More stories

  • in

    Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2

    Pascolini-Campbell, M., Reager, J. T., Chandanpurkar, H. A. & Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593, 543–547 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. 117, 9216–9222 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 2016GL071921 (2017).
    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).PubMed 
    Article 

    Google Scholar 
    Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob. Change Biol. 18, 2246–2255 (2012).ADS 
    Article 

    Google Scholar 
    Zuidema, P. A. et al. Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Glob. Change Biol. 26, 4028–4041 (2020).ADS 
    Article 

    Google Scholar 
    Bansal, S., James, J. J. & Sheley, R. L. The effects of precipitation and soil type on three invasive annual grasses in the western United States. J. Arid Environ. 104, 38–42 (2014).ADS 
    Article 

    Google Scholar 
    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Connor, J. C. et al. Forests buffer against variations in precipitation. Glob. Change Biol., 27, 4686–4696 (2021).Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).ADS 
    Article 

    Google Scholar 
    Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adams, M. A., Buckley, T. N., Binkley, D., Neumann, M. & Turnbull, T. L. CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat. Commun. 12, 5194 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021).Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).ADS 
    Article 

    Google Scholar 
    Zhang, W., Brandt, M., Guichard, F., Tian, Q. & Fensholt, R. Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the sahelian rainfall regime. J. Hydrol. 550, 427–440 (2017).ADS 
    Article 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).ADS 
    Article 

    Google Scholar 
    Huntzinger, D. N. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – part 1: overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013).ADS 
    Article 

    Google Scholar 
    Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Naturalist 164, 625–632 (2004).Article 

    Google Scholar 
    Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883 (2017).PubMed 
    Article 

    Google Scholar 
    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO 2 reveals distinct response patterns between disturbed and undisturbed vegetation: vegetation responses to elevated CO2. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).CAS 
    Article 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).ADS 
    Article 

    Google Scholar 
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO 2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. 113, E7222–E7230 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González de Andrés, E. et al. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 106, 59–75 (2018).Article 
    CAS 

    Google Scholar 
    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).Article 

    Google Scholar 
    Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. 113, 12757–12762 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions: Photosynthesis and stomatal conductance responses to rising [CO2]. Plant, Cell Environ. 30, 258–270 (2007).CAS 
    Article 

    Google Scholar 
    Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytologist 221, 693–705 (2019).Article 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).ADS 
    Article 

    Google Scholar 
    Thompson, S. E., Harman, C. J., Heine, P. & Katul, G. G. Vegetation-infiltration relationships across climatic and soil type gradients: vegetation-infiltration relationships. J. Geophys. Res. 115, G02023 (2010).ADS 

    Google Scholar 
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytologist 201, 1086–1095 (2014).CAS 
    Article 

    Google Scholar 
    Cui, J. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, J. et al. Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land Areas. Geophys. Res. Lett. 48, e2021GL094293 (2021).Yang, Y. et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: Accounting for aboveground and belowground vegetation-CO2 effects. Hydrol. Earth Syst. Sci. 25, 3411–3427 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2022).ADS 
    Article 
    CAS 

    Google Scholar 
    Sang, Y. et al. Comment on “Recent global decline of CO 2 fertilization effects on vegetation photosynthesis”. Science 373, eabg4420 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).ADS 
    Article 

    Google Scholar 
    Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).ADS 
    Article 

    Google Scholar 
    Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).ADS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).ADS 
    Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl Climatol. 115, 15–40 (2014).ADS 
    Article 

    Google Scholar 
    Prado, R. & West, M. Time series: modeling, computation, and inference (CRC Press, 2010).West, M. & Harrison, J. Bayesian forecasting and dynamic models (Springer, 1997).Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Chang. 9, 880–885 (2019).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS 
    Article 

    Google Scholar  More

  • in

    Effects of vegetation spatial pattern on erosion and sediment particle sorting in the loess convex hillslope

    Zhao, B. H. et al. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau China. Geoderma 296, 10–17 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Shi, P. et al. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau China. Sci. Total Environ. 707, 135507 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 351, 188–196 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chang, E. H. et al. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau China. CATENA 181, 104095 (2019).Article 

    Google Scholar 
    Chang, E. H. et al. The impact of vegetation successional status on slope runoff erosion in the Loess Plateau of China. Water 11, 2614 (2019).CAS 
    Article 

    Google Scholar 
    Sun, L. Y., Zhou, J. L., Cai, Q. G., Liu, S. X. & Xiao, J. G. Comparing surface erosion processes in four soils from the Loess Plateau under extreme rainfall events. Int. Soil Water Conse. 9, 520–531 (2021).Article 

    Google Scholar 
    Wang, R. et al. Effects of gully head height and soil texture on gully headcut erosion in the Loess Plateau of China. CATENA 207, 105674 (2021).Article 

    Google Scholar 
    Wei, H., Zhao, W. W. & Wang, H. Effects of vegetation restoration on soil erosion on the Loess Plateau: A case study in the Ansai watershed. Int. J. Environ. Res. Pub He. 18, 6266 (2021).Article 

    Google Scholar 
    Zhang, X., Li, P., Li, Z. B., Yu, G. Q. & Li, C. Effects of precipitation and different distributions of grass strips on runoff and sediment in the loess convex hillslope. CATENA 162, 130–140 (2018).Article 

    Google Scholar 
    Foster, G. R., Huggins, L. F. & Meyer, L. D. A laboratory study of rill hydraulics: II Shear Stress Relationships. T Asabe. 27, 797–804 (1984).Article 

    Google Scholar 
    Zhu, B. B., Zhou, Z. C. & Li, Z. B. Soil erosion and controls in the slope-gully system of the Loess Plateau of China: A review. Front. Environ. Sci. 9, 657030 (2021).Article 

    Google Scholar 
    Wang, H., Wang, J. & Zhang, G. H. Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. CATENA 201, 105235 (2021).Article 

    Google Scholar 
    Chang, X. G. et al. Determining the contributions of vegetation and climate change to ecosystem WUE variation over the last two decades on the Loess Plateau China. Forests 12, 1442 (2021).Article 

    Google Scholar 
    Li, B. B. et al. Deep soil moisture limits the sustainable vegetation restoration in arid and semi-arid Loess Plateau. Geoderma 399, 115122 (2021).ADS 
    Article 

    Google Scholar 
    Dong, L. B. et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manage. 302, 113985 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi, P. et al. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau China. Agric. Water Manage. 259, 107231 (2022).Article 

    Google Scholar 
    Xia, L. et al. Soil moisture response to land use and topography across a semi-arid watershed: Implications for vegetation restoration on the Chinese Loess Plateau. J. Mt Sci. 19, 103–120 (2022).Article 

    Google Scholar 
    Chen, Y. X. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau China. Appl. Soil Ecol. 170, 104292 (2022).Article 

    Google Scholar 
    Qiu, L. J. et al. Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China. J. Hydrol. 600, 126580 (2021).Article 

    Google Scholar 
    Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    Hu, C. J., Fu, B. J., Liu, G. H., Jin, T. T. & Guo, L. Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau China. J. Soil Sedim. 10, 1082–1091 (2010).CAS 
    Article 

