More stories

  • in

    Unexpected high carbon losses in a continental glacier foreland on the Tibetan Plateau

    Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G, Marotzke J, et al. Technical Summary. In Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. 42–4.Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol. 2018;94:1–31.Article 
    CAS 

    Google Scholar 
    Bradley JA, Singarayer JS, Anesio AM. Microbial community dynamics in the forefield of glaciers. Proc R Soc B. 2014; 281.Hood E, Battin TJ, Fellman J, O’neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci. 2015;8:91–96.CAS 
    Article 

    Google Scholar 
    Harden JW, Mark RK, Sundquist ET, Stallard RF. Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet. Science. 1992;258:1921–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Egli M, Favilli F, Krebs R, Pichler B, Dahms D. Soil organic carbon and nitrogen accumulation rates in cold and alpine environments over 1 Ma. Geoderma. 2012;183-4:109–23.Article 
    CAS 

    Google Scholar 
    Khedim N, Cécillon L, Poulenard J, Barré P, Baudin F, Marta S, et al. Topsoil organic matter build-up in glacier forelands around the world. Glob Chang. Biol. 2021;27:1662–77.
    Google Scholar 
    Amico MED, Freppaz M, Filippa G, Zanini E. Vegetation in fluence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena. 2014;113:122–37.Article 
    CAS 

    Google Scholar 
    Mateos-Rivera A, Yde JC, Wilson B, Finster KW, Reigstad LJ, Øvreås L The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiol Ecol. 2016; 92. https://doi.org/10.1093/femsec/fiw038.Vilmundardóttir OK, Gísladóttir G, Lal R. Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier. SE-Iceland. Geomorphology. 2015;228:124–33.Article 

    Google Scholar 
    Strauss SL, Ruhland CT, Day TA. Trends in soil characteristics along a recently deglaciated foreland on Anvers Island, Antarctic Peninsula. Polar Biol. 2009;32:1779–88.Article 

    Google Scholar 
    Kabala C, Zapart J. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma. 2012;175-6:9–20.Article 
    CAS 

    Google Scholar 
    Fernández-martínez MA, Pointing SB, Pérez-ortega S, Arróniz-crespo M, Green TGA, Rozzi R, et al. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile). Int Microbiol. 2016;19:161–73.PubMed 

    Google Scholar 
    Kazemi S, Hatam I, Lanoil B. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process. Mol Ecol. 2016;25:5557–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    He L, Tang Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena. 2008;72:259–69.Article 

    Google Scholar 
    Zhou J, Bing HJ, Wu YH, Yang ZJ, Wang JP, Sun HY, et al. Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou Glacier foreland, Mt. Gongga, SW China Jun. Geoderma. 2016;267:78–91.CAS 
    Article 

    Google Scholar 
    Zeng J, Lou K, Zhang CJ, Wang JT, Hu HW, Shen JP, et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China. Front Microbiol. 2016; 7. https://doi.org/10.3389/fmicb.2016.01353.Wei TF, Shangguan DH, Yi SH, Ding YJ. Characteristics and controls of vegetation and diversity changes monitored with an unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Sci Total Environ. 2021;771:145433.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang MH, Shi YF. Progress in the study on basic features of glaciers in China in the last thirty years. J Glaciol Geocryol. 1988;10:228–37.
    Google Scholar 
    Xu XK, Pan BL, Hu E, Li YJ, Liang YH. Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005, Tianshan, China. Quat Int. 2011;236:143–50.Article 

    Google Scholar 
    Liu YS, Qin X, Chen JZ, Li ZL, Wang J, Du WT, et al. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015. J Mt Sci. 2018;15:25–32.Article 

    Google Scholar 
    Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 2013;10:3983–96.Article 

    Google Scholar 
    Odum EP. The strategy of ecosystem development. Science. 1969;164:262–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B. 2008;275:2793–802.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80.CAS 
    Article 

    Google Scholar 
    Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen H, Wang F, Kong WD, Jia HZ, Zhou TQ, Xu R, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Sci Total Environ. 2021; 761. https://doi.org/10.1016/j.scitotenv.2020.143282.Bond-lamberty B, Wang CK, Gower ST. A global relationship between the heterotrophic and autotrophic components of soil respiration? Gloal Chang. Biol. 2004;10:1756–66.
    Google Scholar 
    Barnett SE, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc Natl Acad Sci USA. 2021; 118. https://doi.org/10.1073/pnas.2115292118/-/DCSupplemental.Published.Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009;67:208–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou ZH, Wang CK, Luo YQ. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun. 2020;11:3072.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guelland K, Hagedorn F, Smittenberg RH, Göransson H, Bernasconi SM, Hajdas I, et al. Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland. Biogeochemistry. 2013;113:545–61.CAS 
    Article 

    Google Scholar 
    Chen QL, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng BX, Zhu YG, Sardans J, Peñuelas J, Su JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China (Life Sciences). 2018;61:1451–62.CAS 
    Article 

    Google Scholar 
    Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Zhu YG, Chu HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021;15:550–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang. 2012;2:106–10.CAS 
    Article 

    Google Scholar 
    Chen JZ, Qin X, Kang SC, Du WT, Sun WJ, Liu YS. Potential effect of black carbon on glacier mass balance during the past 55 years of Laohugou Glacier No. 12, western Qilian Mountains. J Earth Sci. 2020;31:410–8.CAS 
    Article 

    Google Scholar 
    Zhang LN, Jiang Y, Zhao SD, Jiao L, Wen Y. Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, northwestern China. Forests. 2018; 9. https://doi.org/10.3390/f9030135.Sun WJ, Qin X, Ren JW, Yang XG, Zhang T, Liu YS, et al. The surface energy budget in the accumulation zone of the laohugou glacier No. 12 in the western Qilian mountains, China, in summer 2009. Arctic, Antarct Alp Res. 2012;44:296–305.Article 

