The Holocene temperature conundrum answered by mollusk records from East Asia
Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).ADS
Article
Google Scholar
Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).ADS
CAS
PubMed
Article
Google Scholar
Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS
CAS
PubMed
Article
Google Scholar
Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).ADS
CAS
PubMed
Article
Google Scholar
Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).ADS
CAS
Article
Google Scholar
Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).ADS
CAS
Article
Google Scholar
Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).ADS
Article
Google Scholar
Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).ADS
Article
Google Scholar
Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).ADS
Article
Google Scholar
Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).Article
Google Scholar
Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).Article
Google Scholar
Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).ADS
Article
Google Scholar
Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).PubMed
Article
Google Scholar
Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).CAS
Google Scholar
Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).CAS
Google Scholar
Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).CAS
Article
Google Scholar
Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).Article
Google Scholar
Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).Article
Google Scholar
Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).ADS
CAS
Article
Google Scholar
Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).Article
Google Scholar
Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).ADS
CAS
Article
Google Scholar
Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).ADS
CAS
PubMed
Article
Google Scholar
Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).
Google Scholar
Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).ADS
Article
Google Scholar
Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).ADS
Article
Google Scholar
Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).CAS
Google Scholar
Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).Article
Google Scholar
Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).ADS
Article
Google Scholar
Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).Article
Google Scholar
Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).ADS
Article
Google Scholar
Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).ADS
Google Scholar
Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).ADS
Article
Google Scholar
de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).ADS
Google Scholar
Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).Article
Google Scholar
James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).Article
Google Scholar
Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).Article
Google Scholar
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).ADS
MATH
Article
Google Scholar
Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).PubMed
PubMed Central
Article
Google Scholar
Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).ADS
Article
Google Scholar
Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).ADS
Article
Google Scholar
Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).ADS
Article
Google Scholar
Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).Article
Google Scholar
Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).ADS
Article
Google Scholar
Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS
Article
Google Scholar
Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).ADS
CAS
PubMed
Article
Google Scholar
Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).
Google Scholar
Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).ADS
CAS
PubMed
Article
Google Scholar
Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).Article
Google Scholar
Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).
Google Scholar
Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article
Google Scholar
Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).Article
Google Scholar
Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).ADS
Article
Google Scholar
Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).Article
Google Scholar
Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).Article
Google Scholar
Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).Article
Google Scholar More