    Google Scholar 
    Sun, C. L., Chai, Z. Z., Liu, G. B. & Xue, S. Changes in species diversity patterns and spatial heterogeneity during the secondary succession of grassland vegetation on the Loess Plateau China. Front. Plant Sci. 8, 1465 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, J. X. Threholds in vegetation-precipitation relationship and the implications in restoration of vegetation on the Loesee Plateau China. Acta Ecol. Sin. 25, 1233–1239 (2005).
    Google Scholar 
    Yang, X., Shao, M. A., Li, T. C. G, M. & Chen, M. Y. Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau. Ecol. Indic. 122, 107236 (2021).Bullock, M. S., Nelson, S. D. & Kemper, W. D. Soil cohesion as affected by freezing, water content, time and tillage. Soil Sci. Soc. Am. J. 52, 70–776 (1988).Article 

    Google Scholar 
    Wang, T. et al. Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall. J. Arid Land. 9, 34–243 (2017).
    Google Scholar 
    Su, Y. Y., Li, P., Ren, Z. P., Xiao, L. & Zhang, H. Freeze–thaw effects on erosion process in loess slope under simulated rainfall. J. Arid Land. 12, 937–949 (2020).Article 

    Google Scholar 
    Slattery, M. C. & Burt, T, P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surf. Proc. Land. 22, 705–719 (1997).Wu, F. Z., Shi, Z. H., Yue, B. J. & Wang, L. Particle characteristics of sediment in erosion on hillslope. Acta Pedol. Sin. 49, 1235–1240 (2012).
    Google Scholar 
    Issa, O. M., Bissonnais, Y. L. & Planchon, O. Soil detachment and transport on field-and laboratory-scale interrill areas: Erosion processes and the size-selectivity of eroded sediment. Earth Surf. Proc. Land. 31, 929–939 (2006).ADS 
    Article 

    Google Scholar 
    Shi, Z. H. et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 454–455, 123–130 (2012).Article 

    Google Scholar 
    Koiter, A. J., Owens, P. N. & Petticrew, E. L. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 125, 24–42 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 331, 178–185 (2006).ADS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. CATENA 2007(70), 350–355 (2007).
    Google Scholar 
    Zheng, M. G., Cai, Q. G., Wang, C. F. & Liu, J. G. Effect of vegetation and other measures for soil and water conservation on runoff-sediment relationship in watershed scale. J. Hydraul. Eng. 38, 47–53 (2007).
    Google Scholar 
    Wei, X. et al. Flow characteristics of convex composite slopes of loess under vegetation cover. Trans. Chin. Soc. Agric. Eng. 30, 147–154 (2014).CAS 

    Google Scholar 
    Wang, L. et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau China. J. Hydrol. 512, 168–176 (2014).ADS 
    Article 

    Google Scholar 
    Li, M., Yao, W. Y., Ding, W. F., Yang, J. F. & Chen, J. N. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system. J. Geogr. Sci. 19, 321–330 (2009).Article 

    Google Scholar 
    Benito, E., Santiago, J. L., Blas, E. D. & Varela, M. E. Deforestation of water-repellent soils in Galicia (NW Spain): Effects on surface runoff and erosion under simulated rainfall. Earth Surf. Proc. Land. 28, 145–155 (2003).ADS 
    Article 

    Google Scholar 
    Han, P. & Li, X. X. Study on soil erosion and vegetation effect on soil conservation in the Yellow River Basin. J. Basic Sci. Eng. 16, 181–190 (2008).
    Google Scholar 
    Bissonnais, Y. L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425–437 (1996).Zhang, X., Yu, G. Q., Li, Z. B. & Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 28, 2415–2433 (2014).Article 

    Google Scholar 
    Xu, G. C. et al. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau China. CATENA 158, 20–29 (2017).Article 

    Google Scholar 
    Yu, Y. et al. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. J. Soil Sedim. 17, 144–156 (2017).CAS 
    Article 

    Google Scholar 
    Dou, Y. X., Yang, Y., An, S. S. & Zhu, Z. L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau China. CATENA 185, 104294 (2020).CAS 
    Article 

    Google Scholar 
    He, J., Shi, X. Y. & Fu, Y. J. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manage. 289, 112562 (2021).PubMed 
    Article 

    Google Scholar 
    Qiu, D. X., Gao, P., Mu, X. M. & Zhao, B. L. Vertical variations and transport mechanism of soil moisture in response to vegetation restoration on the Loess Plateau of China. Hydrol. Process. 35, e14397 (2021).
    Google Scholar 
    Zhang, G. H., Liu, G. B., Wang, G. L. & Wang, Y. X. Effects of Vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere 21, 676–684 (2011).CAS 
    Article 

    Google Scholar 
    Gu, Z. J. et al. Estimating the effect of Pinus massoniana Lamb plots on soil and water conservation during rainfall events using vegetation fractional coverage. CATENA 109, 225–233 (2013).Article 

    Google Scholar 
    Comprehensive analysis of relationship between vegetation attributes and soil erosion on hillslopes in the Loess Plateau of China. Environ Earth Sci. 72, 1721–1731 (2014).Zhao, G. J., Mu, X. M., Wen, Z. M., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad. Dev. 24, 499–510 (2013).Article 

    Google Scholar 
    Zhang, L., Wang, J. M., Bai, Z. K. & Lv, C. J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. CATENA 128, 44–53 (2015).Article 

    Google Scholar 
    Wei, W., Pan, D. L. & Feng, J. Tradeoffs between soil conservation and soil-water retention: The role of vegetation pattern and density. Land Degrad. Dev. 33, 18–27 (2021).Article 

    Google Scholar 
    Asadi, H., Ghadiri, H., Rose, C. W., Yu, B. & Hussein, J. An investigation of flow-driven soil erosion processes at low streampowers. J. Hydrol. 342, 134–142 (2007).ADS 
    Article 

    Google Scholar 
    Shi, Z. H., Yan, F. L., Li, L., Li, Z. X. & Cai, C. F. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. CATENA 81, 240–248 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau China. CATENA 137, 1–11 (2016).Article 

    Google Scholar 
    Han, Z. M. et al. Effects of vegetation restoration on groundwater drought in the Loess Plateau China. J. Hydrol. 591, 125566 (2020).Article 

    Google Scholar 
    Liang, Y., Jiao, J. Y., Tang, B. Z., Cao, B. T. & Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region China. J. Hydrol. 584, 124694 (2020).Article 

    Google Scholar  More

  • in

    Feeding ecology of the endangered Asiatic wild dogs (Cuon alpinus) across tropical forests of the Central Indian Landscape

    Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manag. 42, 528 (1978).Article 

    Google Scholar 
    Ackerman, B. B., Lindzey, F. G. & Hemker, T. P. Cougar food habits in Southern Utah. J. Wildl. Manag. 48, 147 (1984).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Klare, U., Kamler, J. F. & Macdonald, D. W. A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Rev. 41, 294–312 (2011).Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Monterroso, P. et al. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mammal Rev. 49, 97–112 (2019).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J., Hofmeyr, M. & Kerley, G. I. H. Prey preferences of the African wild dog Lycaon Pictus (Canidae: Carnivora): Ecological requirements for conservation. J. Mammal. 87, 1122–1131 (2006).Article 

    Google Scholar 
    Crawford, K., Mcdonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Crossey, B., Chimimba, C., du Plessis, C., Ganswindt, A. & Hall, G. African wild dogs ( Lycaon pictus ) show differences in diet composition across landscape types in Kruger National Park, South Africa. J. Mammal. 102, 1211–1221 (2021).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).Article 

    Google Scholar 
    Kamler, J. F. et al. Cuon alpinus. IUCN Red List Threat. Spec. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).Article 

