More stories

  • in

    A real-time rural domestic garbage detection algorithm with an improved YOLOv5s network model

    Attention combination mechanismDue to the difficulty in extracting features from target areas in images, the high computational effort of the model and the low accuracy of detection are addressed. As shown in Fig. 3, we introduce a lightweight feedforward convolutional attention module CBAM after the backbone network Focus module of the YOLOv5s network model. The SE-Net (Squeeze and Excitation Networks) channel attention module is posted at the end of the backbone network. We propose an attention combination mechanism based on the YOLOv5s network model and name the improved network model YOLOv5s-CS. Where the CBAM module has a channel number of 128, a convolutional kernel size of 3 and a step size of 2, the SELayer has a channel number of 1024 and a step size of 4.Figure 3YOLOv5 backbone network structure before and after improvement.Full size imageConvolutional block attention module networkIn 2018, Woo et al.25 proposed the lightweight feedforward convolutional attention module CBAM. The CBAM module focuses on feature information from both channels and space dimensions and combines feature information to some extent to obtain more comprehensive reliable attentional information26. CBAM consists of two submodules, the channel attention module (CAM) and spatial attention module (SAM), and its overall module structure is shown in Fig. 4a.Figure 4Principle of CBAM.Full size imageThe working principle of the CAM is shown in Fig. 4b. First, the feature map F is input at the input entrance. Second, the global maximum pooling operation and the global average pooling operation are applied to the width and height of the feature map respectively to obtain two feature maps of the same size. Third, two feature maps of the same size are input to the shared parameter network MLP at the same time. Finally, the new feature map output from the shared parameter network is subjected to a summation operation and a sigmoid activation function to obtain the channel attention features ({M}_{c}).The channel attention module CAM is calculated as shown in Formula (1):$${text{M}}_{rm{c}}({text{F}}){=sigma}({text{MLP (AvgPool (F))}}+ {text MLP (MaxPool (F)))}{=sigma}({rm{W}}_{1}({text{W}}_{0}({text{F}}_{{{rm{avg}}}^{rm{c}}}))+{rm{W}}_{0}({rm{W}}_{1}({rm{F}}_{{{rm{max}}}^{rm{c}}})))$$
    (1)
    where σ represents the sigmoid function, MLP represents the shared parameter network, ({text{W}}_{0}) and ({text{W}}_{1}) represent the shared weights, ({text{F}}_{text{avg}}^{text{c}}) is the result of feature map F after global average pooling, and ({text{F}}_{text{max}}^{text{c}}) is the result of feature map F after global maximum pooling.The working principle of SAM is shown in Fig. 4c. The feature map F’ is regarded as the input of the SAM. F’ is obtained by multiplying the input of SAM with the output of CAM. First, the global maximum pooling operation and the global average pooling operation are applied to the channels of the feature map to obtain two feature maps of the same size. Second, two feature maps that have completed the pooling operation are stitched at the channels and the feature channels are dimensioned down using the convolution operation to obtain a new feature map. Finally, spatial attention features ({text{M}}_{text{s}}) are generated using the sigmoid activation function.The spatial attention module (SAM) is calculated, as shown in Formula (2):$${text{M}}_{text{s}}left({text{F}}right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{AvgPool}}left({text{F}}right)text{;MaxPool}left({text{F}}right)right]right)right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{F}}_{text{avg}}^{text{s}} ; {text{F}}_{text{max}}^{text{s}}right]right)right)$$
    (2)
    where σ is the sigmoid function, ({text{f}}^{7 times 7}) denotes the convolution operation with a filter size of 7 × 7, ({text{F}}_{text{avg}}^{text{s}}) is the result of the feature map after global average pooling, and ({text{F}}_{text{max}}^{text{s}}) is the result of the feature map after global maximum pooling.Squeeze and excitation networkIn 2018, Hu et al.27 proposed a single-path attention network structure SE-Net. SE-Net uses the idea of an attention mechanism to analyze the relationship feature maps by modeling and adaptively learning to obtain the importance of each feature map28 and then assigns different weights to the original feature map for updating according to the importance. In this way, SE-Net pays more attention to the features that are useful for the target task while suppressing useless feature information and allocates computational resources rationally to different channels to train the model to achieve better results.The SE-Net attention module is mainly composed of two parts: the squeeze operation and excitation operation. The structure of the SE-Net module is shown in Fig. 5.Figure 5The SE-Net module structure.Full size imageThe squeeze operation uses global average pooling to encode all spatial features on the channel as local features. Second, each feature map is compressed into a real number that has global information on the feature maps. Finally, the squeeze results of each feature map are combined into a vector as the weights of each group of feature maps. It is calculated as shown in Eq. (3):$${text{Z}}_{text{c}}={text{F}}_{text{sq}}left({text{u}}_{text{c}}right)=frac{1}{text{H} times {text{W}}}sum_{text{i=1}}^{text{H}}sum_{text{j=1}}^{text{W}}{{text{u}}}_{text{c}}left(text{i,j}right) , , , $$
    (3)
    where H is the height of the feature map, W is the feature map width, u is the result after convolution, z is the global attention information of the corresponding feature map, and the subscript c indicates the number of channels.After completing the squeeze operation to obtain the channel information, the feature vector is subjected to the excitation operation. First, it passes through two fully connected layers. Second, it uses the sigmoid function. Finally, the output weights are assigned to the original features. It is calculated as follows:$$text{s} = {text{F}}_{text{ex}}left(text{z,W}right){=sigma}left({text{g}}left(text{z,W}right)right){=sigma}left({text{W}}_{2}{delta}left({text{W}}_{1}{text{z}}right)right)$$
    (4)
    $$widetilde{{text{x}}_{rm{c}}}={text{F}}_{rm{scale}}left({text{u}}_{rm{c}}, {text{s}}_{rm{c}}right)={text{s}}_{rm{c}}{{text{u}}}_{rm{c}}$$
    (5)
    where σ is the ReLU activation function, δ represents the sigmoid activation function, and ({text{W}}_{1}) and ({text{W}}_{2}) represent two different fully connected layers. The vector s represents the set of feature mapping weights obtained through the fully connected layer and the activation function. (widetilde{{x}_{c}}) is the feature mapping of the x feature channel, ({text{s}}_{text{c}}) is a weight, and ({text{u}}_{text{c}}) is a two-dimensional matrix.Target detection layerThe garbage in rural areas is a smaller target and has fewer pixel characteristics, such as capsule, button butteries. Therefore, we insert a small target detection layer to improve the head network structure based on the original YOLOv5s network model for detecting objects with small targets to optimize the problem of missed detection in the original network model. The YOLOv5s network structure with the addition of the small target detection layer is shown in Fig. 6 and named YOLOv5s-STD.Figure 6The YOLOv5s-STD network structure.Full size imageIn the seventeenth layer of the neck network, operations such as upsampling are performed on the feature maps so that the feature maps continue to expand. Meanwhile, in the twentieth layer, the feature maps obtained from the neck network are fused with the feature maps extracted from the backbone network. We insert a detection layer capable of predicting small targets in the thirty-first layer. To improve the detection accuracy, we use a total of four detection layers for the output feature maps, which are capable of detecting smaller target objects. In addition to the three initial anchor values based on the original model, an additional set of anchor values is added as a way to detect smaller targets. The anchor values of the improved YOLOv5s network model are set to [5, 6, 8, 14, 15, 11], [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119] and [116, 90, 156, 198, 373, 326].Bounding box regression loss functionThe loss function is an important indicator of the generalization ability of a model. In 2016, Yu et al.29 proposed a new joint intersection loss function IoU for bounding box prediction. IoU stands for intersection over union, which is a frequently used metric in target detection. It is used not only to determine the positive and negative samples, but also to determine the similarity between the predicted bounding box and the ground truth bounding box. It can be described as shown in the Eq. (6):$$text{IoU} = frac{left|text{A} capleft.{text{B}}right|right.}{left|{text{A}} cupleft.{text{B}}right|right.}$$
    (6)
    where the value domain of IoU ranges from [0,1]. A and B are the areas of arbitrary regions. Additionally, when IoU is used as a loss function, it has to scale invariance, as shown in Eq. (7):$$text{IoU_Loss} = 1-frac{left|text{A} cap left.{text{B}}right|right.}{left|{text{A}} cup left.{text{B}}right|right.}$$
    (7)
    However, when the prediction bounding box and the ground truth bounding box do not intersect, namely IoU = 0, the distance between the arbitrary region area of A and B cannot be calculated. The loss function at this point is not derivable and cannot be used to optimize the two disjoint bounding boxes. Alternatively, when there are different intersection positions, where the overlapping parts are the same but in different overlapping directions, the IoU loss function cannot be predicted.To address these issues, the idea of GIoU (Generalized Intersection over Union)30, in which a minimum rectangular Box C of A and B is added, was proposed in 2019 by Rezatofighi et al. Suppose the prediction bounding box is B, the ground truth bounding box is A, the area where A and B intersect is D, and the area containing two bounding boxes is C, as shown in Fig. 7.Figure 7GIoU evaluation chart.Full size imageThen, the GIoU calculation, as shown in Formula (8), is:$$text{GIoU}= text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (8)
    The GIoU_Loss is calculated as (9):$$text{GIoU_Loss=1}-{text{IoU}}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (9)
    The original YOLOv5 algorithm uses GIoU_Loss as the loss function. Comparing Eqs. (6) and (8), it can be seen that GIoU is a new penalty term (frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}) that is added to IoU and is clearly represented by Fig. 7.Although the GIoU loss function solves the problem that the gradient of the IoU loss function cannot be updated in time and the prediction bounding box, the direction of the ground truth bounding box is not consistent when predicting, but there are still disadvantages, as shown in Fig. 8.Figure 8Comparsion of loss values.Full size imageFigure 8 shows three different position relationships formed when the predicted bounding box and the ground truth bounding box overlap exactly. Among them, the ratio of the length to width of the green grounding truth bounding box is 1:2, and the red predicted bounding box has the same aspect ratio as the ground truth bounding box, but the size is only one-half of the green ground truth bounding box. When the prediction bounding box and the ground truth bounding box completely overlap, the GIoU degenerates to the IoU, and the GIoU value and IoU value for the three different position cases are 0.45 at this time. The GIoU loss function does not directly reflect the distance between the prediction bounding box and the ground truth bounding box. Therefore, we introduce the CIoU (Complete Intersection over Union)31 loss function to replace the original GIoU loss function in the YOLOv5 algorithm and continue to optimize the prediction bounding box.Therefore, the CIoU is calculated as (10):$$text{GIoU_Loss}=1-text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (10)
    where b and ({text{b}}^{text{gt}}) denote the centroids of the prediction bounding box and the ground truth bounding box, respectively, ({rho}) is the Euclidean distance between the two centroids, and c is the diagonal length of the minimum closed area formed by the prediction bounding box and the ground truth bounding box.(alpha) is the parameter used to balance the scale, and v is the scale consistency used to measure the aspect ratio between the prediction bounding box and the ground truth bounding box, as shown in Eqs. (11) and (12).$$alpha =frac{text{v}}{left(1-text{IoU}right)+{text{v}}^{{prime}}}$$
    (11)
    $$text{v} = frac{4}{{pi}^{2}}{left({text{arctan}}frac{{omega}^{text{gt}}}{{text{h}}^{text{gt}}}- text{arctan}frac{{omega}^{text{p}}}{{text{h}}^{text{p}}}right)}^{2}$$
    (12)
    Therefore, the expression of CIoU_Loss can be obtained according to Eqs. (10), (11) and (12).$$text{CIoU_Loss} =1-text{CIoU}=1-text{IoU}+frac{{rho}^{2}left(text{b,}{text{b}}^{text{gt}}right)}{{text{c}}^{2}}{+ alpha v }$$
    (13)
    Optimization algorithmAfter optimizing the loss function of the network model, the next step is to optimize the hyperparameters of the network model. The function of the optimizer is to adjust the hyperparameters to the most appropriate values while making the loss function converge as much as possible32. In the target detection algorithm, the optimizer is mainly used to calculate the gradient of the loss function and to iteratively update the parameters.The optimizer used in YOLOv5 is stochastic gradient descent (SGD). Since a large number of problems in deep learning satisfy the strict saddle function, all the local optimal solutions obtained are almost as ideal. Therefore, SGD algorithm is not trapped in the saddle point and has strong generality. However, the slow convergence speed and the number of iterations of SGD algorithm are still problems that need to be improved. Adam algorithm has both the first-order momentum in the SGD algorithm and combines the second-order momentum in AdaGrad algorithm and AdaDelta algorithm, Adaptive&Momentum. Adam formula can be described as follows:$${m}_{t}={beta }_{1}{m}_{t-1}+left(1-{beta }_{1}right){g}_{t}$$
    (14)
    $${v}_{t}={beta }_{2}{v}_{t-1}+left(1-{beta }_{2}right){g}_{t}^{2}$$
    (15)
    $${widehat{m}}_{t}=frac{{m}_{t}}{1-{beta }_{1}^{t}}$$
    (16)
    $${widehat{v}}_{t}=frac{{v}_{t}}{1-{beta }_{2}^{t}}$$
    (17)
    where ({beta }_{1}) and ({beta }_{2}) parameters are hyperparameters and g is the current gradient value of the error function, ({m}_{t}) is the gradient of the first-order momentum and ({v}_{t}) is the gradient of the second-order momentum.Adam is an adaptive one-step random objective function optimization algorithm based on a low-order moment. It can replace the traditional first-order optimization algorithm for the stochastic gradient descent process. It is able to update the weights of the neural network adaptively based on the data trained during the iterative process. The Adam optimizer occupies fewer memory resources during the training process and is suitable for solving the problems of sparse gradients and large fluctuations in loss values33. Therefore, we use the Adam optimization algorithm instead of the SGD optimization algorithm to train the network model based on the YOLOv5s network model. The calculation is shown in Table 3.Table 3 Computing method of the Adam optimizer.Full size tablewhere ({alpha}) is a factor controlling the learning rate of the network, ({beta}^{{prime}}) is the exponential decay rate of the first-order moment estimate, ({beta}^{{primeprime}}) is the exponential decay rate of the second-order moment estimate, and ({varepsilon}) is a constant that tends to zero infinitely as the denominator. More

