More stories

  • in

    Feeding ecology of the endangered Asiatic wild dogs (Cuon alpinus) across tropical forests of the Central Indian Landscape

    Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manag. 42, 528 (1978).Article 

    Google Scholar 
    Ackerman, B. B., Lindzey, F. G. & Hemker, T. P. Cougar food habits in Southern Utah. J. Wildl. Manag. 48, 147 (1984).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Klare, U., Kamler, J. F. & Macdonald, D. W. A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Rev. 41, 294–312 (2011).Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Monterroso, P. et al. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mammal Rev. 49, 97–112 (2019).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J., Hofmeyr, M. & Kerley, G. I. H. Prey preferences of the African wild dog Lycaon Pictus (Canidae: Carnivora): Ecological requirements for conservation. J. Mammal. 87, 1122–1131 (2006).Article 

    Google Scholar 
    Crawford, K., Mcdonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Crossey, B., Chimimba, C., du Plessis, C., Ganswindt, A. & Hall, G. African wild dogs ( Lycaon pictus ) show differences in diet composition across landscape types in Kruger National Park, South Africa. J. Mammal. 102, 1211–1221 (2021).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).Article 

    Google Scholar 
    Kamler, J. F. et al. Cuon alpinus. IUCN Red List Threat. Spec. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).Article 

    Google Scholar 
    Johnsingh, A. J. T. Distribution and status of dhole Cuon alpinus Pallas, 1811 in South Asia. Mammalia 49, (1985).Acharya, B. B. Dissertation submitted to Saurashtra University, Rajkot, Gujarat, for the award of the Degree of Doctor of Philosophy in Wildlife Science. 133.Sillero-Zubiri, E. C., Hoffmann, M. & Macdonald, D. W. Canids: Foxes, Wolves, Jackals and Dogs. 443.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Karanth, K. U., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S. & Karanth, K. U. On a dhole trail: Examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS ONE 9, e98803 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).PubMed 
    Article 

    Google Scholar 
    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs 12, 14–34 (2017).Article 

    Google Scholar 
    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).Article 

    Google Scholar 
    Clements, H. S., Tambling, C. J., Hayward, M. W. & Kerley, G. I. H. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large african carnivores. PLoS ONE 9, e101054 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hayward, M. W., Lyngdoh, S. & Habib, B. Diet and prey preferences of dholes ( C uon alpinus ): Dietary competition within A sia’s apex predator guild. J. Zool. 294, 255–266 (2014).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S. & Oli, M. K. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore. Sci. Total Environ. 714, 136798 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. A. Cuon alpinus. Mamm. Spec. https://doi.org/10.2307/3503800 (1978).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    Ghaskadbi, P., Nigam, P. & Habib, B. Stranger Danger: Differential response to strangers and neighbors by a social carnivore, the Asiatic wild dog (Cuon alpinus). Behav. Ecol. Sociobiol. 76, 86. https://doi.org/10.1007/s00265-022-03188-4 (2022). Article 

    Google Scholar 
    Ghaskadbi, P., Das, J., Mahadev, V. & Habib, B. First record of mixed species association between dholes and a wolf from Satpura Tiger Reserve, India. Canid Biol. Conserv. 23(4): 15–17. http://www.canids.org/CBC/23/Dhole_wolf_association.pdf (2021).Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgaonkar, A. Satpura National Park, India. 135.Borah, J., Deka, K., Dookia, S. & Gupta, R. P. Food habits of dholes (Cuon alpinus) in Satpura Tiger Reserve. Madhya Pradesh, India. 73, 85–88 (2009).
    Google Scholar 
    Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger ( Panthera tigris ), leopard ( Panthera pardus ) and dhole ( Cuon alpinus ) in Nagarahole, India. J. Zool. 250, 255–265 (2000).Article 

    Google Scholar 
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope. Tetracerus quadricornis. 73, 1–6 (2009).
    Google Scholar 
    Sharma, K., Chundawat, R. S., Van Gruisen, J. & Rahmani, A. R. Understanding the patchy distribution of four-horned antelope Tetracerus quadricornis in a tropical dry deciduous forest in Central India. J. Trop. Ecol. 30, 45–54 (2014).Article 

    Google Scholar 
    Rahman, D. A., Syamsudin, M., Firdaus, A. Y. & Afriandi, H. T. Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia. J. Threat. Taxa 13, 20278–20283 (2021).Article 

    Google Scholar 
    Durbin, L. S., Venkataraman, A., Hedges, S. & Dukworth, W. South Asia—south of th e Himalaya (oriental). In Canids: Foxes, Wolves, Jackals and Dogs . Status Survey and Conserva- tion Action Plan. (IUCN Canid Specialist Group, 2004).Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the Endangered dhole Cuon alpinus in the high elevation Eastern Himalayan habitats of Khangchendzonga Biosphere Reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    Yoshimura, H., Hirata, S. & Kinoshita, K. Plant-eating carnivores: Multispecies analysis on factors influencing the frequency of plant occurrence in obligate carnivores. Ecol. Evol. 11, 10968–10983 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snake-in-the-diet-of-Cuon-alpinus-Pallas-1811-in-Kalakad-Mundanthurai-Tiger-Reserve-Tamil-Nadu.pdf.Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR)— Phase IV Monitoring Report and Report on Collaring of Leopards. (2014). 26 (2015).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2015). 62 (2016).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2016). 27 (2017).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2017). 44 (2018).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2018). 41 (2019).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2019). 47 https://ntca.gov.in/assets/uploads/Reports/WII/TATR%20Phase%20IV%202019.pdf (2020).Jhala, Y. V., Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018. 656 https://ntca.gov.in/assets/uploads/Reports/AITM/Tiger_Status_Report_2018.pdf (2019).Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. J. Zool. 260, 285–290 (2003).Article 

    Google Scholar 
    Woodroffe, R., Lindsey, P. A., Romañach, S. S. & Ranah, S. M. K. African Wild Dogs ( Lycaon pictus ) Can Subsist on Small Prey: Implications for Conservation. J. Mammal. 88, 181–193 (2007).Article 

    Google Scholar 
    Merrill, E. et al. Building a mechanistic understanding of predation with GPS-based movement data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2279–2288 (2010).Article 

    Google Scholar 
    Pitman, R. T., Mulvaney, J., Ramsay, P. M., Jooste, E. & Swanepoel, L. H. Global Positioning System-located kills and faecal samples: A comparison of leopard dietary estimates. J. Zool. 292, 18–24 (2014).Article 

    Google Scholar 
    Jansen, C., Leslie, A. J., Cristescu, B., Teichman, K. J. & Martins, Q. Determining the diet of an African mesocarnivore, the caracal: Scat or GPS cluster analysis?. Wildl. Biol. 2019, wlb.00579 (2019).Article 

    Google Scholar 
    Leighton, G. R. M. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst. 23, 569–583 (2020).Article 

    Google Scholar 
    Studd, E. K. et al. The Purr-fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol. Evol. 12, 1277–1287 (2021).Article 

    Google Scholar 
    Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing the effect of Prey availability and Apex predator. Ecol. Evol. 11, 4774–4785 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 11033 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, D. M., Vyver, D. B. & Bissett, C. The influence of an apex predator introduction on an already established subordinate predator. J. Zool. 313, 224–235 (2021).Article 

    Google Scholar 
    Johnsingh, A. J. T. Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56, (1992).Marucco, F., Pletscher, D. H. & Boitani, L. Accuracy of scat sampling for carnivore diet analysis: Wolves in the Alps as a case study. J. Mammal. 89, 665–673 (2008).Article 

