More stories

  • in

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 
    Article 

    Google Scholar 
    Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species rich, tropical forests. Ecology 99, 1129–1138 (2018).PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization depend on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Sun, Y. et al. Diagnosing phosphorus limitation in natural terrestrial ecosystems in carbon cycle models. Earths Future 5, 730–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhang, Q. et al. Nitrogen and phosphorus limitations significantly reduce allowable CO2 emissions. Geophys. Lett. 41, 632–637 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystem: a meta analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Jordan, C. F. The nutrient balance of an Amazonian rainforest. Ecology 63, 647–654 (1982).CAS 
    Article 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).CAS 
    Article 
    ADS 

    Google Scholar 
    Crews, T. E. et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76, 1408–1424 (1995).Article 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).Article 

    Google Scholar 
    Dalling, J. W. et al. in Tropical Tree Physiology (Springer, 2016).Herrera, R. R. & Medina, E. Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3, 223–231 (1978).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. et al. Basin wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 
    ADS 

    Google Scholar 
    Mercado, L. et al. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3316–3329 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Yang, X. et al. The effects of phosphorus cycle dynamics carbon sources and sink in the Amazon region: a modelling study using ELM v1. J. Geophys. Res. Biogeosci. 124, 3686–3698 (2019).CAS 
    Article 

    Google Scholar 
    Sollins, P. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79, 23–30 (1998).Article 

    Google Scholar 
    Alvarez-Clare, S. et al. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94, 1540–1551 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625 (2011).PubMed 
    Article 

    Google Scholar 
    Sayer, E. J. et al. Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15, 387–400 (2012).CAS 
    Article 

    Google Scholar 
    Ganade, G. & Brown, V. Succession in old pastures of central Amazonia: role of soil fertility and plant litter. Ecology 83, 743–754 (2002).Article 

    Google Scholar 
    Markewitz, D. et al. Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biol. Fertil. Soils 48, 665–678 (2012).Article 

    Google Scholar 
    Davidson, E. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).Article 

    Google Scholar 
    Massad, T. et al. Interactions between fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172, 219–229 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Newbery, D. M. et al. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytol. 156, 297–311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mirmanto, E. et al. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1825–1829 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2020).Article 
    CAS 

    Google Scholar 
    Quesada, C. A. et al. Soils of Amazonia with particular reference to the rainfor sites. Biogeosciences 8, 1415–1440 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    Giardina, C. et al. Primary production and carbon allocation in relation to nutrient supply in a tropical experiment forest. Glob. Change Biol. 9, 1438–1450 (2003).Article 
    ADS 

    Google Scholar 
    Rowland, L. et al. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol. 214, 1064–1077 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520–526 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–826 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hinsinger, P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64, 225–265 (1998).CAS 
    Article 

    Google Scholar 
    Van Langehove, L. et al. Rapid root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana. Soil Biol. Biochem. 140, 107646 (2019).Article 
    CAS 

    Google Scholar 
    Martins, N. P. et al. Fine roots stimulate nutrient release during early stages of litter decomposition in a central Amazon rainforest. Plant Soil 469, 287–303 (2021).CAS 
    Article 

    Google Scholar 
    Cordeiro, A. L. et al. Fine root dynamics vary with soil and precipitation in a low-nutrient tropical forest in the central Amazonia. Plant Environ. Interact. 220, 3–16 (2020).Article 

    Google Scholar 
    Yavitt, J. Soil fertility and fine root dynamics in response to four years of nutrient (N,P, K) fertilization in a lowland tropical moist forest, Panamá. Austral. Ecol. 36, 433–445 (2011).Article 

    Google Scholar 
    Wurzburger, N. & Wright, S. J. Fine root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).PubMed 
    Article 

    Google Scholar 
    Waring, B. G., Aviles, D. P., Murray, J. G. & Powers, J. S. Plant community responses to stand level nutrient fertilization in a secondary tropical dry forest. Ecology 100, e02691 (2019).PubMed 
    Article 

    Google Scholar 
    Jansens, I. A. et al. Reductions of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Alvarez Claire, S. et al. Do foliar, litter, and root nitrogen and phosphorus concentration reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE 10, e0123796 (2015).Article 
    CAS 

    Google Scholar 
    Bouma, T. in Advances in Photosynthesis and Respiration Vol. 18 (eds Lambers, H. & Ribas-Carbo, M.) 177–194 (Springer, 2005).Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).Article 
    ADS 

    Google Scholar 
    Aragão, L. E. O. et al. Above and below ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).Article 
    ADS 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. & Lloyd, J. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy, L. et al.) 267–299 (Springer, 2016).Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary production, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93, 223–247 (2018).PubMed 
    Article 

    Google Scholar 
    De Oliveira, A. & Mori, S. A. A central Amazonia terra firme forest. I. High tree species richness on poor soils. Biodivers. Conserv. 8, 1219–1244 (1999).Article 

    Google Scholar 
    Ferreira, S. J. F., Luizão, F. J. & Dallarosa, R. L. G. Throughfall and rainfall interception by an upland forest submitted to selective logging in Central Amazonia [Portuguese]. Acta Amaz. 35, 55–62 (2005).Article 