    Google Scholar 
    Wang YW, Ma AZ, Liu GH, Ma JP, Wei J, Zhou HC, et al. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. Glob Chang Biol. 2020;26:697–708.PubMed 
    Article 

    Google Scholar 
    Harris D, Horwa WR, Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J.2001;65:1853–6.CAS 
    Article 

    Google Scholar 
    Zhou HC, Ma AZ, Liu GH, Zhou XR, Yin J, Liang Y, et al. Reduced interactivity during microbial community degradation leads to the extinction of Tricholomas matsutake. L Degrad Dev. 2021;32:5118–28.Article 

    Google Scholar 
    Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:fiw018.PubMed 
    Article 
    CAS 

    Google Scholar 
    Feng K, Zhang ZJ, Cai WW, Liu WZ, Xu MY, Yin HQ, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol. 2017;26:6170–82.PubMed 
    Article 

    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 2017;11:2305–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang YW, Ma AZ, Zhong GS, Xie F, Zhou HC, Liu GH, et al. Effect of Simulated Warming on Microbial Community in Glacier Forefield. Environ Sci. 2020;41:2918–23.
    Google Scholar 
    Lei YB, Zhou J, Xiao HF, Duan BL, Wu YH, Korpelainen H, et al. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China. Soil Biol Biochem. 2015;88:362–71.CAS 
    Article 

    Google Scholar 
    Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol. 2002;44:306–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu WM, Schmidt SK, Sommers P, Darcy JL, Porazinska DL. Multiple-trophic patterns of primary succession following retreat of a high-elevation glacier. Ecosphere. 2021; 12. https://doi.org/10.1002/ecs2.3400.Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol. 2007;53:110–22.PubMed 
    Article 

    Google Scholar 
    Whelan P, Bach AJ. Retreating glaciers, incipient soils, emerging forests: 100 years of landscape change on Mount Baker, Washington, USA. Ann Am Assoc Geogr. 2017;107:336–49.
    Google Scholar 
    Cleveland CC, Liptzin ÆD. C:N:P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry. 2007;85:235–52.Article 

    Google Scholar 
    Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012;196:79–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian J, Zong N, Hartley IP, He NP, Zhang JJ, Powlson D, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Gloal Chang Biol. 2021;27:2011–28.CAS 
    Article 

    Google Scholar 
    Zhu XF, Liang C, Masters MD, Kantola IB, DeLucia EH. The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Glob Chang Biol Bioenergy. 2018;10:489–500.CAS 
    Article 

    Google Scholar 
    Evans MCW, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Biochemistry. 1966;55:928–34.CAS 

    Google Scholar 
    Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K, Fuchs G. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol. 1999;181:1088–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Cha QQ, Dang YR, Chen XL, Wang M, Mcminn A, et al. Reconstruction of the functional ecosystem in the high light, low temperature union glacier region, Antarctica. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    Lazzaro A, Hilfiker D, Zeyer J. Structures of microbial communities in alpine soils: Seasonal and elevational effects. Front Microbiol. 2015; 6. https://doi.org/10.3389/fmicb.2015.01330.Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol. 2013;79:3724–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008;2:805–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80:471–8.PubMed 
    Article 

    Google Scholar 
    Lange M, Roth V-N, Nico E, Roscher C, Thorsten D, Fischer-bedtke C, et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. J Ecol. 2021;109:1284–97.CAS 
    Article 

    Google Scholar 
    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:1–14.CAS 

    Google Scholar 
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    Article 

    Google Scholar 
    Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18:35–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan BS, Sun LP, Li JJ, Liang CQ, Wei FR, Xue S, et al. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China. Geoderma. 2020;364:114199.CAS 
    Article 

    Google Scholar 
    Wu MH, Chen SY, Chen JW, Xue K, Chen SL, Wang XM, et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci USA. 2021;118:1–9.
    Google Scholar  More

  • in

    Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran

    Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 

    Google Scholar 
    Vamberger, M. et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool. Scr. 44, 233–249 (2015).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib. Reptil. 30, 63–80 (2009).Article 

    Google Scholar 
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex;Testudines, Testudinidae). Amphib. Reptil. 28, 97–121 (2007).Article 

    Google Scholar 
    Mikulíček, P., Jandzik, D., Fritz, U., Schneider, C. & Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108, 151–160 (2013).Article 

    Google Scholar 
    Parham, J. F. et al. Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises. Proc. Calif. Acad. Sci. 57, 955–964 (2006).
    Google Scholar 
    Javanbakht, H. et al. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 121, 627–640 (2017).Article 

    Google Scholar 
    Mashkaryan, V. et al. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib. Reptilia. 34, 337–351 (2013).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Lavin, B. R., Bardakcı, F. & Parham, J. F. Morphological and mitochondrial variation of spur-thighed tortoises, Testudo graeca, Turkey. Herpetol. J. 28, 1–9 (2017).
    Google Scholar 
    Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines:Testudinidae). Biol. J. Linn. Soc. 121(3), 641–654 (2017).Article 

    Google Scholar 
    Harris, D. J., Znari, M., Macé, J. C. & Carretero, M. A. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17, 5–9 (2003).
    Google Scholar 
    Van Der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5, 29 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Highfield, A. C. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelonian. Herpetol. 1, 1–56 (1990).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758–Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17, 19–47 (2004).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15, 3–28 (2002).
    Google Scholar 
    Pieh, A. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest Marokko). Salamandra 36, 209–222 (2000).
    Google Scholar 
    Arakelyan, M., Türkozan, O., Hezaveh, N. & Parham, J. F. Ecomorphology of tortoises (Testudo graeca complex) from the Araks river valley. Russ. J. Herpetol. 25, 245–252 (2018).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Parham, J. F., Olgun, K. & Taskavak, E. A quantitative reassessment of morphology based taxonomic schemes for Turkish tortoises. Amphib. Reptil. 31, 69–83 (2010).Article 