    Google Scholar 
    Martins, Q., Horsnell, W. G. C., Titus, W., Rautenbach, T. & Harris, S. Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87 (2011).Article 

    Google Scholar 
    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    Thinley, P. et al. Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm. Biol. 76, 518–520 (2011).Article 

    Google Scholar 
    Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Modi, S., Mondol, S., Nigam, P. & Habib, B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci. Rep. 11, 16371 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Putman, R. J. Facts from faeces. Mammal Rev. 14, 79–97 (1984).Article 

    Google Scholar 
    Kohn, M. H. & Wayne, R. K. Facts from feces revisited. Trends Ecol. Evol. 12, 223–227 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukherjee, S., Goyal, S. P. & Chellam, R. Standardisation of scat analysis techniques for leopard (Panthera pardus) in Gir National Park, Western India. Mammalia 58, (1994).Bahuguna, A., Sahajpal, V., Goyal, S. P., Mukherjee, S. & Thakur, V. Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India (Wildlife Institute of India, 2010).
    Google Scholar 
    Leopold, B. D. & Krausman, P. R. Diets of 3 Predators in Big Bend National Park, Texas. J. Wildl. Manag. 50, 290 (1986).Article 

    Google Scholar 
    Van Ballenberghe, V., Erickson, A. W. & Byman, D. Ecology of the Timber Wolf in Northeastern Minnesota. Wildl. Monogr. 3–43 (1975).Ciucci, P., Boitani, L., Pelliccioni, E. R., Rocco, M. & Guy, I. A comparison of scat-analysis methods to assess the diet of the wolf Canis lupus. Wildl. Biol. 2, 37–48 (1996).Article 

    Google Scholar 
    Weaver, J. L. Refining the equation for interpreting prey occurrence in Gray wolf scats. J. Wildl. Manag. 57, 534–538 (1993).Article 

    Google Scholar 
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).PubMed 
    Article 

    Google Scholar 
    Lumetsberger, T. et al. Re-evaluating models for estimating prey consumption by leopards. J. Zool. 302, 201–210 (2017).Article 

    Google Scholar 
    Jacobs, J. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417 (1974).ADS 
    PubMed 
    Article 

    Google Scholar 
    Karanth, K. U. & Nichols, J. D. Distribution and Dynamics of Tiger and Prey Populations in Maharashtra, India Final Technical Report (October 2001 to August 2005). (2005).19 LIVESTOCK CENSUS-2012 ALL INDIA REPORT. https://d1wqtxts1xzle7.cloudfront.net/56129012/6ESSJan-6098P-with-cover-page-v2.pdf?Expires=1644491741&Signature=Apc1rT2raxYnUyrRJ64NqOd6oUEpnF2AiRQVPB-9gS2W2TIrOcInF3KnBJVA2dPxzfbIz8ap9IPe-l24mpYs9i8xEZAvsxRVnDhSHT8H9C9fd0voDxyUwl3gUyJgDDzLO-204J95UuopJQw5Df6xTNmTOs5Oiadk0Fkf9Fk-QRVajisuRjzyX2eLmrBH4LyTJFu5irffnKwnluqHl53KoMAQ6nTKi7dlqI4pdFIVCtisXpkSsI44xV1mYX6KC67zmKCZlvjpTxTuHCFV4nmfpgZpPXh4sIOE-0utbwcf5g~UdmRtVVhaXfjZ2iw0gOm7-bIuQILDldPr3OnNUqXbSw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (2012).The Measurement of Niche Overlap and Some Relatives – Hurlbert – 1978 – Ecology – Wiley Online Library. https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.2307/1936632.Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manag. 38, 541–545 (1974).Article 

    Google Scholar  More

  • in

    Dogs suppress a pivotal function in the food webs of sandy beaches

    Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Cons. 157, 341–351 (2013).Article 

    Google Scholar 
    Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Cons. 210, 56–59 (2017).Article 

    Google Scholar 
    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132 (2011).Article 

    Google Scholar 
    Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T. & Gommper, M. Dogs as predators and trophic regulators. Free-ranging dogs and wildlife conservation, 55–68 (2014).Gompper, M. E. In Free-ranging dogs and wildlife conservation, Oxford University Press (2014).Somaweera, R., Webb, J. K. & Shine, R. It’sa dog-eat-croc world: Dingo predation on the nests of freshwater crocodiles in tropical Australia. Ecol. Res. 26, 957–967 (2011).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. In Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.) (ed Matthew E Gompper) Ch. 4, 94–113 (Oxford University Press, 2013).Zapata-Ríos, G. & Branch, L. C. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Cons. 193, 9–16 (2016).Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Gingold, G., Yom-Tov, Y., Kronfeld-Schor, N. & Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 12, 155–162 (2009).Article 

    Google Scholar 
    Fernández-Juricic, E. & Tellería, J. L. Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47, 13–21 (2000).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).Article 

    Google Scholar 
    Silva-Rodríguez, E. A. & Sieving, K. E. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Cons. 150, 103–110 (2012).Article 

    Google Scholar 
    Banks, P. B. & Bryant, J. V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Let. 3, 611–613 (2007).Article 

    Google Scholar 
    Langston, R., Liley, D., Murison, G., Woodfield, E. & Clarke, R. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus?. Ibis 149, 27–36 (2007).Article 

    Google Scholar 
    Lenth, B. E., Knight, R. L. & Brennan, M. E. The effects of dogs on wildlife communities. Nat. Areas J. 28, 218–227 (2008).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.), 94–113 (2013).Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413 (2012).PubMed 
    Article 

    Google Scholar 
    Maguire, G. S., Miller, K. K. & Weston, M. A. In Impacts of Invasive Species on Coastal Environments 397–412 (Springer, 2019).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. III. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    Nel, R. et al. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 150, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 1–11 (2019).MathSciNet 

    Google Scholar 
    Lockwood, J. L. & Maslo, B. In Coastal Convervation (eds Brooke Maslo & JL Lockwood) 1–10 (Cambridge University Press, 2014).Morin, D. J., Lesmeister, D. B., Nielsen, C. K. & Schauber, E. M. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 15, e00413 (2018).Article 

    Google Scholar 
    Cortés, E. I., Navedo, J. G. & Silva-Rodríguez, E. A. Widespread presence of domestic dogs on sandy beaches of Southern Chile. Animals 11, 161 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burger, J., Jeitner, C., Clark, K. & Niles, L. J. The effect of human activities on migrant shorebirds: Successful adaptive management. Environ. Conserv. 31, 283–288 (2004).Article 

    Google Scholar 
    Dowling, B. & Weston, M. A. Managing a breeding population of the Hooded Plover Thinornis rubricollis in a high-use recreational environment. Bird Conserv. Int. 9, 255–270 (1999).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Interference competition at the landscape level: The effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47, 1225–1232 (2010).Article 

    Google Scholar 
    Marzluff, J. M., McGowan, K. J., Donnelly, R. & Knight, R. L. In Avian ecology and conservation in an urbanizing world 331–363 (Springer, 2001).Handler, A., Lonsdorf, E. V. & Ardia, D. R. Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Can. J. Zool. 98, 79–87 (2020).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. The J. Wildlife Manag. 67, 324–333 (2003).Article 

    Google Scholar 
    Méndez, A. et al. Adapting to urban ecosystems: unravelling the foraging ecology of an opportunistic predator living in cities. Urban Ecosyst. 23, 1117–1126 (2020).Article 

    Google Scholar 
    Rees, J., Webb, J., Crowther, M. & Letnic, M. Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers. Anim. Conserv. 18, 44–49 (2015).Article 