    Google Scholar 
    Tanaka, L. D. S., Satyamurty, P. & Machado, L. A. T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 34, 3574–3584 (2014).Article 

    Google Scholar 
    Duque, A. et al. Insights into regional patterns of Amazonian forest structure and dominance from three large terra firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).Article 

    Google Scholar 
    Martins, D. L. et al. Soil induced impacts on forest structure drive coarse wood debris stocks across central Amazonia. Plant Ecol. Divers. 8, 229–241 (2014).Article 

    Google Scholar 
    Metcalfe, D. B. et al. A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurent accuracy. New Phytol. 174, 697–703 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chave, J. et al. Improved allometric to estimate the above ground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).Article 
    ADS 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Global Wood Density Database https://doi.org/10.5061/dryad.234 (2009).Higuchi, N. & Carvalho, J. A. in Anais do Seminário: Emissão e Sequestro de CO2—Uma Nova Oportunidade de Negócios para o Brasil (CVRD, 1994).Brienen, R. J. W., Philips, O. L. & Zagt, R. J. Long term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecol. Manag. 258, 1161–1165 (2009).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bates, D., Marcher, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Moraes, A. C. M. et al. Fine Litterfall Production and Nutrient Composition Data from a Fertilized Site in Central Amazon, Brazil (NERC, 2020).Cunha, H. F. V. et al. Fine Root Biomass in Fertilised Plots in the Central Amazon, 2017–2019 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Tree Census and Diameter Increment in Fertilised Plots in the Central Amazon, 2017–2020 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Leaf Area Index (LAI) in Fertilised Plots in the Central Amazon, 2017–2018 (NERC Environmental Information Data Centre, 2021). More

  • in

    Reviewing the ecological impacts of offshore wind farms

    International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).Article 

    Google Scholar 
    Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).Article 

    Google Scholar 
    IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).Article 

    Google Scholar 
    IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).Article 

    Google Scholar 
    WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).CAS 
    Article 

    Google Scholar 
    Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).Article 

    Google Scholar 
    Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).Article 
    CAS 

    Google Scholar 
    Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).CAS 
    Article 

    Google Scholar 
    Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).Article 

    Google Scholar 
    Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).Article 

    Google Scholar 
    Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).Article 

    Google Scholar 
    Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).Article 

    Google Scholar 
    Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).Article 

    Google Scholar 
    van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).Article 

    Google Scholar 
    De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).Article 
    CAS 

    Google Scholar 
    Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).Article 

    Google Scholar 
    Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).Article 

    Google Scholar 
    Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).Article 

    Google Scholar 
    Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).Article 

    Google Scholar 
    Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).Article 

    Google Scholar 
    Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).Article 

    Google Scholar 
    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).CAS 
    Article 

    Google Scholar 
    Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).Article 
    CAS 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).Article 

    Google Scholar 
    Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).Article 

    Google Scholar 
    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).Article 

    Google Scholar 
    Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).Article 

    Google Scholar 
    Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).Article 

    Google Scholar 
    Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).Article 

    Google Scholar 
    Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).Article 

    Google Scholar 
    Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).Article 

    Google Scholar 
    Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).Article 

    Google Scholar 
    Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).Article 

    Google Scholar 
    Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).Article 

    Google Scholar 
    Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).Article 

    Google Scholar 
    Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).Article 

    Google Scholar 
    van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).Article 

    Google Scholar 
    Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).Article 

    Google Scholar 
    Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).Article 

    Google Scholar 
    Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).CAS 
    Article 

    Google Scholar 
    Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).Article 

    Google Scholar 
    Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).Article 

    Google Scholar 
    Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).Article 

    Google Scholar 
    Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).Article 

    Google Scholar 
    Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).CAS 
    Article 

    Google Scholar 
    Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).Article 

    Google Scholar 
    Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).Article 

    Google Scholar 
    Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).Article 

    Google Scholar 
    Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).Article 

    Google Scholar 
    Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).Article 

    Google Scholar 
    Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).CAS 
    Article 

    Google Scholar 
    Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).CAS 
    Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).Article 

    Google Scholar 
    Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).Article 

    Google Scholar 
    Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).Article 

    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).Article 

    Google Scholar 
    Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).Article 

    Google Scholar 
    Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).Article 

    Google Scholar 
    Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).Article 

    Google Scholar 
    Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).Article 

    Google Scholar 
    Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).Article 

    Google Scholar 
    Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).Article 

    Google Scholar 
    European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).Article 
    CAS 

    Google Scholar 
    Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).Article 

    Google Scholar 
    Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).Article 

    Google Scholar 
    Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).Article 

    Google Scholar 
    Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).Article 

    Google Scholar 
    Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).Article 

    Google Scholar 
    Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).Article 

    Google Scholar 
    Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).Article 

    Google Scholar 
    Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).Article 
    CAS 

    Google Scholar 
    Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).CAS 
    Article 

    Google Scholar 
    Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).Article 

    Google Scholar 
    Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).Article 

    Google Scholar 
    González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).Article 

    Google Scholar 
    Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).Article 

    Google Scholar 
    Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).Article 

