More stories

  • in

    Evolutionary implications of new Postopsyllidiidae from mid-Cretaceous amber from Myanmar and sternorrhynchan nymphal conservatism

    Systematic palaeontologyOrder Hemiptera Linnaeus, 1758Suborder Sternorrhyncha Amyot et Audinet-Serville, 1843Superfamily Protopsyllidioidea Carpenter, 1931Family Postopsyllidiidae Hakim, Azar et Huang, 2019Genus Megalophthallidion Drohojowska et Szwedo, gen. nov.LSID urn:lsid:zoobank.org:act:A6F71390-9B8E-4A19-8F30-C2A024B6EFB1Type speciesMegalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.; by present designation and monotypy.EtymologyGeneric name is derived from Classic Greek megas (μέγας)—large, ophthalmos (ὀφθαλμός)—an eye and Greek form of generic name Psyllidium. Gender: masculine.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisHead capsule with 12 stiff setae on tubercles (18 setae in Postopsyllidium); fore wing without pterostigma (tiny pterostigma, widening of ScP + RA present in Postopsyllidium); vein CuP not thickened distally (distinctly thickened distally in Postopsyllidium); profemur with a row of ventral (ventrolateral) setae (two rows in Postopsyllidium).Megalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.LSID urn:lsid:zoobank.org:act:F3F971F4-AE04-4F41-98B0-9A0A04470625.(Figs. 1A–F, 2A–I).Figure 1Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of body, ventral side; (B) photo of right antennae and (C) drawing of antenna; (D) drawing of body, dorsal side; (E) drawing of thorax structure with sclerites marked: red—pronotum; orange—mesopraescutum; yellow—mesoscutum; light green—mesoscutellum, dark green—mesopostnotum; light blue—metascutum; dark blue—metascutellum; violet—metapostnotum; (F) photo of thorax dorsal side. Scale bars: 0.5 mm (A), 0.2 mm (B–D), 0.1 mm (F).Full size imageFigure 2Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of right fore wing; (B) photo of right wings; (C) photo of antenna and proleg; (D) photo of proleg and mesoleg, and (E) photo of femur of proleg, and (F) photo of right metatarsus and left mesotarsus in the background, and (G) photo of right mesotarsus of mesoleg, and (H) Photo of tarsi; (I) photo of male genital block. Scale bars: 0.5 mm (A–D), 0.2 mm (B,E,F,H), 0.1 mm (G,I).Full size imageMaterialHolotype, number MAIG 6687 (BUB 96), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Imago, a complete and well-preserved male. Piece of amber 8 × 6 × 3 mm, cut from larger lump, polished flat on both sides.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisAs for the genus with the following additions: three ocelli distinct, antennomere IX the longest, about as long as pedicel, antennomeres III–VII and XI of similar length, antennomere XII the shortest, subconically tapered in apical portion. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus geniculately bent at base, directed dorsally, tapered apicad.DescriptionMale (Figs. 1A–F, 2A–I). Head with compound eyes distinctly wider than pronotum (Fig. 1D–F). Compound eyes subglobular, protruding laterally. Vertex short in midline, about 2.5 times as wide as posterior margin and as long in middle; trapezoidal, anterior margin slightly arched, lateral margins diverging posteriad, posterior margin shallowly arched, disc of vertex with distinct setae on large tubercles: four setae at posterior margin, two at anterior angles of compound eyes, two medial, over the median ocellus. Three ocelli present, median ocellus distinct, visible from above, lateral ocelli near anterior angles of compound eyes. Frons about as wide as long in midline, two rows of setae on tubercles, upper row at level of median ocellus, lower one, below half of compound eye height. Clypeus, elongate, triangular, in lower portion roof-like; two setae on tubercles near upper margin. Genae very narrow. Rostrum reaching slightly beyond mesocoxae, apical segment slightly shorter than subapical one, darker. Antennae bases placed at lower margin of compound eyes; antennal fovea elevated; scapus shorter than pedicel, cylindrical; pedicel cylindrical; antennomeres IIIrd–VIIth and XIth of similar length, VIIIth slightly longer than VIIth, as long as Xth antennomere, IXth the longest, XIIth the shortest, tapered apically; rhinaria absent.Thorax (Fig. 1D–F): pronotum quadrangular, about as long as mesothorax; pronotum with anterior and posterior margins parallel, merely arcuate, disc with transverse groove in the median portion, lateral margins slightly arcuate, two distinct setae on tubercles in anterolateral angle, two setae on tubercles anterior margin at distance1/3 to median line, three distinct setae on tubercles in posterolateral angles. Mesopraescutum subtriangular, with apex widely rounded, about 0.4 times as wide as pronotum, about 0.4 times as long as wide, delicately separated from mesoscutum. Mesoscutum as wide as pronotum at widest point, distinctly narrowed medially, anterior angles rounded, anterolateral margin sigmoid, lateral angle acute, posterior angles wide, posterior margin V-shape incised, posterolateral areas of mesoscutum disc declivent posteriorly; disc with two setae on tubercles, at 1/3 of mesoscutum width. Mesoscutellum about as long as wide, diamond-shape, anterior and lateral angles acute, posterior angle rounded. Mesopostnotum in form of transverse band, slightly widened in median portion. Metascutum narrower than mesoscutum, anterior angles widely rounded, lateral angles acute, anterolateral margin concave, posterior margin arcuate, with deep median arcuate incision. The suture between metascutum and metascutellum weakly visible, metascutellum subtriangular, longer than wide at base.Parapteron with three distinct setae.Fore wing (Fig. 2A,B) membranous, narrow, elongate, about 3.5 times as long as wide, widest at 2/3 of length. Anterior margin merely arcuate, slightly bent at very base, anteroapical angle widely arcuate, apex rounded, posteroapical angle widely arcuate, tornus arcuate, claval margin straight, with incision between terminals of Pcu (claval apex) and A1. Stem ScP + R + MP + CuA slightly arcuate, very short stalk ScP + R + MP + CuA leaving basal cell, stem ScP + R oblique, straight, forked in basal half of fore wing length, branch ScP + RA, oblique, reaching anterior margin slightly distally of half of fore wing length, slightly distally of ending of CuA2 branch; branch RP slightly arcuate, a little more curved in basal section, reaching margin at anteroapical angle; stalk MP + CuA slightly shorter than basal cell; stem MP almost straight, forked in apical half of fore wing, at about 2/3 of fore wing length, with three terminals reaching margin between apex and posteroapical angle; stem CuA shorter than branches CuA1 and CuA2, about half as long as branch CuA1; claval vein CuP weak at base, not thickened distally; claval vein Pcu straight, claval vein A1 straight. Basal cell present, subtriangular, about twice as long as wide, basal veinlet cua-cup oblique, no other veinlets present; cell r (radial) very long, longer than half of fore wing length; cell m (medial) the shortest, shorter than cell cu (areola postica). Margins of fore wing with fringe of long setae, starting on costal margin near base of fore wing, ending at level of middle of cell cu; longitudinal veins with distinct, scarcely but evenly dispersed, movable setae; terminal section of CuP with two setae; costal margin with row of short, densely distributed setae, apical margin, tornus and claval margin with rows of scaly setae.Hind wing (Fig. 2B) membranous, shorter than fore wing, 3.23 times as long as wide. Costal margin bent at base, then almost straight up to the level of ScP + RA end and wing coupling lobe, then straight to anteroapical angle, anteroapical angle widely arcuate, apex arcuate, posteroapical angle arcuate, tornus straight, claval margin merely arcuate, posteroclaval angle angulate; stem ScP + R + MP bent at base, then straight, stem ScP + R short, branch ScP + RA short, about as long as stem ScP + R, branch RP arcuate basally than straight, reaching apex; stem MP arcuate, forked slightly distad CuA1 terminus level, branch MP1+2 slightly arcuate, reaching margin at posteroapical angle, branch MP3+4 straight, reaching tornus; stem CuA slightly bent at base, then straight, forked slightly distad ScP + R forking, branch CuA1 arcuate, branch CuA2 short, straight, slightly oblique, reaching tornus; claval vein CuP weak, visible only at base, claval vein Pcu slightly arcuate; wing coupling apparatus (fold) with a few short setae.Legs slender, relatively long, profemora armed (Fig. 2C–H). Procoxa as long as profemur, narrow, flattened. Protrochanter scaphoid, elongate, with long apical and subapical setae. Profemur flattened laterally, about as long as protibia, ventrally armed with four large setae on elevated plinths; dorsal margin with row of short, decumbent setae. Protibia narrow, rounded in cross section, covered with short setae, a few longer setae in distal portion. Protarsus—single, long tarsomere, plantar surface with row of semi-erect setae; tarsal claws long, straight, directed ventrally, no arolium nor empodium.Mesocoxa elongate, narrow, slightly flattened. Mesotrochanter scaphoid. Mesofemur slender, flattened laterally, dorsal margin with short setae. Mesotibia subequal to mesofemur, slender, covered with setae, two apical setae slightly thicker and longer. Mesotarsus with three tarsomeres, basimesotarsomere the longest, shorter than cumulative length of mid- and apical mesotarsomere, plantar margins with setae, two apical setae slightly longer and thicker; midmesotarsomere the shortest, 1/3 of basimesotarsomere length, a few setae on plantar surface; apical tarsomere shorter than basimesotarsomere, twice as long as midmesotarsomere, plantar surface with a few, scarcely dispersed setae, tarsal claws long, narrow, directed ventrally, no arolium nor empodium.Metacoxa conical, narrow. Metatrochanter scaphoid, elongate. Metafemur slender, laterally flattened, longer than mesofemur, dorsal margin with row of short setae. Metatibia, long, slender, 1.6 times as long as metafemur, with suberect setae of different size, two larger and longer and two shorter setae subapical setae. Metatarsus slightly less than half of metatibia length, with three tarsomeres, basimetatarsomere the longest, more than twice as long as apical metatarsomere, 1.5 times as long as combined length of mid- and apical metatarsomere, plantar surface with scarce decumbent setae; mid metatarsomere the shortest, 1/4 of basimetatarsomere length, plantar surface with a few setae, two apical ones slightly thicker; apical metatarsomere about 0.4 of basimetatarsomere length, with scarcely dispersed setae on along plantar surface; tarsal claws, long, slender, other pretarsal structures absent.Abdomen (Fig. 1F) narrowly attached to thorax, tergite segment shorter, 2nd tergite distinctly longer, 3rd to 8th tergites of similar length; pygofer narrowing apicad, ventral margin strongly elongated posteriorly; anal tube short, directed posterodorsad, anal style shorter than anal tube. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus (Fig. 2I) geniculately bent at base, directed dorsad, tapered apicad.Female. Unknown.Megalophthallidion sp. (5th instar nymph)(Figs. 3A–D, 4A–F)Figure 3Megalophthallidion sp. (MAIG 6688), nymph. (A) Photo of body, dorsal side and (B) drawing of body dorsal side; (C) photo of body dorsal side and (D) drawing of body ventral side. Scale bars: 0.5 mm (A–D).Full size imageFigure 4Megalophthallidion sp. (MAIG 6688), nymph. Photo of clypeus and (B) drawing of clypeus; (C) photo of proleg, and (D) photo of mesoleg, and (E) photo of metaleg; (F) photo of posterior part of abdomen ventral side. Scale bars: 0.1 mm (A–F).Full size imageMaterialNymph, 5th instar, MAIG 6688 (BUB 1799), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Piece of amber 13 × 6 × 2 mm, cut from larger lump, polished flat on one side, more convex on the other.Diagnostic charactersThe nymph of Megalophthallidion gen. nov. is similar in general body shape to the only known fossil protopsyllidioidean nymph described from Lower Cretaceous Lebanese amber—Talaya batraba Drohojowska et Szwedo, 2013. The nymph of Talaya batraba is 2nd or 3rd instar, therefore some features are difficult to compare with this last instar nymph of Megalophthallidion gen. nov. The morphological states observed in those two specimens are: head covered with strongly expanded disc and expanded disc of pronotum, however shapes and ratios of these structures differ; compound eyes on ventral side of head, shifted laterad (ommatidia on cones in T. batraba, while ventroposterior expansions are present in Megalophthallidion gen. nov.); compound eyes visible from above as short, stout cones in fissure between posterior margin of disc (hypertrophied vertex) and anterior margin of pronotum (compound eyes (?) are visible on dorsal side of Permian Aleuronympha bibulla Riek, 1974); in Megalophthallidion gen. nov. rostrum reached mesocoxa, while in Talaya batraba distinctly exceeds length of the body; abdomen with 9 segments; tergites of abdominal segments 5th–9th expanded posterolaterad in form of fan-like expansion; 9th abdominal segment short, placed ventral; anal tube short, cylindrical, epiproct (?) globular.DescriptionNymph, 5th instar (Figs. 3A–D, 4A–F). Body oval shaped, dorso-ventrally flattened, 1.5 times longer than wide with segmentation visible; on the ventral side slightly concave. Length of body c. 1.56 mm long, outline, in dorsal view, maximum width of body 0.94 mm; length of head and pronotum (cephaloprothorax) c. 0.46 mm in midline, width c. 0.83 mm; cumulative length of mesonotum + metanotum c. 0.25 mm; abdomen c. 0.8 mm long. Dorsal side (Fig. 3A,B) with distinct median line (ecdysial line), not reaching anterior or posterior margin of the body, the line distinctly roof-like in abdominal portion. Anterior margin of head (cephaloprothorax) disc arcuate, lateral angles rounded; anterior margin of pronotum arcuate, lateral margins arcuately diverging posteriad, posterior margin distinctly arcuate, anterior angles widely rounded, posterior angles acutely rounded, disc elevated, convex, lateral portions declivitous; the fissure between posterior margin of head disc and anterior margin of pronotum narrow, widened medially, with stalked compound eyes popping out.Head partly separated from prothorax, wide in ventral view. Bases of antennae protruding anterolaterally, wide, anterior margin arcuate, with a small lump extending anteriorly connecting margin with vertex expansion. Suture separating anteclypeus and postclypeus visible in ventral aspect (Fig. 4A,B). Postclypeus about three times as long as wide, oval, slightly swollen, without any setae; weak traces of salivary pump muscle attachments visible. Anteclypeus about as long as postclypeus, widened in upper section below clypeal suture, convex, carinately elevated in lower section, with sides distinctly declivitous, clypellus long, carinately elevated. Lora (mandibulary plates) distinct, separated from anteclypeus by shallow suture, with upper angles at half of postclypeus length, lower angles at half of anteclypeus length, about as wide as half of postclypeus width. Maxillary plates narrow. Genal portion of head enlarged, medial portion arcuately convex; lateral sections narrowing laterally, terminally encircling bases of compound eyes. Antennae short (Fig. 3C,D), placed in front of genal portion. Antennal flagellum indistinctly subdivided into four segments. Rostrum (Fig. 4A,B) three-segmented, 0.2 mm long, with apex reaching apex of mesocoxae; apical segment about 2.5 times as long as subapical one.No lateral sclerites on meso- and metathorax, only one plus one large medial sclerite on both meso- and metathorax. Mesothoracic and metathoracic wing pads distinct, wide, subtriangular, with posterior apices directed posteriorly; lateral portions of mesothoracic wing pads arcuate. Fore wing pad 0.6 mm long, with small, straight humeral lobe, forming a right angle, not protruding anteriorly. Mesothoracic tergites slightly larger than metathoracic segments (respectively c. 0.14 mm and c. 0.12 mm long in midline, 0.26 mm and 0.27 mm in lateral lines); mesothoracic tergum with distinct median elevation (low double crest with ecdysial line in between), slightly wider than long in midline, anterior margin arcuate, lateral margins straight, subparallel, posterior margin concave. Metathoracic wing pad apex slightly exceeding mesothoracic wing pad. Metathoracic tergum wider than long, slightly shorter than mesothoracic tergum, with distinct elevation in the middle.Legs relatively long (Figs. 3C,D, 4C–E). Coxae of legs placed near the median axis of the body. Prolegs: procoxal pit with margins elevated, procoxa conical (c. 0.1 mm long), protrochanter scaphoid, about as long as procoxa, profemur c. 0.13 mm long, slightly flattened laterally, merely thickened, protibia longer than profemur, c. 0.23 mm long; tarsus shorter than protibia, basiprotarsomere about as long as apical protarsomere, the latter with distinct tarsal claws, and wide arolium. Mesoleg similar to proleg, mesocoxa conical (c. 0.1 mm long), mesotrochanter scaphoid, mesofemur (c. 0.13 mm) slightly flattened laterally, mesotibia slightly longer than mesofemur (c. 0.18 mm), mesotarsus slightly shorter than mesotibia, three-segmented, basimesotarsomere the longest (c. 0.07 mm), about as long as combined length of mid- and apical mesotarsomeres (c. 0.04 mm respectively), arolium wide, tarsal claws distinct. Metaleg: metacoxa conical (c. 0.1 mm), metatrochanter scaphoid, about as long as metacoxa (c. 0.12 mm). Metafemur (c. 0.17 mm) slightly more thickened than pro- and mesofemur, metatibia slightly longer (0.19 mm) than pro- and mesotibiae. Metatarsus three-segmented: basimetatarsomere about as long (0.08 mm) as combined length of mid- and apical metatarsomeres (0.04 mm respectively), arolium lobate, wide, tarsal claws distinct, widely spread.Abdomen (Fig. 3A–D) 9-segmented, narrow at base, widening fan-shape posteriorly, 1st segment visible from above, segmentation visible, abdominal terga 5th–9th expanded posterolaterally. Tergites carinately elevated in the middle, separated by ecdysial line. 1st sternite visible in ventral view, sternites 2nd–4th fused medially, sternites 5th–9th separated; 9th abdominal segment short (Fig. 4F), placed ventrally, under tergal expansion; anal tube short, cylindrical, epiproct (?) globular. More