    Google Scholar 
    Kimber, O. et al. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob. Ecol. Conserv. 23, e01071 (2020).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Donázar, J. A. & Grimm, V. Bird sky networks: How do avian scavengers use social information to find carrion?. Ecology 95, 1799–1808 (2014).PubMed 
    Article 

    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. Royal Soc. B: Biol. Sci. 284, 20162654 (2017).Article 

    Google Scholar 
    Soulsbury, C. D., Iossa, G., Baker, P. J., White, P. C. & Harris, S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J. Mammal. 92, 190–199 (2011).Article 

    Google Scholar 
    Johnson, C. N. & VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 46, 641–646 (2009).Article 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schlacher, T. A., Strydom, S. & Connolly, R. M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica 48, 7–12 (2013).ADS 
    Article 

    Google Scholar 
    Dunbrack, T. R. & Dunbrack, R. L. Why take your dog on a picnic: presence of a potential predator (Canis lupus familiaris) reverses the outcome of food competition between northwestern crows (Corvus caurinus) and glaucous-winged gulls (Larus glaucescens). Northwest. Nat. 91, 94–98 (2010).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Cons. 238, 108234 (2019).Article 

    Google Scholar 
    Bhadra, A. et al. The meat of the matter: A rule of thumb for scavenging dogs?. Ethol. Ecol. Evol. 28, 427–440 (2016).Article 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ogada, D., Torchin, M., Kinnaird, M. & Ezenwa, V. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. & Evol. 2, 229–236 (2018).Article 

    Google Scholar 
    Gómez-Serrano, M. Á. Four-legged foes: Dogs disturb nesting plovers more than people do on tourist beaches. Ibis 163, 338–352 (2021).Article 

    Google Scholar 
    Stantial, M., Cohen, J., Darrah, A., Farrell, S. & Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01806-160108 (2021).Article 

    Google Scholar 
    Mahon, P. S. Targeted control of widespread exotic species for biodiversity conservation: The red fox (Vulpes vulpes) in New South Wales, Australia. Ecol. Manag. Restor. 10, S59–S69 (2009).ADS 
    Article 

    Google Scholar 
    Colwell, M. A. In The Population Ecology and Conservation of Charadrius Plovers 127–147 (CRC Press, 2019).Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Meek, P. et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 23, 2321–2343 (2014).Article 

    Google Scholar 
    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12, e0186679 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. Royal Soc. B: Biol. Sci. 274, 1101–1108 (2007).Article 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).Article 

    Google Scholar 
    Team, R. D. C. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (2013).Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Schlacher, T. A. et al. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 24, 493–509 (2015).Article 

    Google Scholar 
    Lewin, W.-C., Freyhof, J., Huckstorf, V., Mehner, T. & Wolter, C. When no catches matter: Coping with zeros in environmental assessments. Ecol. Ind. 10, 572–583 (2010).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 488 (Springer Science & Business Media, 2002).Bolker, B. & Team, R. (R package version 0.9, 2010).Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 439 (2015).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found. Stat. Comput., Vienna. https://CRAN. R-project. org/package= dplyr (2015).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016). More

  • in

    Influence of topography on the asymmetry of rill cross-sections in the Yuanmou dry-hot valley

    Statistical characteristics of rill cross-sectional asymmetry (RCA)The rill cross-sectional asymmetry (RCA) is a key parameter in describing rill morphology and includes the asymmetry ratio of the width (Aw) and the asymmetry ratio of the area (Aa). It reflects the differences in certain aspects of natural conditions resulting in inconsistent development speeds on both sides of a rill cross-section. The cross-section was classified as left-biased if Aw, Aa < 0, quasi-symmetrical if Aw, Aa = 0, and right skewed if Aw, Aa > 0. The left/right deflection reflects that erosion on the right happened faster than on the left, so the slope on the left is not as steep as on the right. The results of this study show that asymmetry is a common phenomenon in the cross-section of a rill. The Aw ranged from − 1.77 to 1.97, with an average value of − 0.034. There were 374 cross-sections whose RCA was less than or equal to 0, meaning that 53% of the cross-sections were right-biased. The Aa ranged from − 1.81 to 1.71, with an average of − 0.046. There were 374 cross-sections with an RCA of less than or equal to 0, meaning that 53% of the cross-sections were right-biased (Fig. 1).Figure 1Statistical characteristics of the rill cross-sectional asymmetry (RCA).Full size imageFigure 2 shows that there are four Aw groups in the interval (− 1.7, − 1.5), 53 groups in the interval (− 1.5, − 1.0), 144 groups in the interval (− 1.0, − 0.5), 173 groups in the interval (− 0.5, 0), 174 groups in the interval (0, 0.5), 120 groups in the interval (0.5, 1.0), 39 groups in the interval (1.0, 1.5), and five groups in the interval (1.5, 2). The Aa has 15 groups in the interval (− 1.8, − 1.5), 63 groups in the interval (− 1.5, − 1.0), 130 groups in the interval (− 1.0, − 0.5), 166 groups in the interval (− 0.5, 0), 161 groups in the interval (0, 0.5), 110 groups in the interval (0.5, 1.0), 53 groups in the interval (1.0, 1.5), and 14 groups in the interval (1.5, 2). The RCA of most cross-sections is concentrated in the interval (− 0.5, 0.5). This interval of Aw contains 491 cross-sections, accounting for 68.96% of the total. There are 470 cross-sections in this interval of Aa, accounting for 66.01% of the total. This indicates that, although the rill cross-section exhibits some asymmetry, the difference between both sides of the section is small (Fig. 2).Figure 2Distribution characteristics of the RCA.Full size imageThe influence of a single topographic factor on the RCACorrelation analyses of the Aw, Aa, and the slope difference on both sides (B), rill length (L), rill slope length (I), rill head catchment area (A), difference between the catchment areas of both sides (R), rill bending coefficient (K), and location of the section angle of turning of the rill (J) were carried out. The results show that the main factors that have a significant linear correlation with the Aw and the Aa are B (p < 0.01), with correlation coefficients of 0.32 and 0.22, respectively (Fig. 3). That is, the greater the difference in slope between the two sides, the more asymmetric the rill cross-section. R also has a significant linear correlation with the Aw (p < 0.05), with a correlation coefficient of 0.07. This means that the greater the difference in the catchments between the left and right sides of the rill, the greater the asymmetry of the rill cross-section. However, other topographic factors have no significant correlation with the RCA.Figure 3Correlation between rill cross-sectional asymmetry (RCA) and topographic factors.Full size imageB is the difference in slope between the left and right sides of the rill cross-section catchment area. The closer B gets to 0, the smaller the difference in slope between the left and right sides of the rill cross-section catchment area. When the catchment area slope on the right side of the cross-section is greater than that on the left side, B < 0; and when the catchment area slope on the left side of the cross-section is greater than that on the right side, B > 0. Grouping B reveals that the average RCA increases as B increases (Fig. 4). When B is (− 30, − 20), Aw is − 0.48 and Aa is − 0.38; when B is (− 20, − 10), Aw is − 0.36 and Aa is − 0.31; when B is (− 10, 0), Aw is − 0.23 and Aa is − 0.22; when B is (0, 10), Aw is 0.21 and Aa is 0.16; when B is (10, 20), Aw is 0.47 and Aa is 0.40; and when B is (20, 40), Aw is 0.31 and Aa is 0.13. These are relatively low values because this group only has two sets of cross-sections which cannot represent the characteristics of interval B. The sign of the RCA is the same as the sign of B. The directionality of the RCA is significantly affected by B. When the slope of the left catchment area is large, RCA > 0, and the rill cross-section appears to be left-biased; when the slope of the right catchment area is large, RCA < 0, and the cross-section appears to the righ-biased.Figure 4The asymmetry of different B values.Full size imageThe influence of multiple topographic factors on the RCAIn order to explore the influence of multiple topographic factors on the RCA, principal component analysis (PCA) was used to extract the main feature components of the topographic data. The PCA results show that the nine topographic factors can be reflected by two principal components at 61.84% (characteristic value: 3.117+1.211=4.328 variables) (Table 1). Therefore, the analysis of the first two principal components could reflect most of the information from all the data.Table 1 Calculation results of topographic factor principal component analysis (PCA).Full size tableThe contribution rate of the first principal component is 44.534%. The characteristic is that the factor variables have high positive loads for the four factors L, I, A, and K. L has the largest contribution rate at 88.5%, followed by A, I, and K, at 87.5%, 81.1%, and 60.2%, respectively. Therefore, the first component represents the rill slope and rill shape.The contribution rate of the second principal component is 17.303%. The characteristic is that the factor variables have high positive loads for the three factors B, J, and R. B has the largest contribution rate at 83.5%, followed by J and R, at 57.4% and 55.7%, respectively. Therefore, the second component represents the effect of the difference between the two sides of the rill.Based on the correlation between the topographic factors and the RCA of a rill cross-section in the Yuanmou dry-hot valley area, the following was observed: asymmetry in rill cross-sections is ubiquitous. The distribution range of Aw is − 1.77 to 1.97, the average value is − 0.034, and the cross-section that is right-biased accounts for 53%. A correlation analysis of the RCA and seven topographic factors shows that B has a significant positive correlation with the Aw and Aa (p < 0.01), the average RCA increases as B increases, and the directionality of the RCA is affected by B. When B > 0, RCA > 0, and the rill cross-section appears to the left; when B < 0, RCA < 0, and the cross-section appears to the right. The difference in catchment area between the sides has a significant linear correlation with the Aw (p < 0.05). Other single topographic factors have no significant correlation with the RCA. Principal component analysis and calculations show that the first principal component represents the influence of the rill slope surface and rill shape on the rill cross-sectional asymmetry. The contribution rate is 44.534%, which is characterized by a high positive load on the L, I, A, and K factors. The second principal component represents the effect of the difference between the two sides of the rill. The contribution rate is 44.534%, which is characterized by a high positive load on the B, J, and R factors. More

