More stories

  • in

    Iron mobilization during lactation reduces oxygen stores in a diving mammal

    Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249–264 (1974).Article 

    Google Scholar 
    Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875 (1988).Article 

    Google Scholar 
    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match-mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120484 (2013).Article 

    Google Scholar 
    Costa, D. P. Reproductive and foraging energetics of pinnipeds: Implications for life history patterns. In The Behaviour of Pinnipeds (ed. D. Renouf) 300–344 (Springer, Netherlands, 1991).Costa, D. P., Boeuf, B. J. L., Huntley, A. C. & Ortiz, C. L. The energetics of lactation in the Northern elephant seal, Mirounga angustirostris. J. Zool. 209, 21–33 (1986).Article 

    Google Scholar 
    Crocker, D. E., Williams, J. D., Costa, D. P. & Le Boeuf, B. J. Maternal traits and reproductive effort in northern elephant seals. Ecology 82, 3541–3555 (2001).Article 

    Google Scholar 
    Shero, M. R., Krotz, R. T., Costa, D. P., Avery, J. P. & Burns, J. M. How do overwinter changes in body condition and hormone profiles influence Weddell seal reproductive success? Funct. Ecol. 29, 1278–1291 (2015).Article 

    Google Scholar 
    Lönnerdal, B. Bioactive proteins in human milk—potential benefits for preterm infants. Clin. Perinatol. 44, 179–191 (2017).PubMed 
    Article 

    Google Scholar 
    Fields, D. A. et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr. Obes. 12, 78–85 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klein, L. D. et al. Concentrations of trace elements in human milk: comparisons among women in Argentina, Namibia, Poland, and the United States. PLoS ONE 12, e0183367 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burns, J. M. & Hammill, M. O. Does iron availability limit oxygen store development in seal pups? In 4th CPB Meeting in Africa: Mara 2008. “Molecules to migration: The pressures of life” International Proceedings 417–428 (Medimond Publishing Co., 2008).Burns, J. M., Lestyk, K., Folkow, L. P., Hammill, M. O. & Blix, A. S. Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J. Comp. Physiol. B 177, 687–700 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L. Diverse divers: Physiology and behavior. (Springer-Verlag, 1989).Butler, P. J. & Jones, D. R. Physiology of diving of birds and mammals. Physiol. Rev. 77, 837–899 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanatous, S. B., DiMichele, L. V., Cowan, D. F. & Davis, R. W. High aerobic capacities in skeletal muscles of pinnipeds: adaptations to diving hypoxia. J. Appl. Physiol. 86, 1247–1256 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Andrews, R. D., Lestyk, K. C. & Burns, J. M. Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J. Comp. Physiol. B 182, 425–436 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Costa, D. P. & Burns, J. M. Scaling matters: Incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities. J. Comp. Physiol. B 185, 811–824 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Reiser, P. J., Simonitis, L. & Burns, J. M. Links between muscle phenotype and life history: differentiation of myosin heavy chain composition and muscle biochemistry in precocial and altricial pinniped pups. J. Compar. Physiol. B, https://doi.org/10.1007/s00360-019-01240-w (2019).Burns, J. M., Lestyk, K., Freistroffer, D. & Hammill, M. O. Preparing muscles for diving: age-related changes in muscle metabolic profiles in Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals. Physiol. Biochem. Zool. 88, 167–182 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. & Sinnett, E. E. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J. Comp. Physiol. 138, 335–346 (1980).CAS 
    Article 

    Google Scholar 
    Wallace, D. F. The regulation of iron absorption and homeostasis. Clin. biochemist. Rev. 37, 51–62 (2016).
    Google Scholar 
    Juan, S.-H. & Aust, S. D. Studies on the interaction between ferritin and ceruloplasmin. Arch. Biochem. Biophys. 355, 56–62 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hagler, L. et al. Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. Am. J. Clin. Nutr. 34, 2169–2177 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L. Weddell seal: Consummate Diver. (Cambridge University Press, 1981).Heerah, K. et al. Ecology of Weddell seals during winter: Influence of environmental parameters on their foraging behaviour. Deep Sea Res. Part II: Topical Stud. Oceanogr. 88–89, 23–33 (2013).ADS 
    Article 