  • in

    Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services

    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Google Scholar 
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS 

    Google Scholar 
    Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
    Google Scholar 
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
    Google Scholar 
    Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
    Google Scholar 
    Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
    Google Scholar 
    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
    Google Scholar 
    Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS 

    Google Scholar 
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
    Google Scholar 
    Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
    Google Scholar 
    Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
    Google Scholar 
    Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH 

    Google Scholar 
    Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar  More

  • in

    Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan)

    McCallum, M. L. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers. Conserv. 24, 2497–2519 (2015).
    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. 105, 11466–11473. https://doi.org/10.1073/pnas.0801921105 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European ash (Fraxinus excelsior) dieback—A conservation biology challenge. Biol. Cons. 158, 37–49 (2013).
    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Divers. Distrib. 9, 141–150 (2003).
    Google Scholar 
    Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0332 (2016).Article 

    Google Scholar 
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).CAS 
    PubMed 

    Google Scholar 
    Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).
    Google Scholar 
    Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. R. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816. https://doi.org/10.1126/science.aay5733 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631. https://doi.org/10.1126/science.1258268 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North American biodiversity crisis. Science 349, 481–482 (2015).CAS 
    PubMed 

    Google Scholar 
    Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Speare, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100–2105 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Talley, B. L., Muletz, C. R., Vredenburg, V. T., Fleischer, R. C. & Lips, K. R. A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol. Cons. 182, 254–261 (2015).
    Google Scholar 
    Rodriguez, D., Becker, C., Pupin, N., Haddad, C. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).CAS 
    PubMed 

    Google Scholar 
    Goka, K. et al. Amphibian chytridiomycosis in Japan: Distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 18, 4757–4774 (2009).CAS 
    PubMed 

    Google Scholar 
    Bataille, A. et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol. Ecol. 23, 4196–4209. https://doi.org/10.1111/mec.12385 (2013).CAS 
    Article 

    Google Scholar 
    O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627. https://doi.org/10.1126/science.aar1965 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swei, A. et al. Is chytridiomycosis an emerging infectious disease in Asia?. PLoS ONE 6, e23179 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bai, C. M., Garner, T. W. J. & Li, Y. M. First evidence of Batrachochytrium dendrobatidis in China: Discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7, 127–134. https://doi.org/10.1007/s10393-010-0307-0 (2010).Article 
    PubMed 

    Google Scholar 
    Yang, H. et al. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: Survey in South Korea. Dis. Aquat. Org. 86, 9–13 (2009).
    Google Scholar 
    Fong, J. J. et al. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS ONE 10, e0115656 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kusrini, M., Skerratt, L., Garland, S., Berger, L. & Endarwin, W. Chytridiomycosis in frogs of Mount Gede Pangrango, Indonesia. Diseases Aquat. Organ. 82, 187–194 (2008).CAS 

    Google Scholar 
    Laking, A. E., Ngo, H. N., Pasmans, F., Martel, A. & Nguyen, T. T. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Sci. Rep. 7, 44443. https://doi.org/10.1038/srep44443 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, W. et al. A survey for Batrachochytrium salamandrivorans in Chinese amphibians. Curr. Zool. 60, 729–735 (2014).
    Google Scholar 
    Beukema, W. et al. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic. Divers. Distrib. 24, 1788–1801. https://doi.org/10.1111/ddi.12795 (2018).Article 

    Google Scholar 
    Auliya, M. et al. The global amphibian trade flows through Europe: The need for enforcing and improving legislation. Biodivers. Conserv. https://doi.org/10.1007/s10531-016-1193-8 (2016).Article 

    Google Scholar 
    Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).
    Google Scholar 
    Schmeller, D. S. et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total Environ. 622–623, 756–763. https://doi.org/10.1016/j.scitotenv.2017.12.006 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bernardo-Cravo, A., Schmeller, D. S., Chatzinotas, A., Vredenburg, V. T. & Loyau, A. Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol. 36, 29–36 (2020).
    Google Scholar 
    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824. https://doi.org/10.1038/ismej.2009.27 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harris, R. N., James, T. Y., Lauer, A., Simon, M. A. & Patel, A. Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3, 53–56. https://doi.org/10.1007/s10393-10005-10009-10391 (2006).Article 

    Google Scholar 
    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).PubMed 

    Google Scholar 
    Ellison, S., Knapp, R. A., Sparagon, W., Swei, A. & Vredenburg, V. T. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol. Ecol. 28, 127–140 (2019).PubMed 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111, E5049-5058. https://doi.org/10.1073/pnas.1412752111 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).PubMed 

    Google Scholar 
    Kueneman, J. G. Ecology of the Amphibian Skin-Associated Microbiome and Its Role in Pathogen Defense (University of Colorado at Boulder, 2015).
    Google Scholar 
    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evolut. 3, 381–389. https://doi.org/10.1038/s41559-019-0798-1 (2019).Article 

    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786. https://doi.org/10.1007/s10531-016-1272-x (2017).Article 