  • in

    Applying genomic approaches to delineate conservation strategies using the freshwater mussel Margaritifera margaritifera in the Iberian Peninsula as a model

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496. https://doi.org/10.1016/j.tree.2012.05.012 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82. https://doi.org/10.1111/mec.15720 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helyar, S. J. et al. Application of SNPs for population genetics of nonmodel organisms: New opportunities and challenges. Mol. Ecol. Resour. 11, 123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430. https://doi.org/10.1111/mec.13948 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 21, 38. https://doi.org/10.1186/s12864-020-06783-9 (2020).CAS 
    Article 

    Google Scholar 
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinman-Ruiz, D. et al. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics 18, 556. https://doi.org/10.1186/s12864-017-3946-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88. https://doi.org/10.1007/s10750-010-0190-2 (2010).Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).Article 
    PubMed 

    Google Scholar 
    Outeiro, A., Ondina, P., Fernández, C., Amaro, R. & Miguel, E. S. Population density and age structure of the freshwater Pearl mussel, Margaritifera margaritifera, in two Iberian rivers. Freshw. Biol. 53, 485–496. https://doi.org/10.1111/j.1365-2427.2007.01913.x (2008).CAS 
    Article 

    Google Scholar 
    Clements, E. A., Thomas, R. & Adams, C. E. An investigation of salmonid host utilisation by the endangered freshwater pearl mussel (Margaritifera margaritifera) in north-west Scotland. Aquat. Conserv.: Mar. Freshw. Ecosyst. 28, 764–768. https://doi.org/10.1002/aqc.2900 (2018).Taeubert, J-E. & Geist, J. The relationship between the Freshwater Pearl Mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73. https://doi.org/10.1134/S1062359017010149 (2017).Sousa, R. et al. Conservation status of the freshwater pearl mussel Margaritifera margaritifera in Portugal. Limnologica 50, 4–10. https://doi.org/10.1016/j.limno.2014.07.004 (2015).Article 

    Google Scholar 
    Almodóvar, A., Nicola, G. G., Ayllón, D. & Elvira, B. Global warming threatens the persistence of Mediterranean brown trout. Glob. Change Biol. 18, 1549–1560. https://doi.org/10.1111/j.1365-2486.2011.02608.x (2012).ADS 
    Article 

    Google Scholar 
    Nicola, G. G., Elvira, B., Johnson, B., Ayllón, D. & Almodóvar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 198, 78–85. https://doi.org/10.1016/j.fishres.2017.10.012 (2018).Article 

    Google Scholar 
    da Silva, J. P. et al. Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshw. Biol. 00, 1–15. https://doi.org/10.1111/fwb.13885 (2022).Article 

    Google Scholar 
    Strayer, D. L., Geist, J., Haag, W. R., Jackson, J. K. & Newbold, J. D. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 43, e53. https://doi.org/10.1111/csp2.53 (2009).Article 

    Google Scholar 
    Geist, J., Bayerl, H., Stoeckle, B. C. & Kuehn, R. Securing genetic integrity in freshwater pearl mussel propagation and captive breeding. Sci. Rep. 11, 16019. https://doi.org/10.1038/s41598-021-95614-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes dos Santos, A. et al. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res. 28, dsab002. https://doi.org/10.1093/dnares/dsab002 (2021).Bouza, C. et al. Threatened freshwater pearl mussel Margaritifera margaritifera L. in NW Spain: low and very structured genetic variation in southern peripheral assessed using microsatellite markers. Conserv. Genet. 8: 937–948. https://doi.org/10.1007/s10592-006-9248-0 (2007).Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157. https://doi.org/10.1007/s10592-016-0889-3 (2017).Geist, J., Söderberg, H., Karllberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Genet. 11, 1339–1350. https://doi.org/10.1007/s10592-009-9963-4 (2010).Article 

    Google Scholar 
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 239–425. https://doi.org/10.1111/j.1365-294X.2004.02420.x (2005).CAS 
    Article 

    Google Scholar 
    Farrington, S. J., King, R. W., Baker, J. A. & Gibbons, J. G. Population genetics of freshwater pearl mussel (Margaritifera margaritifera) in central Massachusetts and implications for conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30, 1945–1958. https://doi.org/10.1002/aqc.3439 (2020).Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. Lond., 123, 850–863. https://doi.org/10.1093/biolinnean/bly010. (2018)Garrison, N. L., Johnson, P. D. & Whelan, N. V. Conservation genomics reveals low genetic diversity and multiple parentage in the threatened freshwater mussel Margaritifera hembeli. Conser. Genet. 22, 217–231. https://doi.org/10.1007/s10592-020-01329-8 (2021).Article 

    Google Scholar 
    Roe, K. & Kim, K. S. Genome-wide SNPs redefine species-boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America. Sci. Rep. 11, 10752. https://doi.org/10.1038/s41598-021-90325-0 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338. https://doi.org/10.12688/f1000research.15931.2 (2018).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paris, R. J., Stevens, J. R. & Catchen, J. M. Lost in parameter space: A road map for STACKS. Methods Ecol. Evol. 8, 1360–1373. https://doi.org/10.1111/2041-210X.12775 (2017).Article 

    Google Scholar 
    Limin, F., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2. https://doi.org/10.48550/arXiv.1303.3997 (2013).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907v2. https://doi.org/10.48550/arXiv.1207.3907 (2012)Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evol. 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).Article 

    Google Scholar 
    Alexander, D. H, Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frankham, R. et al. A practical guide for genetic management of fragmented animal and plant populations. Oxford University Press, New York. 174. https://doi.org/10.1093/oso/9780198783411.001.0001 (2019).Wacker, S., Larson, B., Jakobsen, P. & Karlssona, S. Multiple paternity promotes genetic diversity in captive breeding of a freshwater mussel. Glob. Ecol. Cons. 17, e00564. https://doi.org/10.1016/j.gecco.2019.e00564 (2019).Article 

    Google Scholar 
    Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley Western Australia. Conserv. Genet. 21, 421–429. https://doi.org/10.1007/s10592-020-01259-5 (2020).Article 

    Google Scholar 
    Escalante, M. A. et al. Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican Golden trout (Oncorhynchus chrysogaster). Conserv. Genet. 21, 907–926. https://doi.org/10.1371/journal.pone.0141775 (2020).CAS 
    Article 

    Google Scholar 
    Bauer, G. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. J. Anim. Ecol. 56, 691–704. https://doi.org/10.2307/5077 (1987).Article 

    Google Scholar 
    Machordom, A., Araujo, R., Erpenbeck, D. & Ramos, M. A. Phylogeography and conservation genetics of endangered European Margaritiferidae (Bibalvia: Unionoidae). Biol. J. Linn. Soc. 78, 235–252. https://doi.org/10.1046/j.1095-8312.2003.00158.x (2003).Article 

    Google Scholar 
    Viveen, W., Schoorl, J. M., Veldkamp, A., van Balen, R. T. & Vidal-Romani, J. R. Fluvial terraces of the northwest Iberian lower Miño River. J. Maps 9, 513–522. https://doi.org/10.1080/17445647.2013.821096 (2013).Article 

    Google Scholar 
    Pérez-Granados, C., López-Iborra, G. & Seoane, J. A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti. Bird Conserv. Intern. 27, 398–413. https://doi.org/10.1017/S0959270916000356 (2017).Article 

    Google Scholar 
    Sanz Ball-Llosera, N., Garcìa-Marìn, J. & Pla, C. Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conserv. Genet. 3, 385–400. https://doi.org/10.1023/A:1020527420654 (2002).Vila, M. et al. Phylogeography and Conservation Genetics of the Ibero-Balearic Three-Spined Stickleback (Gasterosteus aculeatus). PLoS One 12, e0170685. https://doi.org/10.1371/journal.pone.0170685 (2017)Hamed, Y. et al. Climate impacto n Surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterr. J. Environ. Integr. 3, 25. https://doi.org/10.1007/s41207-018-0067-8 (2018).Article 

    Google Scholar 
    Krijgsman, W. et al. The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Mar. Geol. 403, 238–246. https://doi.org/10.1016/j.margeo.2018.06.008 (2018).ADS 
    Article 

    Google Scholar 
    Zanatta, D. T. & Wilson, C. C. Testing congruency of geographic and genetic population structure for a freshwater mussel Bivalvia: Unionoida) and its host fish. Biol. J. Linn. Soc. 102, 669–685. https://doi.org/10.1111/j.1095-8312.2010.01596.x (2011).Article 

    Google Scholar 
    Österling, E. M., Ferm, J. & Piccolo, J.J. Parasitic freshwater pearl mussel larvae (Margaritifera margaritifera L.) reduce the drift-feeding rate of juvenile brown trout (Salmo trutta L.). Environ. Biol. Fish. 97, 543–549. https://doi.org/10.1007/s10641-014-0251-x (2014).Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933. https://doi.org/10.1002/aqc.2913 (2018)Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Rep. 9, 10409 (2019).Machordom, A., Suárez, J., Almodóvar, A. & Bautista, J. Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol. Ecol. 9, 1325–1338. https://doi.org/10.1046/j.1365-294x.2000.01015.x (2000).CAS 
    Article 

    Google Scholar 
    Suárez, J., Bautista, J. M., Almodóvar, A. & Machordom, A. Evolution of the mitocondrial control region in Paleartic brown trout (Salmo trutta) populations: The biogeographical role of the Iberian Peninsula. Heredity 87, 198–206. https://doi.org/10.1046/j.1365-2540.2001.00905.x (2001).Article 
    PubMed 

