Lucas, C. H. et al. Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers. Glob. Ecol. Biogeogr. 23, 701–714. https://doi.org/10.1111/Geb.12169 (2014).Article 
 Google Scholar 
 Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. USA 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).ADS 
 Article 
 PubMed 
 Google Scholar 
 Graham, W. M. et al. Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 12, 515–523. https://doi.org/10.1890/130298 (2014).Article 
 Google Scholar 
 Lucas, C. H., Gelcich, S. & Uye, S. I. Living with jellyfish: Management and adaptation strategies. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 129–150 (Springer, 2014).Chapter 
 Google Scholar 
 De Donno, A. et al. Impact of stinging jellyfish proliferations along south Italian coasts: Human health hazards, treatment and social costs. Int. J. Environ. Res. Public Health 11, 2488–2503 (2014).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Bosch-Belmar, M. et al. Consequences of stinging plankton blooms on finfish mariculture in the Mediterranean Sea. Front. Mar. Sci. 4, 240. https://doi.org/10.3389/fmars.2017.0024 (2017).Article 
 Google Scholar 
 Mayer, A. G. Medusae of the World: The Hydromedusae 132–498 (Carnegie institution of Washington, 1910).Book 
 Google Scholar 
 Kramp, P. L. Synopsis of the medusae of the world. J. Mar. Biol. Assoc. UK 40, 1–469 (1961).
 Google Scholar 
 Canepa, A. et al. Pelagia noctiluca in the Mediterranean Sea. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 237–266 (Springer, 2014).Chapter 
 Google Scholar 
 Marambio, M. et al. Unfolding jellyfish bloom dynamics along the Mediterranean basin by transnational citizen science initiatives. Diversity 13, 274. https://doi.org/10.3390/d13060274 (2021).Article 
 Google Scholar 
 Mamish, S., Durgham, H. & Ikhtiyar, S. The first Pelagia noctiluca outbreak off the Syrian coast (the eastern Mediterranean Sea), five years after its first appearance. SSRG Int. J. Agric. Environ. Sci. 6, 72–75 (2019).
 Google Scholar 
 Daly Yahia, M. N. et al. Are outbreaks of Pelagia noctiluca (Forsskäl, 1775) more frequent in the Mediterranean Basin?. ICES Coop. Res. Rep. 300, 8–14 (2010).
 Google Scholar 
 Aissi, M., Touzri, C., Gueroun, S. K. M., Kefi-Daly Yahia, O. & Daly Yahia, M. N. Persistent occurrence and life cycle of Pelagia noctiluca in the channel of Bizerte (Northern Tunisia). Ecol. Environ. Conserv. 20, 1453–1460 (2014).
 Google Scholar 
 Kogovsĕk, T., Bogunović, B. & Malej, A. Recurrence of bloom forming scyphomedusae: Wavelet analysis of a 200-year time series. Hydrobiologia 645, 81–96 (2010).Article 
 CAS 
 Google Scholar 
 Pestoric, B. et al. Scyphomedusae and ctenophora of the eastern adriatic: Historical overview and new data. Diversity 13, 186. https://doi.org/10.3390/d13050186 (2021).CAS 
 Article 
 Google Scholar 
 UNEP (United Nations Environmental Programme). Workshop on Jellyfish Blooms in the Mediterranean, Athens (1984).UNEP (United Nations Environmental Programme). Jellyfish blooms in the Mediterranean Sea. Proceedings of II Workshop on Jellyfish in the Mediterranean Sea, Athens (1991).Goy, J., Morand, P. & Etienne, M. Long term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean. Sea Prediction by climatic variables. Deep-Sea Res. A 36, 269–279 (1989).ADS 
 Article 
 Google Scholar 
 Bernard, P., Berline, L. & Gorsky, G. Long term (1981–2008) monitoring of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) on the French Mediterranean Coasts. J. Oceanogr. Res. Data 4, 1–10 (2011).