    Google Scholar 
    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J 8, 2207–2217. https://doi.org/10.1038/ismej.2014.77 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6, 588–596. https://doi.org/10.1038/ismej.2011.129 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 693. https://doi.org/10.1038/s41467-018-02967-w (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellison, S. et al. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 78, 257–267 (2019).PubMed 

    Google Scholar 
    Fisher, M. C., Pasmans, F. & Martel, A. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-052621-124212 (2021).Article 
    PubMed 

    Google Scholar 
    Haver, M. et al. The role of abiotic variables in an emerging global amphibian fungal disease in mountains. Sci. Total Environ. 815, 152735 (2021).PubMed 

    Google Scholar 
    Turner, A., Wassens, S., Heard, G. & Peters, A. Temperature as a driver of the pathogenicity and virulence of amphibian chytrid fungus Batrachochytrium dendrobatidis: A systematic review. J. Wildl. Dis. 57, 477–494 (2021).PubMed 

    Google Scholar 
    Woodhams, D., Alford, R., Briggs, C., Johnson, M. & Rollins-Smith, L. Life history trade-offs influence disease in changing climates: Strategies of an amphibian pathogen. Ecology 89, 1627–1639 (2008).PubMed 

    Google Scholar 
    Sonn, J. M., Berman, S. & Richards-Zawacki, C. L. The influence of temperature on chytridiomycosis in vivo. EcoHealth 14, 762–770. https://doi.org/10.1007/s10393-017-1269-2 (2017).Article 
    PubMed 

    Google Scholar 
    Schmidt, B., Küpfer, E., Geiger, C., Wolf, S. & Schär, S. Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia-Reptilia 32, 276–280 (2011).
    Google Scholar 
    Bielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).
    Google Scholar 
    Gray, M. J., Miller, D. L. & Hoverman, J. T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 87, 243–266 (2009).
    Google Scholar 
    Murray, K., Skerratt, L., Speare, R. & McCallum, H. Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv. Biol. 23, 1242–1252 (2009).PubMed 

    Google Scholar 
    Schmeller, D. S. et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr. Biol. 24, 176–180. https://doi.org/10.1016/j.cub.2013.11.032 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Metzger, M. J. et al. Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol. Ind. 33, 26–35. https://doi.org/10.1016/j.ecolind.2012.11.009 (2013).Article 

    Google Scholar 
    Metzger, M. J. et al. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638. https://doi.org/10.1111/geb.12022 (2013).Article 

    Google Scholar 
    Clare, F., Daniel, O., Garner, T. & Fisher, M. Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth 13, 360–367. https://doi.org/10.1007/s10393-016-1114-z (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. 108, 9502–9507 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vredenburg, V. T. et al. Pathogen invasion history elucidates contemporary host pathogen dynamics. PLoS ONE 14, e0219981. https://doi.org/10.1371/journal.pone.0219981 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).CAS 

    Google Scholar 
    Blooi, M. et al. Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian samples. J. Clin. Microbiol. 51, 4173–4177 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03870-12 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191. https://doi.org/10.1038/sdata.2017.191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).
    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher, M. C. et al. RACE: Risk assessment of chytridiomycosis to European Amphibian Biodiversity. Froglog 101, 45–47 (2012).
    Google Scholar  More

  • in

    Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi

    Analysis of contents of heavy metals in wasteland soilThe test results show (Table 5) that the contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu in the surface soil within Shigetai Coal Mine vary from 0.043 to 0.255, 0.44 to 2.23, 2.66 to 18.40, 11.80 to 42.80, 40.50 to 118.60, 18.90 to 70.10, 4.31 to 28.10, 4.96 to 46.25 mg/kg, respectively; the average contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu are 0.128, 1.03, 4.73, 23.08, 76.22, 46.94, 16.11 and 12.10 mg/kg, respectively. The average contents of Hg, Cd, Pb and Cr in soil within the research area are 2.03, 1.36, 1.11 and 1.23 times of the soil background values in Shaanxi Province, respectively. The average contents of As, Zn and Cu are lower than the soil background value in Shaanxi Province, but the maximum contents of these three elements are 1.65, 1.01 and 2.16 times of the soil background values in Shaanxi Province, respectively. It is reported that the average concentration of lead in agricultural soil affected by coal mines is relatively high (433 mg kg−1)38. Lead is usually related to minerals in coal and occurs mainly in the form of sulfide such as PbS and PbSe39. In addition, aluminosilicate and carbonate also contain lead40. Chromium is a non-volatile element, which is related to aluminosilicate minerals41. In the mining process, chromium may be accumulated in coal, gangue or other tailings, and then enter the soil or water body through rain leaching42.Table 5 Statistics of contents of heavy metals in wasteland soil (n = 79).Full size tableThe coefficient of variation (CV) of Hg and Cd contents in soil within the research area is 0.050 and 0.37, respectively, with moderate variation, indicating that the content of these two heavy metals is less affected by the external factors; the coefficient of variation (CV) of As, Pb, Cr, Zn, Ni and Cu contents is 2.81, 7.46, 18.00, 13.51, 5.44 and 5.64, respectively, with strong variation (CV  > 0.50)43, indicating that the content of these eight heavy metals may be affected by some local pollution sources. The skewness coefficient (SK) ranges from − 3 to 3, and the larger its absolute value, the greater its skewness. When SK  > 0, it is positive skewness; when SK  More

  • in

    Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians

    Pax, F. Grundzüge der Pflanzenverbreitung in den Karpathen. 1–342 (W. Engelmann, 1898). https://doi.org/10.5962/bhl.title.20419.Popov [Попов], M. G. [М. Г.]. Ocherk rastitel’nosti i flory Karpat [Очерк растительности и флоры Карпат]. vol. 5 (XIII) (Izdatel’stvo Moskovskogo Obshchestva Ispytateley Prirody [Издательство Московского Общества Испытателей Природы], 1949).Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559 (2016).Article 

    Google Scholar 
    Breman, E. et al. Conserving the endemic flora of the Carpathian Region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst. Evol. 306, 59 (2020).Article 

    Google Scholar 
    Bálint, M. et al. The Carpathians as a Major Diversity Hotspot in Europe. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds. Zachos, F. E. & Habel, J. C.) 189–205 (Springer, 2011). https://doi.org/10.1007/978-3-642-20992-5_11.Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurdu, B. et al. Patterns of plant endemism in the Romanian Carpathians (South-Eastern Carpathians). Contrib. Bot. 47, 25–38 (2012).
    Google Scholar 
    Pawłowski, B. Remarques sur l’endemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21, 181–243 (1970).Article 

    Google Scholar 
    Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 373–389 (2011).Hendrych, R. Primula vulgaris in der Slowakei und in den umliegenden Gebieten. Preslia Praha 68, 135–156 (1996).
    Google Scholar 
    Hendrych, R. & Hendrychová, H. Preliminary report on the Dacian migroelement in the flora of Slovakia. Preslia Praha 51, 313–332 (1979).
    Google Scholar 
    Sramkó, G. „Dunántúli” közép-dunai flóraválasztós fajok a Matricum flórájában. KITAIBELIA 9, 31–56 (2004).
    Google Scholar 
    Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28, 583–594 (2018).Kliment, J., Turis, P. & Janišová, M. Taxa of vascular plants endemic to the Carpathian Mts. Preslia -Praha- 88, 19–76 (2016).
    Google Scholar 
    Konowalik, K. Reconstructing reticulate relationships in the polyploid complex of Leucanthemum Mill. (Compositae, Anthemideae). (Fakultät für Biologie und Vorklinische Medizin, Universität Regensburg, 2014).Konowalik, K., Wagner, F., Tomasello, S., Vogt, R. & Oberprieler, C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92, 308–328 (2015).Wagner, F. et al. ‘At the crossroads towards polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223, 2039–2053 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, F., Härtl, S., Vogt, R. & Oberprieler, C. “Fix Me Another Marguerite!”: Species delimitation in a group of intensively hybridizing lineages of ox-eye daisies (Leucanthemum Mill., Compositae-Anthemideae). Mol. Ecol. 26, 4260–4283 (2017).Piękoś-Mirkowa, H., Mirek, Z. & Miechowka, A. Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. Pol. Bot. Stud. 12, (1996).Zelený, V. Taxonomisch-chorologische Studie über die Art Leucanthemum rotundifolium (W. K.) DC. Folia Geobot. 5, 369–400 (1970).Piękoś, H. Nowy mieszaniec między Leucanthemum rotundifolium (W. et K.) DC. a L. vulgare Lam. var. alpicolum Gremli – Hybrida nova inter Leucanthemum rotundifolium (W. et K.) DC. et L. vulgare Lam. var. alpicolum Gremli. Fragm. Florist. Geobot. 16, 319–326 (1970).Rogalski, M., do Nascimento Vieira, L., Fraga, H. P. & Guerra, M. P. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, (2015).Greiner, R., Vogt, R. & Oberprieler, C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann. Bot. 111, 1109–1123 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberprieler, C., Konowalik, K., Fackelmann, A. & Vogt, R. Polyploid speciation across a suture zone: phylogeography and species delimitation in S French Leucanthemum Mill. representatives (Compositae–Anthemideae). Plant Syst. Evol. 304, 1141–1155 (2018).Oberprieler, C., Greiner, R., Konowalik, K. & Vogt, R. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling. Mol. Phylogenet. Evol. 70, 478–491 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alexander, P. J., Rajanikanth, G., Bacon, C. D. & Bailey, C. D. Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol. Ecol. Notes 7, 5–9 (2007).CAS 
    Article 

    Google Scholar 
    Sang, T., Crawford, D. & Stuessy, T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheunert, A., Dorfner, M., Lingl, T. & Oberprieler, C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE 15, e0226234 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98 (1999).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformatics 4, 65–69 (2005).PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).CAS 
    Article 

    Google Scholar 
    Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K., Tao, Q. & Kumar, S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. 109, 19333–19338 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tao, Q., Tamura, K., Mello, B. & Kumar, S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280–290 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).Mello, B., Tao, Q., Barba-Montoya, J. & Kumar, S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol. Ecol. Resour. 21, 122–136 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, wei-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. in Proceedings of the 16th International Parallel and Distributed Processing Symposium 311 (IEEE Computer Society, 2002).Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Y., Blair, C. & He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ali, S. S., Yu, Y., Pfosser, M. & Wetschnig, W. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann. Bot. 109, 95–107 (2012).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11, 1482 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamner, B., Frasco, M. & LeDell, E. Metrics: Evaluation metrics for machine learning (2018).Ripley, B. & Venables, W. nnet: Feed-forward neural networks and multinomial log-linear models. (2020).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2020).Therneau, T., Atkinson, B., port, B. R. (producer of the initial R. & maintainer 1999–2017). rpart: Recursive Partitioning and Regression Trees. (2019).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. (2017).Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Jasiewicz, A. Rośliny naczyniowe Bieszczadów Zachodnich [The Vascular Plants of the Western Bieszczady Mts. (East Carpathians)]. Monogr. Bot. 20, 1–340 (1965).Kornaś, J. Charakterystyka geobotaniczna Gorców [Caractéristique géobotanique des Gorces (Karpathes Occidentales Polonaises)]. Monogr. Bot. 3, 3–230 (1955).Article 

    Google Scholar 
    de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37, 637–647 (2014).Article 

    Google Scholar 
    Sobral-Souza, T., Lima-Ribeiro, M. S. & Solferini, V. N. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol. Ecol. 29, 643–655 (2015).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes (2018) 10.5061/DRYAD.KD1D4.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Wing, M. K. C. from J. et al. caret: Classification and regression training. (2019).Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable importance. Ecography 43, 1801–1813 (2020).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A. & Ram, K. spatialEco: Spatial analysis and modelling utilities. (2021).Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).Article 