    Google Scholar 
    Van Dijk, P. P., Corti, C., Mellado, V. P. & Cheylan, M. Testudo graeca. The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species. Version 12/2004 (2004).Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Pringle, R. M., Webb, J. K. & Shine, R. Canopy structure, microclimate, and habitat selection by a nocturnal snake (Hoplocephalus bungaroides). Ecology 84, 2668–2679 (2003).Article 

    Google Scholar 
    Rastegar-Pouyani, N. et al. Sustainable management of the Herpetofauna of the Iranian Plateau and coastal Iran. Amphib. Reptil. Conserv. 9, 1–15 (2015).
    Google Scholar 
    Rouag, R., Ziane, N. & Benyacoub, S. Home range of the spur-thighed tortoise, Testudo graeca (Testudines, Testudinidae), in the national park of El-Kala, Algeria. Vestn. Zool. 51, 45–52 (2017).Article 

    Google Scholar 
    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, 721–735 (2020).Article 
    CAS 

    Google Scholar 
    Frankham, R., Ballou, J., Briscoe, D., & McInnes, K. Frontmatter. In A Primer of Conservation Genetics I–Iv (Cambridge University Press, 2004).Rhodin, A. G. J., Iverson, J. B., Bour, R., Fritz, U., Georges, A., Shaffer, H. B. & van Dijk, P.P. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.) (2021).Heshmati, G. A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2, 215–224 (2007).
    Google Scholar 
    Graciá, E. et al. Human-mediated secondary contact of two tortoise lineages results in sex-biased introgression. Sci. Rep. 7, 4019 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vamberger, M., Corti, C., Stuckas, H. & Fritz, U. Is the imperilled Spur-thighed tortoise (Testudo graeca) native in Sardinia? Implications from population genetics and for conservation. Amphib. Reptil. 32, 9–25 (2011).Article 

    Google Scholar 
    Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and longterm deformation rates. Tectonics 23, TC2008. https://doi.org/10.1029/2003TC001530 (2004).ADS 
    Article 

    Google Scholar 
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the revolution. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    Golubovi, A., Tomovi, L. & Ivanovi, A. Geometry of self righting: the case of Hermann’s tortoises. Zool. Anz. 254, 99–105 (2015).Article 

    Google Scholar 
    Arakelyan, M., Parham J. F., Türkozan, O., & Danielyan, F. Sympatrisches Vorkommen Zweier For men von Testudo graeca. In Armenien und der Republik Nagorno-Karabakh Marginata 26–30 (2008).Guyot, G. & Devaux, B. Variation in shell morphology and color of Hermann’s tortoise, Testudo hermanni, in southern Europe. Chelonian Res. Found. 2, 390–395 (1997).
    Google Scholar 
    Macale, D., Venchi, A. & Scalici, M. Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60, 167–175 (2011).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—A case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. 48, 348–359 (2010).Article 

    Google Scholar 
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).Article 

    Google Scholar 
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carretero, M. A., Znari, M., Harris, D. J. & Macé, J. C. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55, 259–279 (2005).Article 

    Google Scholar 
    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    Ljubisavljević, K., Džukić, G., Vukov, T. D. & Kalezić, M. L. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the Central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    Casacci, L. P., Barbero, F. & Balletto, E. The evolutionarily significant unit concept and its applicability in biological conservation. Ital. J. Zool. 81, 182–193 (2014).Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Bio. 18, e3000411 (2020).CAS 
    Article 

    Google Scholar 
    Dutton, P. & Balazs, G. H. Simple biopsy technique for sampling skin for DNA analysis of sea turtles. M.T.N. 69, 9–10 (1995).
    Google Scholar 
    Filippi, E., Rugiero, L., Capula, M., Burke, R. L. & Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 9, 54–60 (2010).Article 

    Google Scholar 
    Fritz, U. et al. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool. Scr. 35, 531–543 (2006).Article 

    Google Scholar 
    Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32, 164–182 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elliott, N. G., Haskard, K. & Koslow, J. A. Morphometric analysis of orange roughy (Huplustetlius atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46, 202–220 (1995).Article 

    Google Scholar 
    Anadón, J. D. et al. Individualistic response to past climate changes: Niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38, 956–966 (2015).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    McKenzie, J. D. Minitab Student Release 14: Statistical Software for Education (Pearson Addison-Wesley, 2004).
    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 9–12 (2015).
    Google Scholar 
    Rohlf, F. J. & Slice, D. E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article 

    Google Scholar 
    Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2004).MATH 

    Google Scholar 
    Klingeberg, C. P. Morpho J: An integrated software package for geometric morphometric. Mol. Ecol. Resour. 11, 353–357 (2011).Article 

    Google Scholar  More

  • in

    Effects of oceanographic environment on the distribution and migration of Pacific saury (Cololabis saira) during main fishing season

    NPFC. 8th Meeting of the Small Scientific Committee on Pacific Saury Report. NPFC-2021-SSC PS08-Final Report. Preprint at https://www.npfc.int/meetings/8th-ssc-ps-meeting (2021).Hubbs, C. L. & Wisner, R. L. Revision of the sauries (Pisces, Scomberesocidae) with descriptions of two new genera and one new species. Fish. Bull. 77, 521–566 (1980).
    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes. Fish. Res. 60, 439–454 (2003).Article 

