More stories

  • in

    Global decline of pelagic fauna in a warmer ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Choy, C., Wabnitz, C., Weijerman, M., Woodworth-Jefcoats, P. & Polovina, J. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549, 9–25 (2016).
    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).CAS 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 

    Google Scholar 
    Angel, M. V. & de C. Baker, A. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2, 1–30 (1982).
    Google Scholar 
    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep Sea Res. 2 98, 279–291 (2013).
    Google Scholar 
    Hidaka, K., Kawaguchi, K., Murakami, M. & Takahashi, M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res. 1 48, 1923–1939 (2001).Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).
    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).CAS 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 
    Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).
    Google Scholar 
    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
    Google Scholar 
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).
    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. PICES Scientific Report 38 (North Pacific Marine Science Organization, 2010).Kaartvedt, S., Staby, A. & Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456, 1–6 (2012).
    Google Scholar 
    Gjøsaeter, J. & Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish Fisheries Technical Paper 193 (FAO, 1980).Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).
    Google Scholar 
    Annasawmy, P. et al. Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the south west Indian Ocean: insight from acoustics and stable isotopes. Deep Sea Res. 1 138, 85–97 (2018).CAS 

    Google Scholar 
    Haris, K. et al. Sounding out life in the deep using acoustic data from ships of opportunity. Sci. Data 8, 23 (2021).CAS 

    Google Scholar 
    Irigoien, X. et al. The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Sci. Data 8, 259 (2021).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).CAS 

    Google Scholar 
    Proud, R., Cox, M., Le Guen, C. & Brierley, A. Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Mar. Ecol. Prog. Ser. 598, 35–48 (2018).
    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).CAS 

    Google Scholar 
    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis (Springer, 2005).Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
    Google Scholar 
    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, e1602468 (2017).
    Google Scholar 
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Godø, O. R., Patel, R. & Pedersen, G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J. Mar. Sci. 66, 1143–1148 (2009).
    Google Scholar 
    Agersted, M. D. et al. Mass estimates of individual gas-bearing mesopelagic fish from in situ wideband acoustic measurements ground-truthed by biological net sampling. ICES J. Mar. Sci. 78, 3658–3673 (2021).
    Google Scholar 
    Backus, R. & Craddock, J. in Oceanic Sound Scattering Prediction (eds Anderson, N. R. & Zahuranec, B. J.) 529–547 (Springer, 1977).Longhurst, A. Ecological Geography of the Sea (Elsevier, 2010).Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge Univ. Press, 2010).Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
    Google Scholar 
    Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J. & Brierley, A. S. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76, 718–733 (2019).
    Google Scholar 
    Chapman, R. P., Bluy, O. Z., Adlington, R. H. & Robison, A. E. Deep scattering layer spectra in the Atlantic and Pacific oceans and adjacent seas. J. Acoust. Soc. Am. 56, 1722–1734 (1974).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc. R. Soc. B 286, 20190353 (2019).
    Google Scholar 
    Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y. & Jendersie, S. Estimates of density of mesopelagic fish in the Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biol. 43, 43–61 (2020).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties. Proc. R. Soc. B 289, 20211781 (2022).
    Google Scholar 
    Reygondeau, G. et al. Climate change-induced emergence of novel biogeochemical provinces. Front. Mar. Sci. 7, 657 (2020).
    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).
    Google Scholar 
    Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).
    Google Scholar 
    Grimaldo, E. et al. Investigating the potential for a commercial fishery in the northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 77, 2541–2556 (2020).
    Google Scholar 
    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. 2 180, 104722 (2020).CAS 

    Google Scholar 
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Google Scholar 
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Google Scholar 
    Perrot, Y. et al. Matecho: an open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Google Scholar 
    Stanton, T. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57, 793–807 (2000).
    Google Scholar 
    GEBCO: A Continuous Terrain Model of the Global Oceans and Land (British Oceanographic Data Centre, 2019).EchoPY v.1.1: Fisheries Acoustic Data Processing in Python (Python, 2020); https://pypi.org/project/echopyde Boor, C. A Practical Guide to Splines (Springer, 1978).Clustering (SciKit Learn, 2021); https://scikit-learn.org/stable/modules/clusteringEyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).
    Google Scholar 
    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. J. Adv. Model. Earth Syst. 13, e2021MS002496 (2021).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Locarnini, R. et al. World Ocean Atlas 2018, Volume 1: Temperature NOAA Atlas NESDIS 81 (NOAA, 2018).García, H. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation NOAA Atlas NESDIS 83 (NOAA, 2018).Sathyendranath, S. et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021; http://www.esa-oceancolour-cci.org More