  • in

    When and where to protect forests

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    United Nations Food and Agriculture Organization (FAO). State of the World’s Forests 2022: Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies (FAO, 2022).Williams, M. Deforesting the Earth: From Prehistory to Global Crisis (University of Chicago Press, 2003).Laurence, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    Article 

    Google Scholar 
    UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) http://www.protectedplanet.net (2020).Convention on Biological Diversity. First Draft of the Post-2020 Global Biodiversity Framework https://www.cbd.int/meetings/WG2020-03 (2021).Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright Publishing Company, 2016).Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, e8273 (2009).ADS 
    Article 

    Google Scholar 
    Sarkar, S. et al. Biodiversity conservation planning tools: present status and challenges for the future. Annu. Rev. Environ. Resour. 31, 123–159 (2006).Article 

    Google Scholar 
    Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).Article 

    Google Scholar 
    Ando, A., Camm, J., Polasky, S. & Solow, A. Species distributions, land values, and efficient conservation. Science 279, 2126–2128 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Meir, E., Andelman, S. & Possingham, H. P. Does conservation planning matter in a dynamic and uncertain world? Ecol. Lett. 7, 615–622 (2004).Article 

    Google Scholar 
    Costello, C. & Polasky, S. Dynamic reserve site selection. Resour. Energy Econ. 26, 157–174 (2004).Article 

    Google Scholar 
    The Nature Conservancy. Terrestrial Ecoregions https://geospatial.tnc.org/datasets/7b7fb9d945544d41b3e7a91494c42930_0 (2008).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kummu, M., Taka, M. & Guillaume, J. Gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data 5, 180004 (2018).Article 

    Google Scholar 
    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance or herbivory. Proc. Natl Acad. Sci. USA 109, 10394–10397 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change CBD Technical Series No. 43 (Secretariat of the Convention on Biological Diversity, 2009).Butsic, V., Lewis, D. J. & Radeloff, V. C. Reserve selection with land market feedbacks. J. Environ. Manag. 114, 276–284 (2013).Article 

    Google Scholar 
    Wilson, K. A., McBride, M. F., Bode, M. & Possingham, H. P. Prioritizing global conservation efforts. Nature 440, 337–340 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    McBride, M. F., Wilson, K. A., Bode, M. & Possingham, H. P. Incorporating the effects of socioeconomic uncertainty into priority setting for conservation investment. Conserv. Biol. 21, 1463–1474 (2007).Article 

    Google Scholar 
    Bode, M., Wilson, K., McBride, M. & Possingham, H. P. Optimal dynamic allocation of conservation funding among priority regions. Bull. Math. Biol. 70, 2039–2054 (2008).MathSciNet 
    Article 

    Google Scholar 
    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).ADS 
    Article 

    Google Scholar 
    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Dinerstein, E. et al. A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).ADS 
    Article 

    Google Scholar 
    Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 

    Google Scholar 
    Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).Article 

    Google Scholar 
    Lennox, G. D., Fargione, J., Spector, S., Williams, G. & Armsworth, P. The value of flexibility in conservation financing. Conserv. Biol. 31, 666–674 (2016).Article 

    Google Scholar 
    Drechsler, M. & Wätzold, F. Biodiversity conservation in a dynamic world may lead to inefficiencies due to lock-in effects and path dependence. Ecol. Econ. 173, 106652 (2020).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Chang. 12, 271–278 (2022).ADS 
    Article 

    Google Scholar 
    Lomolino, M. V. Ecology’s most general, yet protean pattern: the species‐area relationship. J. Biogeogr. 27, 17–26 (2000).Article 

    Google Scholar 
    Drake, J. & Griffen, B. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Grantham, H. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 1, 5978 (2020).ADS 
    Article 

    Google Scholar 
    Naidoo, R. & Iwamura, T. Global-scale mapping of economic benefits from agricultural land: Implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).Article 

    Google Scholar 
    UNEP-FAO. United Nations Decade on Ecosystem Restoration 2021–2030 https://www.decadeonrestoration.org/ (2021).UN Climate Change Conference. Glasgow Leaders’ Declaration on Forests and Land Use https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ (2021)UN Climate Change Conference. The Global Forest Finance Pledge https://ukcop26.org/the-global-forest-finance-pledge/ (2021).Convention on Biological Diversity. Preparations for the Post-2020 Biodiversity Framework https://www.cbd.int/conferences/post2020 (2021)Deutz, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap (The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability, 2020).Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Guerry, A. D. et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl Acad. Sci. USA 112, 7348–7355 (2015).CAS 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).ADS 
    Article 

    Google Scholar 
    Wintle, B. A. et al. Spending to save: what will it cost to halt Australia’s extinction crisis? Conserv. Lett. 12, e12682 (2019).Article 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990)WWF et al. The State Of Indigenous Peoples’ and Local Communities’ Lands and Territories https://wwflac.awsassets.panda.org/downloads/report_the_state_of_the_indigenous_peoples_and_local_communities_lands_and_territories_1.pdf (2021) .Chaplin-Kramer, R. et al. Conservation needs to integrate knowledge across scales. Nat. Ecol. Evol. 6, 118–119 (2022).Article 