    Google Scholar  More

  • in

    Warm springs alter timing but not total growth of temperate deciduous trees

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Finzi, A. C. et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecol. Monogr. 90, e01423 (2020).Article 

    Google Scholar 
    Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol. 17, 886–897 (2011).Article 
    ADS 

    Google Scholar 
    Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric. For. Meteorol. 226–227, 246–256 (2016).Article 
    ADS 

    Google Scholar 
    Fu, Z. et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    Savage, J. A. & Chuine, I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytol. 230, 1700–1715 (2021).PubMed 
    Article 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Xue, B.-L. et al. Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochem. Cycles 31, 821–835 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 18, 566–584 (2012).Article 
    ADS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).Article 
    ADS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 
    ADS 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).Article 
    ADS 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707 (2008).Article 

    Google Scholar 
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. New Phytol. 231, 2174–2185 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumajer, J., Scharnweber, T., Smiljanic, M. & Wilmking, M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 233, 2429–2441 (2022).PubMed 
    Article 

    Google Scholar 
    Etzold, S. et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25, 427–439 (2022).PubMed 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zohner, C. M., Renner, S. S., Sebald, V. & Crowther, T. W. How changes in spring and autumn phenology translate into growth-experimental evidence of asymmetric effects. J. Ecol. 109, 2717–2728 (2021).Article 

    Google Scholar 
    Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helcoski, R. et al. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 223, 1204–1216 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evol. 5, 243–254 (2015).PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316 (2022).PubMed 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, J. C. & Conciatori, F. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can. J. For. Res. 36, 2317–2330 (2006).Article 

    Google Scholar 
    Roibu, C.-C. et al. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).Article 

    Google Scholar 
    Kern, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293, 257–267 (2013).Article 

    Google Scholar 
    Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 14C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).Article 
    ADS 

    Google Scholar 
    Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).Article 
    CAS 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Churkina, G., Schimel, D., Braswell, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).CAS 
    Article 
    ADS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).Article 
    ADS 

    Google Scholar 
    Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    Herrmann, V. et al. Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0169020 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. LAADS DAAC https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).Anderson-Teixeira, K. et al. Forestgeo/Climate: initial release. Zenodo https://doi.org/10.5281/ZENODO.4041609 (2020).Benestad, R. E., Hanssen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1964–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5DAA17222A738C105B9FA60C4 (2021).Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/69E92642B512897032446CFE795CFFB8 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).Article 

    Google Scholar 
    Gabry, J. et al. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Stan Development Team. Stan modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).Speer, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).Article 

    Google Scholar 
    Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7, e01454 (2016).Article 

    Google Scholar 
    Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProQuest (Columbia Univ., 2005).Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (Univ. Arizona, 1985).Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).Article 
    ADS 

    Google Scholar 
    Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).Article 

    Google Scholar  More

  • in

    Correction to: Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Authors and AffiliationsDepartment of Agronomy, Universidade Federal do Espírito Santo, Alegre, BrazilAléxia Gonçalves Pereira, Marcia Flores da Silva Ferreira, Thamyres Cardoso da Silveira, José Henrique Soler-Guilhen, Guilherme Bravim Canal, Luziane Brandão Alves, Francine Alves Nogueira de Almeida & Adésio FerreiraDepartment of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrazilFernanda Amato GaiottoAuthorsAléxia Gonçalves PereiraMarcia Flores da Silva FerreiraThamyres Cardoso da SilveiraJosé Henrique Soler-GuilhenGuilherme Bravim CanalLuziane Brandão AlvesFrancine Alves Nogueira de AlmeidaFernanda Amato GaiottoAdésio FerreiraCorresponding authorCorrespondence to
    Marcia Flores da Silva Ferreira. More

  • in

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia

    Lee, J.-W. & McKibbin, W. J. Globalization and disease: the case of SARS. Asian Economic Pap. 3, 113–131 (2004).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raj, V. S., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Haagmans, B. L. MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, L. et al. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daszak, P., Keusch, G. T., Phelan, A. L., Johnson, C. K. & Osterholm, M. T. Infectious disease threats: a rebound to resilience. Health Aff. 40, 204–211 (2021).Article 

    Google Scholar 
    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373-17 (2017).Li, W. D. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wang, L. F. & Eaton, B. T. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission (eds J. E. Childs, J. S. Mackenzie, & J. A. Richt) 325–344 (Springer Berlin Heidelberg, 2007).Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf. Health 1, 84–90 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sin. 33, 104–107 (2018).Article 

    Google Scholar 
    Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 374, 20190017 (2019).CAS 
    Article 

    Google Scholar 
    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gray, G. C., Robie, E. R., Studstill, C. J. & Nunn, C. L. Mitigating future respiratory virus pandemics: new threats and approaches to consider. Viruses 13, 637 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, https://www.iucnredlist.org (2021).Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coker, R. J., Hunter, B. M., Rudge, J. W., Liverani, M. & Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377, 599–609 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horby, P. W., Pfeiffer, D. & Oshitani, H. Prospects for emerging infections in East and Southeast Asia 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 19, 853–860 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).CAS 
    Article 