  • in

    The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis

    The overall magnitude of changes in SOC, TN, and C:N in response to chemical nitrogen fertilizers reductionThe results showed that chemical nitrogen fertilizers reduction significantly decreased SOC and TN by 2.76% and 4.19% respectively, while increased C:N by 6.11% across all database (Fig. 1). SOC mainly derives from crop residues and secretions which closely related to crops growths, and crops growths were affected by fertilization, especially nitrogen fertilization20,21. The reduction of chemical nitrogen fertilizer led to poor crop growth, which reduced the amount of crop residues return, and then decreased SOC. Similarly, TN from crops was reduced due to poor crop growth. In addition, the reduction of chemical nitrogen fertilizers directly reduced the input of soil nitrogen. The increase of C:N was the result of the decrease of TN being greater than that of SOC. The responses of C:N to chemical nitrogen fertilizers reduction enhanced the comprehension of the couple relationship between SOC and TN, which was beneficial to the evolution of the C-N coupling models. Moreover, the accuracy of C-N coupling models depends on the precise quantification of the responses of SOC and TN to nitrogen fertilization. And our results accurately quantified the difference responses of SOC and TN to different nitrogen fertilization regimes, thus optimizing the C-N coupling models.Figure 1The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The value represents independent sample size.Full size imageResponses of SOC, TN and C:N to chemical nitrogen fertilizers reduction magnitudeWhen grouped by chemical nitrogen fertilizers reduction magnitude, SOC showed a significant increase by 6.9% in medium magnitude, while SOC was significantly decreased by 3.10% and 7.26% in high and total magnitude respectively (Fig. 1a). Liu and Greaver22 also stated the reduction of medium nitrogen fertilizer increased the average microbial biomass from 15 to 20%, thereby increasing the SOC content. Previous studies had reported that there were strong positive correlations between soil organic matter and soil microbial biomass in both the agricultural ecosystem and natural ecosystem23,24. Numerous researchers have demonstrated the significance of nitrogen availability in soil for the plant biomass across most ecosystems25,26. Moreover, nitrogen deficient would inhibit the activity of extracellular enzymes and root activities27. Generally, soil degradation caused by continuous rising chemical nitrogen fertilizers application may inhibit the growth of crops and ultimately reduce the SOC28.TN showed no significant difference in low and medium chemical nitrogen fertilizers reduction magnitude (p  > 0.05), while TN in high magnitude and total chemical nitrogen fertilizers reduction magnitude exhibited a decrease with 3.10% and 9.37% respectively (Fig. 1b). Numerous studies described that the amount of nitrogen fertilizers used in China was higher than the demand of N for crop, which caused serious N leaching and runoff29,30. Chemical nitrogen fertilizers in low and medium magnitude would not decrease the TN of soil by reducing N leaching and runoff. However, the residual nitrogen in soil cannot meet the requirement for the sustainable growth of plant with litter or without exogenous nitrogen supplement, which resulted in the decrease of TN in high and total chemical nitrogen fertilizers magnitude. Consequently, optimal nitrogen fertilizers application rates will take into account crops yield and environment friendliness.Additionally, C:N had a significant increase with ranging from 1.82% to 8.98% under the four chemical nitrogen fertilizers reduction magnitude (Fig. 1c), suggesting the relative increase of SOC compared to TN. Previous studies have revealed that C:N had significantly influence on the soil bacterial community structures31. And there were also considerable studies indicated that chemical nitrogen fertilizers have impact on the soil bacterial communities32,33. We may speculate that the change of C:N would bring about the variations of soil bacteria communities under the chemical nitrogen fertilizers regimes.Responses of SOC, TN, and C:N to chemical nitrogen fertilizers reduction durationNegative response of SOC to short-term chemical nitrogen fertilizers reduction was observed in our study, which was consistent with the study of Gong, et al.34 that chemical nitrogen fertilizers reduction decreased SOC by reducing crop-derived carbon by one year. However, SOC was significantly increased by 1.06% and 4.65% at mid-term and long-term chemical nitrogen fertilizers reduction respectively, which was similar with the findings of Ning, et al.11 that SOC was significantly increased under more than 5 years of chemical nitrogen fertilizers reduction treatment. TN was significantly decreased by 1.96% at short-term chemical nitrogen fertilizers reduction duration, while the results converted at mid-term chemical nitrogen fertilizers reduction duration. The effect of long-term chemical nitrogen fertilizers reduction on TN was not significant (p  > 0.05). The divergent response of TN to different chemical nitrogen fertilizers duration was mainly caused by the various treatments. In terms of C:N, a greater positive response was observed at short-term chemical nitrogen fertilizers duration (9.06%) than mid-term and long-term duration (1.99%). Moreover, with the prolongation of the chemical reduction time of nitrogen, the response ratio tends to zero, suggesting that the effect of chemical fertilizers gradually decrease. This may be ascribed to the buffer capacity of soil to resist the changes from external environment, including nutrients, pollutants, and redox substances35.Responses of SOC, TN, and C:N to different chemical nitrogen fertilizers reduction patternsUnder the pattern of chemical nitrogen fertilizers reduction without organic fertilizers supplement, SOC and TN significantly decreased by 3.83% and 11.46% respectively, however, chemical nitrogen fertilizers reduction with organic fertilizers supplement significantly increased SOC and TN by 4.92% and 8.33% respectively. Moreover, C:N significantly increased under the two chemical nitrogen fertilizers patterns (p  0.05), but there was a negative effect on SOC in high and total magnitude (p  0.05). The no significant decrease at mid-term duration might result from the limited information reported in original studies of this meta-analysis36. TN showed no significant response to chemical nitrogen fertilizers without organic fertilizers supplement in the low and medium magnitude (p  > 0.05). However, TN was significantly decreased by 8.62% and 16.7% respectively in the high and total magnitude. When regarding to chemical nitrogen fertilizers reduction duration, TN was significantly reduced at all of the categories, ranging from 3.13% to 13.4% (Fig. 2c). In the pattern of chemical nitrogen fertilizers reduction with organic fertilizers supplement, chemical nitrogen fertilizers reduction at medium, high, and total magnitudes significantly increased SOC by 13.85%, 13.03%, and 5.46%respectively, however, the response of SOC in the low chemical nitrogen fertilizers magnitude was not significant. Chemical nitrogen fertilizers reduction duration significantly increased SOC by 7.01%, 1.71%, and 22.02% in the short-term, mid-term, and long-term respectively. Comparatively, TN showed a significantly increase in most chemical nitrogen fertilizers categories expect for the long-term chemical nitrogen fertilizers duration, with an increasing from 4.90% to 14.69% (Fig. 2d).Figure 2The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c) under the two patterns (with organic fertilizers ; without organic fertilizers). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The values represent independent sample size.Full size imageOrganic fertilizers were mainly derived from animal manure or crops straws, which contained large amount of organic matter and nitrogen elements37,38. The application of organic fertilizers increased the input of SOC and TN directly. Moreover, organic fertilizer could promote the growth of crops by releasing phenols, vitamins, enzymes, auxins and other substances during the decomposition process, thus the SOC derived from crops would be increased37,39. In addition, organic fertilizers provide various nutrients for microbial reproduction, which increase the microbial population and organic carbon and total nitrogen content37. More importantly, the application of organic fertilizers could improve organic carbon sequestration and maintain its stability in aggregates, thereby reducing losses of SOC and TN40.C:N showed an increase under all of the chemical nitrogen fertilizers reduction with organic fertilizer supplement. The positive response of C:N to organic fertilizer supplement may be related to the higher C:N of organic fertilizer than soil. The average values of C:N of the commonly used organic fertilizers including animal manure, crop straws and biochar were 14, 60 and 30 respectively, while the C:N of soil was lower than 10 in average according to extensive literature researches41. Therefore, organic fertilizers would be a favorable alternative of chemical fertilizers for the sustainable development of agriculture.The correlation between the response of SOC, TN, and C:N and environmental variablesThe analysis of linear regression was conducted to analyze the environmental variables including mean annual temperature (MAT), mean annual precipitation (MAP), accumulated temperature above 10 °C (MATA), which may exert influence on SOC, TN and C:N. No significant correlation among the lnRR of SOC, TN, C:N and environmental variables were observed among the whole database (p  > 0.05; Fig. S1). Rule out the interference of organic fertilizers supplement, we analyzed the relationship between lnRR of SOC, TN, C:N and environmental variables as the Figures showed in Figs. 3 and 4 respectively. Under chemical nitrogen fertilizers without organic fertilizers supplement, there was a significant negative correlation between lnRR of SOC and MAT (p  More

  • in

    Climate change ‘heard’ in the ocean depths

    Irigoien, X. et al. Nat. Commun. 5, 3271 (2014).Article 

    Google Scholar 
    Ariza, A. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01479-2 (2022).Article 

    Google Scholar 
    Klevjer, T. A. et al. Sci. Rep. 6, 19873 (2016).CAS 
    Article 

    Google Scholar 
    Braun, C. D. et al. Annu. Rev. Mar. Sci. 14, 129–159 (2022).Article 

    Google Scholar 
    Heneghan, R. F. et al. Prog. Oceanogr. 198, 102659 (2021).Article 