    Google Scholar 
    Velasco, J. C. et al. Descubiertos algunos ejemplares de Margaritifera margaritifera (L.) (Bivalvia, Unionoida) en el alto Duero (Soria, España). Iberus 32(2), 97–104 (2014).Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: the roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008. https://doi.org/10.1111/j.1365-294X.2007.03636.x. (2008)Ledoux, J.-B., et al. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. Divers. Distrib. 27, 2104–2123 https://doi.org/10.1111/ddi.13382 (2021).Hervella F, & Caballero P. Inventario piscícola dos ríos galegos. Consellería de Medio Ambiente. Xunta de Galicia. Santiago de Compostela (1999).Saura, M., Caballero, P. & Morán, P. Are there Atlantic salmon in the River Tambre?. J. Fish Biol. 72, 1223–1229. https://doi.org/10.1111/j.1095-8649.2007.01782.x (2008).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566. https://doi.org/10.1016/j.gecco.2019.e00566 (2019).Article 

    Google Scholar 
    Muniz, F. L. et al. Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): Insights from conservation of a broadly distributed species. Conserv. Genet. 19, 599–610. https://doi.org/10.1007/s10592-017-1035-6 (2018).Article 

    Google Scholar 
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing of juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. 21, 743–751. https://doi.org/10.1002/aqc.1222 (2011).Thomas, G. R., Taylor, J. & García de Leaniz, C. Captive breeding of the endangered freshwater Pearl mussel Margaritifera margaritifera. Endanger. Species Res. 12, 1–9. https://doi.org/10.3354/esr00286 (2010).Wilson, C. D. et al. The importance of population genetic information in formulating ex situ conservation strategies for the freshwater pearl mussel (Margaritifera margaritifera L.) in Northern Ireland. Anim. Conserv. 15, 595–602. https://doi.org/10.1111/j.1469-1795.2012.00553.x (2012).Pires, D., Reis, J., Benites, L. & Rodrigues, P. Minimizing dams impacts on biodiversity by way of translocations: the case of freshwater mussels. Impact Assess. Proj. Apprais. 39, 110–117. https://doi.org/10.1080/14615517.2020.1836710. (2021) More

