Fossoriality in desert-adapted tenebrionid (Coleoptera) larvae
Matthews, E. G., Lawrence, J. F., Bouchard, P., Steiner, W. E. Jr. & Ślipiński, S. A. Tenebrionidae Latreille, 1802. In Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom. Vol. IV—Arthropoda: Insecta. Part 38 Coleoptera, Beetles. Vol. 2: Systematics (Part 2) (eds Leschen, R. A. B. et al.) 574–659 (Walter de Gruyter GmbH & Co, 2010).
Google Scholar
Kergoat, G. J. et al. Higher-level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Syst. Entomol. 39, 486–499. https://doi.org/10.1111/syen.12065 (2014).Article
Google Scholar
Bouchard, P. et al. Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). Zookeys 26, 1–633. https://doi.org/10.3897/zookeys.1050.64217 (2021).Article
Google Scholar
Matthews, E. G. & Bouchard, P. Tenebrionid Beetles of Australia 398 (Australian Biological Resources Study, 2008).
Google Scholar
Thomas, D. B. J. R. Patterns in the abundance of some tenebrionid beetles in the Mojave Desert. Environ. Entomol. 8, 568–657 (1979).Article
Google Scholar
Seely, M. K. & Louw, G. N. First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environ. 3, 25–54 (1980).ADS
Article
Google Scholar
Crawford, C. S. The community ecology of macroarthropod detritivores. In The Ecology of Desert Communities (ed. Polis, G. A.) 89–112 (The University of Arizona Press, 1991).
Google Scholar
Mordkovich, V. G. Species richness, population structure and functional significance of black-beetles (Coleoptera: Tenebrionidae) in steppes of Northern Asia. Russ. Entomol. J. 11, 57–68 (2002).
Google Scholar
Bartholomew, A. & El Moghrabi, J. Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. J. Arid Environ. 156, 34–40 (2018).ADS
Article
Google Scholar
Cheli, G. H., Bosco, T. & Flores, G. The role of Nyctelia dorsata Fairmaire, 1905 (Coleoptera: Tenebrionidae) on litter fragmentation processes and soil biogeochemical cycles in arid Patagonia. Ann. Zool. 72, 129–134. https://doi.org/10.3161/00034541ANZ2022.72.1.011 (2022).Article
Google Scholar
Nørgaard, T. & Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 7, 23. https://doi.org/10.1186/1742-9994-7-23 (2010).Article
PubMed
PubMed Central
Google Scholar
Comanns, P. Passive water collection with the integument: Mechanisms and their biomimetic potential. J. Exp. Biol. 221, jeb153130. https://doi.org/10.1242/jeb.153130 (2018).Article
PubMed
Google Scholar
Doyen, J. T. Familial and subfamilial classification of the Tenebrionoidea (Coleoptera) and a revised generic classification of the Coniontini (Tentyriidae). Quest. Entomol. 8, 357–376 (1972).
Google Scholar
Schulze, L. The Tenebrionidae of Southern Africa. XLII. Description of the early stages of Carchares macer Pascoe and Herpiscus sommeri Solier with a discussion of some phylogenetic aspects arising from the incongruities of adult and larval systematics. Sci. Pap. Namib Desert Res. Stn. 53, 139–149 (1969).
Google Scholar
Kamiński, M. J. et al. Reevaluation of Blapimorpha and Opatrinae: Addressing a major phylogeny-classification gap in darkling beetles (Coleoptera: Tenebrionidae: Blaptinae). Syst. Entomol. 46, 140–156. https://doi.org/10.1111/syen.12453 (2021).Article
Google Scholar
Skopin, N. G. [Larvae of the subfamily Pimeliinae (Coleoptera, Tenebrionidae)]. Lichinki podsemeystva Pimeliinae (Coleoptera, Tenebrionidae). Trudy Nauchno-Issledovatelskogo Instituta Zashchity Rastenii Kazakhstanskoy Akademii Selskokhozyastvennykh Nauk 7, 191–298 (1962).
Google Scholar
Skopin, N. G. Die Larven der Tenebrioniden des Tribus Pycnocerini (Coleoptera, Heteromera). Ann. Museé R. l’Afrique Centrale 127, 1–35 (1964).
Google Scholar
Iwan, D. & Bečvář, S. Description of the early stages of Anomalipus plebejus plebejulus (Coleoptera: Tenebrionidae) from Zimbabwe with notes on the classifcation of the Opatrinae. Eur. J. Entomol. 97, 403–412 (2000).Article
Google Scholar
Koch, C. Monograph of the Tenebrionidae of southern Africa Vol I (Tentyriinae, Molurini Trachynotina: Somaticus Hope). Transvaal Mus. Mem. 7, 242 (1955).