    Google Scholar 
    Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. ICES J. Mar. Sci. 68, 986–995 (2011).Article 

    Google Scholar 
    Cheung, W. W. L. et al. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    Hazen, E. L. et al. Nat. Clim. Change 3, 234–238 (2013).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Purves, D. et al. Nature 493, 295–297 (2013).CAS 
    Article 

    Google Scholar 
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Fish. Oceanogr. 25, 45–56 (2016).Article 

    Google Scholar 
    Pons, M. et al. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).Article 

    Google Scholar  More

  • in

    Induction of ROS mediated genomic instability, apoptosis and G0/G1 cell cycle arrest by erbium oxide nanoparticles in human hepatic Hep-G2 cancer cells

    ChemicalsErbium (III) oxide nanoparticles (Er2O3-NPs) were purchased from Sigma-Aldrich Chemical Company (Saint Louis, USA) with pink appearance and product number (203,238). Powders of Er2O3-NPs with 99.9 trace metals basis were suspended in deionized distilled water to prepare the required concentrations and ultra-sonicated prior use.Cell lineHuman hepatocellular carcinoma (Hep-G2) cells were obtained from Nawah Scientific Inc., (Mokatam, Cairo Egypt). Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with streptomycin (100 mg/mL), penicillin (100 units/mL) and heat-inactivated fetal bovine serum (10) in humidified, 5% (v/v) CO2 atmosphere at 37 °C.Characterization of Er2O3-NPsThe purchased powders of Er2O3-NPs were characterized using a charge coupled device diffractometer (XPERT-PRO, PANalytical, Netherlands) to determine its X-ray diffraction (XRD) pattern. Zeta potential and particles’ size distribution of Er2O3-NPs were also detected using Malvern Instrument Zeta sizer Nano Series (Malvern Instruments, Westborough, MA) equipped with a He–Ne laser (λ = 633 nm, max 5mW). Moreover, transmission electron microscopy (TEM) imaging was done to detect the shape and average particles’ size of Er2O3-NPs suspension.Sulforhodamine B (SRB) cytotoxicity assaySulforhodamine B (SRB) assay was conducted to assess the influence of Er2O3-NPs on the proliferation of cancerous Hep-G2 cells12. Aliquots of 100 µl of Hep-G2 cells suspension containing 5 × 103 cells were separately cultured in 96-well plates and incubated for 24 h in complete media. Hep-G2 Cells were then treated with five different concentrations of Er2O3-NPs (0.01, 0.1, 1, 10 and 100 µg/ml) incubated for 24 h or (0.1, 1, 10, 100 and 1000 µg/ml) incubated for 72 h. After 24 or 72 h of Er2O3-NPs exposure, cultured cells were fixed by replacing media with 10% trichloroacetic acid (TCA) and incubated for one hour at 4 °C. Cells were then washed five times with distilled water, SRB solution (0.4% w/v) was added and incubated cells in a dark place at room temperature for 10 min. All plates were washed three times with 1% acetic acid and allowed to air-dry overnight. Then, protein-bound SRB stain was dissolved by adding TRIS (10 mM) and the absorbance was measured at 540 nm using a BMG LABTECH-FLUO star Omega microplate reader (Ortenberg, Germany).Cells treatmentCancerous Hep-G2 cells were cultured at the appropriate conditions and dived into control and treated cells. The control cells were treated with an equal volume of the vehicle (DMSO; final concentration, ≤ 0.1%), while the treated cells were treated with the IC50 of Er2O3-NPs. All cells were left for 72 h after nanoparticles treatment and were harvested by brief trypsinization and centrifugation. Each treatment was conducted in triplicate. Cells were washed twice with ice-cold PBS and used for different molecular assays.Estimation of genomic DNA integrityThe impact of Er2O3-NPs exposure on the integrity of genomic DNA in cancerous Hep-G2 cells was estimated using alkaline Comet assay13,14. Treated and control cells were mixed with low melting agarose and spread on clean slides pre-coated with normal melting agarose. After drying, slides were incubated in cold lysis buffer for 24 h in dark and then electrophoresed in alkaline electrophoresis buffer. Electrophoresed DNA was neutralized in Tris buffer and fixed in cold absolute ethanol. For analysis slides were stained with ethidium bromide, examined using epi-fluorescent microscope at magnification 200× and fifty comet nuclei were analyzed per sample using Comet Score software.Estimation of intracellular ROS generationThe effect of Er2O3-NPs exposure on intracellular ROS production in cancer Hep-G2 cells was studied using 2,7-dichlorofluorescein diacetate dye15. Cultured cells were washed with phosphate buffered saline (PBS) and then 2,7-dichlorofluorescein diacetate dye was added. Mixed cells and dye were left for 30 min in dark and spread on clean slides. The resultant fluorescent dichlorofluorescein complex from interaction of intracellular ROS with dichlorofluorescein diacetate dye was examined under epi-fluorescent at 20× magnification.Measuring the expression levels of apoptotic and anti-apoptotic genesQuantitative real time Polymerase chain reaction (RT-PCR) was conducted to measure the mRNA expression levels of apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) genes in control and treated Hep-G2 cells. Whole cellular RNA was extracted according to the instructions listed by the GeneJET RNA Purification Kit (Thermo scientific, USA) (Thermo scientific, USA) and using Nanodrop device purity and concentration of the extracted RNAs were determined. These RNAs were then reverse transcribed into complementary DNA (cDNA) using the instructions of the Revert Aid First Strand cDNA Synthesis Kit (Thermo scientific, USA). For amplification, RT-PCR was performed using the previously designed primers shown in Table 116,17 by the 7500 Fast system (Applied Biosystem 7500, Clinilab, Egypt). A comparative Ct (DDCt) method was conducted to measure the expression levels of amplified genes and GAPDH gene was used as a housekeeping gene. Results were expressed as mean ± S.D.Table 1 Sequences of the used primers in qRT-PCR.Full size tableAnalysis of cell cycle distributionDistribution of cell cycle was analyzed using flow cytometry. Control and treated cancer Hep-G2 cells with IC50 of Er2O3-NPs for 72 h were harvested, washed with PBS and re-suspended in 1 mL of PBS containing RNAase A (50 µg/mL) and propidium iodide (10 µg/mL) (PI). Cells were incubated for 20 min in dark at 37 C and analyzed for DNA contents using FL2 (λex/em 535/617 nm) signal detector (ACEA Novocyte flow cytometer, ACEA Biosciences Inc., San Diego, CA, USA). For each sample, 12,000 events are acquired and cell cycle distribution is calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Estimation of apoptosis inductionApoptotic and necrotic cell populations were determined using Annexin V- Fluorescein isothiocyanate (FITC) apoptosis detection kit (Abcam Inc., Cambridge Science Park Cambridge, UK) coupled with two fluorescent channels flow cytometry. After treatment with Er2O3-NPs for 72 h and doxorubicin as a positive control, Hep-G2 cells were collected by trypsinization and washed twice with ice-cold PBS (pH 7.4). Harvested cells are incubated in dark with Annexin V-FITC/ propidium iodide (PI) solution for 30 min at room temperature, then injected via ACEA Novocyte flowcytometer (ACEA Biosciences Inc., San Diego, CA, USA) and analyzed for FITC and PI fluorescent signals using FL1 and FL2 signal detector, respectively (λex/em 488/530 nm for FITC and λex/em 535/617 nm for PI). For each sample, 12,000 events were acquired and positive FITC and/or PI cells are quantified by quadrant analysis and calculated using ACEA NovoExpress software (ACEA Biosciences Inc., San Diego, CA, USA).Statistical analysisResults of the current study are expressed as mean ± Standard Deviation (S.D) and were analyzed using the Statistical Package for the Social Sciences (SPSS) (version 20) at the significance level p  More