  • in

    Unique H2-utilizing lithotrophy in serpentinite-hosted systems

    Serpentinite-hosted systems are rare and extreme habitats in which a hydrothermal process, serpentinization, alters ultramafic mantle rocks and yields hyperalkaline fluid rich in molecular hydrogen (H2) and reduced one-carbon compounds [1,2,3,4,5,6,7,8]. These fluids are often electron acceptor depleted—oxygen, nitrate, sulfate, etc. are absent (i.e., anoxic) and even the least favorable exogenous acceptor, carbon dioxide (CO2), is limiting due to the high alkalinity. Though previous studies explore the diversity of organisms in serpentinite-hosted systems, we have little insight into how indigenous H2-utilizing microorganisms combat the unique metabolic challenges in situ. One recent study shows strategies that methane-generating archaea employ to oxidize H2 in situ [9], but how other microorganisms (i.e., H2-utilizing anaerobic bacteria) overcome the electron acceptor limitation is poorly understood. Further, given that life is theorized to have emerged as H2-utilizing lithotrophs in early Earth serpentinite-hosted systems [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24], modern lithotrophs inhabiting such ecosystems may represent valuable extant windows into the metabolism of primordial organisms. In this study, we pair metagenomics and thermodynamics to characterize uncultured putative anaerobic H2 utilizers inhabiting alkaline H2-rich serpentinite-hosted systems (Hakuba Happo hot springs in Hakuba, Japan, and The Cedars springs in California, USA; pH ~10.9 and ~11.9, respectively [25,26,27]) and elucidate novel, potentially ancient, lithotrophic strategies.Thermodynamics and geochemistryThe two primary strategies for utilizing H2 under anoxic conditions without favorable exogenous electron acceptors are methanogenesis and homoacetogenesis. As bacteria were detected in both Hakuba and The Cedars, yet archaea were absent in Hakuba, we focused our analyzes on metabolic strategies supporting bacterial H2 utilization (i.e., homoacetogenesis). To evaluate whether homoacetogenesis is viable in situ, we examined the in situ geochemical environment and the thermodynamics of H2/formate utilization and homoacetogenesis. The spring waters of both Hakuba and The Cedars contained H2 (e.g., 201–664 μM in Hakuba [27]). Formate, another compound thought to be abiotically generated through serpentinization, was also detected in Hakuba (8 μM in drilling well #3 [28]) and The Cedars (6.9 µM in GPS1). Acetate has also been detected in situ (4 μM in Hakuba [28] and 69.3 µM in The Cedars GPS1), suggesting these ecosystems may host novel H2- and/or formate-utilizing homoacetogens. Thermodynamic calculations using newly measured and published geochemical data (Tables S1 and S2) confirmed that H2 and formate are reductants in situ (i.e., H2 = 2H+ + 2e−/Formate− = H+ + CO2 + 2e−): the Gibbs free energy yields (∆G) for oxidation (coupled with physiological electron carriers NADP+, NAD+, and ferredoxin) are less than −4.78 kJ per mol H2 and −24.92 kJ per mol formate in Hakuba, and −10.73 and −22.03 in The Cedars respectively (H2 concentration was not available for The Cedars so the highest concentration observed in Hakuba [664 µM] was used; see Supplementary Results). However, serpentinite-hosted systems impose a unique challenge to homoacetogenesis—a key substrate, CO2, is at extremely low concentrations due to the high alkalinity. We estimate that the aqueous CO2 concentration is below 0.0006 nM in Hakuba (pH 10.7 and  +24.92 or +22.02 kJ per mol formate). Thus, catabolic reduction of CO2 to acetate is thermodynamically challenging in situ and may only run if investing ATP (e.g., Calvin–Benson–Bassham cycle [−6 ATP; ∆G of −361.68 kJ per mol acetate in Hakuba] or reductive tricarboxylic acid [−1 ATP; −61.68 kJ per mol]). Under CO2 limitation, autotrophs are known to accelerate CO2 uptake through HCO3− dehydration to CO2 (carbonic anhydrase) or carbonate mineral dissolution, but both only modify kinetics and are not effective in changing the maximum CO2 concentration (determined by equilibrium with carbonate species). In addition, in Hakuba, the CO32− concentration is too low (84.7 nM CO32−) to cause carbonate mineral precipitation (e.g., [CO32−] must exceed 38.5 µM given Ks of 5 ×  10−9 for CaCO3 and [Ca2+] of 0.13 mM).Based on thermodynamic calculations, the energy obtainable from H2/CO2-driven homoacetogenesis is too small to support life in many serpentinite-hosted systems, yet acetate is detected in some of these ecosystems (Fig. S2 and Table S2; note that we cannot exclude the possibility that acetate may be produced abiotically by water–rock reactions [30]). Thus, CO2-independent electron-disposing metabolism may have been necessary for extremophilic organisms to gain energy from H2 in the hyperalkaline fluids of hydrothermal systems. Here, we explore the metabolic capacities of organisms living in serpentinite-hosted systems to gain insight into potential metabolic strategies for utilizing H2 under the extreme conditions in situ.Diverse putative H2- and formate-utilizing organismsThrough metagenomic exploration of the two serpentinite-hosted systems (Table S3), we discover a plethora of phylogenetically novel organisms encoding genes for H2 and formate metabolism (19 bins with 73.2–94.8% completeness and 0.0–8.1% contamination [86.1% and 3.8% on average respectively]; available under NCBI BioProject PRJNA453100) despite challenges in acquisition of genomic DNA (15.7 and 18.9 ng of DNA from 233 and 720 L of filtered Hakuba Happo spring water, respectively; RNA was below the detection limit). We find metagenome-assembled genomes (MAGs) affiliated with lineages of Firmicutes (e.g., Syntrophomonadaceae and uncultured family SRB2), Actinobacteria, and candidate division NPL-UPA2 [31] (Fig. S3). We also recovered MAGs for a novel lineage, herein referred to as “Ca. Lithacetigenota”, that inhabits both Hakuba and The Cedars and, to our knowledge, no other ecosystems (Figs. 1, 2a, S3, and S4). The average amino acid identity (AAI) between Ca. Lithacetigenota and neighboring phyla (Coprothermobacterota, Dictyoglomi, Thermodesulfobiota [GTDB-defined phylum], Thermotogae, and Caldiserica) was comparable to the average interphylum AAI among the neighboring phyla (45.33 ± 0.86% vs 45.17 ± 0.99%), suggesting that Ca. Lithacetigenota represents a novel phylum-level lineage (Fig. 2a, b). These genomes encode enzymes for oxidizing H2 and formate (i.e., hydrogenases and formate dehydrogenases [32,33,34,35,36,37,38,39]; see Supplementary Results), suggesting that organisms in situ can employ H2 and formate as electron donors.Fig. 1: Ribosomal protein tree including high-quality MAGs from 74 GTDB-defined phylum-level lineages.Representative genomes (highest quality based on a score defined as completeness – 5*contamination, both estimated by CheckM) were chosen for bacterial classes that contain at least one genome the meet the following criteria: (i) cultured organisms with ≥90% completeness, ≤5% contamination (as estimated by CheckM), and ≤ 20 contigs; (ii) uncultured organisms with ≥85% completeness, ≤3% contamination, and ≤20 contigs; and (iii) Ca. Patescibacteria with ≥60% completeness and ≤1 contig. Universally conserved ribosomal proteins were collected from each genome, aligned with MAFFT v7.394, trimmed with BMGE v1.12 (-m BLOSUM30 -g 0.67 -b 3), and concatenated. A maximum likelihood tree was calculated using IQ-TREE v2.1.3 with the UDM0064LCLR model (-m Poisson+UDM0064LCLR), ultrafast bootstrap approximation, and SH-like approximate likelihood ratio test (-B 1000 -alrt 1000; bootstrap values are recalculated with BOOSTER using the -tbe option). Branches with ≥90% ultrafast bootstrap support and ≥80% SH-alrt support are indicated with black circles. Archaeal and eukaryotic genomes were used as an outgroup. The inter-domain branch was shortened with a break to 1/10 of the calculated length for illustrative purposes. Phylogenetic groups corresponding to “Gracilicutes” and “Terrabacteria” are indicated yellow and blue respectively. Ca. Lithacetigenota are highlighted (magenta). See Supplementary Fig. S4 for full tree.Full size imageFig. 2: “Ca. Lithacetigenota” phylogeny, lithotrophic acetate generation pathways, and comparative genomics with neighboring phyla.a A maximum likelihood tree was calculated for a concatenated alignment of universally conserved ribosomal protein sequences from representative genomes of individual phyla (aligned with MAFFT v7.394 [default parameters] and trimmed with BMGE v1.12 (−m BLOSUM30 −g 0.67 −b 3) using IQ-TREE v2.1.3 with the UDM0064LCLR model (-m Poisson+UDM0064LCLR), ultrafast bootstrap approximation, and SH-like approximate likelihood ratio test (-B 1000 -alrt 1000; bootstrap values are recalculated with BOOSTER using the -tbe option). Branches with ≥90% ultrafast bootstrap support and ≥80% SH-alrt support are indicated with black circles. Phylum names are shown for NCBI taxonomy (italicized) or GTDB classification (*). b The average inter-phylum AAI (as calculated by CompareM) was calculated using GTDB species representatives. c Putative metabolic pathways potentially adapted to the CO2-limited hyperalkaline conditions encoded by “Ca. Lithacetigenota” members and others: formate- and glycine-reducing acetate generation. Arrow colors indicate oxidative (pink), reductive (blue), ATP-yielding (orange), and ATP-consuming (green) steps. d Venn diagram of COGs/NOGs (as predicted by eggnog-mapper) fully conserved across all members of each phylum (genomes included in GTDB release 95 with completeness ≥85% and contamination ≤5%). COGs/NOGs related to lithotrophy and alkaliphily are highlighted. * “COG” abbreviated.Full size image“Ca. Lithacetigenota” has unique site-adapted metabolismInspection of the serpentinite-hosted environment-exclusive phylum “Ca. Lithacetigenota” reveals specialization to H2-driven lithotrophy potentially suitable for the low-CO2 in situ conditions (Fig. 2c). We discover that The Cedars-inhabiting population (e.g., MAG BS5B28, 94.8% completeness and 2.9% contamination) harbors genes for H2 oxidation ([NiFe] hydrogenase Hox), a nearly complete Wood-Ljungdahl pathway, and an oxidoreductase often associated with acetogenesis—NADH:ferredoxin oxidoreductase Rnf [40, 41] (Tables S4 and S5). One critical enzyme, the formate dehydrogenase, is missing from all three “Ca. Lithacetigenota” MAGs from The Cedars (and unbinned contigs), indicating that these bacteria can neither perform H2/CO2-driven nor formate-oxidizing acetogenesis (Fig. 2c). However, even without the formate dehydrogenase, the genes present can form a coherent pathway that uses formate rather than CO2 as a starting point for the “methyl branch” of the Wood–Ljungdahl pathway (i.e., formate serves as an electron acceptor; Fig. 2c). This is a simple yet potentially effective strategy for performing homoacetogenesis while circumventing the unfavorable reduction of CO2 to formate. Coupling H2 oxidation with this formate-reducing pathway is thermodynamically viable as it halves the usage of CO2 (3H2 + Formate− + CO2 = Acetate− + 2H2O; ∆G of −29.62 kJ per mol acetate) and, as a pathway, is simply an intersection between the conventional H2/CO2-driven and formate-disproportionating acetogenesis (Fig. 2c and S5). Although use of formate as an electron acceptor for formate-oxidizing acetogenesis is quite common, no previous homoacetogens have been observed to couple H2 oxidation with acetogenesis from formate, likely because CO2 has a much higher availability than formate in most ecosystems.The Hakuba-inhabiting “Ca. Lithacetigenota” (HKB210 and HKB111) also encodes Hox for H2 oxidation but lacks genes for homoacetogenesis (no homologs closely related to The Cedars population genes were detected even in unbinned metagenomic contigs). We suspect that this population forgoes the above H2/formate-driven homoacetogenesis because the estimated energy yield of the net reaction in situ (∆G of −19.94 kJ per mol acetate) is extremely close to the thermodynamic threshold of microbial catabolism (slightly above −20 kJ per mol) and, depending on the actual threshold for “Ca. Lithacetigenota” and/or even slight changes in the surrounding conditions (e.g., ∆G increases by 1 kJ per mol if H2 decreases by 20 µM decreases in Hakuba), the metabolism may be unable to recover energy. Through searching the physicochemical environment for alternative exogenous electron acceptors and MAGs for electron-disposing pathways, we detected a low concentration of glycine in situ (5.4 ± 1.6 nM; Table S6) and found genes specific to catabolic glycine reduction (see next paragraph). We suspect that some portion of this glycine is likely geochemically generated in situ, given that (a) glycine is often detected as the most abundant amino acid produced by both natural and laboratory-based serpentinization (e.g., H2 + Formate = Formaldehyde ⇒ Formaldehyde + NH3 = Glycine) [10, 16, 42,43,44,45,46,47] and (b) no other amino acid was consistently detectable (if glycine was cell-derived, other amino acids ought to also be consistently detected).For utilization of the putatively abiotic glycine, the Hakuba “Ca. Lithacetigenota” encodes glycine reductases (Grd; Fig. 3 and S6; Tables S4 and S5)—a unidirectional selenoprotein for catabolic glycine reduction [48, 49]. Based on the genes available, this population likely specializes in coupling H2 oxidation and glycine reduction (H2 + Glycine− → Acetate− + NH3; Fig. 2c). Firstly, the genomes encode NADP-linked thioredoxin reductases (NADPH + Thioredoxinox → NADP+ + Thioredoxinred) that can bridge electron transfer from H2 oxidation (H2 + NADP → NADPH + H+) to glycine reduction (Glycine− + Thioredoxinred → Acetyl-Pi + NH3 + Thioredoxinox). Secondly, though glycine reduction is typically coupled with amino acid oxidation (i.e., Stickland reaction in Firmicutes and Synergistetes [48, 50]), similar metabolic couplings have been reported for some organisms (i.e., formate-oxidizing glycine reduction [via Grd] [51] and H2-oxidizing trimethylglycine reduction [via Grd-related betaine reductase] [52]). Thirdly, Grd is a rare catabolic enzyme, so far found in organisms that specialize in amino acid (or peptide) catabolism, many of which are reported to use glycine for the Stickland reaction (e.g., Peptoclostridium of Firmicutes and Aminobacterium of Synergistetes [53]). Lastly, the population lacks any discernable fermentative (propionate [methylmalonyl-CoA pathway], butyrate [reverse beta oxidation], lactate [lactate dehydrogenase], and alanine [alanine dehydrogenase]) and respiratory (aerobic [terminal oxidases], nitrate [nitrate reductase, nitrite reductase, nitric oxide reductase, nitrous oxide reductase], sulfate [dissimilatory sulfate reductase and sulfite reductase], other sulfurous compounds [molybdopterin-binding protein family sulfurous compound reductases], and metals [outer membrane cytochrome OmcB]) electron disposal pathways and oxidative organotrophy (Tables S4 and S5). Although the BS5B28 genome encodes a bifunctional alcohol/aldehyde dehydrogenase and aldehyde:ferredoxin oxidoreductase, no complete sugar or amino acid degradation pathways could be identified, suggesting that these genes have a physiological role unrelated to ethanol fermentation. Further, though formate and glycine transporters were absent in the genomes, a survey of transporters (annotated in UniProtKB 2021_03 [54]) revealed that no alkaliphiles (organisms with optimum pH ≥ 9.5 in the DSMZ BacDive database [55]) encoded known formate transporters (focA; TIGR04060) or amino acid permeases (PF00324) (ABC transporters were not considered as substrate specificity for these complexes cannot be annotated reliably), indicating that alkaliphiles likely employ unknown transport proteins. Reflecting the lack of other catabolic pathways, the Hakuba “Ca. Lithacetigenota” MAGs display extensive genome streamlining, comparable to that of Aurantimicrobium [56, 57], “Ca. Pelagibacter” [58], and Rhodoluna [59] in aquatic systems, as also reported for other organisms inhabiting serpentinite-hosted systems [60, 61] (Fig. S7). Thermodynamic calculations show that H2-oxidizing glycine reduction is favorable in situ (∆G°’ of −70.37 kJ per mol glycine [∆G of −85.84 in Hakuba]; Fig. S1). Further, based on the pathway identified, this putative metabolism is >10 times more efficient in recovering energy from H2 (1 mol ATP per mol H2) than acetogenesis utilizing H2/CO2 (0.075 mol ATP per mol H2 based on the pathway Acetobacterium woodii utilizes) or H2/formate (0.075 mol ATP per mol H2, assuming no energy recovery associated with the formate dehydrogenase). We also detect glycine reductases in The Cedars “Ca. Lithacetigenota”, indicating that it may also perform this metabolism (∆G of −76.87 in The Cedars, assuming 201 µM H2).Fig. 3: Evolution and distribution of glycine reductases.a Phylogeny of serpentinite-hosted microbiome glycine reductase subunit GrdBE homologs (Hakuba Happo hot spring*, The Cedars springs†, and other serpentinite-hosted system metagenomes#) and a brief scheme for evolutionary history of Grd. Grd-related COG1978 homologs were collected from the representative species genomes in GTDB, filtered using a GrdB motif conserved across members of phyla known to perform glycine-reducing Stickland reaction (see Methods and Supplementary Fig. S6) and clustered with 75% amino acid sequence similarity using CD-HIT (-c 0.75). GrdB-related sarcosine reductase subunits were excluded by identification of a GrdF motif conserved across sequences that form a distinct cluster around the biochemically characterized Peptoclostridium acidaminophilum GrdF. GrdE neighboring GrdB were collected. D-proline reductase subunits PrdBA (homologous to GrdB and GrdE respectively) was used as an outgroup. GrdB+PrdB and GrdE+PrdA were aligned (MAFFT v7.394) and trimmed (BMGE v1.12 -m BLOSUM30 -g 0.05) separately, then concatenated. A maximum likelihood tree was calculated using IQ-TREE v2.1.3 (-m LG+C20+G+F) and 1000 ultrafast bootstrap replicates (bootstrap values are recalculated with BOOSTER). Branches with ≥95% ultrafast bootstrap support are indicated with pink circles. Serpentinite-hosted system-derived sequences are shown in blue and taxa that may have gained GrdB through horizontal transfer are shown in green. Though the GrdB motif did not match, the closest (and only) detectable archaeal homolog (COG1978) identified in Ca. Bathyarchaeota is included. An axis break is used for the branch connecting GrdBE (and the Ca. Bathyarchaeota homolog) and outlier PrdBA for readability (10% of actual length). See Supplementary Fig. S6 for complete tree and full branch length between GrdBE and PrdBA. In the brief scheme of Grd evolution (top left), the cladogram topology is based on Fig. S4. Vertical transfer (red lines in cladogram) and horizontal transfer (black arrows) inferred from tree structures are shown. Phyla that may have acquired Grd vertically (red) and horizontally (gray) are indicated. GTDB phyla belonging to Firmicutes were grouped together. * GTDB-defined phylum-level lineage nomenclature. b Number of glycine reductase-encoding GTDB-defined species representatives (GTDB r95) associated with different environments. Only genomes with both GrdB and GrdE were included.Full size imageGiven the phylogenetic and metabolic uniqueness of these populations, we report provisional taxonomic assignment to “Ca. Lithacetigenota” phyl. nov., “Ca. Lithacetigena glycinireducens” gen. nov., sp. nov. (HKB111 and HKB210), and “Ca. Psychracetigena formicireducens” gen. nov., sp. nov. (BS525, BS5B28, and GPS1B18) (see Supplementary Results). Based on a concatenated ribosomal protein tree, this serpentinite-hosted ecosystem-associated candidate phylum is closely related to the deepest-branching group of bacterial phyla in “Terrabacteria”, one of the two major of lineages Bacteria (Fig. 1). Comparative genomics shows that “Ca. Lithacetigenota” shares 623 core functions (based on Bacteria-level COGs/NOGs predicted by eggnog-mapper shared by the two highest quality Hakuba and The Cedars MAGs HKB210 and BS5B28; Fig. 2d). When compared with the core functions of two closest related phyla (Caldiserica and Coprothermobacterota), 176 functions were unique to “Ca. Lithacetigenota”, including those for NiFe hydrogenases (and their maturation proteins), selenocysteine utilization (essential for Grd), and sodium:proton antiporter for alkaliphily. With Coprothermobacterota, 232 functions were shared, including Grd, thioredoxin oxidoreductase (essential for electron transfer to Grd), and additional proteins for NiFe hydrogenases and selenocysteine utilization, pointing toward importance of H2 metabolism and glycine reduction for these closely related phyla. More importantly, among bacterial phyla in the deep-branching group, “Ca. Lithacetigenota” represents the first lineage inhabiting hyperalkaliphilic serpentinite-hosted ecosystems, suggesting that these organisms may be valuable extant windows into potential physiologies of primordial organisms who are thought to have lived under hyperalkaline conditions (albeit with 4 billion years of evolution in between; see discussion regarding Grd below).Widespread glycine reduction in serpentinite-hosted systemsUncultured members of Chloroflexi (Chloroflexota) class Dehalococcoidia inhabiting The Cedars and Firmicutes (Firmicutes_D) class SRB2 in Hakuba and The Cedars also possess glycine reductases (Table S5). In addition, these populations encode hydrogenases and formate dehydrogenases, suggesting that they may also link H2 and formate metabolism to glycine reduction. Closely related glycine reductases were also detected in other studied serpentinite-hosted systems (47–94% amino acid similarity in Tablelands, Voltri Massif, and Coast Range Ophiolite) [1, 2, 7]. Phylogenetic analysis of the glycine-binding “protein B” subunits GrdB and GrdE reveals close evolutionary relationships between glycine reductases from distant/remote sites (Fig. 3a and S6). Note that Tablelands spring glycine reductase sequences were not included in the analysis as they were only detected in the unassembled metagenomic reads (4460690.3; 69.7–82.2% similarity to Hakuba SRB2). Overall, “Ca. Lithacetigenota”, Dehalococcoidia, and SRB2 glycine reductases are all detected in at least two out of the seven metagenomically investigated systems despite the diverse environmental conditions (e.g., temperature). Thus, we propose glycine as an overlooked thermodynamically and energetically favorable electron acceptor for H2 oxidation in serpentinite-hosted systems. We suspect that glycine reduction may be a valuable catabolic strategy as the pathway requires few genes/proteins (a hydrogenase, Grd, acetate kinase, and thioredoxin oxidoreductase) and conveniently provides acetate, ammonia, and ATP as basic forms of carbon, nitrogen, and energy.Phylogenetic analysis of glycine reductases (Fig. 3a and S6) shows that the novel homologs recovered from serpentinite-hosted systems represent deep-branching lineages distantly related from those detectable in published genomes (GTDB r95 species representatives). Further comparison of the topology with a ribosomal protein-based genome tree (Fig. 2a) indicates that the two deep-branching serpentinite-hosted system-affiliated lineages (Ca. Lithacetigenota and novel Chloroflexi family) and Firmicutes vertically inherited glycine reductases. Thus, catabolic glycine reduction can be traced back to the concestor of these three lineages, suggesting the metabolism at least dates back to the ancestor of “Terrabacteria”. We further identified an archaeal GRD homolog (in Miscellaneous Crenarchaeota Group [MCG] or Ca. Bathyarchaeota member BA-1; Fig. 3a and S6), but whether this gene functions as a glycine reductase (GrdB motif not fully conserved) and, further, truly belong to this clade (source is metagenome-assembled genome) remains to be verified. Reconstruction of the ancestral Grd sequence and estimation of its pH preference (via AcalPred) showed that the ancestral enzyme likely had good efficiency under alkaline conditions (pH  > 9; probability of 0.9973 and 0.9858 for GrdB and GrdE, respectively). Thus, the currently available data suggest that Grd (and catabolic glycine reduction) is an ancient bacterial catabolic innovation in an alkaline habitat, dating back to one of the deepest nodes in the bacterial tree.While we detect glycine reductases in many serpentinite-hosted systems, examination of genomes derived from other natural ecosystems shows that only 107 species (species representatives in GTDB r95; 0.35% of all GTDB species) inhabiting such habitats encode GrdBE (Fig. 3b and S6). This is a level comparable to rare artificial contaminant-degrading enzymes (e.g., tetrachloroethane dehalogenase pceA—65 species [encoding KEGG KO K21647 based on AnnoTree with GTDB r95 and default settings [62]]; dibenzofuran dioxygenase—258 species [K14599 and K14600]). Most glycine reductase homologs are found in species affiliated with host-associated (mostly human body and rumen) or artificial habitats (360 species), the majority of which belong to the phylum Firmicutes. We suspect that glycine reduction has low utility in most natural ecosystems (e.g., no excess glycine via abiotic generation and no severe nutrient/electron acceptor limitation) and has been repurposed by some anaerobes for the fermentative Stickland reaction in organic-rich ecosystems (e.g., host-associated ecosystems) where excess amino acids are available but access to favorable electron acceptors is limited (Fig. 3b) (notably, glycine is the dominant amino acid in collagen [ >30%], the most abundant protein in vertebrate bodies).Other characteristics of putative indigenous homoacetogensIn contrast with members of “Ca. Lithacetigenota”, several other putative homoacetogenic populations encode the complete Wood–Ljundgahl pathway (Tables S4 and S5), indicating that other forms of acetogenesis may also be viable in situ. One putative homoacetogen in The Cedars, NPL-UPA2, lacks hydrogenases but encodes formate dehydrogenases. Although the NPL-UPA2 population cannot perform H2/formate-driven acetogenesis, it may couple formate oxidation with formate-reducing acetogenesis—another thermodynamically viable metabolism (∆G of –50.90 kJ per mol acetate in The Cedars; Fig. S5). The pathway uses CO2 as a substrate but has lower CO2 consumption compared to H2/CO2 homoacetogenesis and can produce intracellular CO2 from formate. A recent study also points out that methanogens inhabiting serpentinite-hosted environments oxidize formate presumably to generate intracellular CO2 [9]. In Hakuba, an Actinobacteria population affiliated with the uncultured class UBA1414 (MAG HKB206) encodes hydrogenases and a complete Wood–Ljungdahl pathway (Table S5) and, thus, may be capable of H2/formate or the above formate-disproportionating acetogenesis (Fig. 2c and S5). Indeed, the UBA1414 population was enriched in Hakuba-derived cultures aiming to enrich acetogens using the H2 generated by the metallic iron–water reaction [63] (Fig. S8). Many populations encoding a complete Wood–Ljungdahl pathway possess monomeric CO dehydrogenases (CooS unassociated with CODH/ACS subunits; NPL-UPA2, Actinobacteria, Syntrophomonadaceae [Hakuba and The Cedars], and Dehalococcoidia [The Cedars]; Table S4). Although CO is below the detection limit in Hakuba (personal communication with permission from Dr. Konomi Suda), another study shows that CO metabolism takes place in an actively serpentinizing system with no detectable CO [64]. Given that CO is a known product of serpentinization [7, 64], it may be an important substrate for thermodynamically favorable acetogenesis in situ. However, further investigation is necessary to verify this (e.g., need to measure CO at multiple time points).Another interesting adaptation observed for all putative homoacetogens detected in Hakuba and The Cedars was possession of an unusual CODH/ACS complex. Although Bacteria and Archaea are known to encode structurally distinct forms of CODH/ACS (designated as Acs and Cdh respectively for this study), all studied Hakuba/The Cedars putative homoacetogens encode genes for a hybrid CODH/ACS that integrate archaeal subunits for the CO dehydrogenase (AcsA replaced with CdhAB) and acetyl-CoA synthase (AcsB replaced with CdhC) and bacterial subunits for the corrinoid protein and methyltransferase components (AcsCDE) (Table S4). The Firmicutes lineages also additionally encode the conventional bacterial AcsABCDE. Given that all of the identified putative homoacetogens encode this peculiar hybrid complex, we suspect that such CODH/ACS’s may have features adapted to the high-pH low-CO2 conditions (e.g., high affinity for CO2 and/or CO). In agreement, a similar hybrid CODH/ACS has also been found in the recently isolated “Ca. Desulforudis audaxviator” inhabiting an alkaline (pH 9.3) deep subsurface environment with a low CO2 concentration (below detection limit [65, 66]) [67].Implications for primordial biologyThe last universal common ancestor (LUCA) is hypothesized to have evolved within alkaline hydrothermal mineral deposits at the interface of serpentinization-derived fluid and ambient water (e.g., Hadean weakly acidic seawater) [22,23,24]. Although such interfaces no longer exist (i.e., ancient Earth lacked O2 but most water bodies contain O2 on modern Earth), modern anoxic terrestrial and oceanic ecosystems harboring active serpentinization [1,2,3,4,5,6,7,8] may hold hints for how primordial organisms utilized H2 under hyperalkaline CO2-depleted conditions (e.g., post-LUCA H2-utilizing organisms that ventured away from the interface towards the alkaline fluids). Our findings suggest that unconventional modes of lithotrophy that take advantage of geogenic reduced carbon compounds (e.g., formate and glycine) as exogenous electron acceptors may have been viable approaches to circumventing thermodynamic issues and obtaining energy from H2 oxidation in situ. The strategies we discover are largely exclusive to the bacterial domain (archaeal CO2 reduction does not involve formate as an intermediate and, to our knowledge, glycine reduction is limited to Bacteria) and originated deep in the bacterial tree, suggesting they may have been relevant in the divergence towards the bacterial and archaeal domains. Notably, the estimated alkaliphily of the ancestral Grd also points towards the relevance of this metabolism in ancient alkaline habitats. More