    Google Scholar 
    Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Model. 448, 109502 (2021).Article 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).R Core Team. R: A language and environment for statistical computing. (2019).QGIS Development Team. QGIS geographic information system. (2019).Frajman, B. & Oxelman, B. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43, 140–155 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronikier, M., Cieślak, E. & Korbecka, G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol. Ecol. 17, 1763–1775 (2008).Ehrich, D. et al. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol. Ecol. 16, 2542–2559 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Šrámková, G. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri—a montane species from Central Europe. Plant Syst. Evol. 305, 885–898 (2019).Article 

    Google Scholar 
    Birks & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Jarčuška, B., Kaňuch, P., Naďo, L. & Krištín, A. Quantitative biogeography of Orthoptera does not support classical qualitative regionalization of the Carpathian Mountains. Biol. J. Linn. Soc. 128, 887–900 (2019).Article 

    Google Scholar 
    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 71–76 (2014).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 (2005).
    Google Scholar  More

  • in

    Fractal features of soil grain-size distribution in a typical Tamarix cones in the Taklimakan Desert, China

    Filgueira, R. R., Fournier, L. L., Cerisola, C. I., Gelati, P. & Garcia, M. G. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma 134, 327–334 (2006).ADS 
    Article 

    Google Scholar 
    Deng, J. F., Li, J. H., Deng, G., Zhu, H. Y. & Zhang, R. H. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China. Sci. Rep. 7, 6742 (2018).ADS 
    Article 

    Google Scholar 
    Gao, Y. J. et al. “Fertile islands” beneath three desert vegetation on soil phosphorus fractions, enzymatic activities, and microbial biomass in the desert-oasis transition zone. CATENA 212, 106090 (2022).CAS 
    Article 

    Google Scholar 
    Zeraatpisheh, M., Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M. R. & Xu, M. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Regioanl. 27, e00440 (2021).Article 

    Google Scholar 
    Zha, C., Shao, M., Jia, X. & Zhang, C. Particle size distribution of soils (0–500 cm) in the Loess Plateau, China. Geoderma 7, 251–258 (2016).Article 

    Google Scholar 
    Callesen, I., Keck, H. & Andersen, T. J. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000-method uncertainty including the effect of hydrogen peroxide pretreatment. J. Soils Sediments 18, 2500–2510 (2018).CAS 
    Article 

    Google Scholar 
    He, Y. J. & Lv, D. Y. Fractal expression of soil particle-size distribution at the basin scale. Open Geosci. 14, 70–78 (2022).Article 

    Google Scholar 
    Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Mosaddeghi, M. R. & Schulin, R. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. CATENA 111, 72–79 (2013).Article 

    Google Scholar 
    Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Yousefian, J. A. & Gharipour, A. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Res. Manag. 28, 383–394 (2014).Article 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 
    Article 

    Google Scholar 
    Jia, W. R. et al. Grain size distribution at four developmental stages of crescent dunes in the hinterland of the Taklimakan Desert, China. J. Arid Land 8, 722–733 (2016).Article 

    Google Scholar 
    Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: A review. Geoderma 314, 122–137 (2018).ADS 
    Article 

    Google Scholar 
    Ghanbarian, B. & Daigle, H. Fractal dimension of soil fragment mass-size distribution: A critical analysis. Geoderma 245–246, 98–103 (2015).ADS 
    Article 

    Google Scholar 
    Deng, Y., Cai, C., Xia, D., Ding, S. & Chen, J. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China. PLoS ONE 12, e0173555 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhai, J. Y. et al. Change in soil particle size distribution and erodibility with latitude and vegetation restoration chronosequence on the Loess Plateau, China. Int. J Environ. Res. Public Health 17, 822 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, Z. Y., Niu, F. J., Lin, Z. J. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).Article 

    Google Scholar 
    Chen, T. L. et al. Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region, China. J. Mt. Sci. 18, 111–125 (2021).Article 

    Google Scholar 
    Gui, D. W. et al. Characterizing variations in soil particle size distribution in oasis farmlands-a case study of the Cele Oasis. Math. Comput. Model. 51, 1306–1311 (2010).Article 

    Google Scholar 
    Millán, H., Gonzalez-Posada, M., Aguilar, M., Domınguez, J. & Céspedes, L. On the fractal scaling of soil data. Particle-size distributions. Geoderma 117, 117–128 (2003).ADS 
    Article 

    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Till. Res. 184, 45–51 (2018).Article 

    Google Scholar 
    Muhtar, Q., Hiroki, T. & Mijit, H. Formation and internal structure of Tamarix cones in the Taklimakan Desert. J. Arid Environ. 50, 81–97 (2002).Article 

    Google Scholar 
    Zhao, Y. J. & Xia, X. C. Research on the Relationship Between Tamarix Cone and Environmental Change in Lop Nur Region of Xinjiang 38–142 (Sci. Press, 2011) (in Chinese).
    Google Scholar 
    Yin, C. H., Shi, Q. M., Liang, F. & Tian, C. Y. Distribution pattern of soil salinity in Tamarix Nebkhas in Tarim Basin. Bull Soil Water Conserv. 33, 287–293 (2013) (in Chinese).
    Google Scholar 
    Zheng, T., Li, J. G., Li, W. H. & Wan, J. H. Soil heterogeneity and its effects on plant community in oasis desert transition zone in the lower peaches of Tarim River. J. Desert Res. 30, 128–134 (2010) (in Chinese).
    Google Scholar 
    Liu, J. H., Wang, X. Q., Ma, Y. & Tan, F. Z. Spatial variation of soil salinity on Tamarix ramosissima nebkhas and interdune in oasis-desert ecotone. J. Desert Res. 36, 181–189 (2016) (in Chinese).CAS 

    Google Scholar 
    Dong, Z. W. et al. Stoichiometric features of C, N, and P in soil and litter of Tamarix cones and their relationship with environmental factors in the Taklimakan Desert, China. J. Soils Sediments 20, 690–704 (2020).CAS 
    Article 

    Google Scholar 
    Dong, Z. W., Li, S. Y., Mao, D. L. & Lei, J. Q. Distribution pattern of soil grain size in Tamarix sand dune in the southwest of Gurbantunggut Desert. J. Soil Water Conserv. 35, 64-72/79 (2021) (in Chinese).
    Google Scholar 
    Dong, Z. W., Zhao, Y., Lei, J. Q. & Xi, Y. Q. Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert. Chin. J. Plant Eco. 42, 873–884 (2018) (in Chinese).Article 

    Google Scholar 
    Xu, L. S. et al. Oasis microclimate effect on the dust deposition in Cele Oasis at southern Tarim Basin, China. Arab J. Geosci. 9, 294 (2016).Article 

    Google Scholar 
    Liu, J. H., Wang, X. Q., Ma, Y. & Tan, F. Z. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone. J. Beijing For. Univ. 37, 89–99 (2015) (in Chinese).CAS 

    Google Scholar 
    Mao, D. L. et al. Fractal characteristics of grain size of sand and dust in aeolian sand movement in Cele oasis-desert ecotone in Xinjiang, China. Acta Pedol. Sinica 55, 88–99 (2018) (in Chinese).
    Google Scholar 
    Li, J. R. & Ravib, S. Interactions among hydrological-aeolian processes and vegetation determine grain-size distribution of sediments in a semi-arid coppice dune (nebkha) system. J. Arid Environ. 154, 24–33 (2018).ADS 
    Article 

    Google Scholar 
    Ayoubi, S., Karchegani, P. M., Mosaddeghi, M. R. & Honarjoo, N. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Till. Res. 121, 18–26 (2012).Article 

    Google Scholar 
    Wang, X. M., Dong, Z. B., Zhang, J. W. & Chen, G. T. Geomorphology of sand dunes in the Northeast Taklimakan Desert. Geomorphology 42, 183–195 (2002).ADS 
    Article 

    Google Scholar 
    Liu, W. G. et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition. Geology 48, 782–786 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. H. et al. Characteristics of soil particle size distribution and its effect on dust emission in Taklimakan Desert. Trans. CSAE 36, 167–174 (2020) (in Chinese).
    Google Scholar 
    Bao, S. D. Soil agricultural chemistry analysis 152–200 (China Agr. Press, 2000) (in Chinese).
    Google Scholar 
    Folk, R. L. & Ward, W. C. Brazos Riverbar: A study in the significance of grain size parameters. J. Sediment Petrol. 27, 3–26 (1957).ADS 
    Article 

    Google Scholar 
    Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn. (PrenticeHall Press, 2017).
    Google Scholar 
    Churchman, G. J. Game changer in soil science. Functional role of clay minerals in soil. J. Plant Nutr. Soil Sci. 181, 99–103 (2018).CAS 
    Article 

    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 
    Article 

    Google Scholar 
    Lin, Y. C., Mu, G. J., Xu, L. S. & Zhao, X. The origin of bimodal grain-size distribution for aeolian deposits. Aeolian Res. 20, 80–88 (2016).ADS 
    Article 

    Google Scholar 
    Sha, G. L., Wei, T. X., Chen, Y. X., Fu, Y. C. & Ren, K. Characteristics of soil particle size distribution of typical plantcommunities on the hilly areas of Loess Plateau. Arid Land Geogr. https://doi.org/10.12118/j.issn.1000-6060.2021.487 (2022) (in Chinese).Article 

    Google Scholar 
    Yang, J. D., Li, G. J., Dai, Y., Rao, W. B. & Ji, J. F. Isotopic evidences for provenances of loess of the Chinese Loess Plateau. Earth Sci. Front. 16, 195–206 (2009) (in Chinese).
    Google Scholar 
    Wu, L. & Zhang, Y. M. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid Land 10, 701–711 (2018).Article 

    Google Scholar 
    Li, X. B. et al. Relationship between soil particle size distribution and soil nutrient distribution characteristics in typical communities of desert grassland. Actabot. Boreal-Occident Sin. 37, 1635–1644 (2017) (in Chinese).
    Google Scholar 
    Gao, G. L. et al. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts. PLoS ONE 9, e88559 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, Y., Feng, Q. & Yang, H. Soil salinity distribution and its relationship with soil particle size in the lower reaches of Heihe River, Northwestern China. Environ. Earth Sci. 75, 1–18 (2016).ADS 
    Article 

    Google Scholar 
    Zhang, X. Y. et al. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 30, 2272 (2003).ADS 
    Article 