  • in

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Orr, D. W. Land use and climate change. Conserv. Biol. 22(6), 1372–1374 (2010).
    Google Scholar 
    Zhang, X. D. et al. Tropospheric ozone perturbations induced by urban land expansion in China from 1980 to 2017. Environ. Sci. Technol. https://doi.org/10.1021/ACS.EST.1C06664 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian cerrado biome. Environ. Res. Lett. 12(2), 025004. https://doi.org/10.1088/1748-9326/aa5986 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, B., Xun, Z., Ran, Z. & Zhao, X. Study of multiple land use planning based on the coordinated development of wetland farmland: A case study of Fuyuan City, China. Sustainability 11(1), 271. https://doi.org/10.3390/su11010271 (2019).Article 

    Google Scholar 
    Tong, D., Chu, J., Han, Q. & Liu, X. How land finance drives urban expansion under fiscal pressure: Evidence from Chinese cities. Land. 11(2), 253. https://doi.org/10.3390/land11020253 (2022).Article 

    Google Scholar 
    Chen, J., Chang, K. T., Karacsonyi, D. & Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat. Int. 43, 61–71. https://doi.org/10.1016/j.habitatint.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Shu, B. R., Zhang, H. H., Li, Y. L., Qu, Y. & Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat. Int. 43, 181–190. https://doi.org/10.1016/j.habitatint.2014.02.004 (2014).Article 

    Google Scholar 
    Wang, R. Y., He, W. S., Wu, D., Zhang, L. & Li, Y. J. Urban Land expansion simulation considering the diffusional and aggregated growth simultaneously: A case study of Luoyang City. Sustainability. 13(17), 9781–9781. https://doi.org/10.3390/su13179781 (2021).Article 

    Google Scholar 
    Wei, Y. D. & Ye, X. Determinants of urban land expansion and environmental change in China. Stoch. Env. Res. Risk. A. 28(4), 757–765. https://doi.org/10.1007/s00477-013-0840-9 (2014).Article 

    Google Scholar 
    Yang, Q. K., Duan, X. J., Yang, L. & Wang, L. Spatial-Temporal patterns and driving factors of rapid urban land development in provincial China: A case study of Jiangsu. Sustainability. 9(12), 2371. https://doi.org/10.3390/su9122371 (2017).Article 

    Google Scholar 
    Zhong, Y., Lin, A. & Zhou, Z. Evolution of the pattern of spatial expansion of urban land use in the Poyang Lake ecological economic zone. Int. J. Environ. Res. Public. Health. 16(1), 117. https://doi.org/10.3390/ijerph16010117 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wu, C., Huang, X. & Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China. Land Use Policy 96, 104687. https://doi.org/10.1016/j.landusepol.2020.104687 (2020).Article 

    Google Scholar 
    Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat. Int. 34(2), 236–243. https://doi.org/10.1016/j.habitatint.2009.09.008 (2010).Article 

    Google Scholar 
    Cai, W. J. & Tu, F. Y. Spatiotemporal characteristics and driving forces of construction land expansion in Yangtze River economic belt, China. PLoS ONE 15(1), 0227299. https://doi.org/10.1371/journal.pone.0227299 (2020).CAS 
    Article 

    Google Scholar 
    Salvati, L., Carlucci, M., Grigoriadis, E. & Chelli, F. M. Uneven dispersion or adaptive polycentrism? Urban expansion, population dynamics and employment growth in an “ordinary” city. Rev. Region. Res. 38(1), 1–25. https://doi.org/10.1007/s10037-017-0115-x (2017).Article 

    Google Scholar 
    Cao, Y., Ba, I. Z., Zhou, W. & Zhang, X. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth. Sci. 75(16), 1191.1-11911.3. https://doi.org/10.1007/s12665-016-5926-5 (2016).Article 

    Google Scholar 
    Davies, R. G., Barbosa, O. D. & Fuller, R. A. City-wide relationships between green spaces, urban land use and topography. Urban Ecosyst. 11(3), 269. https://doi.org/10.1007/s11252-008-0062-y (2008).Article 

    Google Scholar 
    Cheng, L. L., Liu, M. & Zhan, J. Q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 17(2), 289–303. https://doi.org/10.1007/s11629-019-5491-y (2020).Article 

    Google Scholar 
    Liu, J. Y., Zhan, J. Y. & Deng, X. Z. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 34, 450–455. https://doi.org/10.1579/0044-7447-34.6.450 (2005).Article 
    PubMed 

    Google Scholar 
    Li, X. M., Zhou, W. & Quyang, Z. J. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors?. Appl. Geogr. 38, 1–10. https://doi.org/10.1016/j.apgeog.2012.11.004 (2013).Article 

    Google Scholar 
    Wang, Z. W. & Lu, C. H. Urban land expansion and its driving factors of mountain cities in China during 1990–2015. J. Geogr. Sci. 28(8), 1152–1166. https://doi.org/10.1007/s11442-018-1547-0 (2018).MathSciNet 
    Article 

    Google Scholar 
    Zhang, Y. W. & Xie, H. L. Interactive relationship among urban expansion, economic development, and population growth since the reform and opening up in China: An analysis based on a vector error correction model. Land 8(10), 153–153. https://doi.org/10.3390/land8100153 (2019).CAS 
    Article 

    Google Scholar 
    Deng, X., Huang, J., Rozelle, S. & Uchid, E. Growth, population and industrialization, and urban land expansion of China. J. Urban. Econ. 63(1), 96–115. https://doi.org/10.1016/j.jue.2006.12.006 (2006).Article 

    Google Scholar 
    Luo, J., Zhang, X. & Wu, Y. Urban land expansion and the floating population in China: For production or for living?. Cities 74(4), 219–228. https://doi.org/10.1016/j.cities.2017.12.007 (2018).Article 

    Google Scholar 
    Salem, M., Tsurusaki, N. & Divigalpitiya, P. Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: A case study of the greater Cairo region. Infrastructures 4(1), 4. https://doi.org/10.3390/infrastructures4010004 (2019).Article 