  • in

    Nitrogen and carbon stable isotope analysis sheds light on trophic competition between two syntopic land iguana species from Galápagos

    Luiselli, L., Akani, G. & Capizzi, D. Food resource partitioning of a community of snakes in a swamp rainforest of south-eastern Nigeria. J. Zool. 246(2), 125–133. https://doi.org/10.1111/j.1469-7998.1998.tb00141.x (1998).Article 

    Google Scholar 
    Rouag, R., Djilali, H., Gueraiche, H. & Luiselli, L. Resource partitioning patterns between two sympatric lizard species from Algeria. J. Arid Environ. 69, 158–168. https://doi.org/10.1016/j.jaridenv.2006.08.008 (2007).ADS 
    Article 

    Google Scholar 
    Bergeron, R. & Blouin-Demers, G. Niche partitioning between two sympatric lizards in the Chiricahua Mountains of Arizona. Copeia 108(3), 570–577. https://doi.org/10.1643/CH-19-268 (2020).Article 

    Google Scholar 
    Lucek, K., Butlin, R. K. & Patsiou, T. Secondary contact zones of closely-related Erebia butterflies overlap with narrow phenotypic and parasitic clines. J. Evol. Biol. 33(9), 1152–1163. https://doi.org/10.1111/jeb.13669 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Freeman, B. G. Competitive interaction upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186(4), 470–479. https://doi.org/10.5061/dryad.6qg3g (2015).Article 
    PubMed 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185(4145), 27–39 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Rivas, L. R. A Reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst. Zool. 13(1), 42 (1964).Article 

    Google Scholar 
    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921), 377–385 (1967).Article 

    Google Scholar 
    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8(8), 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).Article 

    Google Scholar 
    Holomuzki, J. R., Feminella, J. W. & Power, M. E. Biotic interactions in freshwater benthic habitats. J. N. Am. Benthol. Soc. 29(1), 220–244. https://doi.org/10.1899/08-044.1 (2010).Article 

    Google Scholar 
    Ferretti, F. et al. Competition between wild herbivores: Reintroduced red deer and Apennine chamois. Behav. Ecol. 26(2), 550–559. https://doi.org/10.1093/beheco/aru226 (2015).Article 

    Google Scholar 
    Takada, H., Yano, R., Katsumata, A., Takatsuki, S. & Minami, M. Diet compositions of two sympatric ungulates, the Japanese serow (Capricornis crispus) and the sika deer (Cervus nippon), in a montane forest and an alpine grassland of Mt. Asama central, Japan. Mamm. Biol. 101, 681–694. https://doi.org/10.1007/s42991-021-00122-5 (2021).Article 

    Google Scholar 
    Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001) (ISBN 9780691021287).
    Google Scholar 
    Bell, G. Neutral macroecology. Science 293, 2413–2418. https://doi.org/10.1126/science.293.5539.2413 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosindell, J., Hubbel, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348. https://doi.org/10.1016/j.tree.2011.03.024 (2011).Article 
    PubMed 

    Google Scholar 
    Cowie, R. H. & Holland, B. S. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33, 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x (2006).Article 