 Google Scholar 
 Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish population: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).Article 
 Google Scholar 
 Rosa, S., Pansera, M., Granata, A. & Guglielmo, L. Interannual variability, growth, reproduction and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central Mediterranean Sea): Linkages with temperature and diet. J. Mar. Syst. 111–112, 97–107 (2013).Article 
 Google Scholar 
 Aoutien, M., Bekkali, R., Nachit, D., Luan, K. & Mrhraoui, M. Predicting jellyfish strandings in the Moroccan North-West Mediterranean coastline. Eur. Sci. J. 15, 72–84. https://doi.org/10.19044/esj.2019.v15n2p72 (2019).Article 
 Google Scholar 
 Lynam, C. P., Hay, S. J. & Brierley, A. S. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol. Oceanogr. 49, 637–643 (2004).ADS 
 Article 
 Google Scholar 
 Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782 (2011).ADS 
 Article 
 Google Scholar 
 Brodeur, R. D. et al. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog. Oceanogr. 77, 103–111 (2008).ADS 
 Article 
 Google Scholar 
 Molinero, J. C. et al. Climate control on the longterm anomalous changes of zooplankton communities in the Northwestern Mediterranean. Glob. Change Biol. 14, 11–26 (2008).ADS 
 Article 
 Google Scholar 
 Licandro, P. et al. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biol. Let. 6, 688–691 (2010).CAS 
 Article 
 Google Scholar 
 Ferraris, M. et al. Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34, 874–885 (2012).Article 
 Google Scholar 
 Malačič, V., Petelin, B. & Malej, A. Advection of the jellyfish Pelagia noctiluca (Scyphozoa) studied by the Lagrangian tracking of water mass in the climatic circulation of the Adriatic Sea. Geophys. Res. Abstr. 9, 02802 (2007).
 Google Scholar 
 Rubio, P. & Muñoz, J. M. Predicción estival del riesgo de blooms de Pelagia noctiluca (litoral central catalán). In Situaciones de riesgo climático en España (ed. Novau, J. C.) 281–287 (Instituto Pirenaico de Ecología, 1997).
 Google Scholar 
 Berline, L., Zakardjian, B., Molcard, A., Ourmieres, Y. & Guihou, K. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar. Pollut. Bull. 70, 90–99 (2013).CAS 
 PubMed 
 Article 
 Google Scholar 
 Olds, A. D. et al. Quantifying the conservation value of seascape connectivity: A global synthesis. Glob. Ecol. Biogeogr. 25, 3–15 (2016).Article 
 Google Scholar 
 Vodopivec, M., Peliz, A. J. & Malej, A. Offshore marine constructions as propagators of moon jellyfish dispersal. Environ. Res. Lett. 12, 084003 (2017).ADS 
 Article 
 Google Scholar 
 Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).ADS 
 CAS 
 Article 
 Google Scholar 
 Fernandez-Arcaya, U. et al. Ecological role of submarine canyons and need for canyon conservation: A review. Front. Mar. Sci. 4, 5. https://doi.org/10.3389/fmars.2017.00005 (2017).Article 
 Google Scholar 
 Würtz, M. Towards a Mediterranean canyon inventory. Workshop (EBSAs), 7 to 11 April 2014, Málaga, Spain, 1–4 (2014).Sacchetti, F. Il ritorno di MeteoMedusa. Focus (Madison) 237, 92–94 (2012).
 Google Scholar 
 Benedetti-Cecchi, L. et al. Deterministic factors overwhelm stochastic environmental fluctuations as drivers of jellyfish outbreaks. PLoS ONE 10, e0141060. https://doi.org/10.1371/journal.pone.0141060 (2015).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Malej, A. & Malej, M. Population dynamics of the jellyfish Pelagia noctiluca (Forsskäl, 1775). In Proceedings of the 25th EMBS, Marine Eutrophication and Population Dynamics (ed. Colombo, G.A.) 215–219 (Olsen & Olsen, 1992).Rottini-Sandrini, L., Avian, M., Axiak, V. & Malej, A. The breeding period of Pelagia noctiluca (Scyphozoa, Semaeostomeae) in the Adriatic and central Mediterranean Sea. Nova Thalass. 6, 65–75 (1983).
 Google Scholar 
 Milisenda, G. et al. Reproductive and bloom patterns of Pelagia noctiluca in the Strait of Messina, Italy. Estuar. Coast. Shelf Sci. 201, 29–39. https://doi.org/10.1016/j.ecss.2016.01.002 (2018).ADS 
 Article 
 Google Scholar 
 Magazzù, G. et al. Picoplankton: Contribution to phytoplankton production in the Strait of Messina. Mar. Ecol. 8, 21–31 (1987).ADS 
 Article 
 Google Scholar 
 Guglielmo, L., Crescenti, N., Costanzo, G. & Zagami, G. Zooplankton and micronekton communities in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A. & De Domenico, E.) 247–270 (Dipartimento di Biologia Animale ed Ecologia, 1995).Guglielmo, L. et al. The Strait of Messina: A key area for Pelagia noctiluca (Cnidaria, Scyphozoa). In Jellyfish: Ecology, Distribution Patterns and Human Interactions (ed. Mariottini, G. L.) 71–90 (Nova Science Publishers Inc., 2017).