    Google Scholar 
    Salem, M., Bose, A. & Chowdhury, I. R. Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability 13(19), 1–17. https://doi.org/10.3390/su131910805 (2021).Article 

    Google Scholar 
    Su, Z. W. et al. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China. Geomat. Nat. Hazards. Risk. 9(1), 1207–1229. https://doi.org/10.1080/19475705.2018.1505667 (2018).Article 

    Google Scholar 
    Hu, Y. & Hu, Y. Land cover changes and their driving mechanisms in central Asia from 2001 to 2017 supported by google earth engine. Remote. Sens-Basel. 11(5), 554. https://doi.org/10.3390/rs11050554 (2019).ADS 
    Article 

    Google Scholar 
    Liu, Y., Song, W. & Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional dpsir-based indicators. Ecol. Indic. 2(96), 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029 (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L., Wang, Y. F., Sun, H. Y. & Yin, T. T. Comprehensive effectiveness evaluation and obstacle diagnosis of mining villages in the transition period. Trans. CSAE. 38(5), 241–249. https://doi.org/10.11975/j.issn.1002-6819.2022.05.029 (2022).Article 

    Google Scholar 
    Cheng, L. L., Sun, H. Y., Zhang, Y. & Zhen, S. Spatial structure optimization of mountainous abandoned mine land reuse based on system dynamics model and CLUE-S model. Int. J. Coal. Sci. Techn. 6, 113–126. https://doi.org/10.1007/s40789-019-0241-x (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L. & Yin, T. T. Impacts of anthropogenic and biophysical factors on ecological land using logistic regression and random forest: A case study in Mentougou District, Beijing, China. J. Mt. Sci. 19, 433–445. https://doi.org/10.1007/s11629-021-7022-x (2022).Article 

    Google Scholar 
    Gorelick, N., Hanchr, M., Dixon, M., Ilyushchenko, S. & Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS 
    Article 

    Google Scholar 
    Feng, R. D., Wang, F. Y. & Wang, K. Y. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao Greater Bay area. J. Clean. Prod. 283(9), 125304. https://doi.org/10.1016/j.jclepro.2020.125304 (2021).Article 

    Google Scholar 
    Sun, X., Lu, Z., Li, F. & Crittenden, J. C. Analyzing spatio-temporal changes and tradeoffs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indicat. 94, 117–129. https://doi.org/10.1016/j.ecolind.2018.06.049 (2018).Article 

    Google Scholar 
    Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A. & Pereira, J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest. Ecol. Manag. 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003 (2012).Article 

    Google Scholar 
    Ugur, A. Dynamic land cover mapping of urbanized cities with Landsat 8 multi-temporal images: Comparative evaluation of classification algorithms and dimension reduction methods. Isprs Int. J. Geo-Inf. 8(3), 139. https://doi.org/10.3390/ijgi8030139 (2019).Article 

    Google Scholar 
    Chapelle, O. Training a support vector machine in the primal. Neural. Comput. 19(5), 1155. https://doi.org/10.1162/neco.2007.19.5.1155 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lin, Q. Y., Guo, J. Y., Yan, J. F. & Wang, H. Land use and landscape pattern changes of Weihai, China based on object-oriented SVM classification from Landsat MSS/TM/OLI images. Eur. J. Remote. Sens. 51(1), 1036–1048. https://doi.org/10.1080/22797254.2018.1534532 (2018).Article 

    Google Scholar 
    Devos, O., Ruckebusch, C., Duponchel, L. & Huvenne, J. P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometr. Intell. Lab. 96(1), 27–33. https://doi.org/10.1016/j.chemolab.2008.11.005 (2009).CAS 
    Article 

    Google Scholar 
    Heumann, B. W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote. Sens-Basel. 3(11), 2440–2460. https://doi.org/10.3390/rs3112440 (2011).ADS 
    Article 

    Google Scholar 
    Hsu, C., Chang, C. C. & Lin, C. J. A practical guide to support vector classification, 15. Department of Computer Science, National Taiwan University. https://doi.org/10.1111/j.1365-3016.1995.tb00168.x (2009).Aspinall, R. Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin valley, Montana. J. Environ. Manage. 72(1–2), 91–103. https://doi.org/10.1016/j.jenvman.2004.02.009 (2004).Article 
    PubMed 

    Google Scholar 
    Wu, W. & Zhang, J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62. https://doi.org/10.1016/j.apgeog.2012.10.012 (2013).Article 

    Google Scholar 
    Thomas, D. R., Zhu, P. C. & Decady, Y. J. Point estimates and confidence intervals for variable importance in multiple linear regression. J. Educ. Behav. Stat. 32(1), 61–91. https://doi.org/10.1002/bimj.201100134 (2007).Article 

    Google Scholar 
    Huang, B. & Boutros, P. C. The parameter sensitivity of random forests. BMC Bioinform. 17, 331. https://doi.org/10.1186/s12859-016-1228-x (2016).Article 

    Google Scholar 
    Pang, J., Chen, Y., He, S., Qiu, H. & Mao, L. Classification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithms. J. Tribol-T. Asme. 143(9), 1–28. https://doi.org/10.1115/1.4049257 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M., Hu, S., Ge, Y., Heuvelink, G. & Huang, X. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spat. Stat.-Neth. 42, 100461. https://doi.org/10.1016/j.spasta.2020.100461 (2020).MathSciNet 
    Article 

    Google Scholar 
    Jutidamrongphan, W. Determine the land-use land-cover changes, urban expansion and their driving factors for sustainable development in Gazipur Bangladesh. Atmosphere 12(10), 1353. https://doi.org/10.3390/atmos12101353 (2021).ADS 
    Article 

    Google Scholar 
    Liu, M. & Tian, H. China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009GB003687 (2010).Article 

    Google Scholar 
    Tong, Z., Yao, S., Hu, W. & Cui, F. Simulation of urban expansion in Guangzhou Foshan metropolitan area under the influence of accessibility. Scientia. Geographica. Sinica. 38(5), 737–746 (2018).
    Google Scholar 
    Poelmans, L. & Rompaey, A. V. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 34(1), 17–27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001 (2010).Article 

    Google Scholar 
    Galinato, S. P. & Gregma, I. The effects of government spending on deforestation due to agricultural land expansion and CO2 related emissions. Ecol. Econ. 122, 43–53. https://doi.org/10.1016/j.ecolecon.2015.10.025 (2016).Article 

    Google Scholar 
    Xie, X. F., Wu, T., Zhu, M., Jiang, G. J. & Xw, E. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925. https://doi.org/10.1016/j.ecolind.2020.106925 (2021).CAS 
    Article 

    Google Scholar 
    Miller, M. D. The mpacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 34, 171–179. https://doi.org/10.1016/j.apgeog.2011.11.010 (2012).ADS 
    Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/1/014025 (2013).Article 