    Google Scholar 
    Hindell, M. A., Harcourt, R., Waas, J. R. & Thompson, D. Fine-scale three-dimensional spatial use by diving, lactating female Weddell seals Leptonychotes weddellii. Mar. Ecol. Prog. Ser. 242, 275–284 (2002).ADS 
    Article 

    Google Scholar 
    Sato, K. et al. Deep foraging dives in relation to the energy depletion of Weddell seal (Leptonychotes weddellii) mothers during lactation. Polar Biol. 25, 696–702 (2002).Article 

    Google Scholar 
    Wheatley, K. E., Bradshaw, C. J., Davis, L. S., Harcourt, R. G. & Hindell, M. A. Influence of maternal mass and condition on energy transfer in Weddell seals. J. Anim. Ecol. 75, 724–733 (2006).PubMed 
    Article 

    Google Scholar 
    Walcott, S. M. Evaluating the dynamics of physiological, environmental and behavioral parameters to the cost of the annual pelage molt in a polar pinniped: the Weddell seal (Leptonychotes weddellii) MSc thesis, University of Alaska Anchorage, (2019).Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, 20202817 (2021).CAS 
    Article 

    Google Scholar 
    Shero, M. R., Goetz, K. T., Costa, D. P. & Burns, J. M. Temporal changes in Weddell seal dive behavior over winter: Are females increasing foraging effort to support gestation? Ecol. Evol. 8, 11857–11874 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Looker, A. C. & Johnson, C. L. Prevalence of elevated serum transferrin saturation in adults in the United States. Ann. Intern. Med. 129, 940–945 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eleftheriadis, T., Liakopoulos, V., Antoniadi, G. & Stefanidis, I. Which is the best way for estimating transferrin saturation. Ren. Fail. 32, 1022–1023 (2010).PubMed 
    Article 

    Google Scholar 
    McLaren, C. E. et al. Distribution of transferrin saturation in an Australian population: relevance to the early diagnosis of hemochromatosis. Gastroenterology 114, 543–549 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmett, B. & Hochachka, P. W. Scaling of oxidative and glycolytic enzymes in mammals. Respir. Physiol. 45, 261–272 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, C. A., Burns, J. M., Schreer, J. F. & Hammill, M. O. Erythropoietin concentration in developing harbor seals (Phoca vitulina). Gen. Comp. Endocrinol. 147, 262–267 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richmond, J. P., Burns, J. M., Rea, L. D. & Mashburn, K. L. Postnatal ontogeny of erythropoietin and hematology in free-ranging Steller sea lions (Eumetopias jubatus). Gen. Comp. Endocrinol. 141, 240–247 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadley, G. L., Rotella, J. J. & Garrott, R. A. Influence of maternal characteristics and oceanographic conditions on survival and recruitment probabilities of Weddell seals. Oikos 116, 601–613 (2006).Article 

    Google Scholar 
    Hall, A. C., McConnell, B. J. & Barker, R. J. Factors affecting first-year survival in grey seals and their implications for life history strategies. J. Anim. Ecol. 70, 138–149 (2001).
    Google Scholar 
    Proffitt, K. M., Garrott, R. A. & Rotella, J. J. Long-term evaluation of body mass at weaning and postweaning survival rates of Weddell seals in Erebus Bay, Antarctica. Mar. Mamm. Sci. 24, 677–689 (2008).Article 

    Google Scholar 
    Burns, J. M. & Castellini, M. A. Physiological and behavioral determinants of the aerobic dive limit in Weddell seal (Leptonychotes weddellii) pups. J. Comp. Physiol. B 166, 473–483 (1996).Article 

    Google Scholar 
    Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals? Int. Congr. Ser. 1275, 359–366 (2004).Article 