    Google Scholar 
    Johnsingh, A. J. T. Distribution and status of dhole Cuon alpinus Pallas, 1811 in South Asia. Mammalia 49, (1985).Acharya, B. B. Dissertation submitted to Saurashtra University, Rajkot, Gujarat, for the award of the Degree of Doctor of Philosophy in Wildlife Science. 133.Sillero-Zubiri, E. C., Hoffmann, M. & Macdonald, D. W. Canids: Foxes, Wolves, Jackals and Dogs. 443.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Karanth, K. U., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S. & Karanth, K. U. On a dhole trail: Examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS ONE 9, e98803 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).PubMed 
    Article 

    Google Scholar 
    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs 12, 14–34 (2017).Article 

    Google Scholar 
    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).Article 

    Google Scholar 
    Clements, H. S., Tambling, C. J., Hayward, M. W. & Kerley, G. I. H. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large african carnivores. PLoS ONE 9, e101054 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hayward, M. W., Lyngdoh, S. & Habib, B. Diet and prey preferences of dholes ( C uon alpinus ): Dietary competition within A sia’s apex predator guild. J. Zool. 294, 255–266 (2014).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S. & Oli, M. K. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore. Sci. Total Environ. 714, 136798 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. A. Cuon alpinus. Mamm. Spec. https://doi.org/10.2307/3503800 (1978).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    Ghaskadbi, P., Nigam, P. & Habib, B. Stranger Danger: Differential response to strangers and neighbors by a social carnivore, the Asiatic wild dog (Cuon alpinus). Behav. Ecol. Sociobiol. 76, 86. https://doi.org/10.1007/s00265-022-03188-4 (2022). Article 

    Google Scholar 
    Ghaskadbi, P., Das, J., Mahadev, V. & Habib, B. First record of mixed species association between dholes and a wolf from Satpura Tiger Reserve, India. Canid Biol. Conserv. 23(4): 15–17. http://www.canids.org/CBC/23/Dhole_wolf_association.pdf (2021).Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgaonkar, A. Satpura National Park, India. 135.Borah, J., Deka, K., Dookia, S. & Gupta, R. P. Food habits of dholes (Cuon alpinus) in Satpura Tiger Reserve. Madhya Pradesh, India. 73, 85–88 (2009).
    Google Scholar 
    Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger ( Panthera tigris ), leopard ( Panthera pardus ) and dhole ( Cuon alpinus ) in Nagarahole, India. J. Zool. 250, 255–265 (2000).Article 

    Google Scholar 
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope. Tetracerus quadricornis. 73, 1–6 (2009).
    Google Scholar 
    Sharma, K., Chundawat, R. S., Van Gruisen, J. & Rahmani, A. R. Understanding the patchy distribution of four-horned antelope Tetracerus quadricornis in a tropical dry deciduous forest in Central India. J. Trop. Ecol. 30, 45–54 (2014).Article 

    Google Scholar 
    Rahman, D. A., Syamsudin, M., Firdaus, A. Y. & Afriandi, H. T. Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia. J. Threat. Taxa 13, 20278–20283 (2021).Article 

    Google Scholar 
    Durbin, L. S., Venkataraman, A., Hedges, S. & Dukworth, W. South Asia—south of th e Himalaya (oriental). In Canids: Foxes, Wolves, Jackals and Dogs . Status Survey and Conserva- tion Action Plan. (IUCN Canid Specialist Group, 2004).Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the Endangered dhole Cuon alpinus in the high elevation Eastern Himalayan habitats of Khangchendzonga Biosphere Reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    Yoshimura, H., Hirata, S. & Kinoshita, K. Plant-eating carnivores: Multispecies analysis on factors influencing the frequency of plant occurrence in obligate carnivores. Ecol. Evol. 11, 10968–10983 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snake-in-the-diet-of-Cuon-alpinus-Pallas-1811-in-Kalakad-Mundanthurai-Tiger-Reserve-Tamil-Nadu.pdf.Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR)— Phase IV Monitoring Report and Report on Collaring of Leopards. (2014). 26 (2015).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2015). 62 (2016).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2016). 27 (2017).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2017). 44 (2018).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2018). 41 (2019).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2019). 47 https://ntca.gov.in/assets/uploads/Reports/WII/TATR%20Phase%20IV%202019.pdf (2020).Jhala, Y. V., Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018. 656 https://ntca.gov.in/assets/uploads/Reports/AITM/Tiger_Status_Report_2018.pdf (2019).Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. J. Zool. 260, 285–290 (2003).Article 

    Google Scholar 
    Woodroffe, R., Lindsey, P. A., Romañach, S. S. & Ranah, S. M. K. African Wild Dogs ( Lycaon pictus ) Can Subsist on Small Prey: Implications for Conservation. J. Mammal. 88, 181–193 (2007).Article 

    Google Scholar 
    Merrill, E. et al. Building a mechanistic understanding of predation with GPS-based movement data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2279–2288 (2010).Article 

    Google Scholar 
    Pitman, R. T., Mulvaney, J., Ramsay, P. M., Jooste, E. & Swanepoel, L. H. Global Positioning System-located kills and faecal samples: A comparison of leopard dietary estimates. J. Zool. 292, 18–24 (2014).Article 

    Google Scholar 
    Jansen, C., Leslie, A. J., Cristescu, B., Teichman, K. J. & Martins, Q. Determining the diet of an African mesocarnivore, the caracal: Scat or GPS cluster analysis?. Wildl. Biol. 2019, wlb.00579 (2019).Article 

    Google Scholar 
    Leighton, G. R. M. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst. 23, 569–583 (2020).Article 

    Google Scholar 
    Studd, E. K. et al. The Purr-fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol. Evol. 12, 1277–1287 (2021).Article 

    Google Scholar 
    Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing the effect of Prey availability and Apex predator. Ecol. Evol. 11, 4774–4785 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 11033 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, D. M., Vyver, D. B. & Bissett, C. The influence of an apex predator introduction on an already established subordinate predator. J. Zool. 313, 224–235 (2021).Article 

    Google Scholar 
    Johnsingh, A. J. T. Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56, (1992).Marucco, F., Pletscher, D. H. & Boitani, L. Accuracy of scat sampling for carnivore diet analysis: Wolves in the Alps as a case study. J. Mammal. 89, 665–673 (2008).Article 

    Google Scholar 
    Martins, Q., Horsnell, W. G. C., Titus, W., Rautenbach, T. & Harris, S. Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87 (2011).Article 

    Google Scholar 
    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    Thinley, P. et al. Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm. Biol. 76, 518–520 (2011).Article 

    Google Scholar 
    Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Modi, S., Mondol, S., Nigam, P. & Habib, B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci. Rep. 11, 16371 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Putman, R. J. Facts from faeces. Mammal Rev. 14, 79–97 (1984).Article 

    Google Scholar 
    Kohn, M. H. & Wayne, R. K. Facts from feces revisited. Trends Ecol. Evol. 12, 223–227 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukherjee, S., Goyal, S. P. & Chellam, R. Standardisation of scat analysis techniques for leopard (Panthera pardus) in Gir National Park, Western India. Mammalia 58, (1994).Bahuguna, A., Sahajpal, V., Goyal, S. P., Mukherjee, S. & Thakur, V. Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India (Wildlife Institute of India, 2010).
    Google Scholar 
    Leopold, B. D. & Krausman, P. R. Diets of 3 Predators in Big Bend National Park, Texas. J. Wildl. Manag. 50, 290 (1986).Article 