    Google Scholar 
    Qiao, W. et al. Multi-dimensional expansion of urban space through the lens of land use: The case study of Nanjing city, China. J. Geogr. Sci. 29(5), 749–761. https://doi.org/10.1007/s11442-019-1625-y (2019).Article 

    Google Scholar 
    Yza, B., Lt, A. & Hw, A. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 329, 129488. https://doi.org/10.1016/j.jclepro.2021.129488 (2021).Article 

    Google Scholar  More

  • in

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest

    Berenbaum, M. R. & Calla, B. Honey as a functional food for Apis mellifera. Annu. Rev. Entomol. 66, 185–208. https://doi.org/10.1146/annurev-ento-040320-074933 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Crane, E. Honey: A Comprehensive Survey (Heinemann, 1975).
    Google Scholar 
    Park, O. W. The storing and ripening of honey by honeybees. J. Econ. Entomol. 18, 405–410 (1925).Article 

    Google Scholar 
    Reinhardt, J. F. Ventilating the bee colony to facilitate the honey ripening process. J. Econ. Entomol. 32, 654–660. https://doi.org/10.1093/jee/32.5.654 (1939).Article 

    Google Scholar 
    Eyer, M., Neumann, P. & Dietemann, V. A look into the cell: Honey storage in honey bees, Apis mellifera. PLoS ONE 11(8), e0161059 (2016).Article 

    Google Scholar 
    Oertel, E., Fieger, E. A., Williams, V. R. & Andrews, E. A. Inversion of cane sugar in the honey stomach of the bee. J. Econ. Entomol. 44, 487–492 (1951).CAS 
    Article 

    Google Scholar 
    Park, O. W. Studies on the changes in nectar concentration produced by the honeybee, Apis mellifera. Part I. Changes which occur between the flower and the hive. Res. Bull. Iowa Agric. Exp. Station 151, 211–243 (1932).
    Google Scholar 
    Nicolson, S. W. & Human, H. Bees get a head start on honey production. Biol. Let. 4, 299–301. https://doi.org/10.1098/rsbl.2008.0034 (2008).Article 

    Google Scholar 
    Nicolson, S. W. & Louw, G. N. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287–296 (1982).Article 

    Google Scholar 
    Schmid-Hempel, P., Kacelnik, A. & Houston, A. I. Honeybees maximize efficiency by not filling their crop. Behav. Ecol. Sociobiol. 17, 61–66 (1985).Article 

    Google Scholar 
    Kacelnik, A., Houston, A. I. & Schmid-Hempel, P. Central-place foraging in honey bees: The effect of travel time and nectar flow on crop filling. Behav. Ecol. Sociobiol. 19, 19–24. https://doi.org/10.1007/BF00303838 (1986).Article 

    Google Scholar 
    Wolf, T. J., Schmid-Hempel, P., Ellington, C. P. & Stevenson, R. D. Physiological correlates of foraging efforts in honey-bees: Oxygen consumption and nectar load. Funct. Ecol. 3, 417–424 (1989).Article 

    Google Scholar 
    Mitchell, D. Thermal efficiency extends distance and variety for honeybee foragers: Analysis of the energetics of nectar collection and desiccation by Apis mellifera. J. R. Soc. Interface 16, 20180879. https://doi.org/10.1098/rsif.2018.0879 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, S. A. et al. Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).Article 

    Google Scholar 
    Harano, K. & Nakamura, J. Nectar loads as fuel for collecting nectar and pollen in honeybees: Adjustment by sugar concentration. J. Comp. Physiol. A. https://doi.org/10.1007/s00359-016-1088-x (2016).Article 

    Google Scholar 
    Nicolson, S. W. & van Wyk, B.-E. Nectar sugars in Proteaceae: Patterns and processes. Aust. J. Bot. 46, 489–504 (1998).Article 

    Google Scholar 
    Corbet, S. A. Nectar sugar content: Estimating standing crop and secretion rate in the field. Apidologie 34, 1–10. https://doi.org/10.1051/apido:2002049 (2003).CAS 
    Article 

    Google Scholar 
    Southwick, E. E. & Pimentel, D. Energy efficiency of honey production by bees. Bioscience 31, 730–732. https://doi.org/10.2307/1308779 (1981).Article 

    Google Scholar 
    Mitchell, D. Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: A theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor. J. R. Soc. Interface 16, 20190048. https://doi.org/10.1098/rsif.2019.0048 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human, H., Nicolson, S. W. & Dietemann, V. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?. Naturwissenschaften 93, 397–401 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Ellis, M. B. Homeostasis: Humidity and water relations in honeybee colonies, MSc thesis, University of Pretoria (2008).Ellis, M., Nicolson, S., Crewe, R. & Dietemann, V. Hygropreference and brood care in the honeybee (Apis mellifera). J. Insect Physiol. 54, 1516–1521. https://doi.org/10.1016/j.jinsphys.2008.08.011 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Portman, Z. M., Ascher, J. S. & Cariveau, D. P. Nectar concentrating behavior by bees (Hymenoptera: Anthophila). Apidologie 52, 1169–1194. https://doi.org/10.1007/s13592-021-00895-1 (2021).Article 

    Google Scholar 
    Nicolson, S. W. Water homeostasis in bees, with the emphasis on sociality. J. Exp. Biol. 212, 429–434. https://doi.org/10.1242/jeb.022343 (2009).Article 
    PubMed 

    Google Scholar 
    Pokorny, T., Lunau, K. & Eltz, T. Raising the sugar content – orchid bees overcome the constraints of suction feeding through manipulation of nectar and pollen provisions. PLoS ONE 9(11), e113823. https://doi.org/10.1371/journal.pone.0113823 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindauer, M. The water economy and temperature regulation of the honeybee colony. Bee World 36, 81–92 (1955).Article 

    Google Scholar 
    Heinrich, B. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J. Exp. Biol. 85, 61–72 (1980).Article 

    Google Scholar 
    Cooper, P. D., Schaffer, W. M. & Buchmann, S. L. Temperature regulation of honeybees (Apis mellifera) foraging in the Sonoran desert. J. Exp. Biol. 114, 1–15 (1985).Article 

    Google Scholar 
    Louw, G. N. & Hadley, N. F. Water economy of the honeybee: A stoichiometric accounting. J. Exp. Zool. 235, 147–150 (1985).Article 

    Google Scholar 
    Rodney, S. & Purdy, J. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: A review to support pesticide exposure assessment for honey bees. Apidologie 51, 163–179. https://doi.org/10.1007/s13592-019-00694-9 (2020).Article 

    Google Scholar 
    Drezner-Levy, T., Smith, B. & Shafir, S. The effect of foraging specialization on various learning tasks in the honey bee (Apis mellifera). Behav. Ecol. Sociobiol. 64, 135–148. https://doi.org/10.1007/s00265-009-0829-z (2009).Article 

