the human-derived strains35.Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in separating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that tissue tropism is not entirely captured by our method.RSA-based method discriminates subspecies with different genome compositionIn some cases, subspecies of the same species are characterized by global differences in the genome composition. This is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromosomes: Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb). However, some strains show a different karyotype. The two strains (1154text {-}74) ((text {GCA}_000969235)) and (10432text {-}62) ((text {GCA}_000969265)), for instance, underwent the process of chromosomal fusion and possess only one (sim 4) Mb long circular chromosome, which shows a high degree of synteny with the two chromosomes of the more common strains36. The strain (text {TSY}216) ((text {GCA}001045415)), on the other hand, besides having the original two chromosomes, also contains an additional (sim 1) Mb long replicon, which does not share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae strains included in our data set are located on (sim 3) Mb long chromosome, which shows high synteny across all strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global genomic differences that exist between the considered strains. On the other hand, the results obtained with the RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, the RSA-based distance depends on the Poisson Log-Normal location parameter (sigma ^2), which increases with the genome length (Supplementary Fig. S1): by definition, (sigma ^2 = sigma _e^2 / 2gamma), and, while the environmental noise (sigma _e^2) can be reasonably considered independent of the genome length, the density regulation (gamma) is expected to be stronger for smaller genomes, which repesent a scarcer environment with less resources.Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids (members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length ( More

  • in

    Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).PubMed 
    Article 

    Google Scholar 
    Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar 
    Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).CAS 
    Article 

    Google Scholar 
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).Article 

    Google Scholar 
    Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).Article 

    Google Scholar 
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).Article 

    Google Scholar 
    Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).
    Google Scholar 
    Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).Article 

    Google Scholar 
    Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).CAS 
    Article 

    Google Scholar 
    Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).Article 

    Google Scholar 
    Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).Article 

    Google Scholar 
    Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).Article 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).Article 

    Google Scholar 
    Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).
    Google Scholar 
    Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).Article 

    Google Scholar 
    Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).Article 

    Google Scholar 
    Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).Article 

    Google Scholar 
    Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).ADS 
    Article 

    Google Scholar 
    Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).Article 

    Google Scholar 
    Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).
    Google Scholar 
    de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).Article 

    Google Scholar 
    Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).Article 

    Google Scholar 
    Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).Article 

    Google Scholar 
    Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).
    Google Scholar 
    LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).Article 

    Google Scholar 
    Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).Article 

    Google Scholar 
    Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).Article 

    Google Scholar 
    van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).
    Google Scholar 
    Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).
    Google Scholar 
    Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).Article 

    Google Scholar 
    Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).Article 

    Google Scholar 
    Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).Article 

    Google Scholar 
    Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).Article 

    Google Scholar 
    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).Article 

    Google Scholar 
    Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).Article 

    Google Scholar 
    Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).Article 

    Google Scholar 
    Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).
    Google Scholar 
    Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).Article 

    Google Scholar 
    Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).Article 

    Google Scholar 
    Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).Article 

    Google Scholar 
    Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).Article 

    Google Scholar 
    De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990). More