    Google Scholar 
    IUCN. Spatial Data Download: Terrestrial Mammals. IUCN Red List https://www.iucnredlist.org/resources/spatial-data-download (2021).Abay, K. A., Chamberlin, J. & Berhane, G. Are land rental markets responding to rising population pressures and land scarcity in sub-Saharan Africa? Land Use Policy 101, 105139 (2021).Article 

    Google Scholar  More

  • in

    Size structure of the coral Stylophora pistillata across reef flat zones in the central Red Sea

    Reaka-Kudla, M. L. The global biodiversity of coral reefs: a comparison with rain forests. Biodivers. II. Underst. Prot. Our Biol. Resour. 2, 551 (1997).
    Google Scholar 
    Connell, J. H. Population ecology of reef-building corals. in Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 205–245 (Academic Press, 1973). doi:https://doi.org/10.1016/B978-0-12-395526-5.50015-8.Berumen, M. L. et al. The status of coral reef ecology research in the Red Sea. Coral Reefs 32, 737–748 (2013).ADS 
    Article 

    Google Scholar 
    Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).Article 
    PubMed 

    Google Scholar 
    Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    Pisapia, C. et al. Projected shifts in coral size structure in the Anthropocene. Adv Mar Biol 87, 31–60 (2020).Article 
    PubMed 

    Google Scholar 
    Meesters, E. et al. Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar. Ecol. Prog. Ser. 209, 43–54 (2001).ADS 
    Article 

    Google Scholar 
    Riegl, B. et al. Demographic mechanisms of reef coral species winnowing from communities under increased environmental stress. Front. Mar. Sci. 4, 344 (2017).Article 

    Google Scholar 
    Pisapia, C., Burn, D. & Pratchett, M. Changes in the population and community structure of corals during recent disturbances (February 2016-October 2017) on Maldivian coral reefs. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proc. R. Soc. B 287, 20201432 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Lachs, L. et al. Linking population size structure, heat stress and bleaching responses in a subtropical endemic coral. Coral Reefs 40, 777–790 (2021).Article 

    Google Scholar 
    McClanahan, T., Ateweberhan, M. & Omukoto, J. Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar. Biol. 153, 755–768 (2008).Article 

    Google Scholar 
    Grimsditch, G. et al. Variation in size frequency distribution of coral populations under different fishing pressures in two contrasting locations in the Indian Ocean. Mar. Environ. Res. 131, 146–155 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bak, R. P. & Meesters, E. H. Coral population structure: the hidden information of colony size-frequency distributions. Mar. Ecol. Prog. Ser. 162, 301–306 (1998).ADS 
    Article 

    Google Scholar 
    Hughes, T. & Jackson, J. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209, 713–715 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. & Jackson, J. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55, 141–166 (1985).Article 

    Google Scholar 
    Soong, K. Colony size as a species character in massive reef corals. Coral Reefs 12, 77–83 (1993).ADS 
    Article 

    Google Scholar 
    Bak, R. P. & Meesters, E. H. Population structure as a response of coral communities to global change. Am. Zool. 39, 56–65 (1999).Article 

    Google Scholar 
    Adjeroud, M., Pratchett, M. S., Kospartov, M. C., Lejeusne, C. & Penin, L. Small-scale variability in the size structure of scleractinian corals around Moorea, French Polynesia: patterns across depths and locations. Hydrobiologia 589, 117–126 (2007).Article 

    Google Scholar 
    Adjeroud, M., Mauguit, Q. & Penin, L. The size-structure of corals with contrasting life-histories: A multi-scale analysis across environmental conditions. Mar. Environ. Res. 112, 131–139 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bauman, A. G. et al. Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar. Environ. Res. 84, 43–50 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smith, L., Devlin, M., Haynes, D. & Gilmour, J. A demographic approach to monitoring the health of coral reefs. Mar. Pollut. Bull. 51, 399–407 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lowe, R. J. & Falter, J. L. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 7, 43–66 (2015).ADS 
    Article 

    Google Scholar 
    Thornborough, K., Davies, P. Reef flats. Encycl. Mod. Coral Reefs 869–876 (2011).Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).Article 

    Google Scholar 
    Bellwood, D. R. et al. The role of the reef flat in coral reef trophodynamics: Past, present, and future. Ecol. Evol. 8, 4108–4119 (2018).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pineda, J. et al. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality. Limnol. Oceanogr. https://doi.org/10.4319/lo.2013.58.5.1531 (2013).Article 

    Google Scholar 
    Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS ONE 7, e38396 (2012).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Riegl, B., Berumen, M. & Bruckner, A. Coral population trajectories, increased disturbance and management intervention: A sensitivity analysis. Ecol. Evol. https://doi.org/10.1002/ece3.519 (2013).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Loya, Y. The red sea coral Stylophora pistillata is an r strategist. Nature https://doi.org/10.1038/259478a0 (1976).Article 
    PubMed 

    Google Scholar 
    Lozano-Cortés, D. F. & Berumen, M. L. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea. Mar. Pollut. Bull. 105, 546–552 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ellis, J. et al. Cross shelf benthic biodiversity patterns in the Southern Red Sea. Sci. Rep. 7, 1–14 (2017).Article 
    CAS 

    Google Scholar 
    Furby, K. A., Bouwmeester, J. & Berumen, M. L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32, 505–513 (2013).ADS 
    Article 

    Google Scholar 
    Monroe, A. A. et al. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE 13, e0195814 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Davis, K. et al. Observations of the thermal environment on Red Sea platform reefs: A heat budget analysis. Coral Reefs 30, 25–36 (2011).ADS 
    Article 

    Google Scholar 
    Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).ADS 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Change Biol. https://doi.org/10.1111/gcb.15148 (2020).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Morais, J., Morais, R. A., Tebbett, S. B., Pratchett, M. S. & Bellwood, D. R. Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines. Sci. Rep. 11, 1–7 (2021).Article 
    CAS 

    Google Scholar 
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: Comparative studies of reef-building corals. Ecology https://doi.org/10.2307/2265514 (1996).Article 

    Google Scholar 
    Rinkevich, B. & Loya, Y. Reproduction of the Red Sea coral Stylophora pistillata. 2. Synchronization in breeding and seasonality of planulae shedding. Mar. Ecol. Prog. Ser. 1, 145–152 (1979).ADS 
    Article 

    Google Scholar 
    Komsta, L. & Novomestky, F. Moments, cumulants, skewness, kurtosis and related tests. R Package Version 14, (2015).Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E Plymouth UK (2008).Meziere, Z. et al. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. Sci. Total Environ. 816, 151639 (2022).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rinkevich, B. & Loya, Y. Reproduction of the Red Sea coral Stylophora pistillata 1. Gonads and planulae. Mar. Ecol. Prog. Ser. 1, 133–144 (1979).ADS 
    Article 

    Google Scholar 
    Nishikawa, A., Katoh, M. & Sakai, K. Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar. Ecol. Progress Ser. https://doi.org/10.3354/meps256087 (2003).Article 

    Google Scholar 
    Monroe, A. Genetic differentiation across multiple spatial scales of the Red Sea of the corals Stylophora pistillata and Pocillopora verrucosa. M.S. thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (2015).Gouezo, M. et al. Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Sci. Rep. 10, 1–12 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Boco, S. R., Cabansag, J. B. P., Jamodiong, E. A. & Ticzon, V. S. Size-frequency distributions of scleractinian coral (Porites spp.) colonies inside and outside a marine reserve in Leyte Gulf, central Philippines. Reg. Stud. Mar. Sci. 35, 101147 (2020).
    Google Scholar 
    River, G. F. & Edmunds, P. J. Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J. Exp. Mar. Biol. Ecol. 261, 159–172 (2001).Article 
    PubMed 

    Google Scholar 
    Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS 
    Article 