    Google Scholar 
    Van Ballenberghe, V., Erickson, A. W. & Byman, D. Ecology of the Timber Wolf in Northeastern Minnesota. Wildl. Monogr. 3–43 (1975).Ciucci, P., Boitani, L., Pelliccioni, E. R., Rocco, M. & Guy, I. A comparison of scat-analysis methods to assess the diet of the wolf Canis lupus. Wildl. Biol. 2, 37–48 (1996).Article 

    Google Scholar 
    Weaver, J. L. Refining the equation for interpreting prey occurrence in Gray wolf scats. J. Wildl. Manag. 57, 534–538 (1993).Article 

    Google Scholar 
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).PubMed 
    Article 

    Google Scholar 
    Lumetsberger, T. et al. Re-evaluating models for estimating prey consumption by leopards. J. Zool. 302, 201–210 (2017).Article 

    Google Scholar 
    Jacobs, J. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417 (1974).ADS 
    PubMed 
    Article 

    Google Scholar 
    Karanth, K. U. & Nichols, J. D. Distribution and Dynamics of Tiger and Prey Populations in Maharashtra, India Final Technical Report (October 2001 to August 2005). (2005).19 LIVESTOCK CENSUS-2012 ALL INDIA REPORT. https://d1wqtxts1xzle7.cloudfront.net/56129012/6ESSJan-6098P-with-cover-page-v2.pdf?Expires=1644491741&Signature=Apc1rT2raxYnUyrRJ64NqOd6oUEpnF2AiRQVPB-9gS2W2TIrOcInF3KnBJVA2dPxzfbIz8ap9IPe-l24mpYs9i8xEZAvsxRVnDhSHT8H9C9fd0voDxyUwl3gUyJgDDzLO-204J95UuopJQw5Df6xTNmTOs5Oiadk0Fkf9Fk-QRVajisuRjzyX2eLmrBH4LyTJFu5irffnKwnluqHl53KoMAQ6nTKi7dlqI4pdFIVCtisXpkSsI44xV1mYX6KC67zmKCZlvjpTxTuHCFV4nmfpgZpPXh4sIOE-0utbwcf5g~UdmRtVVhaXfjZ2iw0gOm7-bIuQILDldPr3OnNUqXbSw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (2012).The Measurement of Niche Overlap and Some Relatives – Hurlbert – 1978 – Ecology – Wiley Online Library. https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.2307/1936632.Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manag. 38, 541–545 (1974).Article 

    Google Scholar  More

  • in

    Dogs suppress a pivotal function in the food webs of sandy beaches

    Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Cons. 157, 341–351 (2013).Article 

    Google Scholar 
    Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Cons. 210, 56–59 (2017).Article 

    Google Scholar 
    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132 (2011).Article 

    Google Scholar 
    Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T. & Gommper, M. Dogs as predators and trophic regulators. Free-ranging dogs and wildlife conservation, 55–68 (2014).Gompper, M. E. In Free-ranging dogs and wildlife conservation, Oxford University Press (2014).Somaweera, R., Webb, J. K. & Shine, R. It’sa dog-eat-croc world: Dingo predation on the nests of freshwater crocodiles in tropical Australia. Ecol. Res. 26, 957–967 (2011).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. In Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.) (ed Matthew E Gompper) Ch. 4, 94–113 (Oxford University Press, 2013).Zapata-Ríos, G. & Branch, L. C. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Cons. 193, 9–16 (2016).Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Gingold, G., Yom-Tov, Y., Kronfeld-Schor, N. & Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 12, 155–162 (2009).Article 

    Google Scholar 
    Fernández-Juricic, E. & Tellería, J. L. Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47, 13–21 (2000).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).Article 

    Google Scholar 
    Silva-Rodríguez, E. A. & Sieving, K. E. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Cons. 150, 103–110 (2012).Article 

    Google Scholar 
    Banks, P. B. & Bryant, J. V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Let. 3, 611–613 (2007).Article 

    Google Scholar 
    Langston, R., Liley, D., Murison, G., Woodfield, E. & Clarke, R. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus?. Ibis 149, 27–36 (2007).Article 

    Google Scholar 
    Lenth, B. E., Knight, R. L. & Brennan, M. E. The effects of dogs on wildlife communities. Nat. Areas J. 28, 218–227 (2008).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.), 94–113 (2013).Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413 (2012).PubMed 
    Article 

    Google Scholar 
    Maguire, G. S., Miller, K. K. & Weston, M. A. In Impacts of Invasive Species on Coastal Environments 397–412 (Springer, 2019).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. III. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    Nel, R. et al. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 150, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 1–11 (2019).MathSciNet 

    Google Scholar 
    Lockwood, J. L. & Maslo, B. In Coastal Convervation (eds Brooke Maslo & JL Lockwood) 1–10 (Cambridge University Press, 2014).Morin, D. J., Lesmeister, D. B., Nielsen, C. K. & Schauber, E. M. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 15, e00413 (2018).Article 

    Google Scholar 
    Cortés, E. I., Navedo, J. G. & Silva-Rodríguez, E. A. Widespread presence of domestic dogs on sandy beaches of Southern Chile. Animals 11, 161 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burger, J., Jeitner, C., Clark, K. & Niles, L. J. The effect of human activities on migrant shorebirds: Successful adaptive management. Environ. Conserv. 31, 283–288 (2004).Article 

    Google Scholar 
    Dowling, B. & Weston, M. A. Managing a breeding population of the Hooded Plover Thinornis rubricollis in a high-use recreational environment. Bird Conserv. Int. 9, 255–270 (1999).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Interference competition at the landscape level: The effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47, 1225–1232 (2010).Article 

    Google Scholar 
    Marzluff, J. M., McGowan, K. J., Donnelly, R. & Knight, R. L. In Avian ecology and conservation in an urbanizing world 331–363 (Springer, 2001).Handler, A., Lonsdorf, E. V. & Ardia, D. R. Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Can. J. Zool. 98, 79–87 (2020).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. The J. Wildlife Manag. 67, 324–333 (2003).Article 

    Google Scholar 
    Méndez, A. et al. Adapting to urban ecosystems: unravelling the foraging ecology of an opportunistic predator living in cities. Urban Ecosyst. 23, 1117–1126 (2020).Article 

    Google Scholar 
    Rees, J., Webb, J., Crowther, M. & Letnic, M. Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers. Anim. Conserv. 18, 44–49 (2015).Article 

    Google Scholar 
    Kimber, O. et al. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob. Ecol. Conserv. 23, e01071 (2020).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Donázar, J. A. & Grimm, V. Bird sky networks: How do avian scavengers use social information to find carrion?. Ecology 95, 1799–1808 (2014).PubMed 
    Article 

    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. Royal Soc. B: Biol. Sci. 284, 20162654 (2017).Article 

    Google Scholar 
    Soulsbury, C. D., Iossa, G., Baker, P. J., White, P. C. & Harris, S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J. Mammal. 92, 190–199 (2011).Article 

    Google Scholar 
    Johnson, C. N. & VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 46, 641–646 (2009).Article 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schlacher, T. A., Strydom, S. & Connolly, R. M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica 48, 7–12 (2013).ADS 
    Article 

    Google Scholar 
    Dunbrack, T. R. & Dunbrack, R. L. Why take your dog on a picnic: presence of a potential predator (Canis lupus familiaris) reverses the outcome of food competition between northwestern crows (Corvus caurinus) and glaucous-winged gulls (Larus glaucescens). Northwest. Nat. 91, 94–98 (2010).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Cons. 238, 108234 (2019).Article 