    Google Scholar 
    Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China Part. (2021).Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Petrovan, S. O. et al. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol. Rev. 96, 2694–2715 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B. et al. Was the COVID-19 pandemic avoidable? A call for a “solution-oriented” approach in pathogen evolutionary ecology to prevent future outbreaks. Ecol. Lett. 23, 1557–1560 (2020).PubMed 
    Article 

    Google Scholar 
    Naguib, M. M., Ellström, P., Järhult, J. D., Lundkvist, Å. & Olsen, B. Towards pandemic preparedness beyond COVID-19. Lancet Microbe 1, e185–e186 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muylaert, R. L. et al. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proc. Roy. Soc. B., 289, 20220397 (2022).Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L.-L. et al. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect. 10, 1683–1690 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases – Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brehm, T. T. et al. Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci. Rep. 11, 5803 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Nikolay, B. et al. Transmission of Nipah virus—14 Years of investigations in Bangladesh. N. Engl. J. Med. 380, 1804–1814 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 10, e039856 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).PubMed 
    Article 

    Google Scholar 
    Mildenstein, T., Tanshi, I. & Racey, P. A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 12, 325–375 (Springer International Publishing, 2016).Low, M.-R. et al. Bane or blessing? Reviewing cultural values of bats across the Asia-Pacific region. J. Ethnobiol. 41, 18–34 (2021).Article 

    Google Scholar 
    Kingston, T. Cute, creepy, or crispy—How values, attitudes, and norms shape human behavior toward bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 571–595 (Springer International Publishing, 2016).Li, H. et al. Knowledge, attitude, and practice regarding zoonotic risk in wildlife trade, Southern China. EcoHealth 18, 95–106 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, K. & Threlfall, C. G. Urbanisation and its effects on bats—A global meta-analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 2, 13–33 (Springer International Publishing, 2016).Latinne, A. et al. Characterizing and quantifying the wildlife trade network in Sulawesi, Indonesia. Glob. Ecol. Conserv. 21, e00887 (2020).Article 

    Google Scholar 
    Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLOS ONE 15, e0237129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Virachith, S. et al. Low seroprevalence of COVID-19 in Lao PDR, late 2020. Lancet Regional Health – West. Pac. 13, 100197 (2021).Article 

    Google Scholar 
    Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Liu, K. et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184, 3438–3451.e3410 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Philavong, C. et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 67, 796–804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200358 (2021).CAS 
    Article 

    Google Scholar 
    Bell, D., Roberton, S. & Hunter, P. R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 1107–1114 (2004).Article 

    Google Scholar 
    He, J. F. et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    Tu, C. et al. Antibodies to SARS-Coronavirus in Civets. Emerg. Infect. Dis. 10, 2244–2248 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Freuling, C. et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26, 2982–2985 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    OIE-World Organisation for Animal Health. Infection with SARS-CoV-2 in animals. https://www.oie.int/app/uploads/2021/11/en-factsheet-sars-cov-2-20211025.pdf (2021).Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 25, 2001005 (2020).PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Daszak, P. et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services. (Bonn, Germany, 2020).Chinese Academy of Engineering. Report on sustainable development strategy of China’s wildlife farming industry. (2017).Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. The Lancet Microbe, https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 38 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, Y. et al. Longitudinal surveillance of Betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016. Virologica Sin. 33, 87–95 (2018).CAS 
    Article 

    Google Scholar 
    Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Epstein, J. H. et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl Acad. Sci. USA 117, 29190 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698–02620 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K. L. et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11, 240 (2019).PubMed Central 
    Article 

    Google Scholar 
    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Robertson, K. et al. Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand. Plos Negl. Trop. Dis. 5, e1054 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Group C Betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1352 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suwannarong, K. et al. Risk factors for bat contact and consumption behaviors in Thailand; a quantitative study. BMC Public Health 20, 841 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K., Jose, R., Labonite, M. & Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 10, 55 (2018).Article 

    Google Scholar 
    Quibod, M. N. R. M. et al. Diversity and threats to cave-dwelling bats in a small island in the southern Philippines. J. Asia-Pac. Biodivers. 12, 481–487 (2019).Article 

    Google Scholar 
    Furey, N. M. & Racey, P. A. Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds C. C. Voigt & T. Kingston) 463–500 (Springer International Publishing, 2016).Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types (Version 001), https://doi.org/10.5281/zenodo.3666246 (2020).Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160173 (2017).Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Hassell, J. M. et al. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 5, 907–918 (2021).PubMed 
    Article 

    Google Scholar 
    Winter, D. J. rentrez: An R package for the NCBI eUtils API. R. J. 9, 520–526 (2017).Article 

    Google Scholar 
    South, A. rworldmap: A New R package for Mapping Global Data. R. J. 3, 35–43 (2011).Article 

    Google Scholar 
    Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLOS Pathog. 16, e1008758 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evolution 3, vex012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murakami, S. et al. Detection and characterization of Bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Multilocus phylogeny and species delimitation within the philippinensis group (Chiroptera: Rhinolophidae). Zoologica Scr. 47, 655–672 (2018).Article 