    Google Scholar 
    Hadley, G. L., Rotella, J. J. & Garrott, R. A. Evaluation of reproductive costs for Weddell seals in Erebus Bay, Antarctica. J. Anim. Ecol. 76, 448–458 (2007).PubMed 
    Article 

    Google Scholar 
    Young, S. P., Fahmy, M. & Golding, S. Ceruloplasmin, transferrin and apotransferrin facilitate iron release from human liver cells. FEBS Lett. 411, 93–96 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mazzaro, L. M., Dunn, J. L., St. Aubin, D. J., Andrews, G. A. & Chavey, P. S. Serum indices of body stores of iron in northern fur seals (Callorhinus ursinus) and their relationship to hemochromatosis. Zoo. Biol. 23, 205–218 (2004).Article 

    Google Scholar 
    Yalçn, S. S., Baykan, A., Yurdakök, K., Yalçn, S. & Gücüs, A. I. The factors that affect milk-to-serum ratio for iron during early lactation. J. Pediatr. Hematol. Oncol. 31, 85–90 (2009).Article 

    Google Scholar 
    Geiseler, S. J., Blix, A. S., Burns, J. M. & Folkow, L. P. Rapid postnatal development of myoglobin from large liver iron stores in hooded seals. J. Exp. Biol. 216, 1793–1798 (2013).CAS 
    PubMed 

    Google Scholar 
    Samokyszyn, V. M., Miller, D. M., Reif, D. W. & Aust, S. D. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J. Biol. Chem. 264, 21–26 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 88, 7–15 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, P. et al. The effect of serum iron concentration on iron secretion into mouse milk. J. Physiol. 522(Pt 3), 479–491 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erdogan, S., Celik, S. & Erdogan, Z. Seasonal and locational effects on serum, milk, liver and kidney chromium, manganese, copper, zinc, and iron concentrations of dairy cows. Biol. Trace Elem. Res. 98, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaldor, I. & Morgan, E. H. Iron metabolism during lactation and suckling in a marsupial, the quokka (Setonix brachyurus). Comp. Biochem. Physiol. Part A: Physiol. 84, 691–694 (1986).CAS 
    Article 

    Google Scholar 
    Tedman, R. A. & Green, B. Water and sodium fluxes in suckling pups of Weddell seals (Leptonychotes weddelli). J. Zool. 212, 29–42 (1987).Article 

    Google Scholar 
    National Institutes of Health, Supplements, O. o. D. Iron Fact Sheet for Consumers, https://ods.od.nih.gov/factsheets/Iron-Consumer/ (2021).Saarinen, U. M., Siimes, M. A. & Dallman, P. R. Iron absorption in infants: high bioavailability ofbreast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J. Pediatrics 91, 36–39 (1977).CAS 
    Article 

    Google Scholar 
    Loh, T.-T. Iron metabolism of the lactating mouse. Proc. Soc. Exp. Biol. Med. 137, 962–965 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Folkow, L. P., Nordoy, E. S. & Blix, A. S. Distribution and diving behavior of harp seals (Pagophilus groenlandica) from the Greenland Sea stock. Polar Biol. 27, 281–298 (2004).Article 

    Google Scholar 
    Beck, C. A., Bowen, W. D. & Iverson, S. J. Seasonal changes in buoyancy and diving behaviour of adult grey seals. J. Exp. Biol. 203, 2323–2330 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gentry, R. L. & Kooyman, G. L. Fur seals: maternal strategies on land and at sea. (Princeton University Press, 1986).McDonald, B. I. & Ponganis, P. J. Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J. Exp. Biol. 216, 3332–3341 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Noren, S. R., Iverson, S. J. & Boness, D. J. Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): Implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Physiol. Biochem. Zool. 78, 482–490 (2005).PubMed 
    Article 

    Google Scholar 
    Weise, M. J. & Costa, D. P. Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J. Exp. Biol. 210, 278–289 (2007).PubMed 
    Article 