    Google Scholar 
    Bhadra, A. et al. The meat of the matter: A rule of thumb for scavenging dogs?. Ethol. Ecol. Evol. 28, 427–440 (2016).Article 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ogada, D., Torchin, M., Kinnaird, M. & Ezenwa, V. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. & Evol. 2, 229–236 (2018).Article 

    Google Scholar 
    Gómez-Serrano, M. Á. Four-legged foes: Dogs disturb nesting plovers more than people do on tourist beaches. Ibis 163, 338–352 (2021).Article 

    Google Scholar 
    Stantial, M., Cohen, J., Darrah, A., Farrell, S. & Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01806-160108 (2021).Article 

    Google Scholar 
    Mahon, P. S. Targeted control of widespread exotic species for biodiversity conservation: The red fox (Vulpes vulpes) in New South Wales, Australia. Ecol. Manag. Restor. 10, S59–S69 (2009).ADS 
    Article 

    Google Scholar 
    Colwell, M. A. In The Population Ecology and Conservation of Charadrius Plovers 127–147 (CRC Press, 2019).Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Meek, P. et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 23, 2321–2343 (2014).Article 

    Google Scholar 
    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12, e0186679 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. Royal Soc. B: Biol. Sci. 274, 1101–1108 (2007).Article 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).Article 

    Google Scholar 
    Team, R. D. C. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (2013).Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Schlacher, T. A. et al. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 24, 493–509 (2015).Article 

    Google Scholar 
    Lewin, W.-C., Freyhof, J., Huckstorf, V., Mehner, T. & Wolter, C. When no catches matter: Coping with zeros in environmental assessments. Ecol. Ind. 10, 572–583 (2010).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 488 (Springer Science & Business Media, 2002).Bolker, B. & Team, R. (R package version 0.9, 2010).Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 439 (2015).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found. Stat. Comput., Vienna. https://CRAN. R-project. org/package= dplyr (2015).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016). More

  • in

    Predictors of psychological stress and behavioural diversity among captive red panda in Indian zoos and their implications for global captive management

    Influence of independent variables on the extent of stereotyped behaviourThe overall level of stereotypy we observed was low, suggesting that the pandas in our study were not seriously stressed. The variables that we found to be correlated with stereotypy are consistent with what we know of pandas’ natural history. Our study reports that variables like logs on the ground, nest, sociality, zoo, tree density, age and tree height used by pandas are the driving force for stereotypy in captive pandas involved in the study.Making the captive environment more naturalistic by integrating enrichment into the enclosure seems to be a promising way of alleviating stress and improving both welfare and reintroduction success41. It also helps to improve reproductive rate and overall health39. Improved health reduces stress and gives greater control over the environment increasing the chances of survival and longevity both in captivity and following release into the wild5. It is generally accepted that enrichment of the captive environment increases animals’ ability to cope with challenges and positive use of the environment reduces or eliminates aberrant behaviour23. Lack of enclosure enrichments and less complex enclosures can cause stereotypy and other atypical behaviours24, while providing enrichment increases the frequency of natural behaviours25 and thereby reduces stress, which in turn decreases stereotypy27. But enrichment needs to be appropriate for the species of animal concerned. Abnormal behaviours are often associated with captive conditions that deviate greatly from the species’ natural environment. Consistent with this argument we found that though dead and fallen logs on the ground are one of the important characteristics of the panda habitats in the wild42,43,44,45, merely providing them in captivity does not ensure the species’ welfare: in fact, stereotypy increased with log density in our study subjects. This could be due to the fact that four individuals that showed more stereotypy were housed in the small barren enclosures with no trees but more logs as a part of enrichment. Without those four individuals, the linear relation between stereotypy and log density was not statistically significant. This clearly suggested that merely providing logs in the small enclosures does not maintain welfare.
    When animals are housed in enclosures designed to resemble their natural habitat by considering their natural history (provision of vegetation, shelter, pool, etc.), there is a reduction or elimination of abnormal patterns of behaviour such as stereotypies, increased fitness and improved health, all of which may influence reproduction25,46,47,48. For many species, nests, shelter or burrows in enclosures will serve as retreat and hiding places, which are essential to cope with environmental stressors10. Gerbils, mice and rabbits have all shown less stereotyped behaviour when retreats are provided9,49,50,51. Such retreats can mitigate the effects of zoo visitors, who can serve as a source of stress for species that rarely interact with humans in the wild. Consistent with these previous results, we found that with provision of nests, the extent of stereotypy decreased in captive pandas. Many species prefer nests both for rearing the young as well as for resting and shelter, and pandas follow this pattern, so providing nests in adequate numbers will supports their natural behaviour as well as provide relief from environmental stressors. Zidar recommends providing one more nest than there are individuals in an enclosure52.Although pandas are an asocial species, our study showed that pandas show more stereotyped behaviour when housed alone than when with another individual or in group. Being a solitary species in the wild might encourage management to house them singly in captivity, but not every activity and habit of species in the wild can be used in captivity. For example, polar bears are also a solitary species, and it was at one time thought best to manage them alone, but it was found that managing them in a social setting reduces stereotypic pacing behaviour53, consistent with this study. Importantly, managers of zoo should note that living in group is greatly influenced by the individuals’ compatibility and hence this should be kept in mind while pairing.Similarly, we found that the presence of trees, and greater mean tree height use by pandas, reduced stereotypy. Pandas’ preferred high elevation habitat is favourable for taller trees20, and Shrestha et al. found that canopy cover was an important factor in habitats for pandas in the wild54. In European zoos, pandas spend 90% of their time off the ground37. Consistent with these previous findings, our study reveals that more and taller trees support natural behaviours in panda. The Central Zoo Authority (CZA) of India enrichment manual recommends taller tree provision in panda enclosures, and again we provide empirical support for its recommendation.We found that with increasing age stereotypy increased in pandas. The older the individuals the more time spent in captivity with its associated risks of stereotypic behaviour. The same trend has been observed in other species: for example in captive bears stereotypic behaviour increased with age55. In another study Asiatic black bear and sun bear showed more stereotypy with age56.Influence of independent variables on behavioural diversityAs noted in the “Introduction” section, in a species like the panda, high daytime behavioural diversity is not necessarily a positive indication of good welfare. However, our comparison of behavioural diversity with stereotypy showed a negative trend (though not significant), suggesting that low behavioural diversity might be associated with poorer welfare.Nonetheless, we found some results that suggested that lower diversity might in fact be associated with a more natural lifestyle. Because of the amount of time that wild pandas spend foraging57 and sleeping or inactive, they cannot show much behavioural diversity, and in our sample of captive individuals, they showed the same trend. For example, behavioural diversity was lower when pandas were provided with more trees in the enclosure. This suggests that when appropriate conditions are maintained in captivity, panda prefer to be inactive during the day, as is consistent with their natural history57. As pandas are essentially arboreal mammals, naturally they also spend most of the time inactive (e.g. sleeping) on the trees57. Indeed, providing larger trees would promote inactive behaviours and hence lower behaviour diversity in captivity, this captures their natural behaviour. This is consistent with our results where increased tree height used by pandas decreased behavioural diversity.We found behavioural diversity was greater when there are more logs in the enclosure. In the Yele Reserve in Sichuan, China, Wei et al. found 107 of 185 panda dropping sites (57.8%) on shrub branches, 49 (26.5%) on fallen logs, and only 29 (15.7%) on the forest floor44. Droppings were found mostly on elevated structures ranging from 1 to 3 m above the forest floor and occasionally on trees over 12 m. Moreover, microhabitats selected by pandas were also characterized by fallen logs and tree stumps42,45. Wei and Zhang mention that to access bamboo leaves easily, pandas usually use some elevated objects, such as shrub branches, fallen logs, or tree stumps to lift their body43. Hence, providing tree logs in the vicinity supports their natural behaviour. But at the same time management should keep in mind that merely providing logs in the enclosure would not guarantee species welfare, as discussed in previous section with respect to stereotypy.Temperature is an important element of microclimate for animals, and influences the activity level of captive animals10. When temperature rises, many species show distress in captivity10. The red panda inhabits low-temperature areas20, so it is unlikely that higher temperatures would support natural behaviours. We found that with increased temperature behavioural diversity decreased in captive pandas. Similarly, we found that pandas showed higher behavioural diversity in the winter season, where temperatures are low as compared to summer season.Studies that have tried to relate behavioural diversity and stereotypy in captive animals have varied in their interpretation; many have found significantly inverse relationships between the two19. In this study our multivariate model suggested that behavioural diversity is negatively influenced by stereotypy in captive pandas, confirming previous research.Other factors associated with variations in behavioural diversity are less easy to identify with welfare, positive or negative. Behavioural diversity also decreases with age of pandas and increases with distance to cage mate, number of visitors and quantum of bamboo provided, though these effects were not significant in the REVS model.Taken together, these results suggest that higher behavioural diversity is not a straightforward indicator of better welfare in all captive animals. The overall non-significant relationship between stereotyped behaviour and diversity we observed could well be the result of a mixture of factors operating in opposite directions. To interpret diversity correctly, it would be helpful to know what level of diversity the species shows in the wild, and such data are rarely available—a limitation of our study as of many others. Although there are dissenting voices58, arguably what matters most both in terms of welfare and in terms of potential reintroduction to the wild, is that a captive animal’s time budget approximates as closely as possible that of a wild animal. It is not diversity as such that is important, but the behaviours that the animal exhibits.Differences between zoosOur study showed that both the extent of stereotyped behaviour and behavioural diversity varied significantly among zoos. However, Zoo 2, an important breeding centre, housed only a female and her two cubs; this may lead to many factors being confounded and is thus a limitation to our study. Captive animals rely on the zoo environment, its routine and husbandry practices to limit their stress levels, and any failure to provide suitable resources will certainly disturb them and lead to distress10. Controlling such variables appropriately will help reduce stress among captive animals, and we can rely to some extent on our knowledge of the species’ natural history to guide us through this challenge. Our study was able to identify some of the factors that are associated with better welfare, but even with these factors taken into account, significant differences among the three zoos remained. These are presumably due to subtler variations in the zoos’ environment or management regimes. Since the panda is endemic to high elevations, we considered whether differences between the elevations of the zoos might be relevant, but the biggest differences were between Zoos 1 and 3, which are at essentially the same elevation.In Zoo 1 pandas showed lower stereotypy and higher behavioural diversity then the other two zoos. Again, these differences may be due to subtle differences between the management regimes in the three zoos; possibilities include keepers’ attitudes and the zoo’s experience in managing pandas. It is notable that Zoo 1 has longer and wider experience in the management of red pandas than the other two zoos, which have joined the captive breeding programme more recently and have fewer animals. Other notable differences were that in Zoo 1, pandas are fed twice a day as compared to the other two zoos where feed is given all at one time (both bamboo and supplementary diet); and that in Zoo 1 the enclosures were of a good size for a small mammal like the red panda, and were well maintained with much natural vegetation. The other two zoos had a large enclosure with poor vegetation (trees and grass), or a small enclosure with a barren floor and no trees at all. Location of the enclosure also needs to be considered: in two of the enclosures at Zoo 3 the sun shone directly on the animals with no shade as such, keeping the temperature higher than would be natural for pandas. Any of these factors could be the reason the pandas performed comparatively well in Zoo 1, and it would be necessary to study a wider (and, therefore, cross-national) sample of zoos holding pandas to identify which of them are the most important. More

