Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 
 Google Scholar 
 Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 
 Google Scholar 
 Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 
 Google Scholar 
 Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
 PubMed 
 Article 
 Google Scholar 
 Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
 PubMed 
 Article 
 Google Scholar 
 Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
 Article 
 Google Scholar 
 Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
 Google Scholar 
 Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 
 Google Scholar 
 Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
 Article 
 Google Scholar 
 Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 
 Google Scholar 
 García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 
 Google Scholar 
 Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 
 Google Scholar 
 Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
 PubMed 
 Article 
 Google Scholar 
 Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 
 Google Scholar 
 Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 
 Google Scholar 
 Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 
 Google Scholar 
 Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 
 Google Scholar 
 Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
 Article 
 Google Scholar 
 Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
 Article 
 Google Scholar 
 Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
 Article 
 Google Scholar 
 Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 
 Google Scholar 
 Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
 Article 
 Google Scholar 
 Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
 PubMed 
 Article 
 Google Scholar 
 Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
 Article 
 Google Scholar 
 Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
 PubMed 
 Article 
 Google Scholar 
 Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
 PubMed 
 Article 
 Google Scholar 
 Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 
 Google Scholar 
 Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 
 Google Scholar 
 Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 
 Google Scholar 
 Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
 PubMed 
 Article 
 Google Scholar 
 Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
 Article 
 Google Scholar 
 Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 
 Google Scholar 
 Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 
 Google Scholar 
 Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 
 Google Scholar 
 Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
 PubMed 
 Article 
 Google Scholar 
 Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
 Article 
 Google Scholar 
 Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 
 Google Scholar 
 Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
 Article 
 Google Scholar 
 Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 
 Google Scholar 
 Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
 Article 
 Google Scholar 
 Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
 Article 
 Google Scholar 
 Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 
 Google Scholar 
 Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 
 Google Scholar 
 Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
 Article 
 Google Scholar 
 Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
 PubMed 
 Article 
 Google Scholar 
 Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 
 Google Scholar 
 Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 
 Google Scholar 
 Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
 Article 
 Google Scholar 
 Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
 Article 
 Google Scholar 
 Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
 Google Scholar 
 Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 
 Google Scholar 
 Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
 PubMed 
 Article 
 Google Scholar 
 Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 
 Google Scholar 
 Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 
 Google Scholar 
 Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 
 Google Scholar 
 R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
 Google Scholar 
 Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 
 Google Scholar 
 Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 
 Google Scholar 
 Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More