    Google Scholar 
    Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158(6), 572–584. https://doi.org/10.1086/323586 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, K., Gentile, G. & Grant, T. D. Conolophus subcristatus. The IUCN Red List of Threatened Species 2020, e.T5240A3014082 (2020). https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T5240A3014082.enGentile, G. Conolophus marthae. The IUCN Red List of Threatened Species 2012, e. T174472A1414375 (2012). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T174472A1414375.enGentile, G., Marquez, C., Snell, H. L., Tapia, W. & Izurieta, A. Conservation of a New Flagship Species: The Galápagos Pink Land Iguana (Conolophus marthae Gentile and Snell, 2009). In Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 315–336 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22246-2_15.Chapter 

    Google Scholar 
    Gentile, G. & Snell, H. L. Conolophus marthae sp. Nov. (Squamata, iguanidae), a new species of land iguana from the Galápagos Archipelago. Zootaxa 2201, 1–10 (2009).Article 

    Google Scholar 
    Colosimo, G. et al. Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus). Sci. Rep. 10(1), 14314. https://doi.org/10.1038/s41598-020-71176-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, M. Galápagos: A Natural History, Revised and Expanded (University of Calgary Press, 1994).
    Google Scholar 
    Traveset, A. et al. Galápagos land iguana (Conolophus subcristatus) as a seed disperser. Integr. Zool. 11(3), 207–213. https://doi.org/10.1111/1749-4877.12187 (2016).Article 
    PubMed 

    Google Scholar 
    Di Giambattista, L. et al. Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf volcano (Galápagos islands). Conserv. Genet. 19(6), 1461–1469. https://doi.org/10.1007/s10592-018-1114-3 (2018).Article 

    Google Scholar 
    MacLeod, A. et al. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 1–9. https://doi.org/10.1098/rspb.2015.0425 (2015).Article 

    Google Scholar 
    Gause, G. F. The Struggle for Existence (Williams and Wilkins Company, 1934).Book 

    Google Scholar 
    Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).ADS 
    CAS 
    Article 

    Google Scholar 
    Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R. & Bontadina, F. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: Implications for conservation. Eur. J. Wildl. Res. 57, 843–849. https://doi.org/10.1007/s10344-011-0496-z (2011).Article 

    Google Scholar 
    Bleyhl, B. et al. Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Divers. Distrib. 25(1), 129–141. https://doi.org/10.1111/ddi.12839 (2019).Article 

    Google Scholar 
    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5(8), 429–436. https://doi.org/10.1890/060150.1 (2007).Article 

    Google Scholar 
    Riera, P., Stal, L. J. & Nieuwenhuize, J. δ13C versus δ15N of co-occurring mollusks within a community dominated by Crassostrea gigas and Crepidula ornicate (Oossterschelde, The Netherlands). Mar. Ecol. Prog. Ser. 240, 291–295 (2002).ADS 
    Article 

    Google Scholar 
    Page, B., McKenzie, J. & Goldsworthy, S. D. Dietary resources partitioning among sympatric New Zealand and Australian fur seals. Mar. Ecol. Prog. Ser. 293, 283–302 (2005).ADS 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal. Rev. 38(1), 87–107. https://doi.org/10.1111/j.1365-2907.2008.00120.x (2008).Article 

    Google Scholar 
    Trueman, M. & d’Ozouville, N. Characterizing the Galápagos terrestrial climate in the face of global climate change. Gala Res. 67, 26–37 (2010).
    Google Scholar 
    Paltán, H. A. et al. Climate and sea surface trends in the Galápagos Islands. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-93870-w (2021).CAS 
    Article 

    Google Scholar 
    Rivas-Torres, G. F., Benítez, F. L., Rueda, D., Sevilla, C. & Mena, C. F. A methodology for mapping native and invasive vegetation coverage in archipelagos: An example from the Galápagos islands. Prog. Phys. Geogr. 42(1), 83–111. https://doi.org/10.1177/0309133317752278 (2018).Article 

    Google Scholar 
    Gentile, G., Ciambotta, M. & Tapia, W. Illegal wildlife trade in Galápagos: Molecular tools help taxonomic identification and guide rapid repatriation of confiscated iguanas. Conserv. Genet. Resour. 5, 867–872. https://doi.org/10.1007/s12686-013-9915-7 (2013).Article 

    Google Scholar 
    Stephens, R. B., Ouimette, A. P., Hobbie, E. A. & Rowe, R. J. Re-evaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecol. Mono 92, e1525. https://doi.org/10.1002/ecm.1525 (2022).CAS 
    Article 

    Google Scholar 
    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor 94(1), 181–188. https://doi.org/10.2307/1368807 (1992).Article 

    Google Scholar 
    Li, C.-H., Roth, J. D. & Detwiler, J. T. Isotopic turnover rates and diet-tissue discrimination depend on feeding habits of freshwater snails. PLoS ONE 13(7), e0199713. https://doi.org/10.1371/journal.pone.0199713 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinitz, R., Lemm, J., Pasachnik, S. & Kurle, C. Diet-tissue stable isotope (δ13C and δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30(1), 9–21. https://doi.org/10.1002/rcm.7410 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ethier, D. M., Kyle, C. J., Kyser, T. K. & Nocera, J. J. Variability in the growth patterns of the cornified claw sheath among vertebrates: Implications for using biogeochemistry to study animal movement. Can. J. Zool. 88(11), 1043–1051. https://doi.org/10.1139/Z10-073 (2010).Article 

    Google Scholar 
    Aresco, M. J. & James, F. C. Ecological relationships of turtles in northern Florida lakes: A study of omnivory and the structure of a lake food web. Florida Fish and Wildlife Conservation Commission (2005). https://www.semanticscholar.org/paper/ECOLOGICAL-RELATIONSHIPS-OF-TURTLES-IN-NORTHERN-A-A-Aresco-James/f6d59265eb6494aa19cfde7d2d80bb165e6432acLourenço, P. M., Granadeiro, J. P., Guilherme, J. L. & Catry, T. Turnover rates of stable isotopes in avian blood and toenails: Implications for dietary and migration studies. J. Exp. Mar. Biol. Ecol. 472, 89–96. https://doi.org/10.1016/j.jembe.2015.07.006 (2015).CAS 
    Article 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in r. J. Animal Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in Galápagos marine iguanas. Integr Comp Biol 43(3), 376–386. https://doi.org/10.1093/icb/43.3.376 (2003).Article 
    PubMed 

    Google Scholar 
    Iverson, J., Smith, G. & Pieper, L. Factors Affecting Long-Term Growth of the Allen Cays Rock Iguana in the Bahamas. In Iguanas: Biology and Conservation (eds Alberts, A. et al.) 176–192 (University of California Press, 2004). https://doi.org/10.1525/9780520930117-018.Chapter 

    Google Scholar 
    Smith, G. R. & Iverson, J. B. Effects of tourism on body size, growth, condition, and demography in the Allen Cay Iguana. Herpetol. Conserv. Biol. 11, 214–221 (2016).
    Google Scholar 
    Wikelski, M., Carrillo, V. & Trillmich, F. Energy limits to body size in a grazing reptile, the Galápagos Marine Iguana. Ecology 78(7), 2204–2217. https://doi.org/10.2307/2265956 (1997).Article 

    Google Scholar 
    Bulakhova, N. A. et al. Inter-observer and intra-observer differences in measuring body length: A test in the common lizard, Zootoca vivipara. Amphibia-Reptilia 32(4), 477–484. https://doi.org/10.1163/156853811X601636 (2011).Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing (2021). https://cran.r-project.orgGoslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19. https://doi.org/10.18637/jss.v022.i07 (2007).Article 

    Google Scholar 
    Randin, C. F., Jaccard, H., Vittoz, P., Yoccoz, N. G. & Guisan, A. Land use improves spatial predictions of mountain plant abundance but not presence–absence. J. Veg. Sci. 20, 996–1008. https://doi.org/10.1111/j.1654-1103.2009.01098.x (2009).Article 

    Google Scholar 
    Broennimann, O., Di Cola, V. & Guisan, A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.2.1 (2022) https://CRAN.R-project.org/package=ecospatBorcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73(3), 1045–1055. https://doi.org/10.2307/1940179 (1992).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.Book 
    MATH 

    Google Scholar 
    Van Marken Lichtenbelt, W. D. Optimal foraging of a herbivorous lizard, the green iguana in a seasonal environment. Oecologia 95, 246–256. https://doi.org/10.1007/BF00323497 (1993).ADS 
    Article 
    PubMed 

    Google Scholar 
    Pasachnik, S. A. & Martin-Velez, V. An evaluation of the diet of Cyclura iguanas in the Dominican Republic. Herpetol. Bull. 140, 6–12 (2017).
    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647), 153–158. https://doi.org/10.1038/38229 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).Article 

    Google Scholar 
    Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25(4), 1009–1018. https://doi.org/10.1093/icb/25.4.1009 (1985).Article 

    Google Scholar 
    Christian, K., Tracy, C. R. & Porter, W. P. Diet, digestion, and food preferences of Galápagos land iguanas. Herpetologica 40(2), 205–212 (1984).
    Google Scholar 
    Mallona, I., Egea-Cortines, M. & Weiss, J. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol. 156, 1978–1989. https://doi.org/10.1104/pp.111.179275 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Sebastián, O., Navarro, J., Llorente, G. A. & Richter-Boix, Á. Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10(6), 1–17. https://doi.org/10.1371/journal.pone.0130549 (2015).CAS 
    Article 

    Google Scholar 
    Perga, M. E. & Grey, J. Laboratory measures of isotope discrimination factors: Comments on Caut, Angulo & Courchamp (2008, 2009). J. Appl. Ecol. 47(4), 942–947. https://doi.org/10.1111/j.1365-2664.2009.01730.x (2010).CAS 
    Article 

    Google Scholar 
    Freeman, B. Sexual niche partitioning in two species of new Guinean Pachycephala whistlers. J. Field Ornithol. 85(1), 23–30. https://doi.org/10.1111/jofo.12046 (2014).Article 

    Google Scholar 
    Werner, D. I. Social Organization and Ecology of Land Iguanas, Conolophus subcristatus, on Isla Fernandina, Galápagos. In Iguanas of the World: Their Behavior, Ecology, and Conservation (eds Burghardt, G. M. & Rand, A. S.) 342–365 (Noyes Publications, 1982).
    Google Scholar 
    Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. Open Sci. 4(8), 170633. https://doi.org/10.1098/rsos.170633 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Persaud, A., Dillon, P., Molot, L. & Hargan, K. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci. 74(1), 203–212. https://doi.org/10.1007/s00027-011-0212-9 (2012).Article 

    Google Scholar 
    Keppeler, F. W. et al. Body size, trophic position, and the coupling of different energy pathways across a saltmarsh landscape. Limnol. Oceanogr. Lett. 6(6), 360–368. https://doi.org/10.1002/lol2.10212 (2021).Article 

    Google Scholar 
    Hanson, J. O. et al. Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). Austral. Ecol. 40(3), 275–286. https://doi.org/10.1111/aec.12212 (2015).Article 

    Google Scholar 
    Gustavino, B., Terrinoni, S., Paglierani, C. & Gentile, G. Conolophus marthae vs. Conolophus subcristatus: Does the skin pigmentation pattern exert a protective role against DNA damaging effect induced by UV light exposure? Analysis of blood smears through the micronucleus test. Paper presented at the Galápagos Land and Marine Iguanas Workshop, IUCN SSC Iguana Specialist Group Meeting, Puerto Ayora, 28–29 October 2014.Di Giacomo, C. et al. 25–Hydroxivitamin D plasma levels in natural populations of pigmented and partially pigmented land iguanas from Galápagos (Conolophus spp.). Hind 2022, 1–9. https://doi.org/10.1155/2022/7741397 (2022).CAS 
    Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Connectivity modelling in conservation science: a comparative evaluation

    Abram, D. The spell of the sensuous: Perception and language in a more-than-human world. Vintage (2012).Ingold, T. Being alive: Essays on movement, knowledge and description. Routledgehttps://doi.org/10.4324/9780203818336 (2011).Article 