    Google Scholar 
    Huang, W. B. Comparisons of monthly and geographical variations in abundance and size composition of Pacific saury between the high-seas and coastal fishing grounds in the northwestern Pacific. Fish. Sci. 76, 21–31 (2010).CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Builer, J. L. & Mori, T. Growth of Pacific saury, Cololabis saira, in the northeastern and northwestern Pacific Ocean. Fish. Bull. 86, 489–498 (1988).
    Google Scholar 
    Nakaya, M. et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions. Fish. Sci. 76, 45–53 (2010).CAS 
    Article 

    Google Scholar 
    Kosaka, S. Life history of Pacific saury Cololabis saira in the Northwest Pacific and consideration of resource fluctuation based on it. Bull. Tohoku Natl. Fish. Res. Inst. 63, 1–96 (2000).
    Google Scholar 
    Suyama, S. Study on the age, growth, and maturation process of Pacific saury Cololabis saira (Brevoort) in the north Pacific. Bull. Fish. Res. Agen. 5, 68–113 (2002).
    Google Scholar 
    Huang, W. B., Lo, N. C. H., Chiu, T. S. & Chen, C. S. Geographical distribution and abundance of Pacific saury fishing stock in the Northwestern Pacific in relation to sea temperature. Zool. Stud. 46, 705–716 (2007).
    Google Scholar 
    Liu, S. et al. Using novel spawning ground indices to analyze the effects of climate change on Pacifc saury abundance. J. Mar. Syst. 191, 13–23 (2019).Article 

    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Long-term variability in the abundance of Pacific Saury in the Northwestern Pacific Ocean and climate changes during the last century. Bull. Jpn. Soc. Fish. Oceanogr. 66, 16–25 (2002).
    Google Scholar 
    Tian, Y., Ueno, Y., Suda, M. & Akamine, T. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century. J. Mar. Syst. 52, 235–257 (2004).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, T. Chlorophyll a variation in the Kuroshio Extension revealed with a mixed-layer tracking float: Implication on the long-term change of Pacific saury (Cololabis saira). Fish. Oceanogr. 16, 482–488 (2007).Article 

    Google Scholar 
    Fuji, T., Kurita, Y., Suyama, S. & Ambe, D. Estimating the spawning ground of Pacific saury Cololabis saira by using the distribution and geographical variation in maturation status of adult fish during the main spawning season. Fish. Oceanogr. 30, 382–396 (2020).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, Y. On the relationship between the Oyashio front and saury fishing grounds in the northewestern Pacific: A forecasting method for fishing ground locations. Fish. Oceanogr. 3, 172–181 (1994).Article 

    Google Scholar 
    Kuroda, H. & Yokouchi, K. Interdecadal decrease in potential fishing areas for Pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceanogr. 26, 439–454 (2017).Article 

    Google Scholar 
    Fukushima, S. Synoptic analysis of migration and fishing conditions of saury in the northwestern Pacific Ocean. Bull. Tohoku. Reg. Fish. Res. Lab 41, 1–70 (1979).
    Google Scholar 
    Sugisaki, H. & Kurita, Y. Daily rhythm and seasonal variation of feeding habit of Pacific saury (Cololabis saira) in relation to their migration and oceanographic conditions off Japan. Fish. Oceanogr. 13, 63–73 (2004).Article 

    Google Scholar 
    Huang, W. B. & Huang, Y. C. Maturity characteristics of Pacific saury during fishing season in the Northwest pacific. J. Mar. Sci. Tech. 23, 819–826 (2015).
    Google Scholar 
    Tseng, C. T. et al. Influence of climate-driven sea surface temperature increase on potential habitats of the Pacific saury (Cololabis saira). ICES J. Mar. Sci. 68, 1105–1113 (2011).Article 

    Google Scholar 
    Tseng, C. T. et al. Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Res II Top. Stud. Oceanogr. 107, 15–21 (2014).ADS 
    Article 

    Google Scholar 
    Hua, C., Li, F., Zhu, Q., Zhu, G. & Meng, L. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fish. Res. 221, 105408. https://doi.org/10.1016/j.fishres.2019.105408 (2020).Article 

    Google Scholar 
    Mugo, R., Saitoh, S. I., Nihira, A. & Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 19, 382–396 (2010).Article 

    Google Scholar 
    Yu, W., Chen, X., Chen, Y., Yi, Q. & Zhang, Y. Effects of environmental variations on the abundance of western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Acta Oceanol. Sin. 34, 43–51 (2015).CAS 
    Article 

    Google Scholar 
    Kakehi, S. et al. Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model. Ecol. Model. 431, 109150. https://doi.org/10.1016/j.ecolmodel.2020.109150 (2020).Article 

    Google Scholar 
    Swain, D. P. & Wade, E. J. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): Tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 60, 897–909 (2003).Article 

    Google Scholar 
    Chang, Y. J. et al. Modelling the impacts of environmental variation on habitat suitability for Pacific saury in the Northwestern Pacific Ocean. Fish. Oceanogr. 28, 291–304 (2018).Article 

    Google Scholar 
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).Article 

    Google Scholar 
    Oozeki, Y., Watanabe, Y. & Kitagawa, D. Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean. Fish. Oceanogr. 13, 44–53 (2004).Article 

    Google Scholar 
    Ito, S. I. et al. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish. Oceanogr. 13, 111–124 (2004).Article 

    Google Scholar 
    Miyamoto, H. et al. Geographic variation in feeding of Pacific saury Cololabis saira in June and July in the North Pacific Ocean. Fish. Oceanogr. 29, 558–571 (2020).CAS 
    Article 

    Google Scholar 
    Tseng, C. T. et al. Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES J. Mar. Sci. 70, 991–999 (2013).Article 