    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats. (Lynx Edicions, 2019).Srinivasulu, B. & Srinivasulu, C. In plain sight: Bacular and noseleaf morphology supports distinct specific status of Roundleaf Bats Hipposideros pomona Andersen, 1918 and Hipposideros gentilis Andersen, 1918 (Chiroptera: Hipposideridae). J. Threatened Taxa 10, 12018–12026 (2018).Article 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2633–2641 (2011).Article 

    Google Scholar 
    IUCN. Habitats Classification Scheme (Version 3.1), https://www.iucnredlist.org/resources/habitat-classification-scheme (2021).Williams, P. & Fong, Y. T. World Map of Carbonate Rock Outcrops v3.0 (ed The University of Auckland) (2010).Ross, N. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3 (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (2020).Chamberlain, S. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, https://doi.org/10.7287/peerj.preprints.3304v1 (2017).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2022).GBIF.org. GBIF Occurrence Download, https://doi.org/10.15468/dl.8w26d8 (2021).Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).PubMed 
    Article 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    WorldPop. Unconstrained global mosaic 2020 (1km resolution), https://doi.org/10.5258/SOTON/WP00647 (2018).Greenberg, J. A. & Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2. (2020).Carnell, R. lhs: Latin Hypercube Samples. R package version 1.1.1. (2020).Signorell, A. et al. DescTools: Tools for Descriptive Statistics v. 0.99.41 (2021).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R Package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar 
    Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Computers Simul. 55, 271–280 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0. (2021).Monod, H., Naud, C. & Makowski, D. Uncertainty and sensitivity analysis for crop models. In Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications (eds Wallach, D., Makowski, D. & Jones, J.) (Elsevier Science, 2006).Janon, A., Klein, T., Lagnoux, A., Nodet, M. & Prieur, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas

    Roberson, L. A., Watson, R. A. & Klein, C. J. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. No. 590. 187 (2015).FAO. 2008. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome (2008).Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or over fishing? Fish Fish 17, 438–458 (2016).Article 

    Google Scholar 
    Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’ s sharks and rays. Elife 3, 1–35 (2014).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture. Sustainability in action. Rome https://doi.org/10.4060/ca9229en (2020).Smith, H. et al. Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biol. Conserv. 254, 108895 (2021).Article 

    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Leurs, G. et al. Industrial fishing near West African marine protected areas and its potential effects on mobile marine predators. Fron. Mar. Sci. 8, 1–13 (2021).ADS 

    Google Scholar 
    White, W. T. et al. Shark longline fishery of Papua New Guinea: Size and species composition and spatial variation of the catches. Mar. Freshw. Res. 71, 662–669 (2020).Article 

    Google Scholar 
    Jacquet, J. & Pauly, D. Funding priorities: Big barriers to small-scale fisheries. Conserv. Biol. 22, 832–835 (2008).PubMed 
    Article 

    Google Scholar 
    Moore, J. E. et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 143, 795–805 (2010).Article 

    Google Scholar 
    Soykan, C. U. et al. Why study bycatch? An introduction to the Theme Section on fisheries bycatch. Endanger. Species Res. 5, 91–102 (2008).Article 

    Google Scholar 
    Haque, A. B. et al. Socio-ecological approach on the fishing and trade of rhino rays (Elasmobranchii: Rhinopristiformes) for their biological conservation in the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 210, 105690 (2021).Article 

    Google Scholar 
    Barausse, A. et al. The role of fisheries and the environment in driving the decline of elasmobranchs in the nor-thern Adriatic Sea. ICES J. Mar. Sci. 71, 1593–1603 (2014).Article 

    Google Scholar 
    Pérez-Jiménez, J. C. & Mendez-Loeza, I. The small-scale shark fisheries in the southern Gulf of Mexico: Understanding their heterogeneity to improve their management. Fish. Res. 172, 96–104 (2015).Article 

    Google Scholar 
    Saidi, B., Enajjar, S. & Bradai, M. N. Elasmobranch captures in shrimps trammel net fishery off the Gulf of Gabès (Southern Tunisia, Mediterranean Sea). J. Appl. Ichthyol. 32, 421–426 (2016).Article 

    Google Scholar 
    Vögler, R., González, C. & Segura, A. M. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast. Manag. 190, 105175 (2020).Dulvy, N. K. et al. Challenges and priorities in Shark and Ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, 6560 (2021).Article 
    CAS 

    Google Scholar 
    Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ban, N. C., Kushneryk, K., Falk, J., Vachon, A. & Sleigh, L. Improving compliance of recreational fishers with Rockfish Conservation Areas: community–academic partnership to achieve and evaluate conservation. ICES J. Mar. Sci. 77, 2308–2318 (2019).Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 15, 1–10 (2020).Belharet, M. et al. Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. J. Appl. Ecol. 57, 1948–1957 (2020).Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 247–254 (2015).CAS 
    Article 

    Google Scholar 
    Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish 20, 255–267 (2019).Article 