    Google Scholar 
    Kimmerer, R.W. Braiding sweetgrass: Indigenous wisdom, scientific knowledge and the teachings of plants (Milkweed editions, 2013).Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibbs, J.P. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. in The Journal of Wildlife Management (1998), pp. 584–589. https://doi.org/10.2307/3802333.Moller, H., Berkes, F., O’Brian Lyver, P., & Kislalioglu, M. Combining science and traditional ecological knowledge: Monitoring populations for co-management. in Ecology and society (2004).Lorimer, J. Wildlife in the Anthropocene: conservation after nature. (U of Minnesota Press, 2015).Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3(4), 385–397 (1989).Article 

    Google Scholar 
    Abram, D. Becoming animal: An earthly cosmology. Vintage (2010).Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105(49), 19052–19059 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90(1), 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x (2000).Article 

    Google Scholar 
    Rudnick, D., Ryan, S.J., Beier, P., Cushman, S.A., Dieffenbach, F., Epps, C., Gerber, L.R., Hartter, J.N., Jenness, J.S., & Kintsch, J. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology (2012).Hilty, J.A., Lidicker, W.Z., & Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, 2012).Cushman, S.A., McRae, B.H., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. Biological corridors and connectivity [Chapter 21]. in Key Topics in Conservation Biology 2nd ed. (eds Macdonald, D.W., Willis, K.J.) pp. 384–404 (Hoboken, NJ: Wiley-Blackwell, 2013).Unnithan Kumar, S., Turnbull, J., Hartman Davies, O., Hodgetts, T., & Cushman, S.A. Moving beyond landscape resistance: Considerations for the future of connectivity modelling and conservation science. in Landscape Ecology (2022).Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landscape Ecol. 27(6), 777–797 (2012).Article 

    Google Scholar 
    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64(4), 233–247 (2003).Article 

    Google Scholar 
    Cushman, S. A. & McKelvey, K. S. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376. https://doi.org/10.1111/j.1523-1739.2008.01111.x (2009).Article 
    PubMed 

    Google Scholar 
    Moilanen, A. On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J. Appl. Ecol. pp. 1543–1547 (2011).Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21(3), 788–799. https://doi.org/10.1111/j.1523-1739.2007.00674.x (2007).Article 
    PubMed 

    Google Scholar 
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1. (2008).Article 
    PubMed 

    Google Scholar 
    Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879. https://doi.org/10.1111/ddi.12742. (2018).Article 

    Google Scholar 
    Pullinger, M. G. & Johnson, C. J. Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol. 25(10), 1547–1560 (2010).Article 

    Google Scholar 
    Sawyer, S. C., Clinton, W. E. & Brashares, J. S. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48(3), 668–678 (2011).Article 

    Google Scholar 
    Laliberté, J. & St-Laurent, M.-H. Validation of functional connectivity modeling: The Achilles’ heel of landscape connectivity mapping. Landsc. Urban Plan. 202, 103878 (2020).Article 

    Google Scholar 
    Landguth, E. L. & Cushman, S. A. CDPOP: A spatially explicit cost distance popula tion genetics program. Mol. Ecol. Resour. 10(1), 156–161. https://doi.org/10.1111/j.1755-0998.2009.02719.x. (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19(19), 4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cushman, S. A. & Landguth, E. L. Scale dependent inference in landscape genetics. Landsc. Ecol. 25(6), 967–979 (2010).Article 

    Google Scholar 
    Cushman, S. A., Shirk, A. J. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).Article 

    Google Scholar 
    Macdonald, E. A. et al. Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE 13(9), e0196974 (2018).Article 

    Google Scholar 
    Schumaker, N. H. et al. Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecol. 29(4), 579–592 (2014).Article 

    Google Scholar 
    Unnithan Kumar, S., Kaszta, Ż & Cushman, S. A. Pathwalker: A new individual-based movement model for conservation science and connectivity modelling. ISPRS Int. J. Geo Inf. 11(6), 329 (2022).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927–930 (2003).Article 

    Google Scholar 
    Dray, S., Royer-Carenzi, M. & Calenge, C. The exploratory analysis of autocorrelation in animal-movement studies. Ecol. Res. 25(3), 673–681. https://doi.org/10.1007/s11284-010-0701-7 (2010).Article 

    Google Scholar 
    Cushman, S.A. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. in Spatial Complexity, Informatics, and Wildlife Conservation (Springer, 2010), pp. 131-149.Zeller, K. A. et al. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol. 29(3), 541–557 (2014).Article 

    Google Scholar 
    Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56(2), 234–238 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schumaker, N.H. Using landscape indices to predict habitat connectivity. Ecology (1996), pp. 1210–1225.Schumaker, N. H. & Brookes, A. HexSim: A modeling environment for ecology and conservation. Landscape Ecol. 33(2), 197–211 (2018).Article 

    Google Scholar 
    Bocedi, G., Palmer, S. C. F., Malchow, A.-K., Zurell, D. & Watts, K. RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44(10), 1453–1462 (2021).Article 

    Google Scholar 
    Kaszta, Ż, Cushman, S. A. & Slotow, R. Temporal non-stationarity of path- selection movement models and connectivity: An example of African elephants in Kruger national park. Front. Ecol. Evol. 9, 207 (2021).Article 

    Google Scholar 
    Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: Accounting for variability across individuals and seasons. Anim. Conserv. 22(1), 35–48 (2019).Article 

    Google Scholar 
    Vergara, M., Cushman, S. A. & Ruiz-González, A. Ecological differences and limiting factors in different regional contexts: landscape genetics of the stone marten in the Iberian Peninsula. Landscape Ecol. 32(6), 1269–1283 (2017).Article 

    Google Scholar 
    Reddy, P. A., Puyravaud, J.-P., Cushman, S. A. & Segu, H. Spatial variation in the response of tiger gene ow to landscape features and limiting factors. Anim. Conserv. 22(5), 472–480 (2019).Article 

    Google Scholar 
    Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land 9(9), 303. https://doi.org/10.3390/land9090303 (2020).Article 

    Google Scholar 
    Cronon, W. The trouble with wilderness: or, getting back to the wrong nature. Environ. Hist. 1(1), 7–28 (1996).Article 

    Google Scholar 
    Ingold, T. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill (Routledge, 2021).Boettiger, A. N. et al. Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology 92(8), 1648–1657 (2011).Article 

    Google Scholar 
    Pooley, S. et al. An interdisciplinary review of current and future approaches to improving human-predator relations. Conserv. Biol. 31(3), 513–523. https://doi.org/10.1111/cobi.12859 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benson, E. S. Minimal animal: Surveillance, simulation, and stochasticity in wildlife biology. Antennae 30, 39 (2014).
    Google Scholar 
    Kaszta, Ż et al. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol. Cons. 235, 63–76 (2019).Article 

    Google Scholar 
    Penjor, U., Astaras, C., Cushman, S. A., Kaszta, Ż & Macdonald, D. W. Contrasting effects of human settlement on the interaction among sympatric apex carnivores. Proc. R. Soc. B 289(1973), 20212681 (2022).Article 

    Google Scholar 
    Barua, M. Bio-geo-graphy: Landscape, dwelling, and the political ecology of human-elephant relations. Environ. Plann. D Soc. Space 32(5), 915–934 (2014).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51(5), 1169–1178 (2014).Article 

    Google Scholar 
    Kareiva, P. & Marvier, M. What is conservation science?. Bioscience 62(11), 962–969 (2012).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Bunnefeld, N., Nicholson, E., & Milner-Gulland, E.J. Decision-Making in Conservation and Natural Resource Management: Models for Interdisciplinary Approaches. (Vol. 22, Cambridge University Press, 2017).Parathian, H. E., McLennan, M. R., Hill, C. M., Fraza o-Moreira, A. & Hockings, K. J. Breaking through disciplinary barriers: Human-wildlife interactions and multispecies ethnography. Int. J. Primatol. 39(5), 749–775 (2018).Article 

    Google Scholar 
    Hodgetts, T. Connectivity as a multiple: In with and as “nature’’. Area 50(1), 83–90. https://doi.org/10.1111/area.12353 (2018).Article 
    PubMed 

    Google Scholar 
    Berkes, F. Sacred ecology (Routledge, 2017). https://doi.org/10.4324/9781315114644.Parrenas, J.S. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation (Duke University Press, 2018).Bill Adams, W., & Mulligan, M. Decolonizing Nature: Strategies for Conservation in a Post-Colonial Era (Routledge, 2012). More

  • in

    Industrial energy development decouples ungulate migration from the green wave

    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).PubMed 

    Google Scholar 
    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).Article 

    Google Scholar 
    Holdo, R. M., Holt, R. D., Sinclair, A. R., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J. et al.) 131–143 (Oxford Univ. Press, 2011).Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Conserving transboundary wildlife migrations: recent insights from the Greater Yellowstone Ecosystem. Front. Ecol. Environ. 18, 83–91 (2020).Article 

    Google Scholar 
    Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).Article 

    Google Scholar 
    Drent, R., Ebbinge, B. & Weijand, B. Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh. Ornithol. Ges. Bayern 23, 239–264 (1978).
    Google Scholar 
    van der Graaf, S. A. J., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. R. Soc. B. 283, 20160456 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos https://doi.org/10.1111/oik.05227 (2018).Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H. et al. A framework for understanding semi‐permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50, 68–78 (2013).Article 

    Google Scholar 
    Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Berry, J. Aspects of wildebeest Connochaetes taurinus ecology in the Etosha National Park—a synthesis for future management. Madoqua 1997, 137–148 (1997).
    Google Scholar 
    Williamson, D. & Williamson, J. Botswana’s fences and the depletion of Kalahari wildlife. Oryx 18, 218–222 (1984).Article 

    Google Scholar 
    Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 
    Article 

    Google Scholar 
    Kauffman, M. J., Meacham, J. E., Sawyer, H., Rudd, W. & Ostlind, E. Wild Migrations: Atlas of Wyoming’s Ungulates (Oregon State Univ. Press, 2018).Wyckoff, T. B., Sawyer, H., Albeke, S. E., Garman, S. L. & Kauffman, M. J. Evaluating the influence of energy and residential development on the migratory behavior of mule deer. Ecosphere 9, e02113 (2018).Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: effects of anthropogenically altered landscapes. PLoS ONE 8, e64548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr, Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural‐gas development. Ecosphere 3, 82 (2012).Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., LeBeau, C. W., McDonald, T. L., Xu, W. & Middleton, A. D. All routes are not created equal: an ungulate’s choice of migration route can influence its survival. J. Appl. Ecol. 56, 1860–1869 (2019).
    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
    Article 

    Google Scholar 
    Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).Article 

    Google Scholar 
    Mysterud, A., Langvatn, R., Yoccoz, N. G. & Stenseth, N. C. Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J. Anim. Ecol. 70, 915–923 (2001).Article 

    Google Scholar 
    Johnson, H. E. et al. Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob. Change Biol. 23, 578–591 (2017).Article 

    Google Scholar 
    Sawyer, H., Korfanta, N. M., Nielson, R. M., Monteith, K. L. & Strickland, D. Mule deer and energy development—long-term trends of habituation and abundance. Glob. Change Biol. 23, 4521–4529 (2017).Article 

    Google Scholar 
    Sawyer, H., Lambert, M. S. & Merkle, J. A. Migratory disturbance thresholds with mule deer and energy development. J. Wildl. Manag. 84, 930–937 (2020).Article 

    Google Scholar 
    Uezu, A., Metzger, J. P. & Vielliard, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123, 507–519 (2005).Article 

    Google Scholar 
    Keeley, A. T. H., Beier, P. & Jenness, J. S. Connectivity metrics for conservation planning and monitoring. Biol. Conserv. 255, 109008 (2021).Article 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Migration distance and maternal resource allocation determine timing of birth in a large herbivore. Ecology 102, e03334 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).PubMed 

