Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V. & Fontaine, S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108, 528–545 (2020).CAS
Article
Google Scholar
Arft, A. M. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
Google Scholar
Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110-+ (2021).PubMed
Article
Google Scholar
Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).ADS
Article
Google Scholar
Shipley, B. & Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 16, 326–331 (2002).Article
Google Scholar
Eziz, A. et al. Drought effect on plant biomass allocation: a meta‐analysis. Ecol. Evolution 7, 11002–11010 (2017).Article
Google Scholar
Yan, Z. et al. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598 (2019).PubMed
PubMed Central
Article
Google Scholar
Li, C. et al. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201 (2019).PubMed
PubMed Central
Article
Google Scholar
Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).ADS
CAS
PubMed
Article
Google Scholar
Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).ADS
CAS
Article
Google Scholar
Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. N. Phytol. 188, 187–198 (2010).Article
Google Scholar
Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).ADS
Article
Google Scholar
Keller, J. A. & Shea, K. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 102, e03219 (2020).PubMed
Google Scholar
Cavagnaro, R. A., Oyarzabal, M., Oesterheld, M. & Grimoldi, A. A. Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl. Sci. 60, 178–184 (2014).Article
Google Scholar
Rasheed, M. U. et al. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude field experiment. Soil Biol. Biochem. 114, 279–294 (2017).CAS
Article
Google Scholar
Xu, M., Liu, M., Xue, X. & Zhai, D. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. J. Arid Land 8, 773–786 (2016).Article
Google Scholar
Zhou, X., Talley, M. & Luo, Y. Biomass, litter, and soil respiration along a precipitation gradient in southern great plains, USA. Ecosystems 12, 1369–1380 (2009).CAS
Article
Google Scholar
Hertel, D., Strecker, T., Mueller-Haubold, H. & Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101, 1183–1200 (2013).Article
Google Scholar
Zhou, L. et al. Responses of biomass allocation to multi-factor global change: a global synthesis. Agriculture, Ecosyst. Environ. 304, 107115 (2020).CAS
Article
Google Scholar
Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. N. Phytol. 193, 30–50 (2012).CAS
Article
Google Scholar
Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R. & Kaiser, C. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol. 10, 168 (2019).PubMed
PubMed Central
Article
Google Scholar
Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS
CAS
PubMed
Article
Google Scholar
Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).ADS
Article
Google Scholar
Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).PubMed
Article
Google Scholar
Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).PubMed
Article
Google Scholar
Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Vegetation Sci. 13, 378–387 (2010).
Google Scholar
Johnson, N. C., Rowland, D. L., Corkidi, L. & Allen, E. B. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89, 2868–2878 (2008).PubMed
Article
Google Scholar
Xia, J., Yuan, W., Wang, Y. P. & Zhang, Q. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep. 7, 3341 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Litton, C. M. & Giardina, C. P. Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct. Ecol. 22, 941–954 (2008).Article
Google Scholar
Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).ADS
Article
CAS
Google Scholar
Hovenden, M. J. et al. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 14, 1633–1641 (2008).ADS
Article
Google Scholar
Olszyk, D. M. et al. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Can. J. For. Res. 33, 269–278 (2003).CAS
Article
Google Scholar
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed
PubMed Central
Article
Google Scholar
Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119-+ (2019).ADS
CAS
PubMed
Article
Google Scholar
Pinto, R. S. & Reynolds, M. P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 128, 575–585 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).CAS
Article
Google Scholar
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS
Article
Google Scholar
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS
CAS
Article
Google Scholar
Wang, P., Huang, K. & Hu, S. Distinct fine‐root responses to precipitation changes in herbaceous and woody plants: a meta‐analysis. N. Phytol. 225, 1491–1499 (2020).Article
Google Scholar
Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS
CAS
PubMed
Article
Google Scholar
Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. N. Phytol. 193, 830–841 (2012).Article
Google Scholar
Bai, W. et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob. Change Biol. 16, 1306–1316 (2010).ADS
Article
Google Scholar
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698–702 (2008).CAS
Article
Google Scholar
Phillips, L. A., Ward, V. & Jones, M. D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 8, 699–713 (2014).CAS
PubMed
Article
Google Scholar
Gonzalez-Meler, M. A., Silva, L. B. C., Dias-De-Oliveira, E., Flower, C. E. & Martinez, C. A. Experimental air warming of a stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Front. Plant Sci. 8, 46 (2017).PubMed
PubMed Central
Article
Google Scholar
Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A. & Newcomb, J. M. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347, 339–350 (2011).CAS
Article
Google Scholar
An, J. et al. Physiological and growth responses to experimental warming in first-year seedlings of deciduous tree species. Turkish J. Agriculture Forestry 41, 175–182 (2017).CAS
Article
Google Scholar
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).ADS
CAS
PubMed
Article
Google Scholar
Liu, R., Li, Y., Wang, Y., Ma, J. & Cieraad, E. Variation of water use efficiency across seasons and years: Different role of herbaceous plants in desert ecosystem. Sci. Total Environ. 647, 827–835 (2018).ADS
PubMed
Article
CAS
Google Scholar
Duarte, A. G. & Maherali, H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8518 (2022).Bastos, A. & Fleischer, K. Fungi are key to CO2 response of soil. Nature 591, 532–534 (2021).ADS
Article
CAS
Google Scholar
Wang, X., Peng, L. & Jin, Z. Effects of AMF inoculation on growth and photosynthetic physiological characteristics of Sinocalycanthus chinensis under conditions of simulated warming. Acta Ecologica Sin. 36, 5204–5214 (2016).CAS
Google Scholar
Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).Article
CAS
Google Scholar
Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159–8159 (2015).ADS
PubMed
Article
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed
Article
CAS
Google Scholar
IPCC. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1535 (Cambridge University Press, 2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Task, G. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) (2000).Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article
Google Scholar
Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).PubMed
Article
Google Scholar
Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical Software for Meta-analysis (Sinauer Associates, Incorporated, 2000).Kembel, S. W. et al. Picante: integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2018).Article
CAS
Google Scholar
Calcagno, V. & De, C. M. Glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).Pinheiro, J. C., Bates, D. J., Debroy, S. D. & Sakar, D. nlme: Linear and nonlinear mixed effects models. R. package version 3, 1–117 (2009).
Google Scholar
Viechtbauer, W. Metafor: meta-analysis package for R. J. Stat. Softw. 2010, 1–10 (2010).
Google Scholar
Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, https://doi.org/10.18637/jss.v048.i02 (2012). More