    Google Scholar 
    Hughes, T. & Jackson, J. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209, 713–715 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, J. B. Abundance, distribution and partial mortality of the massive coral Siderastrea siderea on degrading coral reefs at Barbados West Indies. Mar. Pollut. Bull. 34, 622–627 (1997).CAS 
    Article 

    Google Scholar 
    Meesters, E. H., Wesseling, I. & Bak, R. P. Coral colony tissue damage in six species of reef-building corals: partial mortality in relation with depth and surface area. J. Sea Res. 37, 131–144 (1997).ADS 
    Article 

    Google Scholar 
    Meesters, E. H., Wesseling, I. & Bak, R. P. Partial mortality in three species of reef-building corals and the relation with colony morphology. Bull. Mar. Sci. 58, 838–852 (1996).
    Google Scholar 
    Graham, J. & Van Woesik, R. The effects of partial mortality on the fecundity of three common Caribbean corals. Mar. Biol. 160, 2561–2565 (2013).Article 

    Google Scholar 
    Rinkevich, B. & Loya, Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs https://doi.org/10.1007/BF00571193 (1983).Article 

    Google Scholar 
    Takabayashi, M. & Hoegh-Guldberg, O. Ecological and physiological differences between two colour morphs of the coral Pocillopora damicornis. Mar. Biol. 123, 705–714 (1995).Article 

    Google Scholar 
    Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne ‘ohe Bay, O ‘ahu, Hawai ‘i. Coral Reefs 37, 423–430 (2018).ADS 
    Article 

    Google Scholar 
    Gochfeld, D., Ansley, M., Ankisetty, S. & Aeby, G. Antibacterial chemical resistance to disease in the Hawaiian coral Montipora capitata. Planta Med. 80, CL31 (2014).Article 

    Google Scholar 
    Shore-Maggio, A., Callahan, S. M. & Aeby, G. S. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral Montipora capitata. Coral Reefs 37, 507–517 (2018).ADS 
    Article 

    Google Scholar 
    Dove, S. G., Takabayashi, M. & Hoegh-Guldberg, O. Isolation and partial characterization of the pink and blue pigments of pocilloporid and acroporid corals. Biol. Bull. 189, 288–297 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs https://doi.org/10.1007/s00338-020-01917-7 (2020).Article 

    Google Scholar  More

  • in

    Song recordings suggest feeding ground sharing in Southern Hemisphere humpback whales

    Clapham, P. J. Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Book 

    Google Scholar 
    Calambokidis, J. et al. Movements and population structure of humpback whales in the North Pacific. Mar. Mamm. Sci. 17, 769–794. https://doi.org/10.1111/j.1748-7692.2001.tb01298.x (2001).Article 

    Google Scholar 
    Rosenbaum, H. C. et al. First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management. Endangered Species Res. 32, 551–567. https://doi.org/10.3354/esr00822 (2017).Article 

    Google Scholar 
    Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    Marcondes, M. C. C. et al. The Southern Ocean Exchange: Porous boundaries between humpback whale breeding populations in southern polar waters. Sci. Rep. 11, 23618. https://doi.org/10.1038/s41598-021-02612-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Witteveen, B. H., Foy, R. J., Wynne, K. M. & Tremblay, Y. Investigation of foraging habits and prey selection by humpback whales (Megaptera novaeangliae) using acoustic tags and concurrent fish surveys. Mar. Mamm. Sci. 24, 516–534. https://doi.org/10.1111/j.1748-7692.2008.00193.x (2008).Article 

    Google Scholar 
    Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).Article 

    Google Scholar 
    Findlay, K. P. et al. Humpback whale “super-groups” – A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS One 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barendse, J. et al. Transit station or destination? Attendance patterns, movements and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching. Afr. J. Mar. Sci. 33, 353–373 (2011).Article 

    Google Scholar 
    Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7. https://doi.org/10.1038/s42003-021-02332-6 (2021).Article 

    Google Scholar 
    Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13. https://doi.org/10.1007/s00227-016-2904-0 (2016).Article 

    Google Scholar 
    Schall, E. et al. Humpback whale song recordings suggest common feeding ground occupation by multiple populations. Sci. Rep. 11, 1–13. https://doi.org/10.1038/s41598-021-98295-z (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).Payne, R. & Guinee, L. N. Humpback whale (Megaptera novaeangliae) songs as an indicator of “stocks”. Commun. Behav. Whales 20, 333–358 (1983).
    Google Scholar 
    Riekkola, L. et al. Application of a multi-disciplinary approach to reveal population structure and Southern Ocean feeding grounds of humpback whales. Ecol. Indic. 89, 455–465. https://doi.org/10.1016/j.ecolind.2018.02.030 (2018).Article 

    Google Scholar 
    Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818. https://doi.org/10.1111/brv.12309 (2017).Article 
    PubMed 

    Google Scholar 
    Garland, E. C. et al. Humpback Whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS One 8, e79422. https://doi.org/10.1371/journal.pone.0079422 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148. https://doi.org/10.1111/j.1748-7692.1989.tb00328.x (1989).Article 

    Google Scholar 
    Van Opzeeland, I. C. et al. Towards collective circum-antarctic passive acoustic monitoring: The southern ocean hydrophone network (SOHN). Polarforschung 83, 47–61 (2013).
    Google Scholar 
    Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).ADS 
    Article 

    Google Scholar 
    Ross-Marsh, E., Elwen, S. H., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2021).Article 

    Google Scholar 
    Garland, E. C. et al. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207. https://doi.org/10.1111/cobi.12492 (2015).Article 
    PubMed 

    Google Scholar 
    Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 91, 101–114 (2014).Article 

    Google Scholar 
    El-Gabbas, A., Van Opzeeland, I., Burkhardt, E. & Boebel, O. Static species distribution models in the marine realm: The case of baleen whales in the Southern Ocean. Divers. Distrib. 27, 1536–1552. https://doi.org/10.1111/ddi.13300 (2021).Article 

    Google Scholar 
    Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347. https://doi.org/10.1098/rsos.201347 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Whaling Commission. Report of the scientific committee. Annex G. Report of the sub-committee on comprehensive assessment of southern hemisphere humpback whales. Appenix4. Initial alternative hypotheses for the distribution of humpack breeding stocks on the feeding grounds. Report of the International Whlaing Commission 48, 181 (1998).International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetacean Res. Manage. Spec. Issue 3, 1–50 (2011).
    Google Scholar 
    Winn, H. E. & Winn, L. K. Song of Humpback Whale Megaptera-Novaeangliae in West-Indies. Mar. Biol. 47, 97–114. https://doi.org/10.1007/Bf00395631 (1978).Article 

    Google Scholar 
    Payne, K. & Payne, R. Large-scale changes over 19 years in songs of Humpback Whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    Thomisch, K. et al. Temporal patterns in the acoustic presence of baleen whale species in a presumed breeding area off Namibia. Mar. Ecol. Prog. Ser. 620, 201–214 (2019).ADS 
    Article 

    Google Scholar 
    Buchan, S. J., Stafford, K. M. & Hucke-Gaete, R. Seasonal occurrence of southeast Pacific blue whale songs in southern Chile and the eastern tropical Pacific. Mar. Mamm. Sci. 31, 440–458. https://doi.org/10.1111/mms.12173 (2015).Article 

    Google Scholar 
    Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics https://doi.org/10.1080/09524622.2019.1710254 (2020).Article 

    Google Scholar 
    Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332. https://doi.org/10.1111/mms.12005 (2013).Article 