    Google Scholar 
    Ichii, T. et al. Oceanographic factors affecting interannual recruitment variability of Pacific saury (Cololabis saira) in the central and western North Pacific. Fish. Oceanogr. 27, 445–457 (2018).Article 

    Google Scholar 
    Coletto, J. L., Pinho, M. P. & Madureira, L. S. P. Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish. Oceanogr. 28, 82–93 (2018).Article 

    Google Scholar 
    Shi, Y., Zhu, Q., Hua, C. & Zhang, Y. Evaluation of saury stick-held net performance between model test and on-sea measurements. Haiyang Xuebao 41, 123–133 (2019).CAS 

    Google Scholar 
    Semedi, B., Saitoh, S., Saitoh, K. & Yoneta, K. Application of multi-sensor satellite remote sensing for determining distribution and movement of Pacific saury, Cololabis saira. Fish. Sci. 68, 1781–1784 (2002).Article 

    Google Scholar 
    Syah, A. F., Saitoh, S. I., Alabia, I. D. & Hirawake, T. Detection of potential fishing zone for Pacific saury (Cololabis saira) using generalized additive model and remotely sensed data. IOP Conf. Ser. Earth Env. Sci. 54, 012074. https://doi.org/10.1088/1755-1315/54/1/012074 (2017).Article 

    Google Scholar 
    Xing, Q. et al. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 201, 102743. https://doi.org/10.1016/j.pocean.2022.102743 (2022).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prants, S. V., Budyansky, M. V. & Uleysky, M. Y. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 90, 27–35 (2014).ADS 
    Article 

    Google Scholar 
    Saito, H., Tsuda, A. & Kasai, H. Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 49, 5463–5486 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Kurita, Y., Noto, M., Oozeki, Y. & Kitagawa, D. Growth and survival of Pacific Saury Cololabis saira in the Kuroshio-Oyashio transitional waters. J. Oceanogr. 59, 403–414 (2003).Article 

    Google Scholar 
    Bakun, A. Ocean eddies, predator pits and bluefin tuna: Implications of an inferred ‘low risk-limited payoff’ reproductive scheme of a (former) archetypical top predator. Fish Fish. 14, 424–438 (2013).Article 

    Google Scholar 
    Iwahashi, M., Isoda, Y., Ito, S. I., Oozeki, Y. & Suyama, S. Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the western North Pacific. Fish. Oceanogr. 15, 128–138 (2006).Article 

    Google Scholar 
    Oozeki, Y., Okunishi, T., Takasuka, A. & Ambe, D. Variability in transport processes of Pacific saury Cololabis saira larvae leading to their broad dispersal: Implications for their ecological role in the western North Pacific. Prog. Oceanogr. 138, 448–458 (2015).ADS 
    Article 

    Google Scholar 
    Polovina, J. J., Kleiber, P. & Kobayashi, D. R. Application of TOPEX-Poseidon satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996. Fish. Bull. 97, 132–143 (1999).
    Google Scholar 
    Kawai, H. Hydrography of the Kuroshio extension. In Kuroshio—Its Physical Aspects (eds Stommel, H. & Yoshida, K.) 235–352 (University of Tokyo, 1972).
    Google Scholar 
    Yamada, F. & Sekine, Y. Variations in sea surface temperature and 500 hPa height over the north Pacific with reference to the occurrence of anomalous southward Oyashio intrusion east of Japan. J. Meteorol. Soc Jpn. Ser. II 75, 995–1000 (1997).Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Stat. Sci. 1, 297–310 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Litzow, M. A., Hobday, A. J., Frusher, S. D., Dann, P. & Tuck, G. N. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia. Prog. Oceanogr. 141, 96–108 (2016).ADS 
    Article 

    Google Scholar 
    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).Article 

    Google Scholar  More

  • in

    Distribution model transferability for a wide-ranging species, the Gray Wolf

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).PubMed 
    Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. A comparison of joint species distribution models for presence–absence data. Methods Ecol. Evol. 10, 198–211 (2018).Article 

    Google Scholar 
    Zimmermann, N. E., Edwards, T. C., Graham, C. H., Pearman, P. B. & Svenning, J.-C. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).Article 

    Google Scholar 
    Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol. 9, 1151–1156 (2018).Article 

    Google Scholar 
    Morisette, J. T. et al. VisTrails SAHM: Visualization and workflow management for species habitat modeling. Ecography (Cop.) 36, 129–135 (2013).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Syfert, M. M. et al. Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177, 174–184 (2014).Article 

    Google Scholar 
    Robinson, A. P., Walshe, T., Burgman, M. A. & Nunn, M. Invasive Species: Risk Assessment and Management (Cambridge University Press, 2017).Book 

    Google Scholar 
    Fontaine, J. J. Improving our legacy: Incorporation of adaptive management into state wildlife action plans. J. Environ. Manag. 92, 1403–1408 (2011).Article 

    Google Scholar 
    Gantchoff, M., Conlee, L. & Belant, J. Conservation implications of sex-specific landscape suitability for a large generalist carnivore. Divers. Distrib. 25, 1488–1496 (2019).Article 

    Google Scholar 
    Camaclang, A. E., Maron, M., Martin, T. G. & Possingham, H. P. Current practices in the identification of critical habitat for threatened species. Conserv. Biol. 29, 482–492 (2014).PubMed 
    Article 

    Google Scholar 
    Schwartz, M. W. The Performance of the Endangered Species Act. Annu. Rev. Ecol. Evol. Syst. 39, 279–299 (2008).Article 

    Google Scholar 
    Acevedo, P. et al. Generalizing and transferring spatial models: A case study to predict Eurasian badger abundance in Atlantic Spain. Ecol. Model. 275, 1–8 (2014).Article 