  • in

    Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota

    Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A. & Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 113, E3941–E3949 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world: Advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
    Google Scholar 
    King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS 
    PubMed 

    Google Scholar 
    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139 (2019).CAS 
    PubMed 

    Google Scholar 
    Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front. Immunol. 11, 626329 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. C. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, K. A., Bolton, J. S. & King, K. C. A globally ubiquitous symbiont can drive experimental host evolution. Mol. Ecol. 30, 3882–3892 (2021).CAS 
    PubMed 

    Google Scholar 
    Dahan, D., Preston, G. M., Sealey, J. & King, K. C. Impacts of a novel defensive symbiosis on the nematode host microbiome. BMC Microbiol. 20, 1–10 (2020).
    Google Scholar 
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).CAS 
    PubMed 

    Google Scholar 
    Zheng, Y. et al. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: A new attempt for a biocontrol strategy. Front. Plant Sci. 12, 655673 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Tudela, H., Claus, S. P. & Saleh, M. Next generation microbiome research: Identification of keystone species in the metabolic regulation of host-gut microbiota interplay. Front. Cell Dev. Biol. 9, 719072 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccine 8, 1–21 (2020).
    Google Scholar 
    Mateos-Hernández, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 12, 704621 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dirksen, P. et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 14, 38 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, M. et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10, 1998–2009 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, F. et al. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8, 485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).CAS 
    PubMed 

    Google Scholar 
    Röttjers, L. & Faust, K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hou, Y. et al. Hierarchical microbial functions prediction by graph aggregated embedding. Front. Genet. 11, 608512 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz, S., Huang, H., Appel, M. D., Berg, M. & Shapira, M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect. Immun. 81, 514–520 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 7, 852–857 (2019).
    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).CAS 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open-source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media (2009).Lhomme, S. NetSwan: Network Strengths and Weaknesses Analysis. R Pack Version (2015).Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: Network construction and comparison for microbiome data in R. Brief Bioinform. 22, bbaa290 (2021).PubMed 

    Google Scholar 
    Kanehisa, M. Goto, S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, H. & Peddada, S. D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. npj Biofilms Microbiomes 6, 60 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters. R package version 3.2. (2021).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 

    Google Scholar 
    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42 (1943).
    Google Scholar 
    Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: Evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 

    Google Scholar 
    Wu-Chuang, A. et al. Thermostable keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress. Microb. Ecol. https://doi.org/10.1007/s00248-021-01929-y (2021).Article 
    PubMed 

    Google Scholar 
    Ford, S. A. & King, K. C. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. Mol. Biol. Evol. 38, 1330–1338 (2021).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Q. et al. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Sci. Total Environ. 758, 143712 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Morais, U. L. A look at the way we look at complex networks’ robustness and resilience. https://arxiv.org/ftp/arxiv/papers/1909/1909.06448.pdf (2017).Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estrada-Peña, A., Cabezas-Cruz, A. & Obregón, D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens 9, 309 (2020).PubMed Central 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl. Acad. Sci. USA 116, 19368–19373 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. 77, 342–356 (2013).
    Google Scholar 
    Coyte, K. Z., Rao, C., Rakoff-Nahoum, S. & Foster, K. R. Ecological rules for the assembly of microbiome communities. PLoS Biol. 19, e3001116 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Sheridan, K. J. et al. Ergothioneine biosynthesis and functionality in the opportunistic fungal pathogen, Aspergillus fumigatus. Sci. Rep. 6, 1–17 (2016).
    Google Scholar 
    Rothfork, J. M. et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: New role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101, 13867–13872 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. Microbiol. 2, 33 (2012).
    Google Scholar 
    Matchado, M. S. et al. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mammeri, M. et al. Cryptosporidium parvum infection depletes butyrate producer bacteria in goat kid microbiome. Front. Microbiol. 16, 548737 (2020).
    Google Scholar 
    Foo, J. L., Ling, H., Lee, Y. S. & Chang, M. W. Microbiome engineering: Current applications and its future. Biotechnol. J. 12, 1600099 (2017).Inda, M. E., Broset, E., Lu, T. K. & de la Fuente-Nunez, C. Emerging frontiers in microbiome engineering. Trends Immunol. 40, 952–973 (2019). More