    Google Scholar 
    Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish. Biol. 80, 1844–1869 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. MEPS 384, 33–46 (2009).ADS 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, C. et al. Understanding persistent non-compliance in a remote, large-scale marine protected area. Front. Mar. Sci. 8, 1–13 (2021).ADS 
    Article 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).Article 

    Google Scholar 
    Escalle, L. et al. Restricted movements and mangrove dependency of the nervous shark Carcharhinus cautus in nearshore coastal waters. J. Fish. Biol. 87, 323–341 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).Article 

    Google Scholar 
    Guidetti, P., Danovaro, R., Bottaro, M. & Ciccolella, A. Marine protected areas and endangered shark conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 2671–2672 (2021).Article 

    Google Scholar 
    Lubchenco, J. & Grorud-Colvert, K. Making waves: The science and politics of ocean protection. Science 350, 382–383 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).Article 

    Google Scholar 
    Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The Conservation Status of Sharks, Rays, and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain. pp. 236 (2016).Morales-Muñiz, A. & Roselló, E. 20,000 years of fishing in the Strait: archaeological fish and shellfish assemblages from southern Iberia. In Human Impacts on Ancient Marine Ecysosytems: a Global Perspective (eds Torben, R. C. & Erlandson, J. M.), pp. 243–278 (University of California Press, Berkeley, 2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cashion, M. S., Bailly, N. & Pauly, D. Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Mar. Pol. 105, 1–9 (2019).Article 

    Google Scholar 
    Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).PubMed 
    Article 

    Google Scholar 
    Colloca, F., Enea, M., Ragonese, S. & Di Lorenzo, M. A century of fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1145–1155 (2017).Article 

    Google Scholar 
    Colloca, F., Carrozzi, V., Simonetti, A. & Lorenzo, M. D. Using local ecological knowledge of fishers to reconstruct abundance trends of Elasmobranch populations in the Strait of Sicily. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture.Contributing to food security and nutrition for all. Rome. pp 200 (2016).Milazzo, M., Cattano, C., Al Mabruk, S. A. A. & Giovos, I. Mediterranean sharks and rays need action. Science 371, 355–356 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 
    Article 

    Google Scholar 
    Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PLoS One 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Serena, F. et al. Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J. 87, 497–536 (2020).Article 

    Google Scholar 
    Morey, G., Moranta, J., Riera, F., Grau, A. M. & Morales-NIN, B. Elasmobranchs in trammel net fishery associated to marine reserves in the Balearic Islands (NW Mediterranean). Cybium 30, 125–132 (2006).
    Google Scholar 
    Temple, A. J. et al. Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management. Rev. Fish. Biol. Fish. 28, 89–115 (2018).Article 

    Google Scholar 
    Siskey, M. R., Shipley, O. N. & Frisk, M. G. Skating on thin ice: Identifying the need for species- ­ specific data and defined migration ecology of Rajidae spp. Fish Fish 20, 286–302 (2019).Article 

    Google Scholar 
    Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in Sharks, with implications for population structure and management. Ann. Rev. Mar. Sci. 7, 547–570 (2015).PubMed 
    Article 

    Google Scholar 
    Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).ADS 
    Article 

    Google Scholar 
    Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293 (2010).ADS 
    Article 

    Google Scholar 
    Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Mortality rates for two shark species occupying a shared coastal environment. Fish. Res. 125–126, 184–189 (2012).Article 

    Google Scholar 
    Espinoza, M., Farrugia, T. J. & Lowe, C. G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Bio. Ecol. 401, 63–74 (2011).Article 

    Google Scholar 
    Myers, R. A. & Mertz, G. The limits of exploitation: A precautionary approach. Ecol. Appl. 8, 165–169 (1998).Article 

    Google Scholar 
    Ferretti, F., Osio, G., Jenkins, C., Rosenberg, A. A. & Lotze, H. K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3, 1057 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Lorenzo, M. et al. Ontogenetic trophic segregation between two threatened smooth ‑ hound sharks in the Central Mediterranean Sea. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Mulas, A. et al. Resource partitioning among sympatric elasmobranchs in the central-western Mediterranean continental shelf. Mar. Biol. 166, 1–16 (2019).Article 

    Google Scholar 
    Silva, P. M., Teixeira, C. M., Pita, C., Cabral, H. N. & França, S. Portuguese artisanal fishers’ knowledge about Elasmobranchs—A case study. Front. Mar. Sci. 8, 1–9 (2021).
    Google Scholar 
    Cortés, E. & Brooks, E. N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish 19, 1110–1129 (2018).Article 

    Google Scholar 
    Prince, J. D. Gauntlet fisheries for elasmobranchs – The secret of sustainable shark fisheries. J. Northwest Atl. Fish. 37, 407–416 (2005).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The neglected complexities of shark fisheries, and priorities for holistic risk-based management. Ocean Coast. Manag. 182, 104994 (2019).Article 

    Google Scholar 
    Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).Article 

    Google Scholar 
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. PLoS One 9, e106885 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cattano, C., Turco, G., Di Lorenzo, M., Visconti, G. & Milazzo, M. Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1420–1428 (2021).Article 