    Google Scholar 
    Burns, J. M., Hindell, M. A., Bradshaw, C. J. A. & Costa, D. P. Fine-scale habitat selection by crabeater seals as determined by diving behavior. Deep Sea Res. II 55, 500–514 (2008).ADS 
    Article 

    Google Scholar 
    Burns, J. Crabeater seal oxygen stores. U.S. Antarctic Program (USAP) Data Center. https://doi.org/10.15784/601583 (2022).Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    Williams, T. M. The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J. Exp. Biol. 207, 973–982 (2004).PubMed 
    Article 

    Google Scholar 
    Wheatley, K. E., Bradshaw, C. J. A., Harcourt, R. G. & Hindell, M. A. Feast or famine: evidence for mixed capital–income breeding strategies in Weddell seals. Oecologia 155, 11–20 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Honda, K., Sahrul, M., Hidaka, H. & Tatsukawa, R. Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic Fish, Pagothenia borchgrevinki. Agric. Biol. Chem. 47, 2521–2532 (1983).CAS 

    Google Scholar 
    Galbraith, E. D., Le Mézo, P., Solanes Hernandez, G., Bianchi, D. & Kroodsma, D. Growth limitation of marine fish by low iron availability in the open ocean. Front. Marine Sci. 6, https://doi.org/10.3389/fmars.2019.00509 (2019).Pollycove, M. & Mortimer, R. The quantitative determination of iron kinetics and hemoglobin synthesis in human subjects. J. Clin. Invest. 40, 753–782 (1961).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Åkeson, Å., Ehrenstein, G. V., Hevesy, G. & Theorell, H. Life span of myoglobin. Arch. Biochem. Biophys. 91, 310–318 (1960).PubMed 
    Article 

    Google Scholar 
    Tift, M. S. et al. Adaptive potential of the heme oxygenase/carbon monoxide pathway during hypoxia. Front. Physiol. 11, https://doi.org/10.3389/fphys.2020.00886 (2020).Tift, M. S., Ponganis, P. J. & Crocker, D. E. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. J. Exp. Biol. 217, 1752–1757 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma, Y.-J. et al. A modified carbon monoxide breath test for measuring erythrocyte lifespan in small animals. BioMed. Res. Int. 2016, 7173156 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, H.-D. et al. Human erythrocyte lifespan measured by Levitt’s CO breath test with newly developed automatic instrument. J. Breath. Res. 12, 036003 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hochachka, P. W. & Somero, G. N. Biochemical adaptation. (Oxford University Press, 2002).De Miranda, M. A., Schlater, A. E., Green, T. L. & Kanatous, S. B. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. J. Exp. Biol. 215, 806–813 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kanatous, S. B. & Mammen, P. P. Regulation of myoglobin expression. J. Exp. Biol. 213, 2741–2747 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halvorsen, S. & Bechensteen, A. G. Physiology of erythropoietin during mammalian development. Acta Paediatr. Suppl. 438, 17–26 (2002).Article 

    Google Scholar 
    Hochachka, P. W. Mechanism and evolution of hypoxia-tolerance in humans. J. Exp. Biol. 201, 1243–1254 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klopfleisch, R. & Olias, P. The pathology of comparative animal models of human haemochromatosis. J. Comp. Pathol. 147, 460–478 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henriksson, J. & Reitman, J. S. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol. Scand. 99, 91–97 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goetz, K. T. Movement, habitat, and foraging behavior of Weddell seals (Leptonychotes weddellii) in the western Ross Sea, Antarctica, University of California Santa Cruz, (2015).Cisewski, B., Strass, V. H., Rhein, M. & Krägefsky, S. Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 78–94 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, R. M. & Smith, W. O. The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea. J. Mar. Syst. 166, 184–195 (2017).Article 

    Google Scholar 
    Smith, W. O. & Nelson, D. M. Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience 36, 251–257 (1986).CAS 
    Article 

    Google Scholar 
    Rivkin, R. B. Seasonal patterns of planktonic production in McMurdo Sound, Antarctica. Am. Zool. 31, 5–16 (2015).Article 