    Google Scholar 
    Afik, O. & Shafir, S. Effect of ambient temperature on crop loading in the honey bee, Apis mellifera (Hymenoptera: Apidae). Entomologia Generalis 29, 135–148 (2007).Article 

    Google Scholar 
    Seeley, T. D. Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34, 51–62 (1994).Article 

    Google Scholar 
    Waller, G. D. Evaluating responses of honeybees to sugar solutions using an artificial-flower feeder. Ann. Entomol. Soc. Am. 65, 857–862 (1972).CAS 
    Article 

    Google Scholar 
    Nicolson, S. W., de Veer, L., Köhler, A. & Pirk, C. W. W. Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proc. R. Soc. B: Biol. Sci. 280, 20131597. https://doi.org/10.1098/rspb.2013.1597 (2013).Article 

    Google Scholar 
    Neff, J. L. & Simpson, B. B. The roles of phenology and reward structure in the pollination biology of wild sunflower (Helianthus annuus L., Asteraceae). Israel J. Bot. 39, 197–216 (1990).
    Google Scholar 
    Waller, G. D., Carpenter, E. W. & Ziehl, O. A. Potassium in onion nectar and its probable effect on attractiveness of onion flowers to honey bees. J. Am. Soc. Hortic. Sci. 97, 535–539 (1972).CAS 
    Article 

    Google Scholar 
    Roubik, D. W., Yanega, D., Aluja, M., Buchmann, S. L. & Inouye, D. W. On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie 26, 197–211 (1995).Article 

    Google Scholar 
    Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743. https://doi.org/10.1111/2041-210X.12928 (2018).Article 
    PubMed 

    Google Scholar 
    Pattrick, J. G., Symington, H. A., Federle, W. & Glover, B. J. The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging. J. R. Soc. Interface 17, 20190632. https://doi.org/10.1098/rsif.2019.0632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strauss, U., Dietemann, V., Human, H., Crewe, R. M. & Pirk, C. W. W. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor. Parasitology 143, 374–387. https://doi.org/10.1017/s0031182015001754 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, F. C. & Seeley, T. D. Interspecific comparisons of endothermy in honey-bees (Apis): Deviations from the expected size-related patterns. J. Exp. Biol. 127, 1–26. https://doi.org/10.1242/jeb.127.1.1 (1987).Article 

    Google Scholar  More

  • in

    Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 
    Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 
    Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).
    Google Scholar 
    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).
    Google Scholar 
    Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).
    Google Scholar 
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 
    Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 
    Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 
    Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).
    Google Scholar 
    Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).CAS 
    PubMed 

    Google Scholar 
    Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).
    Google Scholar 
    Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).PubMed Central 

    Google Scholar 
    Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).
    Google Scholar 
    Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).
    Google Scholar 
    Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).PubMed 

    Google Scholar 
    Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).
    Google Scholar 
    Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).
    Google Scholar 
    Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).CAS 
    PubMed 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).ADS 

    Google Scholar 
    Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).
    Google Scholar 
    Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).
    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).
    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).
    Google Scholar 
    Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).PubMed 

    Google Scholar 
    Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).ADS 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).ADS 

    Google Scholar 
    Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).CAS 
    PubMed 

    Google Scholar 
    Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).PubMed 

    Google Scholar 
    Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).CAS 
    PubMed 

    Google Scholar 
    Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).PubMed 

    Google Scholar  More

  • in

    Efficiency of the traditional practice of traps to stimulate black truffle production, and its ecological mechanisms

