Spatial autocorrelation signatures of ecological determinants on plant community characteristics in high Andean wetlands
Rudnick, D. A. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–23 (2012).
Google Scholar
Brudvig, L. A. Interpreting the effects of landscape connectivity on community diversity. J. Veg. Sci. 27, 4–5 (2016).Article
Google Scholar
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed
Article
Google Scholar
Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).PubMed
Article
Google Scholar
Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Global Change Biol. 24, 4417–4427 (2018).ADS
Article
Google Scholar
Münkemüller, T. et al. From diversity indices to community assembly processes: A test with simulated data. Ecography 35, 468–480 (2012).Article
Google Scholar
Seabloom, E. W., BJørnstad, O. N., Bolker, B. M. & Reichman, O. J. Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecol. Monogr. 75, 199–214 (2005).Article
Google Scholar
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed
Article
Google Scholar
Fortin, M. J. & Dale, M. Spatial Analysis: A Guide for Ecologist (Cambridge Univ. Press., 2005).McIntire, E. J. B. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009).PubMed
Article
Google Scholar
Smith, T. W. & Lundholm, J. T. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33, 648–655 (2010).Article
Google Scholar
Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).Article
Google Scholar
Dray, S. A new perspective about moran’s coefficient: Spatial autocorrelation as a linear regression problem. Geogr. Anal. 43, 127–141 (2011).Article
Google Scholar
Biswas, S. R., Mallik, A. U., Braithwaite, N. T. & Wagner, H. H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 125, 192–200 (2016).Article
Google Scholar
Biswas, S. R., MacDonald, R. L. & Chen, H. Y. H. Disturbance increases negative spatial autocorrelation in species diversity. Landsc. Ecol. 32, 823–834 (2017).Article
Google Scholar
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article
Google Scholar
Biswas, S. R., Xiang, J. & Li, H. Disturbance effects on spatial autocorrelation in biodiversity: An overview and a call for study. Diversity 13, 167 (2021).Article
Google Scholar
Bertin, A. et al. Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw. Biol. 60, 297–310 (2015).Article
Google Scholar
Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).PubMed
Article
Google Scholar
Souvignet, M., Oyarzún, R., Verbist, K. M. J., Gaese, H. & Heinrich, J. Hydro-meteorological trends in semi-arid north-central Chile (29–32°S): Water resources implications for a fragile Andean region. Hydrol. Sci. J. 57, 479–495 (2012).Article
Google Scholar
Montecinos, S., Gutiérrez, J. R., López-Cortés, F. & López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 126, 7–11 (2016).ADS
Article
Google Scholar
Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 1–10 (2017).
Google Scholar
Ruzzier, E. et al. From island biogeography to conservation: A multi-taxon and multi-taxonomic rank approach in the Tuscan archipelago. Land 10, 486 (2021).Article
Google Scholar
Siqueira, T. et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 101, e03014 (2020).PubMed
Article
Google Scholar
Anthelme, F. & Dangles, O. Plant–plant interactions in tropical alpine environments. Perspect. Plant Ecol. 14, 363–372 (2012).Article
Google Scholar
Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).Article
Google Scholar
Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).ADS
CAS
PubMed
Article
Google Scholar
Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).ADS
PubMed
Article
Google Scholar
Kikvidze, Z. et al. The effects of foundation species on community assembly: A global study on alpine cushion plant communities. Ecology 96, 2064–2069 (2015).PubMed
Article
Google Scholar
Zhao, R. M., Zhang, H. & An, L. Z. Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environ. Sci. Pollut. Res. 27, 17339–17349 (2020).CAS
Article
Google Scholar
Pugnaire, F. I., Losapio, G. & Schöb, C. Interacciones entre especies y el papel de las plantas cojín en ecosistemas de alta montaña bajo un clima cambiante. Ecosistemas 30, 2186 (2021).Article
Google Scholar
Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167, 913–924 (2006).PubMed
Article
Google Scholar
Vellend, M. et al. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 23, 2890–2901 (2014).PubMed
Article
Google Scholar
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed
Article
Google Scholar
Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, 2018).Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).Article
Google Scholar
Schamp, B. S., Arnott, S. E. & Joslin, K. L. Dispersal strength influences zooplankton co-occurrence patterns in experimental mesocosms. Ecology 96, 1074–1083 (2015).PubMed
Article
Google Scholar
Troncoso, A. J., Bertin, A., Osorio, R., Arancio, G. & Gouin, N. Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico. Conserv. Genet. 18, 1047–1060 (2017).Article
Google Scholar
Pfeiffer, V. W. et al. Partitioning genetic and species diversity refines our understanding of species–genetic diversity relationships. Ecol. Evol. 8, 12351–12364 (2018).PubMed
PubMed Central
Article
Google Scholar
Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).Article
Google Scholar
Moritz, C. et al. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122, 1401–1410 (2013).