    Google Scholar 
    Proffitt, K. M., Rotella, J. J. & Garrott, R. A. Effects of pup age, maternal age, and birth date on pre-weaning survival rates of Weddell seals in Erebus Bay, Antarctica. Oikos 119, 1255–1264 (2010).Article 

    Google Scholar 
    Beltran, R. S., Kirkham, A. L., Breed, G. A., Testa, J. W. & Burns, J. M. Reproductive success delays moult phenology in a polar mammal. Sci. Rep. 9, 5221 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mellish, J.-A. E., Tuomi, P. A., Hindle, A. G. & Horning, M. Chemical immobilization of Weddell seals (Leptonychotes weddellii) by ketamine/midazolam combination. Vet. Anaesth. Analg. 37, 123–131 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Pearson, L. E., Costa, D. P. & Burns, J. M. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition. PLoS ONE 9, e91233 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foldager, N. & Blomqvist, C. G. Repeated plasma volume determination with the Evans blue dye dilution technique: the method and the computer program. Comput. Biol. Med. 21, 35–41 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    El-Sayed, H., Goodall, S. R. & Hainsworth, F. R. Re-evaluation of Evans blue dye dilution method of plasma volume measurement. Clin. Lab. Haem. 17, 189–194 (1995).CAS 

    Google Scholar 
    Reynafarje, B. Simplified method for the determination of myoglobin. J. Lab. Clin. Med. 61, 138–145 (1963).CAS 
    PubMed 

    Google Scholar 
    Prewitt, J. S., Freistroffer, D. V., Schreer, J. F., Hammill, M. O. & Burns, J. M. Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: Limitations to diving behavior? J. Comp. Physiol. B 180, 757–766 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polasek, L., Dickson, K. A. & Davis, R. W. Metabolic indicators in the skeletal muscles of harbor seals (Phoca vitulina). Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1720–R1727 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L., Castellini, M. A., Davis, R. W. & Maue, R. A. Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. 151, 171–174 (1983).Article 

    Google Scholar 
    Davis, R. W. & Kanatous, S. B. Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J. Exp. Biol. 202, 1091–1113 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenfant, C., Johansen, K. & Torrance, J. D. Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir. Physiol. 9, 277–286 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kleiber, M. The fire of life: an introduction to animal energetics. (R.E. Krieger Pub. Co., 1975).Sato, K., Mitani, Y., Cameron, M. F., Siniff, D. B. & Naito, Y. Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. J. Exp. Biol. 206, 1461–1470 (2003).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. (Highland Statistics Newburgh, 2013).Shero, M. Weddell seal iron dynamics and oxygen stores across lactation. U.S. Antarctic Program (USAP) Data Center. https://doi.org/10.15784/601575. (2022).Anderson, R. S. et al. Zinc, copper, iron and calcium concentrations in bitch milk. J. Nutr. 121, S81–S82 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffiths, M., Green, B., MC Leckie, R., Messer, M. & Newgrain, K. Constituents of platypus and echidna milk, with particular reference to the fatty acid complement of the triglycerides. Aust. J. Biol. Sci. 37, 323–330 (1984).CAS 
    Article 

    Google Scholar 
    Peddemors, V. M., de Muelenaere, H. J. H. & Devchand, K. Comparative milk composition of the bottlenosed dolphin (Tursiops truncatus), humpback dolphin (Sousa plumbea) and common dolphin (Delphinus delphis) from southern African waters. Comp. Biochem. Physiol. Part A Physiol. 94, 639–641 (1989).CAS 
    Article 

    Google Scholar 
    Ullrey, D. E. et al. Blue-green color and composition of Stejneger’s beaked whale (Mesoplodon stejnegeri) milk. Comp. Biochem. Physiol. B Comp. Biochem. 79, 349–352 (1984).CAS 
    Article 