    Google Scholar  More

  • in

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees

    The bee health modelThe conceptual model of the interactions of various stressors with honey bee health is described by the following system of ordinary differential equations (ODEs)$${{tau }_{{HB}}dot{x}}_{{HB}}= {-{delta }_{{HB}}x}_{{HB}}+{g}_{{TC}}left({x}_{{TC}}right)+{g}_{{VA}}left({x}_{{VA}}right)+{g}_{{VI}}left({x}_{{VI}}right) \ +{bar{f}}_{S,C}left({u}_{S},{u}_{C},{x}_{{TC}},{x}_{{VA}}right)+{bar{f}}_{P}left({u}_{P},{x}_{{TC}}right)+{underline{f}}_{{HB}}left({u}_{T}right)$$
    (1)
    $${{tau }_{{TC}}dot{x}}_{{TC}}={-{delta }_{{TC}}x}_{{TC}}+{g}_{{HB}}left({x}_{{HB}}right)$$
    (2)
    $${{tau }_{{VA}}dot{x}}_{{VA}}={-{delta }_{{VA}}x}_{{VA}}+{h}_{{VA}}left({{x}_{{HB}},x}_{{TC}},varepsilon {x}_{{VI}}right)+{underline{f}}_{{VA}}left({u}_{T}right)$$
    (3)
    $${{tau }_{{VI}}dot{x}}_{{VI}}={-{delta }_{{VI}}x}_{{VI}}+{h}_{{VI}}left({{x}_{{HB}},x}_{{TC}},{varepsilon x}_{{VI}}right)$$
    (4)
    for the state variables ({x}_{{HB}}) representing honey bee health, ({x}_{{TC}}) the stress due to toxic compounds (e.g., neonicotinoid insecticides), ({x}_{{VA}}) the stress due to parasites (e.g., V. destructor) and ({x}_{{VI}}) the stress due to pathogens (e.g., DWV). The system includes the effects of external inputs as sugar ({u}_{S}), pollen ({u}_{P}), absolute deviation from desired temperature ({u}_{T}) and sub-optimal temperature ({u}_{C}). All the inputs and possible parameters are non-negative; the coefficients (tau) denote the time constants; the coefficients (delta) denote the self-regulation parameters; (varepsilon) in the last two equations allows to account for pathogens that can ((varepsilon , > , 0)) or cannot ((varepsilon=0)) impair the immune system (through link m in Fig. 1). We assume that the functions (g) are smooth, bounded, positive, convex and decreasing to 0; the functions (bar{f}) are smooth, bounded, non-negative, concave and increasing with respect to (w.r.t.) (u) arguments (vanishing only when the first (u) argument vanishes) while convex and decreasing to 0 w.r.t. (x) arguments; the functions ({underline{f}}) are smooth, bounded, non-positive and decreasing (vanishing only when (u=0)); the functions (h) are smooth, bounded, positive, convex and decreasing to 0 w.r.t. the first argument while concave and increasing w.r.t. all the other arguments. For a detailed description of the various functions, together with a summary of the biological effects they account for and a reference to the conceptual model in Fig. 1, see Supplementary Table 3.Structural analysis of the bee health modelWe describe here the structural considerations and computations that yield the structural influence matrix for the honey bee health system.The structural influence matrix (M) is defined as follows. (M) is a symbolic matrix with entries ({M}_{{ij}}) chosen among: +,−,0,?, according to the criteria described below. Consider an equilibrium point (bar{x}) and a constant perturbation (u) applied on the (j)-th system variable (small enough not to compromise the stability of the equilibrium). The equilibrium value will be modified as (bar{x}+delta bar{x}). Consider the sign of the perturbation of the (i)-th variable, (delta bar{{x}_{i}}). Then ({M}_{{ij}}) = + if (delta bar{{x}_{i}}) always has the same sign as (u); ({M}_{{ij}}=) − if (delta bar{{x}_{i}}) always has the opposite sign as (u); ({M}_{{ij}}) = 0 if always (delta bar{{x}_{i}}=0); regardless of the system parameters. Conversely, if the sign does depend on the system parameters, we set ({M}_{{ij}}) = ?.In this section we prove that the influence matrix of the honey bee health system is structurally determined, i.e., there are no “?”‘ entries in (M).We start with the following proposition.
    Proposition 1
    Assume that a matrix
    (J)
    is Hurwitz stable (i.e., all its eigenvalues have negative real part) and has the sign pattern
    $${sign}left(Jright)=left[begin{array}{cccc}- & – & – & -\ – & – & 0 & 0\ – &+& – &+\ – &+& 0 & -end{array}right]$$
    Then, the sign pattern of
    ({adj}left(-Jright))
    , the adjoint of
    (-J)
    , is
    $${sign}left({adj}left(-Jright)right)=left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$
    Proof To prove the statement, we just change the sign of the first variable, hence we change sign to the first row and column of matrix (J). The resulting matrix (M) is such that$${sign}left(Mright)=left[begin{array}{cccc}- &+&+&+\+& – & 0 & 0\+&+& – &+\+&+& 0 & -end{array}right]$$We observe that (M) is a Metzler matrix, namely, all its off-diagonal entries are non-negative. Moreover, the matrix is Hurwitz stable. Then, we can proceed as in the proof of Proposition 4 in a previous report16. Given a Metzler matrix that is Hurwitz stable, its inverse has non-positive entries; hence, the inverse of (-M) has non-negative entries: ({left(-Mright)}^{-1}ge 0) elementwise. Moreover, we observe that(,M) is an irreducible matrix, i.e., there is no variable permutation that brings the matrix in a block (either upper or lower) triangular form. This implies that the inverse of (-M) has strictly positive entries: ({left(-Mright)}^{-1} , > , 0) elementwise. Also, stability implies that the determinant of (-M) is positive: ({det }left(-Mright) , > , 0). Then, ({adj}left(-Mright)={left(-Mright)}^{-1}{det }left(-Mright) > 0), hence the adjoint of (-M) is also positive elementwise. To consider again the original sign of the variables, we change sign to the first row and column of ({adj}left(-Mright)), and we get the signature above for ({adj}left(-Jright)).The next step is the characterization of the structural influence matrix, which corresponds to the sign pattern of the adjoint of the negative Jacobian matrix in Proposition 1.To this aim, we first consider the linearized system and write it in a matrix-vector form$$dot{x}left(tright)={Jx}left(tright)+{e}_{j}u$$where (dot{x}left(tright)) is the time derivative of the four-dimensional vector (xleft(tright)) and ({e}_{k}), (k={{{{mathrm{1,2,3,4}}}}}), is an input vector, constant in time, with a single non-zero component, the (k)-th, equal to 1, while the scalar (u , > , 0) is the magnitude of the input. We wish to assess the (i)-th component of (xleft(tright)), ({x}_{i}left(tright)={e}_{i}^{T}xleft(tright)). If (J) is Hurwitz, as assumed, the steady-state value of variable ({x}_{i}left(tright)) due to the input perturbation ({e}_{k}) applied to the equation of variable ({x}_{k}left(tright)) is achieved for$$0=Jbar{x}+{e}_{k}u,$$namely$${x}_{i}=-{e}_{i}^{T}{J}^{-1}{e}_{k}u,$$which implies that the sign of the steady-state value ({bar{x}}_{i}) of variable ({x}_{i}) due to a persistent positive input acting on the (k)-th equation has the same sign as ({(-{J}^{-1})}_{{ik}}), the (left(i,kright)) entry of matrix ({left(-Jright)}^{-1}). Since we assume Hurwitz stability, we have that ({det }left(-Jright)) is positive, hence the sign pattern of the inverse ({left(-Jright)}^{-1}) corresponds to the sign pattern of the adjoint, ({adj}left(-Jright)). In fact, ({adj}left(-Jright)={left(-Jright)}^{-1}{det }left(-Jright)).We next consider the nonlinear system under investigation, which we write in the form$$dot{x}left(tright)=fleft(xleft(tright)right)$$and without restriction we assume that the zero vector is an equilibrium point: (0=fleft(0right)). This condition can be always achieved, without loss of generality, by a translation of coordinates. We also consider a stable equilibrium: we assume that the linearized system at the equilibrium is asymptotically stable, namely its Jacobian (J), which has the sign pattern considered in Proposition 1 above, is Hurwitz. We also assume that a constant input perturbation of magnitude (u) is applied to the system, affecting the (k)-th equation, i.e.,$$dot{x}left(tright)=fleft(xleft(tright)right)+{e}_{k}u,$$and that the perturbation is small enough to keep the state in the domain of attraction of the considered equilibrium. Due to this perturbation, a new steady state (bar{x}left(uright)) is reached that satisfies the condition$$0=fleft(bar{x}left(uright)right)+{e}_{k}u$$To determine the sign of the new equilibrium components (bar{x}left(uright)), we consider this new equilibrium vector as a function of (u) in a small interval (left[0,{x}_{{MAX}}right]). Adopting the implicit function theorem yields$$frac{d}{{dx}}bar{x}left(uright)=-J{left(uright)}^{-1}{e}_{k}u,$$where we have denoted by (Jleft(uright)) the Jacobian matrix computed at the perturbed equilibrium (bar{x}left(uright)). Hence, for (u) small enough, the sign of the derivatives of the entries of the new, perturbed equilibrium are, structurally, the same as those in the (k)-th column of matrix (-{J}^{-1}). Since, by construction, (xleft(0right)=0), this is also the sign of the elements of vector (bar{x}left(uright)), for (u) in the interval (left[0,{x}_{{MAX}}right]).We have therefore proved that the original nonlinear system describing honey bee health admits the following structural influence matrix:$$left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$System equilibriaThe results concerning the system equilibria were obtained through a standard analytical treatment of the nonlinear equations describing the equilibrium conditions of the system of differential Eqs. (1), (2), (3), (4). A detailed description of methods is reported in Supplementary Methods.Laboratory experiments using honey beesTo confirm the bistability of the system representing honey bee health as affected by multiple stressors, we used data from several survival experiments, carried out in a laboratory environment according to the same standardized method, over a 6-year period (Source data file).All experiments involved Apis mellifera worker bees, sampled at the larval stage or before eclosion, from the hives of the experimental apiary of the University of Udine (46°04′54.2″N, 13°12′34.2″E). Previous studies indicated that the local bee population consists of hybrids between A. mellifera ligustica and A.m. carnica62,63. Ethical approval was not required for this study.We considered experiments on the effect of the following stressors: infection with 1000 DWV genome copies administered through the diet before pupation, feeding with a 50 ppm nicotine in a sugar solution at the adult stage, exposition to a sub-optimal temperature of 32 °C at the adult stage. All experiments were replicated 3 to 13 times, using, in total, the number of bees reported in Table 1.For the artificial infection with DWV, we collected with soft forceps individual L4 larvae from the brood cells of several combs. Groups of 20–30 of such larvae were placed in Petri dishes with an artificial diet made of 50% royal jelly, 37% distilled water, 6% glucose, 6% fructose, and 1% yeast. 25 DWV copies per mg of diet were added or not to the diet according to the experimental group (note that a bee larva at this stage consumes about 40 mg of larval food per day, thus the viral infection per bee was 1000 viral copies). After 24 h larvae were transferred onto a piece of filter paper to remove the residues of the diet and then into a clean Petri dish, where they were maintained until eclosion. At the day of emergence, bees were transferred to plastic cages in a thermostatic cabinet, where they were kept until death. The DWV extract was prepared according to previously described protocols64 and quantified according to standard methods.For the treatment with nicotine, 10 µL of pure nicotine were added to 200 g of the sugar solution used for the feeding of the caged bees, to reach the concentration of 50 ppm.Finally, to expose bees to a 32 °C temperature, the plastic cages with the adult bees were kept in a thermostatic cabinet whose temperature was set accordingly.To monitor the survival of the adult bees treated as above, they were maintained from eclosion until death in plastic cages in a dark incubator at 34.5 °C (or 32 °C, according to the experiment), 75% R.H.; two syringes were used to supply a sugar solution made of 2.4 mol/L of glucose and fructose (61% and 31%, respectively) and water, respectively; dead bees were counted daily.All the results of these experiments are reported in Source data file.All experiments were carried out during the summer months, from June to September for 6 consecutive years. Previous data indicated that, in this region, virus prevalence increases along the active season starting from very low levels in spring and reaching 100% of virus-infected honey bees by the end of the summer; virus abundance in infected honey bees follows a similar trend28. For this reason, it can be assumed that bees sampled early in the season are either uninfected or they bear only a very low viral infection level, whereas bees sampled later in the season are likely to be virus-infected, bearing moderate to high viral infections. To confirm this assumption and identify a method for filtering our data according to viral infection, we assessed viral infection in a sample of bees from the untreated control group of each experiment, by means of qRT-PCR. According to standard practice, we assumed that Ct values below 30 are indicative of an effective viral infection, whereas Ct above that threshold are more likely in virus negative bees. As expected, we found that virus prevalence increases from June to September (Supplementary Figure 1a), in such a way that up to mid July only the minority of bees can be considered as viral infected (Supplementary Figure 1b). Therefore, we classified as “early” all the samples collected up to mid July and assumed that viral infection in those samples was low; on the other hand, samples collected from mid July till September were classified as “late” and we assumed that viral infection in those samples was high.qRT-PCR analysis of viral infection was carried out as follows. At the beginning of every experiment (i.e., at day 0), two to five bees for each replication were sampled in liquid nitrogen and transferred in a −80 °C refrigerator. After defrosting of samples in RNA later, the gut of each honey bee was eliminated to avoid the clogging of the mini spin column used after. The whole body of sampled bees was homogenized using a TissueLyser (Qiagen®, Germany). Total RNA was extracted from each bee according to the procedure provided with the RNeasy Plus mini kit (Qiagen®, Germany). The amount of RNA in each sample was quantified with a NanoDrop® spectrophotomer (ThermoFisher™, USA). cDNA was synthetized starting from 500 ng of RNA following the manufacturer specifications (PROMEGA, Italy). Additional negative control samples containing no RT enzyme were included. DWV presence was verified by qRT-PCR considering as positive all samples with a Ct value lower than 30. The following primers were adopted: DWV (F: GGTAAGCGATGGTTGTTTG, R: CCGTGAATATAGTGTGAGG65). 10 ng of cDNA from each sample were analyzed using SYBR®green dye (Ambion®) according to the manufacturer specifications, on a BioRad CFX96 Touch™ Real time PCR Detector. Primer efficiency was calculated according to the formula (E={10}^{left(-1/{{{{{{rm{slope}}}}}}}-1right)*100}). The following thermal cycling profiles were adopted: one cycle at 95 °C for 10 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, and one cycle at 68 °C for 7 min.Individual survival and colony stabilityTo investigate how the death rate of forager bees affects colony growth, a compartment model of honey bee colony population dynamics was proposed50. This model showed that death rates over a critical threshold led to colony failure. Here we modified this model to include premature death of bees at younger age, as predicted by our model of individual bee health in the presence of an immuno-suppressive virus. We show that the critical threshold found in the previously published model50 becomes a decreasing function of the death rate of the younger individuals, so that premature death (and, in turn, immune-suppression) favors colony collapse.In more details, we first summarize the results of the previously published model50 where two populations (F) (forager) and (H) (hive) of bees are considered and where conditions are provided on the mortality (m) of (F) under which the whole population collapses: namely, mathematically stated, the system admits the zero equilibrium only. Here we extend the model partitioning (H) in two categories, (Y) (younger hive bees) and (O) (older hive bees), asintroducing an early mortality factor (n) for the young population, showing how such a factor worsens the collapsing condition.The previously published model50 concerns the interaction between hive bees (H) and forager bees (F) and is described by the ODEs$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Above, (L) is the queen’s eggs laying rate, (w) is the rate at which (L) is reached as the total population (H+F) gets large, (alpha) is the maximum rate at which hive bees become forager bees in the absence of the latter, (sigma) measures the reduction of recruitment of hive bees in the presence of forager bees and, finally, (m) is the death rate of forager bees (while the death rate of hive bees is assumed to be negligible).We first summarize the main results in terms of a threshold value for (m) in view of colony collapse, as our further analysis will follow a similar approach. All the parameters are assumed to be positive.The search for the equilibria of the above ODEs leads to the unique nontrivial equilibrium (beyond the trivial one)$$bar{H}=frac{L}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for$$J=Jleft(mright):=frac{alpha -sigma -m+sqrt{{left(alpha -sigma -mright)}^{2}+4malpha }}{2m}.$$Note that (J) is alway positive (and, moreover, it is independent of (L) and (w)). It follows that (bar{F}) and (bar{H}) have the same sign, so that the existence of the nontrivial equilibrium is equivalent to (bar{F}+bar{H} , > , 0). It is not difficult to recover that$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)$$where (l:=L/w) is introduced for brevity. Then if (alpha le l) we get$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)ge frac{w}{m}left(alpha frac{1+J}{J}-mright)=frac{w}{m}left(sigma+{mJ}right) , > , 0,$$with the last equality following from$$alpha -sigma frac{J}{1+J}-{mJ}=0,$$which in turn comes from annihilating the right-hand side of the second ODE and from using (J=bar{F}/bar{H}) while searching for equilibria. We conclude that, independently of (m), the colony never collapses if the recruitment rate (alpha) of forager bees is sufficiently low.Hence, we assume (alpha , > , l). Observe that$$bar{F}+bar{H}iff l , > , Jleft(m-lright)$$guarantees existence whenever (m) is sufficiently small, viz. (mle l). Assume then (m , > , l), so that the above condition reads$$J , < , frac{l}{m-l}$$leading to the threshold condition$$m , < , bar{m}:=frac{l}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma l}}{alpha -l}$$by using the definition of (J), see Eq. (2) the previously published model50.A standard stability analysis shows that, assuming (alpha,m , > , l), the nontrivial equilibrium is (globally) asymptotically stable whenever it exists (positive), i.e., whenever (m , < , bar{m}). Otherwise, the only (globally) attracting equilibrium is the trivial one, corresponding to colony collapse (see Fig. 5 for the previously published model50 or Fig. 4 for (n=0)). In the mathematical jargon, the disappearance of the positive equilibrium, for (m) exceeding (bar{m}), is referred to as a transcritical bifurcation43.Now, in view of the outcome of the analysis of our model of individual bee health, we introduce a mortality term for the younger bees. As forager bees are recruited from adult hive bees, we divide the class of hive bees (H) in younger (Y) and older (O), assuming that the former die at a rate (n), while the death rate of the latter remains negligible according to the previously published model50. Obviously, (H=Y+O). The original ODEs are consequently modified as$$dot{Y}=Lfrac{H+F}{w+H+F}-Y$$$$dot{O}=left(1-nright)Y-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Note that the sum of the first two equations above gives$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)-{nY}.$$The new negative mortality term for younger hive bees, (-{nY}), models the fact that only the younger hive bees die prematurely while the rest of the dynamics is unchanged with respect to the original model.The search for equilibria soon gives$$bar{Y}=Lfrac{bar{H}+bar{F}}{w+bar{H}+bar{F}}$$from the first ODE above, so that the remaining two equilibrium conditions lead to$$bar{H}=frac{{L}_{n}}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for the same (J) originally defined and ({L}_{n}:=Lleft(1-nright)) (note that (nin left({{{{mathrm{0,1}}}}}right)), and the case (n=0) brings us back to the original model). From this point on the analysis is the same as that previously summarized for the original model, but for replacing (L) with ({L}_{n}) and (l) with (l:=lleft(1-nright)). Consequently, by assuming (alpha,m , > , {l}_{n}) (which is less restrictive when (n , > , 0)), the threshold condition (m < bar{m}) becomes$$m , < , bar{m}left(nright):=frac{{l}_{n}}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma {l}_{n}}}{alpha -{l}_{n}},$$which clearly returns the original threshold condition when (n=0). Since$$frac{dbar{m}}{{dn}}left(nright) , < , 0$$as it can be immediately verified, it follows that the critical value for (m), (bar{m}left(nright)), beyond which the colony system admits only the zero equilibrium, i.e., the transcritical bifurcation value, decreases with (n) (Fig. 4). We thus conclude that colony collapse is favored by the premature death of younger hive bees, possibly caused by a virus impairing the immune system as shown by the analysis of our model of individual bee health.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands

    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Population genomics of barn owls in the Western Parlearctic; NCBI bio project PRJNA727977; https://doi.org/10.1093/molbev/msab343Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, and Goudet J (2021) Population genomics of barn owls in the British Isles; NCBI bio project PRJNA700797; https://doi.org/10.1111/mec.16250Anguita F and Hernán F (2000) The Canary Islands origin: A unifying model. J Volcanol Geotherm Res 103:1–26. Elsevier B.VAstle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 167:1415–1429.e19. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58:1891–1900. Society for the Study of EvolutionPubMed 
    Article 

    Google Scholar 
    Bannerman DA (1963) Birds of the Atlantic Islands. Vol. 1. A history of the birds of the Canary Islands and of the Salvages. Oliver & BoydBirdLife International (2019) The IUCN Red List of Threatened Species. Version 6.2Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri R, Antoniazza S, Gaigher A, Ducrest A-L, Simon C, Fumagalli L, Goudet J, Roulin A (2016) The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70:140–153PubMed 
    Article 

    Google Scholar 
    Carine MA, Humphries CJ, Guma IR, Reyes-Betancort JA, Santos Guerra A (2009) Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. J Biogeogr 36:593–611Article 

    Google Scholar 
    Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJ, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, Astle WJ, Evangelou E, van Heel DA, Sankaran VG, Okada Y, Soranzo N, Johnson AD, Reiner AP, Auer PL, Lettre G (2020) Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182:1198–1213.e14CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements JF, Schulenberg TS, Iliff MJ, Billerman SM, Fredericks TA, Sullivan BL, and Wood CL (2019) The eBird/clements checklist of birds of the world: v2019Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 23:3133–3157PubMed 
    Article 

    Google Scholar 
    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Landscape and climatic variations of the Quaternary shaped multiple secondary contacts among barn owls (Tyto alba) of the Western Palearctic. Mol Biol Evol, msab343, https://doi.org/10.1093/molbev/msab343.Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darre MJ, Harrison PC (1987) Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb White Leghorn hens during an acute exposure to 35 C ambient temperature. Poult Sci 66:541–547CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen AK, Pihur V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia-Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lyytikäinen LP, Fava C, Eriksson N, Nolte IM, Magnusson PK, Salfati EL, Rallidis LS, Theusch E, Smith AJP, Folkersen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Balkau B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Bjornsdottir G, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC, Chang IS, Cheng CY, Chines PS, Chung RH, Collins FS, Connell JM, Döring A, Dallongeville J, Danesh J, De Faire U, Delgado G, Dominiczak AF, Doney ASF, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrières J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Franco OH, Franco-Cereceda A, Fraser RM, Ganesh SK, Gao H, Gertow K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Gräßler J, Groves CJ, Gudnason V, Gyllensten U, Hallmans G, Hartikainen AL, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig KH, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga JJ, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kähönen M, Kang HM, Kathiresan S, Keating BJ, Khaw KT, Kim YK, Kim E, Kivimaki M, Klopp N, Kolovou G, Komulainen P, Kooner JS, Kosova G, Krauss RM, Kuh D, Kutalik Z, Kuusisto J, Kvaløy K, Lakka TA, Lee NR, Te Lee I, Lee WJ, Levy D, Li X, Liang KW, Lin H, Lin L, Lindström J, Lobbens S, Männistö S, Müller G, Müller-Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menni C, Metspalu A, Mijatovic V, Moilanen L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O’Donnell CJ, O’Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poulter N, Pramstaller PP, Psaty BM, Quertermous T, Rao DC, Rasheed A, Rayner NW, Renström F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WHH, Shin YA, Sim X, Smit JH, Smith AV, Sosa MX, Spector TD, Stančáková A, Stanton AV, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvänen AC, Tai ES, Tanaka T, Tarasov KV, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Uitterlinden AG, Uusitupa M, Vaez A, Vaidya D, Van Duijn CM, Van Iperen EPA, Vasan RS, Verwoert GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain LV, Wareham NJ, Watkins H, Weder AB, Westra HJ, Wilks R, Wilsgaard T, Wilson JF, Wong TY, Yang TP, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee JY, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njølstad I, Schwarz PEH, Langenberg C, Snieder H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimäki T, Hveem K, Palmas W, März W, Kumari M, Salomaa V, Chen YDI, Rotter JI, Froguel P, Jarvelin MR, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann HE, Palmer CNA, Stefansson K, Ridker PM, Loos RJF, Chakravarti A, Deloukas P, Morris AP, Newton-Cheh C, Munroe PB (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48:1171–1184. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Exposito-Alonso M (2017) rbioclim: Improved getData function from the raster R package to interact with past, present and future climate data from worldclim.orgFirmat C, Gomes Rodrigues H, Renaud S, Claude J, Hutterer R, Garcia-Talavera F, Michaux J (2010) Mandible morphology, dental microwear, and diet of the extinct giant rats Canariomys (Rodentia: Murinae) of the Canary Islands (Spain). Biol J Linn Soc 101:28–40. Blackwell Publishing LtdArticle 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. Oxford AcademicPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327PubMed 
    Article 