Google Scholar
Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81, 887–892 (2000).Article
Google Scholar
Stirling, G. & Wilsey, B. Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat. 158, 286–299 (2001).CAS
PubMed
Article
Google Scholar
Stevens, R. D. & Willig, M. R. Geographical ecology at the community level: Perspectives on the diversity of new world bats. Ecology 83, 545–560 (2002).Article
Google Scholar
Wilsey, B. J. & Polley, H. W. Effects of seed additions and grazing history on diversity and productivity of subhumid grasslands. Ecology 84, 920–931 (2003).Article
Google Scholar
Ma, M. Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).Article
Google Scholar
Schmitz, O. J. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952–954 (2008).ADS
CAS
PubMed
Article
Google Scholar
Stomp, M., Huisman, J., Mittelbach, G. G., Litchman, E. & Klausmeier, C. A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92, 2096–2107 (2011).PubMed
Article
Google Scholar
Zhang, H. et al. The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS ONE 7, e49024 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).
Google Scholar
Young, K. R. in Climate Change and Biodiversity in the Tropical Andes (eds Herzog, S. K., Martinez, R., Jørgensen, P. M. & Tiessen, H.) Ch. 8, 128–140 (Inter-American Institute for Global Change Research, 2011).López-Angulo, J. et al. Determinants of high mountain plant diversity in the Chilean Andes: From regional to local spatial scales. PLoS ONE 13, e0200216 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
Google Scholar
Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).
Google Scholar
Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed
Article
Google Scholar
Kunte, K. Competition and species diversity: Removal of dominant species increases diversity in Costa Rican butterfly communities. Oikos 117, 69–76 (2008).Article
Google Scholar
Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article
Google Scholar
Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: A global study. Ecology 86, 1395–1400 (2005).Article
Google Scholar
Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).Article
Google Scholar
Heip, C. H. R., Herman, P. M. J. & Soetaert, K. Indices of diversity and evenness. Océanis 4, 61–87 (1998).
Google Scholar
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article
Google Scholar
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed
Article
Google Scholar
Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article
Google Scholar
Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed
PubMed Central
Article
Google Scholar
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article
Google Scholar
Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the german biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed
PubMed Central
Article
Google Scholar
Beisel, J.-N., Usseglio-Polatera, P., Bachmann, V. & Moreteau, J.-C. A comparative analysis of evenness index sensitivity. Int. Rev. Hydrobiol. 88, 3–15 (2003).Article
Google Scholar
Fedor, P. & Zvaríková, M. in Encyclopedia of Ecology (ed Brian Fath) 337–346 (2019).Gatti, R. C., Amoroso, N. & Monaco, A. Estimating and comparing biodiversity with a single universal metric. Ecol. Model. 424, 8 (2020).