    Google Scholar 
    Dosako, S. I. et al. Milk of Northern fur seal: composition, especially carbohydrate and protein. J. Dairy Sci. 66, 2076–2083 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T., Boness, D. J. & Tedman, R. The Behavior, Physiology, and Anatomy of Lactation in the Pinnipedia. (Genoyways, H. H. eds) (Current Mammalogy. Springer, Boston, MA, 1987).Habran, S., Pomeroy, P. P., Debier, C. & Das, K. Changes in trace elements during lactation in a marine top predator, the grey seal. Aquat. Toxicol. 126, 455–466 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seal, U. S., Erickson, A. W., Siniff, D. B. & Cline, D. R. Blood chemistry and protein polymorphisms in three species of Antarctic seals (Lobodon carcinophagus, Leptonychootes weddellii, and Mirounga leonina) In Antarctic Pinnipedia 181–192 (1971).Green, B., Fogerty, A., Libke, J., Newgrain, K. & Shaughnessy, P. Aspects of lactation in the crab-eater seal (Lobodon-Carcinophagus). Aust. J. Zool. 41, 203–213 (1993).Article 

    Google Scholar 
    Casey, C. E., Smith, A. & Zhang, P. Microminerals in human and animal milks, In Handbook of milk composition 622–674 (ed. R. G. Jensen) (Academic Press, 1995). More

  • in

    Fall and rise of the phytoplankton

    Wirtz, K., Smith, S. L., Mathis, M. & Taucher, J. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01430-5 (2022).Article 

    Google Scholar 
    Watanabe, M., Kohata, K. & Kimura, T. Limnol. Oceanogr. 36, 593–602 (1991).Article 

    Google Scholar 
    Villareal, T. A. et al. Nature 397, 423–425 (1999).CAS 
    Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Alldredge, A. L. & Silver, M. W. Prog. Oceanogr. 20, 41–82 (1988).Article 

    Google Scholar 
    White, A. E., Spitz, Y. H. & Letelier, R. M. Mar. Ecol. Prog. Ser. 323, 35–45 (2006).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Nat. Clim. Change 11, 973–981 (2021).Article 

    Google Scholar 
    Giorgetta, M. A. et al. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    McGillicuddy, D. J. et al. Nature 394, 263–266 (1998).CAS 
    Article 

    Google Scholar 
    Lévy, M., Franks, P. J. & Smith, K. S. Nat. Commun. 9, 4758 (2018).Article 

    Google Scholar 
    Durham, W. M. & Stocker, R. Annu. Rev. Mar. Sci. 4, 177–207 (2012).Article 

    Google Scholar 
    Cullen, J. J. Annu. Rev. Mar. Sci. 7, 207–239 (2015).Article 

    Google Scholar 
    Moeller, H. V., Laufkötter, C., Sweeney, E. M. & Johnson, M. D. Nat. Commun. 10, 1978 (2019).Article 

    Google Scholar 
    Fawcett, S. E., Johnson, K. S., Riser, S. C., Van Oostende, N. & Sigman, D. M. Mar. Chem. 207, 108–123 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Warmth signals male growth

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Fresh-marketable tomato yields enhanced by moderate weed control and suppressed fruit dehiscence with woodchip mulching

    Zangoueinejad, R. & Alebrahim, M. T. Use of conventional and innovative organic materials as alternatives to black plastic mulch to suppress weeds in tomato production. Biol. Agric. Hortic. 37, 267–284. https://doi.org/10.1080/01448765.2021.1947377 (2021).Article 

    Google Scholar 
    Biswas, S. K., Akanda, A. R., Rahman, M. S. & Hossain, M. A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 61, 97–102. https://doi.org/10.17221/804/2014-PSE (2015).Article 

    Google Scholar 
    Haapala, T., Palonen, P., Tamminen, A. & Ahokas, J. Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agric. Food Sci. 24, 52–58. https://doi.org/10.23986/afsci.47220 (2015).CAS 
    Article 