 Google Scholar 
 Astraldi, M. & Gasparini, G. P. The seasonal characteristics of the circulation in the Tyrrhenian Sea. In: Seasonal and Interannual Variability of the Western Mediterranean Sea, Coast. Estuar. Studies, Vol. 46, 115–134 (American Geophysical Union, 1994).Krivosheya, V. G. Water circulation and structure in the Tyrrhenian Sea. Oceanology 23, 166–171 (1983).
 Google Scholar 
 Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 (1999).Article 
 Google Scholar 
 Vetrano, A., Napolitano, E., Iacono, R., Schroeder, K. & Gasparini, G. P. Tyrrhenian Sea circulation and water mass fluxes in spring 2004: Observations and model results. J. Geophys. Res. 115, C06023 (2010).ADS 
 Google Scholar 
 Iacono, R., Napolitano, E., Marullo, S., Artale, V. & Vetrano, A. Seasonal variability of the Tyrrhenian Sea surface geostrophic circulation as assessed by altimeter data. J. Phys. Oceanogr. 43, 1710–1732. https://doi.org/10.1175/JPO-D-12-0112.1 (2013).ADS 
 Article 
 Google Scholar 
 Boero, F. et al. CoCoNet: Towards coast to coast networks of Marine Protected Areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. Inf. Technol. 6(Suppl.), 1–95 (2016).
 Google Scholar 
 Rio, M. H. et al. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 65, 484–508 (2007).Article 
 Google Scholar 
 Cucco, A. et al. Hydrodynamic modelling of coastal seas: The role of tidal dynamics in the Messina Strait, Western Mediterranean Sea. Nat. Hazards Earth Syst. Sci. 16, 1553–1569 (2016).ADS 
 Article 
 Google Scholar 
 Hopkins, T. S., Salusti, E. & Settimi, D. Tidal forcing of the water mass interface in the Straits of Messina. J. Geophys. Res. 89, 2013–2024 (1984).ADS 
 Article 
 Google Scholar 
 Bignami, F. & Salusti, E. Tidal currents and transient phenomena in the Strait of Messina: A review. In: The Physical Oceanography of Sea Straits (ed. Pratt, L. J.) 95–124 (Kluwer Academic, 1990).Azzaro, F., Decembrini, F., Raffa, F. & Crisafi, E. Seasonal variability of phytoplankton fluorescence in relation to the Straits of Messina (Sicily) tidal upwelling. Ocean Sci. Discuss. 4, 415–440 (2007).ADS 
 Google Scholar 
 De Domenico, E., Cortese, G. & Pulicanò, G. Chemical characteristics of the waters in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A., & De Domenico, E.) 155–167 (Dipartimento di Biologia Animale ed Ecologia Marina, 1995).Guglielmo, L. Distribuzione di Chetognati nell’area idrografica dello Stretto di Messina. Pubbl. Staz. Zool. Napoli 40, 34–72 (1976).
 Google Scholar 
 Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Temporal succession of tintinnids in the northern Ionian Sea, Central Mediterranean. J. Plankton Res. 29, 495–508 (2007).Article 
 Google Scholar 
 AA.VV. Final Scientific Report of the Project Cluster 10—SAM “Realizzazione ed attivazione di una rete integrata di piattaforme costiere e mezzo mobile attrezzati per Sistemi Avanzati di Monitoraggio delle acque (SAM)”, funded by the Italian Ministry of University and Scientifical and Technological Research (MURST), Internal Data File, Istituto Sperimentale Talassografico, National Research Council, Messina, Italy (2005).Sitran, R. Caratterizzazione dei popolamenti microzooplanctonici nell’area idrografica dello Stretto di Messina, University of Messina, Ph.D. Thesis XVII cycle (2006) (in Italian).Bergamasco, A. et al. A laboratory for the observation of a highly-energetic coastal marine system: The Straits of Messina. In Volume DTA/06–2011, “Marine Research at CNR” 2185–2202 (Department of Earth and Environment of National Research Council, 2011).Doyle, T. K. et al. Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. J. Plankton Res. 30, 963–968 (2008).Article 
 Google Scholar 
 Guglielmo, L. Spiaggiamenti di eufausiacei lungo la costa messinese dello Stretto dal dicembre 1968 al dicembre 1969. Boll. Pesca Piscic. Idrobiol. 24, 71–77 (1969).