    Google Scholar 
    Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.5pd26sGe SX, Jung D, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. Oxford University PressCAS 
    PubMed 
    Article 

    Google Scholar 
    German CA, Sinsheimer JS, Klimentidis YC, Zhou H, Zhou JJ (2020) Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genet Epidemiol 44:248–260. Wiley-Liss IncPubMed 
    Article 

    Google Scholar 
    Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillespie R, Croom H, Hasty G (1997) Phylogenetic relationships and adaptive shifts among major clades of tetragnatha spiders (Araneae: Tetragnathidae) in Hawai’i. Pac Sci 51:380–394CAS 

    Google Scholar 
    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F -statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Kay T, Weir BS (2018) How to estimate kinship. Mol Ecol 27:4121–4135. Blackwell Publishing LtdPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graffelman J (2015) Exploring diallelic genetic markers: the {HardyWeinberg. } Package J Stat Softw 64:1–23
    Google Scholar 
    Graffelman J, Morales-Camarena J (2008) Graphical tests for Hardy-Weinberg Equilibrium based on the ternary plot. Hum Hered 65:77–84PubMed 
    Article 

    Google Scholar 
    Grant PR (1999) Ecology and Evolution of Darwin’s Finches. Princeton University PressGrant PR (1998) Evolution on Islands. Oxford University Press, Oxford, UK
    Google Scholar 
    Gu J, Liang Q, Liu C, Li S (2020) Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China. Front Genet 11:582355CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2011) Relationship between outdoor temperature and blood pressure. Occup Environ Med 68:296–301PubMed 
    Article 

    Google Scholar 
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, Iribarren C, Chakravarti A, Risch N (2017) Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet 49:54–64CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutterer R, Lopez-Jurado LF, Vogel P (1987) The shrews of the eastern Canary Islands: a new species (mammalia: Soricidae). J Nat Hist 21:1347–1357Article 

    Google Scholar 
    Illera JC, Spurgin LG, Rodriguez-Exposito E, Nogales M, Rando JC (2016) What are we learning about speciation and extinction from the Canary Islands? Ardeola 63:15–33Article 

    Google Scholar 
    Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL (2016) Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Ecol 25:4488–4507PubMed 
    Article 

    Google Scholar 
    Irwin DE, Milá B, Toews DPL, Brelsford A, Kenyon HL, Porter AN, Grossen C, Delmore KE, Alcaide M, Irwin JH (2018) A comparison of genomic islands of differentiation across three young avian species pairs. Mol Ecol 27:4839–4855CAS 
    PubMed 
    Article 

    Google Scholar 
    Juan C, Emerson BC, Oromí P, and Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Elsevier Ltd.Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241Article 

    Google Scholar 
    Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL (2019) Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 104:65–75. Cell PressCAS 
    PubMed 
    Article 

    Google Scholar 
    Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinforma 15:1–13. BioMed Central LtdArticle 

    Google Scholar 
    Kulminski AM, Huang J, Loika Y, Arbeev KG, Bagley O, Yashkin A, Duan M, Culminskaya I (2018) Strong impact of natural-selection-free heterogeneity in genetics of age-related phenotypes. Aging 10:492–514. Impact Journals LLCPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. Elsevier LtdArticle 

    Google Scholar 
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, García-Del-Rey E (2016) Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC Zool 1:1–19. BioMed Central LtdArticle 

    Google Scholar 
    Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen YDI, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin LA, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Larson MG, Grove ML, Smith AV, Hwang SJ, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Li M, Fuchsberger C, Pattaro C, Gorski M, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SLR, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O’Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dörr M, Felix SB, Rettig R, Völzke H, Kim E, Lee WJ, Te Lee I, Sheu WHH, Tsosie KS, Edwards DRV, Liu Y, Correa A, Weir DR, Völker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, Van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJF, Fornage M, Ehret GB, Newton-Cheh C, Levy D, Chasman DI (2016) Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48:1162–1170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losos JB, Jackman TR, Larson A, De Queiroz K, Rodríguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–6. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387Article 

    Google Scholar 
    MacArthur RH and Wilson EO (1967) The theory of island biogeography. Princeton University PressMachado AP, Clément L, Uva V, Goudet J, Roulin A (2018) The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J Biogeogr 45:1288–1300Article 

    Google Scholar 
    Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, Goudet J (2021) Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Mol Ecol 1–16. https://doi.org/10.1111/mec.16250Machado AP, Topaloudis A, Cumer T, Lavanchy E, Bontzorlos VA, Ceccherelli R, Charter M, Kassinis N, Lymberakis P, Manzia F, Ducrest AL, Dupasquier M, Guex N, Roulin A, Goudet J (2022) Genomic consequences of colonisation, migration and genetic drift in barn owl insular populations of the eastern Mediterranean. Mol Ecol 31:1375–1388Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, Turner GF (2015) Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350:1493–1498CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martín A, Lorenzo JA (2001) Aves del archipiélago canario. Editor, Francisco Lemus
    Google Scholar 
    Martin SH, Van Belleghem SM (2017) Exploring evolutionary relationships across the genome using topology weighting. Genetics 206:429–438. Genetics Society of AmericaPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masseti M (2010) Mammals of the Macaronesian islands (the Azores, Madeira, the Canary and Cape Verde islands): redefinition of the ecological equilibrium. Mammalia 74:3–34Article 

    Google Scholar 
    Mateo JA, Crochet PA, Afonso OM (2011) The species diversity of the genus Gallotia (Sauria: Lacertidae) during the Holocene on La Gomera (Canary Islands) and the Latin names of Gomeran giant lizards. Zootaxa 2755:66–68Article 

    Google Scholar 
    Molina-Borja M (2003) Sexual dimorphism of Gallotia atlantica atlantica and Gallotia atlantica mahoratae (Lacertidae) from the Eastern Canary Islands. J Herpetol 37:769–772Article 

    Google Scholar 
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380. https://doi.org/10.1016/j.cub.2015.03.047CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, Van Der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliot KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O’Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O’Reilly PF, Peltonen L, Pouta A, De Jong PE, Snieder H, Van Gilst WH, Clarke R, Goel A, Hamsten A, Altshuler D, Jarvelin MR, Elliott P, Lakatta EG, Forouhi N, Wareham NJ, Loos RJF, Deloukas P, Lathrop GM, Zelenika D, Strachan DP, Soranzo N, Williams FM, Zhai G, Spector TD, Peden JF, Watkins H, Ferrucci L, Caulfield M, Munroe PB, Berglund G, Melander O, Matullo G, Uiterwaal CS, van der Schouw YT, Numans ME, Ernst F, Homuth G, Völker U, Elosua R, Laakso M, Connell JM, Mooser V, Salomaa V, Tuomilehto J, Laan M, Navis G, Seedorf U, Syvänen AC, Tognoni G, Sanna S, Uda M, Scheet P, Schlessinger D, Scuteri A, Dörr M, Felix SB, Reffelmann T, Lorbeer R, Völzke H, Rettig R, Galan P, Hercberg S, Bingham SA, Kooner JS, Bandinelli S, Meneton P, Abecasis G, Thompson JR, Braga Marcano CA, Barke B, Dobson R, Gungadoo J, Lee KL, Onipinla A, Wallace I, Xue M, Clayton DG, Leung HT, Nutland S, Walker NM, Todd JA, Stevens HE, Dunger DB, Widmer B, Downes K, Cardon LR, Kwiatkowski DP, Barrett JC, Evans D, Morris AP, Lindgren CM, Rayner NW, Timpson NJ, Lyons E, Vannberg F, Hill AVS, Teo YY, Rockett KA, Craddock N, Attwood AP, Bryan C, Bumpstead SJ, Chaney A, Ghori J, William RG, Hunt SE, Inouye M, Keniry E, King E, McGinnis R, Potter S, Ravindrarajan R, Whittaker P, Withers D, Bentley D, Groves CJ, Duncanson A, Ouwehand WH, Boorman JP, Cant B, Jolley JD, Knight AS, Koch K, Taylor NC, Watkins NA, Winzer T, Braund PS, Dixon RJ, Mangino M, Stevens S, Donnely P, Davidson D, Marchini JL, Spencer ICA, Cardin NJ, Ferreira T, Pereira-Gale J, Hallgrimsdottir IB, Howie BN, Su Z, Vukcevic D, Easton D, Everson U, Hussey JM, Meech E, Prowse CV, Walters GR, Jones RW, Ring SM, Prembey M, Breen G, St. Clair D, Ceasar S, Gordon-Smith K, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskovina V, Nikolov I, O’Donovan MC, Owen MJ, Craddock N, Collier DA, Elkin A, Farmer A, Williamson R, McGruffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Lewis CM, Onnie CM, Prescott NJ, Mathew CG, Forbes A, Sanderson J, Mathew C, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DPM, Thomson W, Worthington J, Frayling TM, Freathy RM, Lango H, Perry JRB, Weedon MN, Hattersley AT, Shields BM, Hitman GA, Walker M, Newport M, Sirugo G, Conway D, Jallow M, Bradbury LA, Pointon JL, Brown MA, Farrar C, Wordsworth P, Franklyn JA, Heward JM, Simmonds MJ, Cough SCL, Seal S, Stratton MR, Ban M, Goris A, Sawcer SJ, Compston A (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogales M, De León L, Gómez R (1998) On the presence of the endemic skink Chalcides simonyi Steind. 1891 in Lanzarote (Canary Islands). Amphib-Reptilia 19:427–430Article 

    Google Scholar 
    Nogales M, Rando JC, Valido A, Martín A (2001) Discovery of a living giant lizard, genus Gallotia (Reptilia: Lacertidae), from La Gomera, Canary Islands. Herpetologica 57:169–179
    Google Scholar 
    Norder SJ, Proios K, Whittaker RJ, Alonso MR, Borges PAV, Borregaard MK, Cowie RH, Florens FBV, de Frias Martins AM, Ibáñez M, Kissling WD, de Nascimento L, Otto R, Parent CE, Rigal F, Warren BH, Fernández-Palacios JM, van Loon EE, Triantis KA, Rijsdijk KF (2019) Beyond the Last Glacial Maximum: Island endemism is best explained by long-lasting archipelago configurations. Glob Ecol Biogeogr 28:184–197. Blackwell Publishing LtdArticle 