  • in

    Ecological analysis of Pavlovian fear conditioning in rats

    Watson, J. B. & Morgan, J. J. B. Emotional reactions and psychological experimentation. Am. J. Psychol. 28, 163–174 (1917).Article 

    Google Scholar 
    Watson, J. B. & Rayner, R. Conditioned emotional reactions. J. Exp. Psychol. 3, 1–14 (1920).Article 

    Google Scholar 
    LeDoux, J. Fear and the brain: where have we been, and where are we going. Biol. Psychiatry 44, 1229–1238 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouton, M. E., Mineka, S. & Barlow, D. H. A modern learning theory perspective on the etiology of panic disorder. Psychol. Rev. 108, 4–32 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J. J. & Jung, M. W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202 (2006).PubMed 
    Article 

    Google Scholar 
    Watson, J. B. Psychology as the behaviorist views it. Psychological Rev. 20, 158–177 (1913).Article 

    Google Scholar 
    Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).Guthrie, E. R. Conditioning as a principle of learning. Psychological Rev. 37, 412–428 (1930).Article 

    Google Scholar 
    Kamin, L. J. in Miami Symposium on the Prediction of Behavior (ed. Jones, M. R.) 9–33 (University of Miami Press, 1968).Rescorla, R. A. Probability of shock in the presence and absence of CS in fear conditioning. J. Comp. Physiol. Psychol. 66, 1–5 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, A. R., Logan, F. A., Haberlandt, K. & Price, T. Stimulus selection in animal discrimination learning. J. Exp. Psychol. 76, 171–180 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rescorla, R. A. & Wagner, A. R. A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement 64–99 (Appleton-Century-Crofts, 1972).Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, https://doi.org/10.1126/science.aaw4325 (2020).Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foa, E. B. & Rothbaum, B. O. Treating the Trauma of Rape: Cognitive Behavioral Therapy for PTSD (Guilford Press, 1998).Butler, A. C., Chapman, J. E., Forman, E. M. & Beck, A. T. The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin. Psychol. Rev. 26, 17–31 (2006).PubMed 
    Article 

    Google Scholar 
    Delgado, M. R., Olsson, A. & Phelps, E. A. Extending animal models of fear conditioning to humans. Biol. Psychol. 73, 39–48 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mahan, A. L. & Ressler, K. J. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 35, 24–35 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Craske, M. G. et al. What is an anxiety disorder? Focus 9, 20 (2011).
    Google Scholar 
    LeDoux, J. E. The Emotional Brain: the Mysterious Underpinnings of Emotional Life (Simon & Schuster, 1996).Fanselow, M. S. From contextual fear to a dynamic view of memory systems. Trends Cogn. Sci. 14, 7–15 (2010).PubMed 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation—a review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Bednekoff, P. A. Foraging in the Face of Danger 305–329 (University of Chicago Press, 2007).Stephens, D. W. Decision ecology: foraging and the ecology of animal decision making. Cogn. Affect Behav. Neurosci. 8, 475–484 (2008).PubMed 
    Article 

    Google Scholar 
    Beckers, T., Krypotos, A. M., Boddez, Y., Effting, M. & Kindt, M. What’s wrong with fear conditioning? Biol. Psychol. 92, 90–96 (2013).PubMed 
    Article 

    Google Scholar 
    Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pellman, B. A. & Kim, J. J. What can ethobehavioral studies tell us about the Brain’s fear system. Trends Neurosci. 39, 420–431 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorndike, E. Biological Lectures from the Marine Laboratory at Woods’ Holl, USA, for 1899. Nature 62, 411 (1900).Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).Choi, J. S. & Kim, J. J. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proc. Natl Acad. Sci. USA 107, 21773–21777 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zambetti, P. R., Schuessler, B. P. & Kim, J. J. Sex differences in foraging rats to naturalistic aerial predator stimuli. iScience 16, 442–452 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilensky, A. E., Schafe, G. E. & LeDoux, J. E. The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J. Neurosci. 20, 7059–7066 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, T. & Kim, J. J. Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats. J. Neurosci. 24, 3242–3250 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stiedl, O. & Spiess, J. Effect of tone-dependent fear conditioning on heart rate and behavior of C57BL/6N mice. Behav. Neurosci. 111, 703–711 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guimaraes, F. S., Hellewell, J., Hensman, R., Wang, M. & Deakin, J. F. Characterization of a psychophysiological model of classical fear conditioning in healthy volunteers: influence of gender, instruction, personality and placebo. Psychopharmacology 104, 231–236 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackintosh, N. J. The Psychology of Animal Learning (Academic Press, 1974).Bouton, M. E. Learning and Behavior (Sinauer Associates 2007).Sheafor, P. J. “Pseudoconditioned” jaw movements of the rabbit reflect associations conditioned to contextual background cues. J. Exp. Psychol. Anim. Behav. Process 1, 245–260 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rescorla, R. A. Behavioral studies of Pavlovian conditioning. Annu. Rev. Neurosci. 11, 329–352 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, R. F. & Krupa, D. J. Organization of memory traces in the mammalian brain. Annu. Rev. Neurosci. 17, 519–549 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S. & Wassum, K. M. The origins and organization of vertebrate pavlovian conditioning. Cold Spring Harb. Perspect. Biol. 8, a021717 (2015).PubMed 
    Article 

    Google Scholar 
    Lee, H. J., Berger, S. Y., Stiedl, O., Spiess, J. & Kim, J. J. Post-training injections of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neurosci. Lett. 303, 123–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palgi, Y., Gelkopf, M. & Berger, R. The inoculating role of previous exposure to potentially traumatic life events on coping with prolonged exposure to rocket attacks: a lifespan perspective. Psychiatry Res. 227, 296–301 (2015).PubMed 
    Article 

    Google Scholar 
    Somer, E. et al. Israeli civilians under heavy bombardment: prediction of the severity of post-traumatic symptoms. Prehosp. Disaster Med. 24, 389–394 (2009).PubMed 
    Article 

    Google Scholar 
    Alexander, B. K., Beyerstein, B. L., Hadaway, P. F. & Coambs, R. B. Effect of early and later colony housing on oral ingestion of morphine in rats. Pharm. Biochem. Behav. 15, 571–576 (1981).CAS 
    Article 

    Google Scholar 
    Gage, S. H. & Sumnall, H. R. Rat Park: how a rat paradise changed the narrative of addiction. Addiction 114, 917–922 (2019).PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S. & Lester, L. S. A Functional Behavioristic Approach to Aversively Motivated Behavior: Predatory Imminence as a Determinant of the Topography of Defensive Behavior 185–212 (Lawrence Erlbaum Associates Inc, 1988).Cain, C. & LeDoux, J. Brain mechanisms of Pavlovian and instrumental aversive conditioning. Handb. Behav. Neurosci. 17, 103–124 (2008).Article 