 Google Scholar 
 Guglielmo, L., Costanzo, G. & Berdar, A. Ulteriore contributo alla conoscenza dei crostacei spiaggiati lungo il litorale messinese dello Stretto. Atti Soc. Pelorit. 19, 129–156 (1973).
 Google Scholar 
 Scotto Di Carlo, B., Costanzo, G., Fresi, E., Guglielmo, L. & Ianora, A. Feeding ecology and stranding mechanisms in two lanternfishes, Hygophum benoiti and Myctophum punctatum. Mar. Ecol. Prog. Ser 9, 13–24 (1982).ADS 
 Article 
 Google Scholar 
 Battaglia, P., Ammendolia, G., Cavallaro, M., Consoli, P. & Esposito, V. Influence of lunar phases, winds and seasonality on the stranding of mesopelagic fish in the Strait of Messina (Central Mediterranean Sea). Mar. Ecol. 38, e12459. https://doi.org/10.1111/maec.12459 (2017).Article 
 Google Scholar 
 Umgiesser, G., Canu, D. M., Cucco, A. & Solidoro, C. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 51, 123–145 (2004).Article 
 Google Scholar 
 Ferrarin, C., Bergamasco, A., Umgiesser, G. & Cucco, A. Hydrodynamics and spatial zonation of the Capo Peloro coastal system (Sicily) through 3-D numerical modeling. J. Mar. Syst. 117, 96–107 (2013).Article 
 Google Scholar 
 Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F. & Bellafiore, D. Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J. Geophys. Res. Oceans 119, 2212–2226 (2014).ADS 
 Article 
 Google Scholar 
 Cucco, A., Quattrocchi, G., Satta, A., Antognarelli, F. & De Biasio, F. Predictability of wind-induced sea surface transport in coastal areas. J. Geophys. Res. Oceans 121, 5847–5871. https://doi.org/10.1002/2016JC011643 (2016).ADS 
 Article 
 Google Scholar 
 Cucco, A., Quattrocchi, G. & Zecchetto, S. The role of temporal resolution in modeling the wind induced sea surface transport in coastal seas. J. Mar. Syst. 193, 46–58. https://doi.org/10.1016/j.jmarsys.2019.01.004 (2019).Article 
 Google Scholar 
 Quattrocchi, G. et al. An operational numerical system for oil stranding risk assessment in a high-density vessel traffic area. Front. Mar. Sci. 8, 585396. https://doi.org/10.3389/fmars.2021.585396 (2021).Article 
 Google Scholar 
 Cucco, A. et al. A high-resolution real-time forecasting system for predicting the fate of oil spills in the Strait of Bonifacio (western Mediterranean Sea). Mar. Pollut. Bull. 64, 1186–1200 (2012).CAS 
 PubMed 
 Article 
 Google Scholar 
 Cucco, A. & Umgiesser, G. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins. Mar. Pollut. Bull. 98, 210–220 (2015).CAS 
 PubMed 
 Article 
 Google Scholar 
 Quattrocchi, G. et al. Optimal design of a Lagrangian observing system for hydrodynamic surveys. J. Oper. Oceanogr. 9(suppl.), s77–s88. https://doi.org/10.1080/1755876X.2015.1114805 (2016).Article 
 Google Scholar 
 Quattrocchi, G. et al. Hydrodynamic controls on connectivity of the high commercial value shrimp Parapenaeus longirostris (Lucas, 1846) in the Mediterranean Sea. Sci. Rep. 9, 16935. https://doi.org/10.1038/s41598-019-53245-8 (2019).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Pastor-Prieto, M. et al. Spatial heterogeneity of Pelagia noctiluca ephyrae linked to water masses in the Western Mediterranean. PLoS ONE 16, e0249756. https://doi.org/10.1371/journal.pone.0249756 (2021).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Haeckel, E. Das system der medusen. Monographie der Medusen 499–510 (Gustav Fischer Verlag, 1880).