    Dataset 1: Analysis of truffle growers archivesWe selected eleven T. melanosporum orchards located across the South-West France, from Montpellier (43°44′01.4″N 3°42′13.2″E) to Jonzac (45°27′17.7″N, 0°25′26.9″W; Fig. 2). These sites were selected for (1) the quality of the records of fruitbody production and practices by truffle growers (Table S1), including the detail of inoculations since plantation (amount and frequency of added crushed sporocarps), (2) the use of truffle traps by the owners and the quality of the record from these devices, and (3) the presence of oaks (Quercus ilex, Q. pubescens and Q. suber) as the only hosts tree species. Based on the archives of truffle growers, including a systematic recording of truffle production within and outside traps, we reported at each study site the contribution of truffle traps to the annual fruitbody production of the entire truffle grounds, by using number and/or weight of collected fruitbodies within (Pin) and outside (Pout) truffle traps.Dataset 2: In situ experiment tracing the inoculation effectThree orchards located near Angoulème (45°74′35.5″N, − 0°63′78.4″W), Jonzac (45°44′09.8″N, 0°43′96.7″W), and Arles-sur-Tech (42°45′44.9″N, 2°62′89.4″W), hereafter referred to Site 1 to 3 (Fig. 2) were selected for testing both disturbance effect and inoculum effect on fruitbody production in truffle traps. These sites presented a high fruitbody production and a high Pin/Pout ratio, thus optimum conditions to test mechanisms underlying how truffle traps influence fruitbody production. Host trees were between 5 and 18 years old at the beginning of the experiment (Fig. 2). At each site, we selected three non-adjacent trees (four on Site 3) that displayed a continuous fruitbody production over the three previous years. Under each selected tree, we excavated, at two-thirds of the distance between the tree trunk and the limit of brûlé (a vegetation-poor zone that shows the extension mycelia in the soil40, eight equidistant truffle traps [20 × 20 cm large × 20 cm deep] as shown in Fig. 3a. Under each tree, two traps were filled with only a mixture of peat and vermiculite (hereafter referred as non-inoculated controls) to test for disturbance effect. The used mixture was identical to that which is currently applied in commercial orchards. In three other traps, 5 g of crushed material from a single black truffle fruitbody (including its gleba and spores) were added to the previous mixture (hereafter referred as one mating-type inoculum). In the three last traps, 5 g of crushed material from two ascocarps with gleba of opposite mating types (hereafter referred as two mating-type inoculum) were added to the previous mixture. We added the two mating-type condition to accurately test a potential contribution of the gleba (haploid and thus with a single mating type) on future production. As quoted in Introduction, maternal individuals with opposite mating types tend to exclude each other locally (spatial segregation of clusters of individuals of same mating types26. Thus, the two mating-type inoculum allows us to detect in each trap a maternal contribution by the introduced gleba, despite potential exclusion by pre-installed individuals of the locally dominant mating type in the surrounding. Moreover, it allows us to detect a paternal contribution by the introduced gleba of the mating type opposite to the locally dominant. The eight truffle traps were randomly arranged, so that two repetitions of same modality were always separated by a repetition of another modality (Fig. 3a).In March 2013, six freshly collected truffles (weighting  > 60 g) were molecularly analyzed for the mating type of their gleba as in18. On Site 1 and Site 2, the inoculum was made of fruitbodies collected at Site 1. On Site 3, fruitbodies used as inoculum originated from truffle grounds in Sarrion (Spain). In April 2013, truffles traps were installed as explained above (in all, 8 traps × 3 (or 4) trees × 3 sites) and monitored for two years by truffle growers. Harvesting was performed by trained dogs (one different dog per site) checking truffle traps and the surrounding brûlés at each visit of the orchard by truffle growers. When dogs detected truffles, a small hole was excavated to collect ascocarps without disturbing the trap further. At the end of January, 2015, all truffle traps were completely excavated, remnant truffles overlooked by dogs were systematically collected (Fig. 3b). Three soil aliquots were collected within all traps and pooled. All truffles and soil aliquots were frozen for subsequent DNA analysis.Molecular and genetic analysesDNA extractions, mating typing and genotyping were done as in18. Briefly, DNA was extracted from the gleba and from spores of each fruitbody to get access to the maternal and zygotic DNA, respectively. Simple sequence repeat (SSRs) genotyping was performed using 12 polymorphic markers and the mating-type locus as in18. Gleba extracts displaying apparent heterozygous genotypes, likely due to contamination by spore DNA were systematically discarded from further analyses. For each fruitbody, the haploid paternal genotype was then deduced by subtracting the haploid maternal genotype from the zygotic diploid genotype. This data set was used for relatedness estimations. We discarded from all further analysis the marker me11, which displayed more than 39% missing data, as well as all samples with missing data for at any locus.Multilocus genotypes comparisonsBased on the 11 remaining SSRs and the mating-type (Table S5 and Figure S2), MLGs were identified on all maternal and paternal haploid genomes using GenClone v.2.041, and the probability that MLGs represented more than once resulted from independent events of sexual reproduction was calculated (PSex41,42). On each site, clonal diversity was measured as R = (G − 1)/(N − 1) according to43, where N is the number of fruitbodies and G the number of MLGs. For testing whether the gleba of the inoculated fruitbody contributed, either paternally (H1) or maternally (H2) to the harvested fruitbodies (Fig. 1c), the inoculated maternal MLG was compared to the paternal and maternal MLG of the harvested fruitbodies.Relatedness estimationFor testing whether the spores of the inoculum, which carry many distinct haploid MLGs due to meiosis, had paternal or maternal contribution(s) to the harvested fruitbodies (H3; Fig. 1c), we used relatedness estimation.For testing whether spores of the inoculum had a paternal contribution, an individual relatedness estimate to the spore inoculum was computed for each paternal genome detected in truffle traps. Relatedness r here describes the expected frequency E[p_offpat] of each allele in a given genome, E[p_offpat] = p_pop + r * (p_inoc − p_pop), where p_pop is the allele frequency in the local population (here estimated from the glebas of other truffles collected under the focal tree), and p_inoc is the frequency of the allele in the inoculum. Thus, p_offpat takes values 0 or 1, and p_inoc takes values 0, 0.5 or 1, except when two fruitbodies were used as inoculum (two gleba mating types traps). Thus r = (p_offpat − p_pop)/(p_inoc − p_pop). An individual relatedness estimate for each genome is then obtained by summing over alleles and loci the observed values of the numerator and denominator in this expression. A population-level estimate is further obtained by summing numerators and denominators over the paternity events in each population.To test whether such estimates are compatible with the hypothesis that the paternal individuals are not from the inocula, we obtained the distribution of population-level relatedness estimates by simulating samples under this hypothesis: paternal genotypes were randomly simulated according to alleles frequencies in the local population. For each population, 10,000 samples were simulated, and p-values were estimated as the proportion of simulations with higher population-level relatedness with inocula than the observed one. Confidence intervals for these p-values were computed from the binomial distribution for 10,000 draws, and Bonferroni-corrected over the three populations.For testing whether spores of the inoculum had a maternal contribution (H4, Fig. 1c), we estimated the relatedness of the locally used spore inoculum to each maternal genome detected in truffle traps (deduced from the gleba), and we confronted it to simulated samples as previously but with one modification: if the focal fruitbody was harvested in a trap inoculated with the inoculum A1, all genomes of truffles from traps inoculated with the same inoculum (A1 or A1 + A2 + A3, see Fig. 3c.) were discarded from the estimation of p_pop.Assessment of T. melanosporum mycelium concentration in truffle trapsOn Sites 1, 2 and 3, soil samples were collected in all traps and in the surrounding brûlés at harvesting date (January, 2015). In collected soils, total DNA was extracted and quantified as in19. Briefly, after sieving and homogenizing soil collected in each trap and from out of the brûlés, aliquots (10 g) were analyzed as follows. After extraction with the kit Power Soil (MoBio Laboratories, Carlsbad, CA, USA), the extra-radical mycelium of T. melanosporum was quantified using quantitative Taqman™ PCR (qPCR) with the primers and probe described in44. Triplicate real-time PCR were performed on each sample using the same concentration of primer and the same thermocycling program as in19. Standards were prepared using fresh immature T. melanosporum ascocarp, and a standard curve was generated for each site by plotting serial tenfold dilutions against corresponding initial amount of ascocarp. Absolute quantification of mycelium biomass of T. melanosporum was expressed in mg of mycelium per g of soil.Statistical analysesStatistics were done using R version 4.0.445.Effect of truffle traps on fruitbody production—The contribution of truffle traps to the overall production of orchards was assessed by (1) data mining of truffle growers’ archives (Dataset 1) and (2) comparing the density of truffles harvested in traps (expressed in number of truffles per m2 per orchard; for each sampled tree, traps correspond to an investigated soil surface of s = 8 × 0.2 x 0.2 = 0.32 m2) with the density measured within surrounding brûlés (Dataset 1). On Dataset2, at each site, the area occupied by brûlés was evaluated by measuring in the field the surface of soil devoid of vegetation consecutively to spontaneous T. melanosporum brûlé.Fruitbody production under different conditions (i.e. non-inoculated controls versus one gleba mating type traps versus two gleba mating type traps) were compared using generalized linear mixed models with negative binominal family and log link (R, spam package46). The full model included the logarithm of the sampled area as offset to account for variations in this sampled area, interactions of trap-modality effects with site effect. Formal likelihood ratio tests are based on one-step deletions from this full model, applied to subsets of the data relevant for each hypothesis tested. Additional bootstrap tests (1000 iterations) were run to correct any bias in small sample likelihood ratio tests.Concentrations of T. melanosporum mycelium in soil—Similarly as above, the inoculum effect on mycelium concentrations was compared using generalized linear mixed models with Gamma log family.Plant materialThe use of plants in the present study complies with international, national and/or institutional guidelines. All permissions to collect T. melanosporum fruitbodies in truffle orchards were obtained. The formal identification of biological material used in the study (T. melanosporum fruitbodies) was undertaken by F. Richard and E. Taschen. Voucher specimens of all collected fruitbodies have been deposited in the Centre d’Ecologie Fonctionnelle et Evolutive herbarium in Montpellier (France).Ethical approvalAll co-authors approve the ethical statement regarding the submitted manuscript.Consent to participateAll co-authors consent to participate to the research and agree with the content of the submitted manuscript. All authors reviewed and submitted manuscript. More