Google Scholar
Kergoat, G. J. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol. Biol. 14, 220. https://doi.org/10.1186/s12862-014-0220-1 (2014).Article
PubMed
PubMed Central
Google Scholar
Smith, A. D., Dornburg, R. & Wheeler, Q. D. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): Matrix-based descriptions, cladistic analysis, and key to late instars. Zookeys 415, 217–268 (2014).Article
Google Scholar
Kamiński, M. J. et al. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the larval morphology and some resulting taxonomic notes on Blapstinina. Zoomorphology 138, 349–370. https://doi.org/10.1007/s00435-019-00443-7 (2019).Article
Google Scholar
Rasa, O. A. E. Bechavioural adaptations to moisture as an environmental constraint in a nocturnal burrow-linhabiting Kalahari detritivore Parastizopus amraticpes Peringuey (Coleoptera: Tenebrionidae). Koedoe 37(1), 57–66 (1994).Article
Google Scholar
Rasa, O. A. E. Ecological factors influencing burrow location, group size and mortality in a nocturnal fossorial Kalahari detritivore, Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). J. Arid Environ. 29, 353–365 (1995).ADS
Article
Google Scholar
Fabricius, J. C. Supplementum Entomologia Systematica. (Impensis CG Proft, 1978).Péringuey, L. Fourth contribution to the South African coleopterous fauna. Description of new Coleoptera in the South African Museum. Trans. S. Afr. Philos. Soc. 6, 95–136 (1892).Article
Google Scholar
Endrody-Younga, S. A revision of the subtribe Gonopina (Coleoptera: Tenebrionidae: Opatrinae: Platynotini). Ann. Transvaal Mus. 37, 1–54 (2000).
Google Scholar
Kamiński, M. J. Notes on species diversity patterns in Stizopina (Coleoptera: Tenebrionidae), with description of a new genus from Nama Karoo. Ann. Zool. 65, 131–148. https://doi.org/10.3161/00034541ANZ2015.65.2.002 (2015).Article
Google Scholar
Schulze, L. The Tenebrionidae of Southern Africa. XXXVIII. On the morphology of the larvae of some Stizopina (Coleoptera: Opatrini). Sci. Pap. Namib Desert Res. Stn. 19, 1–23 (1963).
Google Scholar
Schulze, L. A review of silk production and spinning activities in Arthropoda with special reference to spinning in Tenebrionid larvae (Coleoptera) and Brown, J. M. M.: A chromatographic analysis of Tenebrionid silk. Mem. Transvaal Mus. 51, 409–410 (1975).
Google Scholar
Rasa, O. A. E. & Endrödy-Younga, S. Intergeneric associations of stizopinid tenebrionids relative to their geographical distribution (Coleoptera: Tenebrionidae: Opatrini: Stitzopina). Afr. Entomol. 5, 231–239 (1997).
Google Scholar
Kamiński, M. J., Raś, M., Steiner, W. E. & Iwan, D. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the pupal morphology. Ann. Zool. 68, 825–836. https://doi.org/10.3161/00034541ANZ2018.68.4.006 (2018).Article
Google Scholar
Doyen, J. T. The skeletal anatomy of Tenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 5, 103–150 (1966).
Google Scholar
Ohde, T., Yaginuma, T. & Niimi, T. Insect morphological diversification through the modification of wing serial homologs. Science 340, 495 (2013).ADS
CAS
PubMed
Article
Google Scholar
Zhu, J. Y., Yang, P., Zhang, Z., Wu, G. X. & Yang, B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS ONE 8, e54411 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Raś, M., Iwan, D. & Kamiński, M. J. Tracheal system in post-embryonic development of holometabolous insects: A case study using mealworm beetle. J. Anat. 232, 997–1015. https://doi.org/10.1111/joa.12808 (2018).Article
PubMed
PubMed Central
Google Scholar
Kwon, G. T. et al. Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Sci. Biotechnol. 29(4), 531–537. https://doi.org/10.1007/s10068-019-00699-1 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Machona, O., Chidzwondo, F. & Mangoyi, R. Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnol. 22, 2. https://doi.org/10.1186/s12896-021-00733-3 (2022).CAS
Article
PubMed
PubMed Central
Google Scholar
Jösting, E. A. Die Innervierung des Skelettmuskelsystems des Mehlwurms (Tenebrio molitor L., Larve). Zool. Jb. Anat. 67, 381–460 (1942).
Google Scholar
Burakowski, B., Mroczkowski, M. & Stefańska, J. Chrząszcze: Coleoptera. Cucujoidea, Część 3. Katalog Fauny Polski, XXIII, 14 (1987).Schulze, L. The Tenebrionidae of southern Africa. XXXIII. Description of the larvae of Gonopus tibialis Fabricius and Gonopus agrestis Fahraeus (Gonopina, sensu Koch 1956). Cimbebasia 5, 1–12 (1962).
Google Scholar
Lawrence, J. F., Pollock, D. A. & Ślipiński, A. Tenebrionoidea. In Handbook of Zoology. A Natural History of the Phyla of the Animal kingdom, Vol. IV. Arthropoda: Insecta (eds Leschen, R. A. B. et al.) 487–659 (Walter de Gruyter, 2010).
Google Scholar
Lawrence, J. F. et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 61(1), 1–217 (2011).Article
Google Scholar
Beutel, R. G. & Friedrich, F. Comparative study of larvae of Tenebrionoidea (Coleoptera: Cucujiformia). Eur. J. Entomol. 102, 241–264 (2005).Article
Google Scholar
Fredrich, F. & Beutel, R. G. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 37, 29–54 (2008).Article
Google Scholar
Beutel, R. G., Friedrich, F., Yang, X.-K. & Ge, S.-Q. Insect Morphology and Phylogeny: A Textbook for Students of Entomology 515 (Walter de Gruyter, 2014).