 Google Scholar 
 Avian, M. Temperature influence on in vitro reproduction and development of Pelagia noctiluca (Forsskäl, 1775). Boll. Zool. 53, 385–391 (1986).Article 
 Google Scholar 
 Fossette, S. et al. Current-oriented swimming by jellyfish and its role in bloom maintenance. Curr. Biol. 25, 342–347. https://doi.org/10.1016/j.cub.2014.11.050 (2015).CAS 
 Article 
 PubMed 
 Google Scholar 
 Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS 
 Article 
 Google Scholar 
 Demirov, E. & Pinardi, N. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability. J. Mar. Syst. 33–34, 23–50 (2002).Article 
 Google Scholar 
 Menna, M. et al. New insights of the Sicily channel and Southern Tyrrhenian sea variability. Water 11, 1355 (2019).Article 
 Google Scholar 
 Avian, M. & Rottini Sandrini, L. Oocyte development in four species of scyphomedusa in the northern Adriatic Sea. Hydrobiologia 216/217, 189–195 (1991).Article 
 Google Scholar 
 Malej, A. Behaviour and trophic ecology of the jellyfish Pelagia noctiluca (Forsskäl, 1775). J. Exp. Mar. Biol. Ecol. 126, 259–270 (1989).Article 
 Google Scholar 
 Lo Bianco, S. Notizie biologiche riguardanti specialmente il periodo di maturità sessuale degli animali del golfo di Napoli. Mitt. Zool. Stn. Neapel 19, 513–761 (1909).
 Google Scholar 
 Purcell, J. E., Malej, A. & Benović, A. Potential links of jellyfish to eutrophication and fisheries. In Coastal and Estuarine Studies, Ecosystem at the Land-Sea Margin Drainage Basin to Coastal Sea (eds Malone, T. C. et al.) 241–263 (American Geophysical Union, 1999).Chapter 
 Google Scholar 
 Spezie, G. C., Sansone, E., Budillon, G. & Gallarato, A. Caratterizzazione idrodinamica del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia. Campagna oceanografica 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM94). In Data Rep., (eds. Faranda, F. M. & Povero, P.) 1–82 (1995).Spezie, G. C. et al. Rilievi idrodinamici nel sistema Eolie e nei bacini limitrofi di Cefalù e Gioia. Campagna oceanografiche 1995. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 1–98 (1996).Carrada, G. C., Ribera D’Alcalà, M. & Saggiomo, V. The pelagic system of the Southern Tyrrhenian Sea. Some comments and working hypotheses. In Proceedings IX Proceedings XII Italian Association of Oceanography and Limnology Congress 151–166 (1992).Povero, P., Misic, C., Acconero, A. & Fabiano M. Distribuzione e caratterizzazione biochimica della sostanza organica particellata nelle acque del Tirreno Sud Orientale. In Acts 12 Congress of the Italian Association of Oceanology and Limnology 227–237 (1998).Brancato, G., Minutoli, R., Granata, A., Sidoti, O. & Guglielmo L. Diversity and vertical migration of euphausiids across the Straits of Messina area. In: Mediterranean Ecosystem: Structures and Processes (eds. Faranda, F. M., Guglielmo, L. & Spezie, G.) 131–141 (Springer, 2001).Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Microzooplankton (tintinnid ciliates) diversity: Coastal community structure and driving mechanisms in the Southern Tyrrhenian Sea (Western Mediterranean). J. Plankton Res. 31, 153–170 (2009).Article 
 Google Scholar 
 Fonda Umani, S., Monti, M., Minutoli, R. & Guglielmo, L. Recent advances in the Mediterranean researches on zooplankton: from spatial–temporal patterns of distribution to processes oriented studies. Adv. Oceanogr. Limnol. 1, 295–356 (2010).Article 
 Google Scholar 
 Giordano, D. et al. Summer larval fish assemblages in the Southern Tyrrhenian Sea (Western Mediterranean Sea). Mar. Ecol. 36, 104–117. https://doi.org/10.1111/maec.12123 (2015).ADS 
 Article 
 Google Scholar 
 Fonda Umani, S., Milani, L. & Martecchini, E. Distribuzione dei popolamenti microzooplanctonici durante la campagna oceanografica Eolie 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 199–222 (1995).Carrada, G. C., Mangoni, O. & Sgrosso, S. Distribuzione spaziale di clorofilla a e di feopigmenti in diverse frazioni dimensionali del fitoplancton. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 197–216 (1996).Guglielmo, L. et al. Distribuzione verticale e migrazione giornaliera dello zooplancton e del micronecton nel Tirreno meridionale (Isole Eolie). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 217–246 (1996).Innamorati, M., Lazzara, L., Massi, L., Biondi, N. & Nuccio, C. Fitoplancton, luce e produzione primaria nella’Arcipelago delle Isole Eolie, in estate. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 161–196 (1996).Zunini Sertorio, T., Licandro, P., Giallain, M. & Bernat, P. Distribuzione verticale della biomassa zooplanctonica su una stazione delle Isole Eolie (Luglio 1995). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 247–254 (1996).Sabates, A. et al. Pathways for Pelagia noctiluca jellyfish intrusions onto the Catalan shelf and their interactions with early life fish stages. J. Mar. Syst. 187, 52–61 (2018).Article 
 Google Scholar 
 Mosetti, F. Currents in the Straits of Messina. In The Straits of Messina ecosystem (eds Guglielmo, L. et al.) 13–29 (University of Messina, Department of Marine Biology and Ecology, 1995).