    Google Scholar 
    Shiukhy, S., Raeini-Sarjaz, M. & Chalavi, V. Colored plastic mulch microclimates affect strawberry fruit yield and quality. Int. J. Biometeorol. 59, 1061–1066. https://doi.org/10.1007/s00484-014-0919-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Sideman, R. G. Performance of sweetpotato cultivars grown using biodegradable black plastic mulch in New Hampshire. HortTechnology 25, 412–416. https://doi.org/10.21273/HORTTECH.25.3.412 (2015).Article 

    Google Scholar 
    Ferdous, Z., Datta, A. & Anwar, M. Plastic mulch and indigenous microorganism effects on yield and yield components of cauliflower and tomato in inland and coastal regions of Bangladesh. J. Crop Improv. 31, 261–279. https://doi.org/10.1080/15427528.2017.1293578 (2017).Article 

    Google Scholar 
    Lament, W. J. Jr. Plastic mulches for the production of vegetable crops. HortTechnology 3, 35–39. https://doi.org/10.21273/HORTTECH.3.1.35 (1993).Article 

    Google Scholar 
    Abdul-Baki, A. A., Teasdale, J. R., Goth, R. W. & Haynes, K. G. Marketable yields of fresh-market tomatoes grown in plastic and hairy vetch mulches. HortScience 37, 878–881. https://doi.org/10.21273/HORTSCI.37.6.878 (2002).Article 

    Google Scholar 
    Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25, 239–249. https://doi.org/10.24266/0738-2898-25.4.239 (2007).Article 

    Google Scholar 
    Kasirajan, S. & Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 32, 501–529. https://doi.org/10.1007/s13593-011-0068-3 (2012).CAS 
    Article 

    Google Scholar 
    Iqbal, R. et al. Potential agricultural and environmental benefit of mulches—A review. Bull. Natl. Res. Cent. 44, 752020. https://doi.org/10.1186/s42269-020-00290-3 (2020).Article 

    Google Scholar 
    Travlos, I. et al. Efficacy of different herbicides on Echinocholoa colona (L.) Link control and the first case of its glyphosate resistance in Greece. Agronomy 10, 1056. https://doi.org/10.3390/agronomy10071056 (2000).CAS 
    Article 

    Google Scholar 
    Travlos, I. S. & Chachalis, D. Glyphsate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24, 569–573. https://doi.org/10.1614/WT-D-09-00080.1 (2010).CAS 
    Article 

    Google Scholar 
    Tahmasebi, B. K. et al. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 112, 350–355. https://doi.org/10.1016/j.cropro.2018.06.021 (2018).CAS 
    Article 

    Google Scholar 
    Kanatas, P., Anthonopoulos, N., Gazoulis, I. & Travlos, I. S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 69, 704–718. https://doi.org/10.1017/wsc.2021.55 (2021).Article 

    Google Scholar 
    Anthonopoulos, N. et al. Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agric. Technol. 3, 1000063. https://doi.org/10.1016/j.atech.2022.100063 (2023).Article 

    Google Scholar 
    Espí, E., Salmerón, A., Fontecha, A., García, Y. & Real, A. I. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–102. https://doi.org/10.1177/8756087906064220 (2006).CAS 
    Article 

    Google Scholar 
    Li, C. et al. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. https://doi.org/10.1016/j.apsoil.2014.02.012 (2014).ADS 
    Article 

    Google Scholar 
    van Sebille, E. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006. https://doi.org/10.1088/1748-9326/10/12/124006 (2015).ADS 
    Article 

    Google Scholar 
    Moreno, M. M., Cirujeda, A., Aibar, J. & Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.). Crop. Soil Res. 54, 207–215. https://doi.org/10.1071/SR15065 (2016).Article 

    Google Scholar 
    Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108, 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lim, X. Microplastics are everywhere—But are they harmful?. Nature 593, 22–25. https://doi.org/10.1038/d41586-021-01143-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cardinael, Ŕ, Cadisch, G., Gosme, M., Oelbermann, M. & van Noordwik, M. Climate change mitigation and adaptation agriculture: Why agroforestry should be part of the solution. Agric. Ecosyst. Environ. 319, 107555. https://doi.org/10.1016/j.agee.2021.107555 (2021).Article 