    Google Scholar 
    Choi, J. S., Cain, C. K. & LeDoux, J. E. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem. 17, 139–147 (2014).Article 

    Google Scholar 
    Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fanselow, M. S. Associative vs topographical accounts of the immediate shock freezing deficit in rats—implications for the response selection-rules governing species-specific defensive reactions. Learn. Motiv. 17, 16–39 (1986).Article 

    Google Scholar 
    Landeira-Fernandez, J., DeCola, J. P., Kim, J. J. & Fanselow, M. S. Immediate shock deficit in fear conditioning: effects of shock manipulations. Behav. Neurosci. 120, 873–879 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hull, C. L. A functional interpretation of the conditioned reflex. Psychol. Rev. 36, 498–511 (1929).Article 

    Google Scholar 
    Lazarus, A. A. Behavior Therapy and Beyond (McGraw-Hill Companies, 1971).Öhman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).PubMed 
    Article 

    Google Scholar 
    Lee, H. & Kim, J. J. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18, 8444–8454 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Cell death responses to acute high light mediated by non-photochemical quenching in the dinoflagellate Karenia brevis

    Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14, 156–178 (2012).
    Google Scholar 
    Hetland, R. D. & Campbell, L. Convergent blooms of Karenia brevis along the Texas coast. Geophys. Res. Lett. 34, 1–5 (2007).
    Google Scholar 
    Liu, G., Janowitz, G. S. & Kamykowski, D. A biophysical model of population dynamics of the autotrophic dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser. 210, 101–124 (2001).ADS 
    CAS 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why?. J. Geophys. Res. 111, C11003 (2006).ADS 

    Google Scholar 
    Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7, 341–375 (2015).PubMed 

    Google Scholar 
    Bidle, K. D. & Bender, S. J. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 7, 223–236 (2008).CAS 
    PubMed 

    Google Scholar 
    Bidle, K. D., Haramaty, L., Barcelos, R. J. & Falkowski, P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. 104, 6049–6054 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vardi, A. et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061–1064 (1999).CAS 
    PubMed 

    Google Scholar 
    Zuppini, A., Andreoli, C. & Baldan, B. Heat stress: An inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 48, 1000–1009 (2007).CAS 
    PubMed 

    Google Scholar 
    Britt, A. B. DNA damage and repair in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75–100 (1996).CAS 
    PubMed 

    Google Scholar 
    Jimenez, C. et al. Different ways to die: Cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J. Exp. Bot. 60, 815–828 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moharikar, S., D’Souza, J. S., Kulkarni, A. B. & Rao, B. J. Apoptotic-like cell death pathway is induced in unicellular chlorophyte chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: Detection and functional analyses. J. Phycol. 42, 423–433 (2006).CAS 

    Google Scholar 
    Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).CAS 
    PubMed 

    Google Scholar 
    Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).CAS 
    PubMed 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, P., Li, X. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Bidle, K. D. Programmed cell death in unicellular phytoplankton. Curr. Biol. 26, R594–R607 (2016).CAS 
    PubMed 

    Google Scholar 
    McKay, L., Kamykowski, D., Milligan, E., Schaeffer, B. & Sinclair, G. Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains. Harmful Algae 5, 623–636 (2006).CAS 

    Google Scholar 
    Miller-Morey, J. S. & Van Dolah, F. M. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 138, 493–505 (2004).
    Google Scholar 
    Tilney, C. L., Shankar, S., Hubbard, K. A. & Corcoran, A. A. Is Karenia brevis really a low-light-adapted species?. Harmful Algae 90, 101709 (2019).CAS 
    PubMed 

    Google Scholar 
    Yuasa, K., Shikata, T., Kuwahara, Y. & Nishiyama, Y. Adverse effects of strong light and nitrogen deficiency on cell viability, photosynthesis, and motility of the red-tide dinoflagellate Karenia mikimotoi. Phycologia 57, 525–533 (2018).CAS 

    Google Scholar 
    Krause, G. H. & Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence 463–495 (Springer, Netherlands, Cham, 2004).
    Google Scholar 
    Evens, T. J. Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight. J. Plankton Res. 23, 1177–1194 (2001).CAS 

    Google Scholar 
    Heil, C. A. et al. Influence of daylight surface aggregation behavior on nutrient cycling during a Karenia brevis (Davis) G. Hansen & Ø Moestrup bloom: Migration to the surface as a nutrient acquisition strategy. Harmful Algae 38, 86–94 (2014).CAS 

    Google Scholar 
    Errera, R. Response of the Toxic Dinoflagellate Karenia Brevis to Current and Projected Environmental Conditions. (Texas A&M University, PhD dissertation, 2013).Guillard, R. R. L. & Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236 (1993).
    Google Scholar 
    Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
    Google Scholar 
    Lin, Q. et al. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS ONE 12(9), e0184849 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Choi, C. J., Brosnahan, M. L., Sehein, T. R., Anderson, D. M. & Erdner, D. L. Insights into the loss factors of phytoplankton blooms: The role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol. Oceanogr. 62, 1742–1753 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. G., Janech, M. G. & Van Dolah, F. M. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. Harmful Algae 31, 41–53 (2014).CAS 
    PubMed 

    Google Scholar 
    Jauzein, C. & Erdner, D. L. Stress-related responses in Alexandrium tamarense cells exposed to environmental Changes. J. Eukaryot. Microbiol. 60, 526–538 (2013).CAS 
    PubMed 

    Google Scholar 
    Severin, T. & Erdner, D. L. The phytoplankton taxon-dependent oil response and its microbiome: Correlation but not causation. Front. Microbiol. 10, 1–14 (2019).
    Google Scholar 
    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).CAS 

    Google Scholar 
    Suzuki, N. & Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126, 45–51 (2006).CAS 

    Google Scholar 
    Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).CAS 

    Google Scholar 
    Gechev, T. S. & Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17–20 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant. Cell Environ. 33, 453–467 (2010).CAS 
    PubMed 

    Google Scholar 
    Purvis, A. C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100, 165–170 (1997).CAS 

    Google Scholar 
    Demmig-Adams, B. & Adams Iii, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. 43, 599–626 (1992).CAS 

    Google Scholar 
    Cui, Y., Zhang, H. & Lin, S. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 8, 1–14 (2017).
    Google Scholar 
    Cassell, R. T., Chen, W., Thomas, S., Liu, L. & Rein, K. S. Brevetoxin, the dinoflagellate neurotoxin, localizes to thylakoid membranes and interacts with the light-harvesting complex II (LHCII) of photosystem II. ChemBioChem 16, 1060–1067 (2015).CAS 
    PubMed 

    Google Scholar 
    Milne, A., Davey, M. S., Worsfold, P. J., Achterberg, E. P. & Taylor, A. R. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection-chemiluminescence. Limnol. Oceanogr. Methods 7, 706–715 (2009).CAS 

    Google Scholar 
    Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium trichodesmium. Science (80-) 294, 1534–1537 (2001).ADS 
    CAS 

    Google Scholar 
    Triantaphylidès, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Y. & Erdner, D. L. Dynamics of cell death across growth stages and the diel cycle in the dinoflagellate Karenia brevis. J. Eukaryot. Microbiol. https://doi.org/10.1111/jeu.12874 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, K., Jiang, H., Juneau, P. & Qiu, B. Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes. J. Appl. Phycol. 24, 1113–1122 (2012).CAS 

    Google Scholar 
    Yamori, W., Makino, A. & Shikanai, T. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep. 6, 20147 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).ADS 

    Google Scholar  More