    Google Scholar 
    M_Map: A Mapping Package for MATLAB v. 1.4m. (2020).Raven Pro: Interactive sound analysis software. Version 1.6 ([Ithaca (NY)]: The Cornell Lab of Ornithology. Accessed 1 Mar 2018 (2022).Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658. https://doi.org/10.1121/10.0005315 (2021).ADS 
    Article 
    PubMed 

    Google Scholar 
    Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302. https://doi.org/10.2307/1932409 (1945).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018).Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 2.2-0 (2019).Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313. https://doi.org/10.1016/0167-8655(85)90061-3 (1985).ADS 
    Article 

    Google Scholar 
    Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441. https://doi.org/10.1163/1568539x-00003032 (2012).Article 

    Google Scholar 
    Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manage. Spec. Issue 3, 113–118. https://doi.org/10.3354/meps313295 (2011).Article 

    Google Scholar 
    Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of Humpback Whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615. https://doi.org/10.1111/cobi.12225 (2014).Article 
    PubMed 

    Google Scholar 
    Reisinger, R. R. et al. Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern Ocean humpback whales. Remote Sens. 13, 2074. https://doi.org/10.3390/rs13112074 (2021).ADS 
    Article 

    Google Scholar 
    Garland, E. C. & McGregor, P. K. Cultural transmission, evolution, and revolution in vocal displays: Insights from bird and whale song. Front. Psychol. 11, 2387. https://doi.org/10.3389/fpsyg.2020.544929 (2020).Article 

    Google Scholar 
    Findlay, K. P. et al. Humpback whale “super-groups”—a novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS One https://doi.org/10.1371/journal.pone.0172002 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Owen, K. et al. Effect of prey type on the fine-scale feeding behaviour of migrating east Australian humpback whales. Mar. Ecol. Prog. Ser. 541, 231–244. https://doi.org/10.3354/meps11551 (2015).ADS 
    Article 

    Google Scholar 
    Riekkola, L., Andrews-Goff, V., Friedlaender, A., Zerbini, A. N. & Constantine, R. Longer migration not necessarily the costliest strategy for migrating humpback whales. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 937–948. https://doi.org/10.1002/aqc.3295 (2020).Article 

    Google Scholar 
    Torres, L. G. A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Mar. Mamm. Sci. 33, 1170–1193. https://doi.org/10.1111/mms.12426 (2017).Article 

    Google Scholar 
    Horton, T. W. et al. Straight as an arrow: Humpback whales swim constant course tracks during long-distance migration. Biol. Lett. 7, 674–679. https://doi.org/10.1098/rsbl.2011.0279 (2001).Article 

    Google Scholar 
    Au, W. W. L. et al. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 120, 1103–1110. https://doi.org/10.1121/1.2211547 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Dunlop, R. A., Cato, D. H., Noad, M. J. & Stokes, D. M. Source levels of social sounds in migrating humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 134, 706–714. https://doi.org/10.1121/1.4807828 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Cheeseman, T. et al. Advanced image recognition: A fully automated, high-accuracy photo-identification matching system for humpback whales. Mamm. Biol. https://doi.org/10.1007/s42991-021-00180-9 (2021).Article 

    Google Scholar 
    Felix, F. et al. A new case of interoceanic movement of a humpback whale in the Southern Hemisphere: The El Nino Link. Aquat. Mamm. 46, 578–584. https://doi.org/10.1578/AM.46.6.2020.578 (2020).Article 

    Google Scholar 
    Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479 (2005).Article 

    Google Scholar 
    Stevick, P. T. et al. A quarter of a world away: Female humpback whale moves 10,000 km between breeding areas. Biol. Lett. 7, 299–302. https://doi.org/10.1098/rsbl.2010.0717 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111–120. https://doi.org/10.1641/0006-3568(2006)056[0111:Kcasie]2.0.Co;2 (2006).Article 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).ADS 
    Article 

    Google Scholar 
    Marrari, M., Daly, K. L. & Hu, C. Spatial and temporal variability of SeaWiFS chlorophyll a distributions west of the Antarctic Peninsula: Implications for krill production. Deep Sea Res. Part II 55, 377–392. https://doi.org/10.1016/j.dsr2.2007.11.011 (2008).ADS 
    Article 

    Google Scholar 
    Sremba, A. L., Hancock-Hanser, B., Branch, T. A., LeDuc, R. L. & Baker, C. S. Circumpolar diversity and geographic differentiation of mtDNA in the critically endangered Antarctic Blue Whale (Balaenoptera musculus intermedia). PLoS One 7, e32579. https://doi.org/10.1371/journal.pone.0032579 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Andriolo, A., Secchi, E. R. & Zerbini, A. N. Whale, whale, everywhere: Increasing abundance of Western South Atlantic Humpback Whales (Megaptera novaeangliae) in their wintering grounds. PLoS One 11, e0164596. https://doi.org/10.1371/journal.pone.0164596 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Félix, F., Castro, C. & Laake, J. L. Abundance and survival estimates of the southeastern Pacific humpback whale stock from 1991–2006 photo-identification surveys in Ecuador. J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi.303 (2020).Article 

    Google Scholar 
    Ward, E., Zerbini, A. N., Kinas, P. G., Engel, M. H. & Andriolo, A. Estimates of population growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi3.323 (2020).Article 

    Google Scholar 
    Seyboth, E. et al. Influence of krill (Euphausia superba) availability on humpback whale (Megaptera novaeangliae) reproductive rate. Mar. Mammal Sci. https://doi.org/10.1111/mms.12805 (2021).Article 

    Google Scholar 
    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).ADS 
    Article 

    Google Scholar 
    Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Eupahusia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269 (2010).ADS 
    Article 

    Google Scholar 
    Friedlaender, A. S., Lawson, G. L. & Halpin, P. N. Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula. Mar. Mamm. Sci. 25, 402–415 (2009).Article 

    Google Scholar 
    Reid, K., Brierley, A. S. & Nevitt, G. A. An initial examination of relationships between the distribution of whales and antarctic krill Euphausia superba at South Georgia. J. Cetacean Res. Manage. 2, 143–149 (2000).
    Google Scholar 
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x (2010).Article 

    Google Scholar 
    Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific background document in support of the development of a CCAMLR MPA in the Weddell Sea (Antarctica)-Version 2016. (2016).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar  More