    Google Scholar 
    Werkowska, W., Márquez, A. L., Real, R. & Acevedo, P. A practical overview of transferability in species distribution modeling. Environ. Rev. 25, 127–133 (2017).Article 

    Google Scholar 
    Barbosa, A. M., Real, R. & MarioVargas, J. Transferability of environmental favourability models in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol. Model. 220, 747–754 (2009).Article 

    Google Scholar 
    Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).Article 

    Google Scholar 
    Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).Article 

    Google Scholar 
    Torres, R. T. et al. Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica. Oryx 51, 709–717 (2016).Article 

    Google Scholar 
    Luoto, M., Kuussaari, M. & Toivonen, T. Modelling butterfly distribution based on remote sensing data. J. Biogeogr. 29, 1027–1037 (2002).Article 

    Google Scholar 
    Cerasoli, F. et al. Determinants of habitat suitability models transferability across geographically disjunct populations: Insights from Vipera ursinii urs inii. Ecol. Evol. 11, 3991–4011 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol. Monogr. 81, 241–257 (2011).Article 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.) 30, 550–560 (2007).Article 

    Google Scholar 
    Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography (Cop.) 42, 521–534 (2018).Article 

    Google Scholar 
    Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260–267 (2012).Article 

    Google Scholar 
    Gantchoff, M., Conlee, L. & Belant, J. L. Planning for carnivore recolonization by mapping sex-specific landscape connectivity. Glob. Ecol. Conserv. 21, e00869 (2020).Article 

    Google Scholar 
    Gantchoff, M. G. et al. Potential distribution and connectivity for recolonizing cougars in the Great Lakes region, USA. Biol. Conserv. 257, 109144 (2021).Article 

    Google Scholar 
    Boudreau, M. et al. Spatial prioritization of public outreach in the face of carnivore recolonization. J. Appl. Ecol. 59, 757–767 (2002).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 80(346), 1517–1519 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123 (2004).Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gompper, M. E., Belant, J. L. & Kays, R. Carnivore coexistence: America’s recovery. Science 347, 382–383 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mech, L. D. Where can wolves live and how can we live with them?. Biol. Conserv. 210, 310–317 (2017).Article 

    Google Scholar 
    United States Fish and Wildlife Service (USFWS). Endangered and threatened wildlife and plants; Removing the gray wolf (Canis lupus) from the list of endangered and threatened wildlife. Fed. Reg. 85(213), 69778–69895 (2020).
    Google Scholar 
    Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wild. Soc. Bull. 33, 1237–1244 (2005).Article 

    Google Scholar 
    Falcucci, A., Maiorano, L., Tempio, G., Boitani, L. & Ciucci, P. Modeling the potential distribution for a range-expanding species: Wolf recolonization of the Alpine range. Biol. Conserv. 158, 63–72 (2013).Article 

    Google Scholar 
    Torres, L. G. et al. Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins. PLoS One 10, e0120014 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olson, L. E. et al. Improved prediction of Canada lynx distribution through regional model transferability and data efficiency. Ecol. Evol. 11, 1667–1690 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carroll, C., Rohlf, D. J., vonHoldt, B. M., Treves, A. & Hendricks, S. A. Wolf delisting challenges demonstrate need for an improved framework for conserving intraspecific variation under the endangered species act. Bioscience 71, 73–84 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).ADS 
    Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Paton, R. S. & Matthiopoulos, J. Defining the scale of habitat availability for models of habitat selection. Ecology https://doi.org/10.1890/14-2241.1 (2015).Article 

    Google Scholar 
    Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    Arntzen, J. W. From descriptive to predictive distribution models: A working example with Iberian amphibians and reptiles. Front. Zool. 3, 1–11 (2006).Article 

    Google Scholar 
    Conway, K. Wolf recovery—GIS facilitates habitat mapping in the Great Lake States. GIS WORLD 9, 54–57 (1996).
    Google Scholar 
    Boitani, L. Wolf conservation and recovery. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) (University of Chicago Press, 2007).
    Google Scholar 
    Mladenoff, D. J., Sickley, T. A., Haight, R. G. & Wydeven, A. P. A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region. Conserv. Biol. 9, 279–294 (1995).Article 

    Google Scholar 
    Treves, A., Martin, K. A., Wiedenhoeft, J. E. & Wydeven, A. P. Dispersal of gray wolves in the Great Lakes region. In Recovery of Gray Wolves in the Great Lakes Region of the United States 191–204 (Springer, 2009).Chapter 

    Google Scholar 
    Nelson, M. E. Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Can. J. Zool. 73, 1069–1076 (1995).Article 

    Google Scholar 
    Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2018).Article 

    Google Scholar 
    Beyer, D. E., Peterson, R. O., Vucetich, J. A. & Hammill, J. H. Wolf population changes in Michigan. In Recovery of Gray Wolves in the Great Lakes Region of the United States 65–85 (Springer, 2009).Chapter 

    Google Scholar 
    Claeys, G. B. Wolves in the Lower Peninsula of Michigan: Habitat modeling, evaluation of connectivity, and capacity estimation (Doctoral dissertation, Duke University) (2010)..Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wildl. Soc. Bull. 33, 1237–1244 (2005).Article 

    Google Scholar 
    Mancinelli, S., Falco, M., Boitani, L. & Ciucci, P. Social, behavioural and temporal components of wolf (Canis lupus) responses to anthropogenic landscape features in the central Apennines, Italy. J. Zool. 309, 114–124 (2019).Article 

    Google Scholar 
    Potvin, M. J. et al. Monitoring and habitat analysis for wolves in upper Michigan. J. Wildl. Manag. 69, 1660–1669 (2005).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).Article 

    Google Scholar 
    Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kojola, I. et al. Wolf visitations close to human residences in Finland: The role of age, residence density, and time of day. Biol. Conserv. 198, 9–14 (2016).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).Article 