Google Scholar
Lin, L., Deng, W., Huang, X. & Kang, B. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecol. Evol. 11, 11533–11548 (2021).PubMed
PubMed Central
Article
Google Scholar
Squeo, F. A., Warner, B. G., Aravena, R. & Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79, 245–255 (2006).Article
Google Scholar
Villagrán-Mella, R., Aguayo, M., Parra, L. E. & González, A. Relación entre características del hábitat y estructura del ensamble de insectos en humedales palustres urbanos del centro-sur de Chile. Rev. Chil. Hist. Nat. 79, 195–211 (2006).Article
Google Scholar
Coronel, J. S., Declerck, S., Maldonado, M., Ollevier, F. & Brendonck, L. Temporary shallow pools in high-Andes ‘bofedal’ peatlands. Arch. Sci. 57, 85–96 (2004).CAS
Google Scholar
Wakeling, I. N. & Morris, J. J. A test of significance for partial least squares regression. J. Chemom. 7, 291–304 (1993).CAS
Article
Google Scholar
Foltête, J.-C., Clauzel, C. & Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Modell. Softw. 38, 316–327 (2012).Article
Google Scholar
Ricotta, C., Stanisci, A., Avena, G. C. & Blasi, C. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol. 1, 89–94 (2000).Article
Google Scholar
Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979).Article
Google Scholar
Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82, 1205–1218 (2001).Article
Google Scholar
Bodin, Ö. & Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 221, 2393–2405 (2010).Article
Google Scholar
Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. (R Foundation for Statistical Computing, 2015).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet
MATH
Article
Google Scholar
Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. (R Foundation for Statistical Computing, 2020)Wagner, H. H. & Dray, S. Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods Ecol. Evol. 6, 1169–1178 (2015).Article
Google Scholar
Monecke, A. & Leisch, F. semPLS: Structural equation modeling using partial least squares. J. Stat. Softw. 48, 1–32 (2012).Article
Google Scholar
Zhao, X., Li, Y., Song, H., Jia, Y. & Liu, J. Agents affecting the productivity of pine plantations on the Loess Plateau in China: A study based on structural equation modeling. Forests 11, 1328 (2020).Article
Google Scholar
Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).MathSciNet
MATH
Article
Google Scholar
Gower, J. C. & Legendre, P. Metric and euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986).MathSciNet
MATH
Article
Google Scholar
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article
Google Scholar
Lumley, T. & Miller, A. leaps: Regression subset selection. R package version 2.7. http://CRAN.R-project.org/package=leaps (2004).AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3-1. (2019).Freestone, A. L. & Inouye, B. D. Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87, 2425–2432 (2006).PubMed
Article
Google Scholar
Li, F., Tonkin, J. D. & Haase, P. Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecol. Indic. 108, 105715 (2020).Article
Google Scholar
Vilmi, A., Karjalainen, S. M. & Heino, J. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Divers. Distrib. 23, 1042–1053 (2017).Article
Google Scholar
Baldeck, C. A., Tupayachi, R., Sinca, F., Jaramillo, N. J. E. & Asner, G. P. Environmental drivers of tree community turnover in western Amazonian forests. Ecography 39, 1089–1099 (2016).Article
Google Scholar
Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).ADS
CAS
PubMed
Article
Google Scholar
Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B. 366, 2351–2363 (2011).Article
Google Scholar
Segre, H. et al. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408 (2014).PubMed
Article
Google Scholar
Ceschin, F., Bini, L. M. & Padial, A. A. Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805, 377–389 (2018).CAS
Article
Google Scholar
Heino, J. et al. Unravelling the correlates of species richness and ecological uniqueness in a metacommunity of urban pond insects. Ecol. Indic. 73, 422–431 (2017).Article
Google Scholar
Leão, H., Siqueira, T., Torres, N. R. & Montag, L. F. D. A. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol. Indic. 111, 106039 (2020).Article
Google Scholar
Vega-Álvarez, J., García-Rodríguez, J. A. & Cayuela, L. Facilitation beyond species richness. J. Ecol. 107, 722–734 (2019).Article
Google Scholar More