 Google Scholar 
 Zavodnik, D. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 94, 265–269 (1987).Article 
 Google Scholar 
 El Rahi, J., Weeber, M. P. & El Serafy, G. Modelling the effect of behavior on the distribution of the jellyfish Mauve stinger (Pelagia noctiluca) in the Balearic Sea using an individual-based model. Ecol. Model. 433, 109230 (2020).Article 
 Google Scholar 
 Axiak, V. & Civili, F. S. Jellyfish blooms in the Mediterranean: causes, mechanisms, impact on man and the environment. A programme review. In: UNEP: Jellyfish blooms in the Mediterranean. Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. MAP Tech. Rep. Ser. Vol. 47, 1–10 (UNEP, 1991).Keesing, J. K. et al. Role of winds and tides in timing of beach strandings, occurrence, and significance of swarms of the jellyfish Crambione mastigophora Mass 1903 (Scyphozoa: Rhizostomeae: Catostylidae) in north-western Australia. Hydrobiologia 768, 19–36. https://doi.org/10.1007/s10750-015-2525-5 (2016).CAS 
 Article 
 Google Scholar 
 Aglieri, G. et al. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS ONE 9, e99647. https://doi.org/10.1371/journal.pone.0099647 (2014).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Alpers, W., Brandt, P. & Rubino, A. Internal waves generated in the Strait of Gibraltar and Messina: Observations from space. In Remote Sensing of the European Seas (eds. Barale, V. & Gade, M.) 319–330 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6772.Droghei, R. et al. The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait. Sci. Rep. 6, 36376. https://doi.org/10.1038/srep36376 (2016).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 La Forgia, G. et al. Sediment resuspension and bedform generation induced by internal solitary waves. Geophys. Res. Abs. Vol. 21, EGU2019-9121, EGU General Assembly (2019).Lohmann, H. Die Stromunger in der Strasse von Messina und die verteilung des planktons in derselben. Int. Rev. Ges. Hydrobiol. 2, 505–556 (1909).Article 
 Google Scholar 
 Magazzù, G. & Andreoli, C. Trasferimenti fitoplanctonici attraverso lo Stretto di Messina in relazione alle condizioni idrologiche. Boll. Pesca Piscic. Idrobiol. 26, 125–193 (1971).
 Google Scholar 
 Palanques, A. et al. General patterns of circulation, sediment fluxes and ecology of the Palamòs (La Fonera) submarine canyon, northwestern Mediterranean. Progr. Oceanogr. 66, 89–119 (2005).ADS 
 Article 
 Google Scholar 
 Granata, A. et al. Vertical distribution and diel migration of zooplankton and micronekton in Polcevera submarine canyon of the Ligurian mesopelagic zone (NW Mediterranean Sea). Progr. Oceanogr. 183, 102298. https://doi.org/10.1016/j.pocean (2020).Article 
 Google Scholar 
 Zagami, G. et al. Spring copepod vertical zonation pattern and diel migration in the open Ligurian Sea (north-western Mediterranean). Progr. Oceanogr. 183, 102297. https://doi.org/10.1016/j.pocean (2020).Article 
 Google Scholar 
 Danovaro, R. & Boero, F. Italian seas. In: World Seas: An Environmental Evaluation. Vol. I Europe, The Americas and West Africa. (ed. Sheppard, C.) 283–306 (Elsevier Ltd., 2019). https://doi.org/10.1016/B978-0-12-805068-2.00044-9Lo Iacono, C., Sulli, A. & Agate, M. Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep-Sea Res. 104, 93–105 (2014).
 Google Scholar  More