    Google Scholar 
    Thuiller, W., Brotons, L., Araújo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography (Cop.) 27, 165–172 (2004).Article 

    Google Scholar 
    Václavík, T. & Meentemeyer, R. K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73–83 (2011).Article 

    Google Scholar 
    VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).Article 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. U.S.A. 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosauer, D. F., Pollock, L. J., Linke, S. & Jetz, W. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. Biol. Sci. 284, 20170627 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).Article 

    Google Scholar  More

  • in

    Nitrogen cycling and microbial cooperation in the terrestrial subsurface

    Distribution of nitrogen-cycling pathways in groundwaterDifferences in nitrogen-cycling processes based on oxygen and nitrate concentrationsSixteen metagenomes (Table S4) were obtained from duplicate wells at four sites (A–D) from two unconfined alluvial aquifers (Canterbury, Fig. S1). These sites encompassed varied nitrate (0.45–12.6 g/m3), DO (0.37–7.5 mg/L), and dissolved organic carbon (DOC) (0–26 g/m3) concentrations (Fig. 1A; Table S1). Nitrate concentrations were pristine (site C) to N-contaminated (sites A, B, D) [4]. Sites A–C were oxic and had low DOC (typical of groundwaters), whereas site D was dysoxic with relatively high DOC. Metagenomes from groundwater wells comprised pairs, representing the planktonic and sediment-attached fractions. Over 70 Gbp of raw sequence was generated per site (390 Gbp overall, 322 Gbp trimmed). However, 2Kb long and only 0.64–8.14% of reads (3.8% on average) mapped to MAGs (Table S4), reflecting the complexity of microbial communities in the terrestrial subsurface [11]. To capture this diversity, metagenomic reads are first used here to determine the distribution of N metabolisms.Fig. 1: Geochemistry and protein-coding sequences (based on reads) involved in nitrogen cycling that are significantly different among sites used for metagenomics.A Bar plots showing geochemical data from groundwater samples, coloured according to site. Solid bar colour = groundwater samples. Grid lines = attached-fraction enriched groundwater. All samples from site D were characterized as dysoxic, although gwj15-16 contained 0.37 mg/L DO, which are near suboxic levels (i.e. More

  • in

    Potato-gene wrangler

    All crops have been modified through some form of improvement, whether to enhance yield, taste, resilience or another factor. My passion is to continue accelerating the development of crop varieties that are more resistant to climate change and pests. This will make food supplies more secure and will also improve the quality of life for small-hold farmers in Africa and Asia, whose livelihoods can be devastated by crop failure.The goal of crop breeding is not only to develop new varieties, but also to produce genetically superior parents with a range of desirable traits that will be useful in future generations. Complex traits, such as yield or climate resilience, are often regulated by many genes. To speed up crop breeding for those traits, we use genomic data to select the best parental combinations, and then cameras and digital tools to identify the best progeny.In this photo, I’m in a greenhouse in Peru owned by my employer, the International Potato Center (CIP), inspecting potential sweet potato (Ipomoea batatas) breeding parents for cross-pollination. CIP is one of 13 gene banks and research facilities around the world, known collectively as One CGIAR, which protect and utilize crop genetic diversity. I’ve worked at CIP since 2016; before then, I worked in industry, where I developed crops such as drought-tolerant corn hybrids.Because potatoes don’t have seeds that can be preserved for decades, we must reproduce them by growing small parts of plant organs, such as a root, a tuber or part of a stem, in tissue culture. Nearly 85% of the unique potato populations stored at CIP are also cryopreserved in liquid nitrogen to maintain a long-term backup.I can’t think of a nobler mission than working on food security. I hope that more young scientists — especially women — will focus their talents on crop breeding for the future. More

  • in

    Don’t dilute the term Nature Positive

    Nature Positive is an aspirational term that is increasingly being used by businesses, governments and NGOs, but there is a danger that its meaning is being diluted away from measurable overall net gain in biodiversity towards merely any action that benefits nature, argues E.J. Milner-Gulland.The term is appealing because it suggests an optimistic, intuitive and clear summary of where society needs to get to, and it can be used equally by business, government and civil society to describe their aspirations to protect and recover nature. However, once terms start gaining traction, particularly relatively general terms like Nature Positive, there is a risk of slippage and loss of meaning. It is already starting to feel like any actions that increase biodiversity anywhere, and by any amount, can be called Nature Positive. This trend has to be resisted. More

  • in

    Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes

    Alroy J. Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci USA. 2017;114:6056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature. 2021;595:388–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABGDA, Spilki FR, et al. Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020;92:e20191375.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morand S, Lajaunie C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front Vet Sci. 2021;8:661063.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manage. 2015;352:9–20.Article 

    Google Scholar 
    Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, et al. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation. 2018;16:208–14.Article 

    Google Scholar 
    Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol. 2018;94: https://doi.org/10.1093/femsec/fiy175.Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4:eaao2314.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep. 2014;4:3932.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution. 1963;17:373–87.Article 

    Google Scholar 
    Krasnov BR, Shenbrot GI, Medvedev SG. Host–habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology. 1997;114:159–73.Poulin R. Are there general laws in parasite ecology? Parasitology 2007;134:63–776Speer KA, Dheilly NM, Perkins SL. Microbiomes are integral to conservation of parasitic arthropods. Biol Conserv. 2020;250:108695.Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, et al. Larger islands house more bacterial taxa. Science. 2005;308:1884.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zinger L, Boetius A, Ramette A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol. 2014;23:954–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS One. 2014;9:e85105.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 