    Google Scholar 
    O’Connell, C. P., Stroud, E. M. & He, P. The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions. Ocean Coast. Manag. 97, 2–11 (2014).Article 

    Google Scholar 
    Barbato, M. et al. The use of fishers’ Local Ecological Knowledge to reconstruct fish behavioural traits and fishers’ perception of conservation relevance of elasmobranchs in the Mediterranean Sea. Mediterr. Mar. Sci. 22, 603–622 (2021).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish 21, 269–289 (2020).Article 

    Google Scholar 
    Sala, E. et al. Author correction: protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Franco, A. et al. Improving marine protected area governance through collaboration and co-production. J. Environ. Manag. 269, 110757 (2020).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int 11, 36–41 (2004).
    Google Scholar 
    Froese, R., & Pauly, D. FishBase. https://www.fishbase.org (2021).Micheli, F. et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 36, 1–13 (2021).
    Google Scholar 
    Martin, T. G., Wintle, A., Rhodes, J. R., Field, A. & Low-choy, S. J. REVIEWS AND Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).PubMed 
    Article 

    Google Scholar 
    Rigby, R. A., Stasinopoulos, D. M. & Lane, P. W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54, 507–554 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Akaike, H. A new look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kariya, T. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. Ann. Stat. 19, 1403–1433, www.jstor.org (1991). ®.
    Google Scholar 
    Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).Article 

    Google Scholar 
    Van Buuren, S. & Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Legendre, P. & Legendre, L. Numerical ecology, 2nd English edn. Elsevier, Amsterdam (1998).Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 

    Google Scholar 
    Oksanen, A. J. et al. Vegan: Community Ecology Package. R package Version 2.0-2 (2011). Available at: http://cran.r-project.org/. (2012).Di Lorenzo et al. Dataset1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318878.v1 (2022).Di Lorenzo et al. Dataset2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318881.v3 (2022).Di Lorenzo et al. Dataset3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318884.v1 (2022).Di Lorenzo et al. Dataset4: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318887.v1 (2022).Di Lorenzo et al. Code1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318875.v2 (2022).Di Lorenzo et al. Code2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318890.v1 (2022).Di Lorenzo et al. Code3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318893.v1 (2022). More

  • in

    Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems

    van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    George PB, Lallias D, Creer S, Seaton FM, Kenny JG, Eccles RM, et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Xiao E, Ning Z, Xiao T, Sun W, Jiang S. Soil bacterial community functions and distribution after mining disturbance. Soil Biol Biochem. 2021;157:108232.CAS 
    Article 

    Google Scholar 
    Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G. Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol. 2017;26:923–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fajardo C, Costa G, Nande M, Botías P, García-Cantalejo J, Martín M. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Appl Soil Ecol. 2019;135:56–64.Article 

    Google Scholar 
    Krabbenhoft DP, Sunderland EM. Global change and mercury. Science. 2013;341:1457–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47:116–40.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amos HM, Jacob DJ, Streets DG, Sunderland EM. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochem Cycles. 2013;27:410–21.CAS 
    Article 

    Google Scholar 
    Zhang L, Wong MH. Environmental mercury contamination in China: sources and impacts. Environ Int. 2007;33:108–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller AK, Westergaard K, Christensen S, Sørensen SJ. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol. 2001;36:11–9.PubMed 
    Article 

    Google Scholar 
    Liu YR, Wang JJ, Zheng YM, Zhang LM, He JZ. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol. 2014;68:575–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Delgado-Baquerizo M, Bi L, Zhu J, He JZ. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome. 2018;6:183.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Li X, Tao Y, Yan Z, Ao Y. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf. 2022;229:113062.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zappelini C, Karimi B, Foulon J, Lacercat-Didier L, Maillard F, Valot B, et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biol Biochem. 2015;90:101–10.CAS 
    Article 

    Google Scholar 
    Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadražil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol. 2000;66:2471–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crane S, Dighton J, Barkay T. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biol. 2010;114:873–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Johansen JL, Rønn R, Ekelund F. Toxicity of cadmium and zinc to small soil protists. Environ Pollut. 2018;242:1510–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanner M, Birkhofer K, Fischer T, Shimizu M, Shimano S, Puppe D. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb Ecol. 2020;79:123–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, et al. Warming reshaped the microbial hierarchical interactions. Glob Chang Biol. 2021;27:6331–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome. 2019;7:33.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome. 2020;8:1–14.CAS 
    Article 

    Google Scholar 
    Huang X, Wang J, Dumack K, Liu W, Zhang Q, He Y, et al. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biol Biochem. 2021;160:108358.CAS 
    Article 

    Google Scholar 
    Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H, et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 2016;10:2269–79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jassey VE, Signarbieux C, Hättenschwiler S, Bragazza L, Buttler A, Delarue F, et al. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci Rep. 2015;5:1–10.Article 
    CAS 