  • in

    High impact of bacterial predation on cyanobacteria in soil biocrusts

    Tracing the symptomology of predation through macroscopic plaquesA culture bioassay (Expanded Microcoleus Mortality Assay, or EMMA) (Fig. 1 and see Materials and Methods) based on the capacity of a soil to induce complete mortality in the foundational biocrust cyanobacterium Microcoleus vaginatus helped us trace the pathogen detected in biocrust production facilities to the development of cm-sized plaques, or zones of cyanobacterial clearing, in natural biocrusts. These plaques were revealed to the naked eye (Fig. 2) when the soil was wet (i.e., after a rain event), as impacted areas would fail to green up by the migration of cyanobacteria to the surface21, enabling us to detect and quantify them with relative ease. Soil samples obtained from such plaques (n = 30) from different sites (n = 6; Table S1) in the US Southwest were invariably EMMA + , and the pathogens always filterable with pore sizes 0.45–1 µm but not larger, and always insensitive to the eukaryotic inhibitor cycloheximide, indicating the agent’s prokaryotic nature and small size, while paired samples from asymptomatic areas just outside the plaques were always EMMA- (Table S2). These end-point EMMA solutions never gave rise to cyanobacterial re-growth upon further incubation and maintained its infectivity of fresh cyanobacterial cultures for up to 6 months. A one-time, small-scale sampling across a plaque at intervals of 2 mm using microcoring22 showed that the boundary of the visible plaque demarcated exactly the end of infectivity, samples 0–2 mm outside the plaque proving non-infective. Further, inoculation of healthy, natural biocrusts with EMMA + suspensions resulted in the local development of biocrust plaques, and soil from these plaques was itself EMMA + , in partial fulfillment of Koch’s postulates. Yet, standard microbiological plating failed to yield any isolates that were EMMA + (we tested 30 unique isolates), even though standard plating with similar isolation efforts can successfully cultivate a large portion of heterotrophs from biocrusts23.Fig. 1: EMMA bioassay (Expanded Microcoleus Mortality Assay), used to study biocrust pathogens.a Typical visual progression of a positive EMMA inoculated with soil or culture to be tested, as used to test for pathogenicity to Microcoleus vaginatus PPC 9802 in the field and in enrichments. b Typical degradation of cyanobacterial biomass during an EMMA displayed through electron microscopy: healthy Microcoleus vaginatus PPC 9802 filaments (top) display abundant photosynthetic membranes (white arrows), peptidoglycan cross-walls (yellow arrows) and carboxysomes (green arrow). As infection proceeds (downwards), patent degradation of intracellular structures follows, leaving only cellular ghosts in the form of peptidoglycan wall remnants (yellow arrows), including the characteristically enlarged peptidoglycan “bumper” of terminal cells (red arrow). Intracellular bacilloid bacteria can sometimes be observed (blue arrow). Cyanobacterial cultures lose all viability. Scale bars = 1 µm. n = 250 images from 4 independent experiments. c Assay modification used in flow cytometry/cell sorting, showing enrichments positive for predation in the top two rows and those negative for predation below. d Test and controls in EMMA to ensure prokaryotic nature of the disease agent.Full size imageFig. 2: Symptomology in nature: biocrust plaques.Main: Macroscopic view of a soil surface colonized by cyanobacterial biocrusts and impacted by multiple plaques as taken after a rain in a quadrat used for field surveys. Insert: Close-up of a single plaque, showing well-demarcated boundaries and a typical central area of new cyanobacterial colonization.Full size imageCultivation, identification, and salient genomic traits of the cyanobacterial pathogenTo study these organisms, we turned to enrichment of pathogen/prey co-cultures based on repeated passages through EMMA and differential size filtration combined with dilution-to-extinction approaches, followed by purification with flow cytometry/cell sorting. The process was monitored by 16S rRNA gene amplicon sequencing, and eventually yielded a highly enriched co-culture of the cyanobacterium with a genetically homogenous (one single Amplicon Sequence Variant) population that made up more than 80% of reads (Fig. 3 a, b). We name the organism represented by this ASV Candidatus Cyanoraptor togatus. That it corresponds indeed to the predator is supported by the fact that of the 17 ASV’s detected in the final enrichment, only 10 were consistently detected at all infectious stages in the process and, among these, only our candidate ASV steadily increased in relative abundance through the enrichment process (Fig. 3 a, b). This final enrichment of C. togatus, LGM-1, constitutes the basis for downstream biological and molecular analyses. Its ASV was most similar to little-known members of the family Chitinophagaceae in the phylum Bacteroidetes. LGM-1’s genome was sequenced and assembled into a single 3.3 Mb contig with 1,781 putative and 1,328 hypothetical genes (Table S3), though most proteins had low identity (Fig. 4: Compiled paired ratios of functional parameters and compositional (relative) abundance in biocrusts across plaque boundaries (circles), red bars denoting the medians for each group of ratios, and bar background color denoting the p-values that the median is significantly different from unity (Wilcoxon paired ratio two-sided tests), where gray is non-significant (p  >  0.1), light orange is 0.05   > p   p  More

  • in

    Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)

    Darwin, C. On the Origin of Species. Facsimile of the First Edition (Harvard University Press, 1859).
    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sillero, N., Reis, M., Vieira, C. P., Vieira, J. & Morales-Hojas, R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 27, 1549–1561 (2014).CAS 
    PubMed 

    Google Scholar 
    Ramos, R. et al. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 6, 23447 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, B., Cheng, J., Ge, D., Xia, L. & Yang, Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 19, 113 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 36, 519–539 (2005).
    Google Scholar 
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).PubMed 

    Google Scholar 
    Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?. New Phytol. 196, 681–694 (2012).PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 92, 253–265 (2004).
    Google Scholar 
    Vitt, L. J., Zani, P. A. & Espósito, M. C. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos 87, 286–294 (1999).
    Google Scholar 
    Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Google Scholar 
    Jost, L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7, 42–47 (2004).
    Google Scholar 
    Antonelli, A., Verola, C. F., Parisod, C. & Gustafsson, A. L. S. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol. J. Linn. Soc. 100, 597–607 (2010).
    Google Scholar 
    Johnson, S. D., Linder, H. P. & Steiner, K. E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85, 402–411 (1998).CAS 
    PubMed 

    Google Scholar 
    Kolanowska, M., Grochocka, E. & Konowalik, K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 5, e3328 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Dressler, R. L., Blanco, M. A., Pupulin, F. & Neubig, K. M. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon 60, 907–908 (2011).
    Google Scholar 
    Baranow, P., Dudek, M. & Szlachetko, D. L. Brasolia, a new genus highlighted from Sobralia (Orchidaceae). Plant Syst. Evol. 303, 853–871 (2017).CAS 

    Google Scholar 
    Dressler, R. L. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana 5, 9–15 (2002).
    Google Scholar 
    Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum Vol. 4: Epidendroideae Part 1 (Oxford University Press, 2005).
    Google Scholar 
    Van der Cingel, N. A. An Atlas of Orchid Pollination: America, Africa, Asia and Australia (Balkema, 2001).
    Google Scholar 
    Dodson, C. H. Why are there so many orchid species. Lankesteriana 7, 99–103 (2003).
    Google Scholar 
    Van Der Pijl, L. & Dodson, C. H. Orchid Flowers: Their Pollination and Evolution (University of Miami Press, 1966).
    Google Scholar 
    Neubig, K. M. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids (University of Florida, 2012).
    Google Scholar 
    Neubig, K. M. et al. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae). Lankesteriana 11, 307–317 (2011).
    Google Scholar 
    Ramírez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).
    Google Scholar 
    Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).ADS 

    Google Scholar 
    Sundell, K. E., Saylor, J. E., Lapen, T. J. & Horton, B. K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 9, 4877 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mescua, J. F. et al. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics 36, 2936–2949 (2017).ADS 

    Google Scholar 
    Kolanowska, M., Mystkowska, K., Kras, M., Dudek, M. & Konowalik, K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ 4, e2384 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Arnal, P. et al. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 9, 11657–11671 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. & Ranjbar, H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE 16, e0256918. https://doi.org/10.1371/journal.pone.0256918 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229. https://doi.org/10.1098/rspb.2013.3229 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    George, P. M., Walter, E. W. & Yeuh-Lih, Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 7, 261–277 (1992).
    Google Scholar 
    Hijmans, R. J., Schreuder, M., Cruz, J. & Guarino, L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 46, 291–296 (1999).
    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML ’04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).
    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700 (2014).
    Google Scholar 
    Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. https://doi.org/10.1002/ece3.5555 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, 2000).MATH 

    Google Scholar 
    Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).ADS 

    Google Scholar 
    Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Warren, D. L. et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).
    Google Scholar 
    Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Google Scholar 
    Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the ‘“bird-cage”’ evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240 (2009).PubMed 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 

    Google Scholar 
    Galtier, N., Gouy, M. & Gautier, C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nylander, J. A. A. MrModeltest v2 (Uppsala University, 2004).
    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Givnish, T. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.1553 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More