    Google Scholar 
    O’Brien KA, Simonson TS, and Murray AJ (2020) Metabolic adaptation to high altitude. Elsevier Ltd.Oskarsson GR, Oddsson A, Magnusson MK, Kristjansson RP, Halldorsson GH, Ferkingstad E, Zink F, Helgadottir A, Ivarsdottir EV, Arnadottir GA, Jensson BO, Katrinardottir H, Sveinbjornsson G, Kristinsdottir AM, Lee AL, Saemundsdottir J, Stefansdottir L, Sigurdsson JK, Davidsson OB, Benonisdottir S, Jonasdottir A, Jonasdottir A, Jonsson S, Gudmundsson RL, Asselbergs FW, Tragante V, Gunnarsson B, Masson G, Thorleifsson G, Rafnar T, Holm H, Olafsson I, Onundarson PT, Gudbjartsson DF, Norddahl GL, Thorsteinsdottir U, Sulem P, Stefansson K (2020) Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis. Commun Biol 3:1–10. Nature ResearchArticle 

    Google Scholar 
    Palacios CJ (2004) Current status and distribution of birds of prey in the Canary Islands. Bird Conserv Int 14:203–213Article 

    Google Scholar 
    Pestano J, Brown RP, Suárez NM, Benzal J, Fajardo S (2003) Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences. Heredity 90:302–307. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Pickrell J and Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. Nat Preced, https://doi.org/10.1038/npre.2012.6956.1. Springer Science and Business Media LLCPurcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Rodríguez B, Rodríguez A, Siverio F, Siverio M (2018) Factors affecting the spatial distribution and breeding habitat of an insular cliff-nesting raptor community. Curr Zool 64:173–181PubMed 
    Article 

    Google Scholar 
    Rodríguez A, Rodríguez B, Montelongo T, Garcia‐Porta J, Pipa T, Carty M, Danielsen J, Nunes J, Silva C, Geraldes P, Medina FM, and Illera JC (2020) Cryptic differentiation in the Manx Shearwater hinders the identification of a new endemic subspecies. J Avian Biol https://doi.org/10.1111/jav.02633Romano A, Séchaud R, Roulin A (2020) Geographical variation in bill size provides evidence for Allen’s rule in a cosmopolitan raptor. Glob Ecol Biogeogr 29:65–75Article 

    Google Scholar 
    Romano A, Séchaud R, Roulin A (2021) Evolution of wing length and melanin-based coloration in insular populations of a cosmopolitan raptor. J Biogeogr 48:961–973. Blackwell Publishing LtdArticle 

    Google Scholar 
    Senfeld T, Shannon TJ, van Grouw H, Paijmans DM, Tavares ES, Baker AJ, Lees AC, Collinson JM (2020) Taxonomic status of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi. Ibis 162:1068–1074. Blackwell Publishing LtdArticle 

    Google Scholar 
    Siverio F (1998) Distribución y estatus de Tyto alba (Scopoli, 1769) en Tenerife, islas Canarias (Aves, Tytonidae). Vieraea 26:121–131
    Google Scholar 
    Siverio F (2007) Lechuza común, Tyto alba. In: Lorenzo JA (Ed.) Atlas de las aves nidificantes en el archipiélago canario (1997–2003). Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, p 304–310
    Google Scholar 
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F, Birks HJB, Borges PAV, Cardoso P, Chou CH, De Sanctis M, de Sequeira MM, Duarte MC, Elias RB, Fernández-Palacios JM, Gabriel R, Gereau RE, Gillespie RG, Greimler J, Harter DEV, Huang TJ, Irl SDH, Jeanmonod D, Jentsch A, Jump AS, Kueffer C, Nogué S, Otto R, Price J, Romeiras MM, Strasberg D, Stuessy T, Svenning JC, Vetaas OR, Beierkuhnlein C (2016) Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob Ecol Biogeogr 25:1097–1107. Blackwell Publishing LtdArticle 

    Google Scholar 
    Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Nielsen SF, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, De Craen AJM, Trompet S, Luan J, Scott RA, Harris SE, Liewald DCM, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, Uria-Nickelsen M, Malarstig A, Reilly DF, Hoek M, Vogt TF, Lin H, Lieb W, Traylor M, Markus HS, Highland HM, Justice AE, Marouli E, Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD, Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, De Boer RA, Van Der Meer P, Van Der Harst P, Gambaro G, Ingelsson E, Lind L, De Bakker PIW, Numans ME, Brandslund I, Christensen C, Petersen ERB, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AIF, Franks S, Jarvelin MR, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney ASF, Morris AD, Palmer CNA, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Majumder AAS, Di Angelantonio E, Chowdhury R, McCarthy MI, Poulter N, Stanton AV, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P, Elliott P, Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous DJ, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM, Frossard P, Newton-Cheh C, Tobin MD, Nordestgaard BG, Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain LV, Butterworth AS, Howson JMM, Munroe PB (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48:1151–1161. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorpe RS, Baez M (1993) Geographic variation in scalation of the lizard Gallotia stehlini within the island of Gran Canaria. Biol J Linn Soc 48:75–87. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164PubMed 
    Article 

    Google Scholar 
    Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D’Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O’Connel JR, O’Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WHH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, Van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50:26–35. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Uva V, Päckert M, Cibois A, Fumagalli L, Roulin A (2018) Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Mol Phylogenet Evol 125:127–137. Academic PressPubMed 
    Article 

    Google Scholar 
    van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform 43:11.10.1–11.10.33. John Wiley & Sons, Inc., Hoboken, NJ, USAArticle 

    Google Scholar 
    Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, Chen MH, Raffield LM, Tardaguila M, Huffman JE, Ritchie SC, Megy K, Ponstingl H, Penkett CJ, Albers PK, Wigdor EM, Sakaue S, Moscati A, Manansala R, Lo KS, Qian H, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala KN, Wilson PWF, Choquet H, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Felix SB, Floyd JS, Broer L, Grarup N, Guo MH, Guo Q, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nikus K, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Ghanbari M, Völker U, Völzke H, Watkins NA, Weiss S, Cai N, Kundu K, Watt SB, Walter K, Zonderman AB, Cho K, Li Y, Loos RJF, Knight JC, Georges M, Stegle O, Evangelou E, Okada Y, Roberts DJ, Inouye M, Johnson AD, Auer PL, Astle WJ, Reiner AP, Butterworth AS, Ouwehand WH, Lettre G, Sankaran VG, Soranzo N (2020) The polygenic and monogenic basis of blood traits and diseases. Cell 182:1214–1231.e11. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wain LV, Vaez A, Jansen R, Joehanes R, Van Der Most PJ, Erzurumluoglu AM, O’Reilly PF, Cabrera CP, Warren HR, Rose LM, Verwoert GC, Hottenga JJ, Strawbridge RJ, Esko T, Arking DE, Hwang SJ, Guo X, Kutalik Z, Trompet S, Shrine N, Teumer A, Ried JS, Bis JC, Smith AV, Amin N, Nolte IM, Lyytikäinen LP, Mahajan A, Wareham NJ, Hofer E, Joshi PK, Kristiansson K, Traglia M, Havulinna AS, Goel A, Nalls MA, Sõber S, Vuckovic D, Luan J, Del Greco FM, Ayers KL, Marrugat J, Ruggiero D, Lopez LM, Niiranen T, Enroth S, Jackson AU, Nelson CP, Huffman JE, Zhang W, Marten J, Gandin I, Harris SE, Zemunik T, Lu Y, Evangelou E, Shah N, De Borst MH, Mangino M, Prins BP, Campbell A, Li-Gao R, Chauhan G, Oldmeadow C, Abecasis G, Abedi M, Barbieri CM, Barnes MR, Batini C, Beilby J, Blake T, Boehnke M, Bottinger EP, Braund PS, Brown M, Brumat M, Campbell H, Chambers JC, Cocca M, Collins F, Connell J, Cordell HJ, Damman JJ, Davies G, De Geus EJ, De Mutsert R, Deelen J, Demirkale Y, Doney ASF, Dörr M, Farrall M, Ferreira T, Frånberg M, Gao H, Giedraitis V, Gieger C, Giulianini F, Gow AJ, Hamsten A, Harris TB, Hofman A, Holliday EG, Hui J, Jarvelin MR, Johansson Å, Johnson AD, Jousilahti P, Jula A, Kähönen M, Kathiresan S, Khaw KT, Kolcic I, Koskinen S, Langenberg C, Larson M, Launer LJ, Lehne B, Liewald DCM, Lin L, Lind L, Mach F, Mamasoula C, Menni C, Mifsud B, Milaneschi Y, Morgan A, Morris AD, Morrison AC, Munson PJ, Nandakumar P, Nguyen QT, Nutile T, Oldehinkel AJ, Oostra BA, Org E, Padmanabhan S, Palotie A, Paré G, Pattie A, Penninx BWJH, Poulter N, Pramstaller PP, Raitakari OT, Ren M, Rice K, Ridker PM, Riese H, Ripatti S, Robino A, Rotter JI, Rudan I, Saba Y, Saint Pierre A, Sala CF, Sarin AP, Schmidt R, Scott R, Seelen MA, Shields DC, Siscovick D, Sorice R, Stanton A, Stott DJ, Sundström J, Swertz M, Taylor KD, Thom S, Tzoulaki I, Tzourio C, Uitterlinden AG, Völker U, Vollenweider P, Wild S, Willemsen G, Wright AF, Yao J, Thériault S, Conen D, Attia J, Sever P, Debette S, Mook-Kanamori DO, Zeggini E, Spector TD, Van Der Harst P, Palmer CNA, Vergnaud AC, Loos RJF, Polasek O, Starr JM, Girotto G, Hayward C, Kooner JS, Lindgren CM, Vitart V, Samani NJ, Tuomilehto J, Gyllensten U, Knekt P, Deary IJ, Ciullo M, Elosua R, Keavney BD, Hicks AA, Scott RA, Gasparini P, Laan M, Liu Y, Watkins H, Hartman CA, Salomaa V, Toniolo D, Perola M, Wilson JF, Schmidt H, Zhao JH, Lehtimäki T, Van Duijn CM, Gudnason V, Psaty BM, Peters A, Rettig R, James A, Jukema JW, Strachan DP, Palmas W, Metspalu A, Ingelsson E, Boomsma DI, Franco OH, Bochud M, Newton-Cheh C, Munroe PB, Elliott P, Chasman DI, Chakravarti A, Knight J, Morris AP, Levy D, Tobin MD, Snieder H, Caulfield MJ, Ehret GB (2017) Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70:e4–e19. Lippincott Williams and WilkinsCAS 
    Article 

    Google Scholar 
    Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernández-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartín I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, and Thébaud C (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-WilsonWeir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476. Cold Spring Harbor Laboratory PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weir BS, Goudet J (2017) A unified characterization of population structure and relatedness. Genetics 206:2085–2103PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Witt KE, Huerta-Sánchez E (2019) Convergent evolution in human and domesticate adaptation to high-altitude environments. Phil. Trans. R. Soc. B 374:20180235Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O’Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L (2020) Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 145:537–549. Mosby IncCAS 
    PubMed 
    Article 

    Google Scholar  More