    Google Scholar 
    Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dick CW, Dittmar K. Parasitic bat Flies (Diptera: Streblidae and Nycteribiidae): Host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds). Bats (Chiroptera) as Vectors of Diseases and Parasites. 2014. Springer, Berlin, Heidelberg, pp 131–55.Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, et al. A fly on the cave wall: Parasite genetics reveal fine-scale dispersal patterns of bats. 2019;105:555-66.Patterson BD, Dick CW, Dittmar K. Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol. 2008;24:387–96.Article 

    Google Scholar 
    Hiller T, Brändel SD, Honner B, Page RA, Tschapka M. Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica. 2020;72:617.
    Google Scholar 
    Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. MBio. 2016;7:e01578-16.Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen. 2019;8:e00719.PubMed 
    Article 
    CAS 

    Google Scholar 
    Teixeira TSM. Bats in a fragmented world. 2019. Queen Mary University of London.Emmons L, Feer F. Neotropical rainforest mammals: a field guide. 1997. sidalc.net.Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: guia de campo. 2013. Technical Books Editora.Sikes RS, Care A, of Mammalogists UC of TAS. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wenzel RL. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin. Biological Series. 1976;20:1.
    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1. RevIa bras Zool. 2001;18:907–60.Article 

    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia, Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave pictórica para as espécies 1. RevIa bras Zool. 2001;18:33–49.Article 

    Google Scholar 
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.CAS 
    PubMed 

    Google Scholar 
    Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003;270:313–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gustafson EJ, Parker GR. Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol. 1992;7:101–10.Article 

    Google Scholar 
    McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: spatial pattern analysis program for categorical maps. 2002. University of Massachusetts.Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3:243–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12:69.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12.Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Toh H. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics. 2007;23:372–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, et al. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 2012;6:577–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol. 2014;23:2105–17.PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nováková E, Hypsa V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microb Ecol. 2012;63:628–38.PubMed 
    Article 

    Google Scholar 
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014;15:564.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019;27:105–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9:134–47.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput 2012; 235–46.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4–4. 2017. 2018.Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. Springer.Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–5.PubMed 
    Article 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 2017;6.Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4:138–48.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds). Wiley StatsRef: Statistics Reference Online. 2014. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15.Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv Neural Inf Process Syst. 2010;24:1432–40.PubMed 
    PubMed Central 

    Google Scholar 
    Röttjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Freeman LC. Centrality in social networks conceptual clarification. Soc Networks. 1978;1:215–39.Article 

    Google Scholar 
    Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.Article 

    Google Scholar 
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Systems. 2006;1695:1–9.
    Google Scholar 
    Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74:036104.CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmas E, Besson M, Brice M-H, Burkle LA, Dalla Riva GV, Fortin M-J, et al. Analysing ecological networks of species interactions: Analyzing ecological networks. Biol Rev. 2019;94:16–36.Article 

    Google Scholar 
    Fortunato S, Hric D. Community detection in networks: A user guide. arXiv [physics.soc-ph]. 2016.Singh A, Humphries MD. Finding communities in sparse networks. Sci Rep. 2015;5:8828.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yaveroğlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the hidden language of complex networks. Sci Rep. 2014;4:4547.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007;23:e177–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hočevar T, Demšar J. Computation of graphlet orbits for nodes and edges in sparse graphs. J Stat Softw 2016;71.Müller CL, Bonneau R, Kurtz Z. Generalized stability approach for regularized graphical models. arXiv [statME]. 2016.Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016;8:48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz VE, Battaglia T, Kurtz ZD, Bijnens L, Ou A, Engstrand I, et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun. 2017;8:518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7:1344–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front Microbiol. 2016;7:1753.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker CG, Longo AV, Haddad CFB, Zamudio KR. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc Biol Sci 2017;284.Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol. 2019;9:6508–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80:4301–12.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mello RM, Laurindo RS, Silva LC, Pyles MV, Mancini MCS, Dáttilo W, et al. Landscape configuration and composition shape mutualistic and antagonistic interactions among plants, bats, and ectoparasites in human-dominated tropical rainforests. Acta Oecol. 2021;112:103769.Article 

    Google Scholar 
    Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health. 2013;107:285–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9:e1003318.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obame-Nkoghe J, Rahola N, Bourgarel M, Yangari P, Prugnolle F, Maganga GD, et al. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasit Vectors. 2016;9:333.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. Compartments revealed in food-web structure. Nature. 2003;426:282–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stouffer DB, Bascompte J. Understanding food-web persistence from local to global scales. Ecol Lett. 2010;13:154–61.PubMed 
    Article 

    Google Scholar 
    Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol. 2006;91:64–68.PubMed 
    Article 

    Google Scholar 
    Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol. 2013;79:2952–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of bat flies (Nycteribiidae) from the Malagasy Region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016;82:1778–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graciolli G, Dick CW. Checklist of World Nycteribiidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322579074_CHECKLIST_OF_WORLD_NYCTERIBIIDAE_DIPTERA_HIPPOBOSCOIDEA.Graciolli G, Dick CW. Checklist of World Streblidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322578987_CHECKLIST_OF_WORLD_STREBLIDAE_DIPTERA_HIPPOBOSCOIDEA.Breitschwerdt EB, Kordick DL. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164:5–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA. Genetic signature of reproductive manipulation in the phylogeography of the bat fly, Trichobius major. J Hered. 2011;102:705–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012;12:1717–23.PubMed 
    Article 

    Google Scholar 
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stuckey MJ, Chomel BB, de Fleurieu EC, Aguilar-Setién A, Boulouis H-J, Chang C-C. Bartonella, bats and bugs: A review. Comp Immunol Microbiol Infect Dis. 2017;55:20–29.PubMed 
    Article 

    Google Scholar 
    Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13:223–34.PubMed 
    Article 

    Google Scholar  More