    Google Scholar 
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).Article 

    Google Scholar 
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Hayes, M., Rudd, B. & Kauffman, M. J. The Red Desert to Hoback Mule Deer Migration Assessment (Univ. Wyoming, 2014).Berger, J., Young, J. K. & Berger, K. M. Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol. 6, e165 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Article 

    Google Scholar 
    Vermote, E. MOD09A1 Surface Reflectance 8-day L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).Pettorelli, N., Mysterud, A., Yoccoz, N. G., Langvatn, R. & Stenseth, N. C. Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc. R. Soc. B. 272, 2357–2364 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 
    Article 

    Google Scholar 
    Hamel, S., Garel, M., Festa-Bianchet, M., Gaillard, J. M. & Cote, S. D. Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J. Appl. Ecol. 46, 582–589 (2009).Article 

    Google Scholar 
    Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Single-cell view of deep-sea microbial activity and intracommunity heterogeneity

    Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arístegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29.Article 

    Google Scholar 
    Ebrahimi A, Schwartzman J, Cordero OX. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc Natl Acad Sci USA. 2019;116:23309–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:469.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28:175–211.Article 

    Google Scholar 
    Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Progr Oceanogr. 1988;20:41–82.Article 

    Google Scholar 
    Zehr JP, Kudela RM. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci. 2011;3:197–225.PubMed 
    Article 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teira E, Lebaron P, van Aken H, Herndl GJ. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr. 2006;51:2131–44.CAS 
    Article 

    Google Scholar 
    Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol. 2005;71:2303–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasol JM, Alonso-Sáez L, Vaqué D, Baltar F, Calleja ML, Duarte CM, et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Progr Oceanogr. 2009;83:189–96.Article 

    Google Scholar 
    Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orphan VJ, House CH. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology. 2009;7:360–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol Biol. 2012;881:375–408.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13:03B301.Article 

    Google Scholar 
    Dawson KS, Scheller S, Dillon JG, Orphan VJ. Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front Microbiol. 2016;7:774.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia-Gorostidi N, Weber PK, Alonso-Sáez L, Morán XAG, Mayali X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 2017;11:641–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinic I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:1–23.Article 

    Google Scholar 
    Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, et al. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol. 2021;23:6764–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gini C. Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C. Cuppini, Bologna; 1912.Fernández-Tschieder E, Binkley D. Linking competition with growth dominance and production ecology. Ecol Manag. 2018;414:99–107.Article 

    Google Scholar 
    Cordonnier T, Kunstler G. The Gini index brings asymmetric competition to light. Perspect Plant Ecol Evol Syst. 2015;17:107–15.Article 

    Google Scholar 
    Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods. 1997;30:91–101.CAS 
    Article 

    Google Scholar 
    Li J, Ma YB, Hu HW, Wang JT, Liu YR, He JZ. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Front Microbiol. 2015;6:31.PubMed 
    PubMed Central 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia‐Gorostidi N, Alonso‐Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ Microbiol. 2020;22:1381–96.PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kemp PF, Lee S, Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993;59:2594–601.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baltar F, Arístegui J, Gasol J, Sintes E, van Aken H, Herndl G. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Micro Ecol. 2010;58:287–302.Article 

    Google Scholar 
    Lønborg C, Nieto-Cid M, Hernando-Morales V, Hernández-Ruiz M, Teira E, Álvarez-Salgado XA. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity. FEMS Microbiol Ecol. 2016;92:fiw048.PubMed 
    Article 

    Google Scholar 
    Nagata T, Fukuda H, Fukuda R, Koike I. Bacter-ioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr. 2000;45:426–35.CAS 
    Article 

    Google Scholar 
    Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl Environ Microbiol. 2004;70:4411–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mestre M, Hofer J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 2020;29:482–92.PubMed 
    Article 

    Google Scholar 
    Giering SLC, Evans C. Overestimation of prokaryotic production by leucine incorporation—and how to avoid it. Limnol Oceanogr. 2022;67:726–38.Article 

    Google Scholar 
    Amos CM, Castelao RM, Medeiros PM. Offshore transport of particulate organic carbon in the California Current System by mesoscale eddies. Nat Commun. 2019;10:4940.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer JE, Druffel ERM. Ocean margins as a significant source of organic matter to the deep open ocean. Nature. 1998;392:482–5.CAS 
    Article 

    Google Scholar 
    Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM. Dilution limits dissolved organic carbon utilization in the deep ocean. Science. 2015;348:331–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Musat N, Adam B, Kuypers M, Amann R. HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol. 2012;35:541–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Klawonn I, Bonaglia S, Whitehouse MJ, Littmann S, Tienken D, Kuypers MMM, et al. Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J. 2019;13:1960–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:150720190448005.Article 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Licht TR, Tolker-Nielsen T, Holmstrøm K, Krogfelt KA, Molin S. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol. 1999;1:23–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu J, Gao W, Johnson R, Zhang W, Meldrum D. Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs. 2013;11:3777–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2012).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitt, W., Brown, B., Warner, M. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65. https://doi.org/10.1007/s003380100146 (2001).Article 

    Google Scholar 
    Fujise, L., Yamashita, H., Suzuki, G. & Koike, K. Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea, JCRS 15, 29–36. https://doi.org/10.3755/galaxea.15.29 (2013).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS USA https://doi.org/10.1073/pnas.2022653118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis. Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10, 1647–1658 (2013).ADS 
    Article 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Peña-García, D., Ladwig, N., Turki, A. J. & Mudarris, M. S. Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mar. Pollut. Bull. 80, 41–51. https://doi.org/10.1016/j.marpolbul.2014.01.052 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagés, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113. https://doi.org/10.1007/s003380000078 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, K. et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 33, 1486–1501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH 4+ and NO 3− supply. Proc. R. Soc. B. 282, 20150610 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).ADS 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PloS one 8, e54399 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. Biol. Sci. 282, 20152257 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930. https://doi.org/10.1038/s41396-018-0046-8 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Barros, F. et al. Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci. Rep. 10, 11975 (2020).ADS 
    Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone. A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs. Beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—recent advances and perspectives. Microbiome 6, 64 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Dysturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81, 2714–2729 (2000).Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Soft corals exert no direct effects on coral reef fish assemblages. Oecologia 127, 560–571. https://doi.org/10.1007/s004420000617 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).Article 

    Google Scholar 
    Janes, M. P. Distribution and diversity of the soft coral family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia. Galaxea, JCRS 15, 195–200 (2013).Article 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields. Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. PNAS USA 110, 8978–8983 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ 15 N and δ 13 C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. & Ogawa, H. Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 52, 1139–1146 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS 
    Article 

    Google Scholar 
    Dagenais-Bellefeuille, S. & Morse, D. Putting the N in dinoflagellates. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00369 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral—algae endosymbiosis. Mar. Freshwater Res. 60, 483 (2009).CAS 
    Article 

    Google Scholar 
    Moed, J. R. & Hallegraeff, G. M. Some problems in the estimation of chlorophyll-a and phaeopigments from pre- and post-acidification spectrophotometrie measurements. Int. Revue Ges. Hydrobiol. Hydrogr. 63, 787–800 (1978).CAS 
    Article 

    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, A221-230A (1958).
    Google Scholar 
    Pupier, C. A., Bednarz, V. N. & Ferrier-Pagès, C. Studies with soft corals—recommendations on sample processing and normalization metrics. Front. Mar. Sci. 5, 2620 (2018).Article 

    Google Scholar 
    Pupier, C. A. et al. Dissolved nitrogen acquisition in the symbioses of soft and hard corals with Symbiodiniaceae: A key to understanding their different nutritional strategies?. Front. Microbiol. 12, 657759 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 
    PubMed 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).PubMed 

    Google Scholar 
    Ezzat, L., Towle, E., Irisson, J.-O., Langdon, C. & Ferrier-Pagès, C. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol. Oceanogr. 61, 89–102 (2016).ADS 
    Article 

    Google Scholar 
    Dobson, K. L. et al. Moderate nutrient concentrations are not detrimental to corals under future ocean conditions. Mar. Biol. https://doi.org/10.1007/s00227-021-03901-3 (2021).Article 

    Google Scholar 
    Strychar, K. B., Coates, M., Sammarco, P. W., Piva, T. J. & Scott, P. T. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp.. J. Exp. Mar. Biol. Ecol. 320, 159–177. https://doi.org/10.1016/j.jembe.2004.12.039 (2005).Article 

    Google Scholar 
    Sammarco, P. W. & Strychar, K. B. Responses to high seawater temperatures in zooxanthellate octocorals. PloS one 8, e54989 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Change Biol. 24, e474–e484. https://doi.org/10.1111/gcb.13895 (2018).Article 

    Google Scholar 
    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).ADS 
    Article 

    Google Scholar 
    Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. 66, 1718–1729 (2021).ADS 
    Article 

    Google Scholar 
    Sawall, Y. et al. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci. Rep. 5, 8940 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carpenter, E. J., Harvey, H., Fry, B. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I: Oceanogr. Res. Pap. 44, 27–38 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).ADS 
    Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ 5, e3802 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS 
    Article 

    Google Scholar 
    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubinsky, Z. V. Y. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B.: Biol. Sci. 239, 231–246 (1990).ADS 

    Google Scholar 
    Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnol. Oceanogr. 51, 30–37 (2006).ADS 
    Article 

    Google Scholar 
    Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).CAS 
    Article 

    Google Scholar 
    Lewis, J. B. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J. Zool. 196, 371–384 (1982).Article 

    Google Scholar 
    Studivan, M. S., Hatch, W. I. & Mitchelmore, C. L. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. SpringerPlus 4, 80 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parrin, A. P. et al. Symbiodinium migration mitigates bleaching in three octocoral species. J. Exp. Mar. Biol. Ecol. 474, 73–80 (2016).Article 

    Google Scholar 
    Parrin, A. P. et al. Within-colony migration of symbionts during bleaching of octocorals. Biol. Bull. 223, 245–256 (2012).PubMed 
    Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome. Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).Article 
    PubMed 

    Google Scholar 
    Gruber, R. et al. Marine monitoring program: Annual report for inshore water quality monitoring 2018–19. Report for the Great Barrier Reef Marine Park Authority. GBRMPA, Townsville (2020).Dinesen, Z. D. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1, 229–236. https://doi.org/10.1007/BF00304420 (1983).ADS 
    Article 

    Google Scholar 
    Benayahu, Y. et al. Octocorals of the Indo-Pacific. In Mesophotic Coral Ecosystems Vol. 12 (eds Loya, Y. et al.) 709–728 (Springer International Publishing, Cham, 2019).Chapter 

    Google Scholar 
    Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: Influence of natural and anthropogenic factors. Aquat. Conserv. 18, 1109–1126 (2008).Article 

    Google Scholar 
    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs. New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    Wooldridge, S. A. & Done, T. J. Improved water quality can ameliorate effects of climate change on corals. Ecol. Appl. 19, 1492–1499 (2009).PubMed 
    Article 

    Google Scholar 
    Nugues, M. M. & Roberts, C. M. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Mar. Pollut. Bull. 46, 314–323 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton analysis – haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, edited by B. Karlson, C. Cusack & E. Bresnan (IOC UNESCO, Paris, France, 2010), pp. 25–30.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).CAS 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).ADS 
    Article 

    Google Scholar 
    Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R J. 8, 367 (2016).Article 

    Google Scholar 
    Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Soft. 50, 1–23 (2012).Article 

    Google Scholar 
    Schlöder, C. & D’Croz, L. Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 313, 255–268 (2004).Article 

    Google Scholar 
    Faxneld, S., Jörgensen, T. L. & Tedengren, M. Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuar. Coast. Shelf Sci. 88, 482–487 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Chumun, P. K. et al. High nitrate levels exacerbate thermal photo-physiological stress of zooxanthellae in the reef-building coral Pocillopora damicornis. Eco-Eng. 25, 1–9 (2013).
    Google Scholar 
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. Stud. Mar. Sci. 2, 27–31 (2015).
    Google Scholar  More