    Google Scholar 
    Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019;27:771–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Geisen S, Hu S, Dela Cruz TEE, Veen GFC. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 2021;15:618–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feng X, Li P, Qiu G, Wang S, Li G, Shang L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol. 2008;42:326–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meng M, Li B, Shao JJ, Wang T, He B, Shi JB, et al. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environ Pollut. 2014;184:179–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Dong JX, Zhang QG, Wang JT, Han LL, Zeng J, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environ Pollut. 2016;218:1342–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.CAS 
    Article 

    Google Scholar 
    Jones D, Willett V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 2006;38:991–9.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:1–8.Article 
    CAS 

    Google Scholar 
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finland MotE: Government decree on the assessment of soil contamination and remediation needs (214/2007). In.: Ministry of the Environment Helsinki (FI); 2007.Carlon C. Derivation methods of soil screening values in europe: A review of national procedures towards harmonisation: A report of the ENSURE action. EUR-OP. 2007.Toth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 2016;88:299–309.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Caceres M, Jansen F. Relationship between species and groups of sites. Package ‘indicspecies’, version 1.7.6. 2016.Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B. Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem. 2018;120:191–9.CAS 
    Article 

    Google Scholar 
    Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:1–17.Article 

    Google Scholar 
    Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.CAS 
    Article 

    Google Scholar 
    Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinform. 2012;13:1–20.Article 

    Google Scholar 
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009;3:361–2.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Ver. 2015;2:3–1.
    Google Scholar 
    Chen B, Xiong W, Qi J, Pan H, Chen S, Peng Z, et al. Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems. Soil Biol Biochem. 2021;163:108445.CAS 
    Article 

    Google Scholar 
    Jiao S, Lu Y, Wei G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol. 2022;28:140–53.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    Revelle WR. psych: Procedures for personality and psychological research. 2017.Archer E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version. 2016;1(2).Wang JT, Zheng YM, Hu HW, Li J, Zhang LM, Chen BD, et al. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Sci Rep. 2016;6:1–7.Article 
    CAS 

    Google Scholar 
    Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online. 2003;8:23–74.
    Google Scholar 
    Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, et al. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28:528–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stefan G, Cornelia B, Jörg R, Michael B. Soil water availability strongly alters the community composition of soil protists. Pedobiologia. 2014;57:205–13.Article 

    Google Scholar 
    Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, et al. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun. 2020;11:6406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qi Q, Hu C, Lin J, Wang X, Tang C, Dai Z, et al. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. Environ Pollut. 2022;306:119406.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.PubMed 
    Article 

    Google Scholar 
    Villarino E, Watson JR, Jönsson B, Gasol JM, Salazar G, Acinas SG, et al. Large-scale ocean connectivity and planktonic body size. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    Mitsch WJ, Gosselink JG Wetlands. John Wiley & Sons; 2015.Margesin R, Feller G, Gerday C, Russell N. The Encyclopedia of Environmental Microbiology. 2002;2.Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall B, St Louis V, Rolfhus K, Bodaly R, Beaty K, Paterson M, et al. Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems. 2005;8:248–66.CAS 
    Article 

    Google Scholar 
    Clarholm M. Protozoan grazing of bacteria in soil-impact and importance. Microb Ecol. 1981;7:343–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Harada N. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils. Soil Biol Biochem. 2021;161:108397.CAS 
    Article 

    Google Scholar 
    Asiloglu R, Kenya K, Samuel SO, Sevilir B, Murase J, Suzuki K, et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil. Soil Biol Biochem. 2021;156:108186.CAS 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, He JZ, Hu HW. Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. J Hazard Mater. 2021;427:127867.Nguyen BAT, Chen QL, He JZ, Hu HW. Oxytetracycline and ciprofloxacin exposure altered the composition of protistan consumers in an agricultural soil. Environ Sci Technol. 2020;54:9556–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, Yan ZZ, Li CY, He JZ, Hu HW. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biol Biochem. 2021;160:108317.CAS 
    Article 

    Google Scholar 
    Wu S, Dong Y, Deng Y, Cui L, Zhuang X. Protistan consumers and phototrophs are more sensitive than bacteria and fungi to pyrene exposure in soil. Sci Total Environ. 2022;822:153539.CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts LD, Douglas A, Perez Calderon LJ, Anderson JA, Witte U, Prosser JI, et al. Chronic environmental perturbation influences microbial community assembly patterns. Environ Sci Technol. 2022;56:2300–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge AH, Liang ZH, Xiao JL, Zhang Y, Zeng Q, Xiong C, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agric Ecosyst Environ. 2021;312:107336.CAS 
    Article 

    Google Scholar 
    Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol. 1996;10:255–63.Article 

    Google Scholar 
    Holtze MS, Ekelund F, Rasmussen LD, Jacobsen CS, Johnsen K. Prey-predator dynamics in communities of culturable soil bacteria and protozoa: differential effects of mercury. Soil Biol Biochem. 2003;35:1175–81.CAS 
    Article 

    Google Scholar 
    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner A, Wepner B, Kostic T, van Overbeek LS, Bunthof CJ, de Souza RSC, et al. Calling for a systems approach in microbiome research and innovation. Curr Opin Biotechnol. 2022;73:171–8.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    IPBES responds to critics of its assessment of wild-species use

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More