Google Scholar
Aibekova, L. et al. The skeletomuscular system of the mesosoma of Formica rufa workers (Hymenoptera: Formicidae). Insect Syst. Divers. 6(2), 1–26. https://doi.org/10.1093/isd/ixac002 (2022).Article
Google Scholar
Raś, M. Digging adaptations in psammophilous beetle larvae. Harvard Dataverse https://doi.org/10.7910/DVN/NNAETE (2022).SkyScan. Method Notes, Skyscan 1172 Desktop Micro-CT (Skyscan, 2008).
Google Scholar
R Core Team. 2020. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) https://www.R-project.org/.Sokal, R. R. & Rohlf, F. J. Biometry 937 (W.H. Freeman, 2011).
Google Scholar
Cloudsley-Thompson, J. L. Terrestrial animals in dry heat: Arthropods. In Handbook of Physiology. Section 4: Adaptation to the Environment 414–436 (American Physiological Society, 1964).
Google Scholar
Cloudsley-Thompson, J. L. Adaptations of Arthropoda to arid environments. Annu. Rev. Entomol. 20, 261–283. https://doi.org/10.1146/annurev.en.20.010175.001401 (1975).CAS
Article
PubMed
Google Scholar
Draney, M. L. The subelytral cavity of desert tenebrionids. Fla. Entomol. 76, 539–549 (1993).Article
Google Scholar
Duncan, F. D. The role of the subelytral cavity in water loss in the flightless dung beetle, Circellium bacchus (Coleoptera: Scarabaeinae). Eur. J. Entomol. 99(2), 253–258. https://doi.org/10.14411/eje.2002.034 (2002).Article
Google Scholar
Endrödy-Younga, S. & Tschinkel, W. Estimation of population size and dispersal in Anomalipus mastodon Fåhraeus, 1870 (Coleoptera: Tenebrionidae: Platynotini). Ann. Transvaal Mus. 36(4), 21–30 (1993).
Google Scholar
Iwan, D. Insecta Coleoptera Tenebrionidae Pedinini Platynotina. Vol. 93 of Faune de Madagascar 178 (Editions Quae, 2010).
Google Scholar
Wallwork, J. A. Desert Soil Fauna 296 (Praeger Publication, 1982).
Google Scholar
Iwan, D. Oviviparity in tenebrionid beetles of the melanocratoid Platynotina (Coleoptera: Tenebrionidae: Platynotini) from Madagascar with notes on the viviparous beetles. Ann. Zool. 50, 15–25 (2000).
Google Scholar
Kaufmann, T. Observations on some factors which influence aggregated by Blaps sulcata in Israel. Ann. Entomol. Soc. Am. 59, 660–664 (1966).Article
Google Scholar
Kiihnelt, G. On the biology and temperature accommodation of Lepidochora argentogrisea Koch. Sci. Pap. Namib Desert Res. Stn. 51, 121–122 (1969).
Google Scholar
Hamilton, W. J. Competition and thermoregulatory behaviour of the Namib desert tenebrionid beetle genus Cardiosis. Ecology 52, 810–822 (1971).Article
Google Scholar
Watt, J. A revised subfamily classifcation of Tenebrionidae (Coleoptera). N. Z. J. Zool. 11, 381–452 (1974).Article
Google Scholar
Burakowski, B. Laboratory methods for rearing soil beetles (Coleoptera). Memorab. Zool. 46, 1–66 (1993).
Google Scholar
De Block, M. & Stoks, R. Fitness effects from egg to reproduction: Bridging the life history transition. Ecology 86, 185–197 (2005).Article
Google Scholar
Pechenik, J. A. Larval experience and latent effects: Metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323–333 (2006).PubMed
Article
Google Scholar
Doyen, J. T. Reconstitution of Coelometopini, Tenebrionini and related tribes of America north of Colombia (Coleoptera: Tenebrionidae). J. N. Y. Entomol. Soc. 97, 277–304 (1989).
Google Scholar
St. George, R. A. Studies on the larvae on North American beetles of the subfamily Tenebrioninae with a description of the larva and pupa of Merinus laevis (Olivier). Proc. U.S. Natl. Mus. 65, 1–22. https://doi.org/10.5479/si.00963801.65-2514.1 (1924).Article
Google Scholar
Purchart, L. & Nabozhenko, M. V. First description of larva and pupa of the genus Deretus (Coleoptera: Tenebrionidae) with key to the larvae of the tribe Helopini. Acta Entomol. Musei Natl. Pragae 52, 295–302 (2012).
Google Scholar
Steiner, W. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities. ZooKeys 415, 311–327. https://doi.org/10.3897/zookeys.415.6891 (2014).Article
Google Scholar
Wagner, G. & Gosik, R. Comparative morphology of immature stages of two sympatric Tenebrionidae species, with comments on their biology. Zootaxa 4111, 201–222 (2017).Article
Google Scholar More