    Google Scholar 
    Ji, S. & Unger, P. W. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci. Soc. Am. J. 65, 442–448. https://doi.org/10.2136/sssaj2001.652442x (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmithals, A. & Kühn, N. To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings. PLoS ONE 12, e0171533. https://doi.org/10.1371/journal.pone.0171533 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 51, 239–248. https://doi.org/10.1023/A:1009701323580 (1998).Article 

    Google Scholar 
    Cline, G. R. & Silvernail, A. F. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. HortTechnology 11, 219–225. https://doi.org/10.21273/HORTTECH.11.2.219 (2001).CAS 
    Article 

    Google Scholar 
    Cherr, C. M., Scholberg, J. M. S. & McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 98, 302–319. https://doi.org/10.2134/agronj2005.0035 (2006).Article 

    Google Scholar 
    Nguyen, L. T. T., Ortner, K. A., Tiemann, L. K., Renner, K. A. & Kravchenko, A. N. Soil properties after one year of interseeded cover cropping in topographically diverse agricultural landscape. Agric. Ecosyst. Environ. 326, 107803. https://doi.org/10.1016/j.agee.2021.107803 (2021).CAS 
    Article 

    Google Scholar 
    Breton, V., Crosaz, Y. & Rey, F. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France). Solid Earth 7, 599–610. https://doi.org/10.5194/se-2016-11 (2016).ADS 
    Article 

    Google Scholar 
    Wang, L., Gruber, S. & Claupein, W. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Res. 52, 161–168. https://doi.org/10.1111/j.1365-3180.2012.00905.x (2012).Article 

    Google Scholar 
    Jabran, K. Use of mulches for managing field bindweed and purple nutsedge, and weed control in spinach. Int. J. Agric. Biol. 23, 1114–1120. https://doi.org/10.17957/IJAB/15.1394 (2020).CAS 
    Article 

    Google Scholar 
    Keeley, J. E., Morton, B. A., Pedrosa, A. & Trotter, P. Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73, 445–458. https://doi.org/10.2307/2260486 (1985).Article 

    Google Scholar 
    Schumann, A. W., Little, K. M. & Eccles, N. S. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12, 170–172. https://doi.org/10.1080/02571862.1995.10634359 (1995).Article 

    Google Scholar 
    Rathinasabapathi, B., Ferguson, J. & Gal, M. Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. HortScience 40, 711–713. https://doi.org/10.21273/HORTSCI.40.3.711 (2005).Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1142/q0088 (2014).Article 

    Google Scholar 
    Rahmathulla, V. K. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: A review. Psyche J. Entomol. 2012, 121234. https://doi.org/10.1155/2012/121234 (2012).Article 

    Google Scholar 
    Guttikunda, S. K. & Kopakka, R. V. Source emissions and health impacts of urban air pollution in Hyderadad, India. Air Qual. Atmos. Health 7, 195–207. https://doi.org/10.1007/s11869-013-0221-z (2014).CAS 
    Article 

    Google Scholar 
    Dhaka, S. K. et al. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Sci. Rep. 10, 13442. https://doi.org/10.1038/s41598-020-70179-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ehret, D. L., Helmer, T. & Hall, J. W. Cuticle cracking in tomato fruit. J. Hortic. Sci. 68, 195–201. https://doi.org/10.1080/00221589.1993.11516343 (1993).Article 

    Google Scholar 
    Peet, M. M. & Willits, D. H. Role of excess water in tomato fruit cracking. Hortic. Sci. 30, 65–68. https://doi.org/10.21273/HORTSCI.30.1.65 (1995).Article 

    Google Scholar 
    Ikeda, T., Sakamoto, Y., Watanabe, S. & Okano, K. Water relations in fruit cracking of single-truss tomato plants. Environ. Control Biol. 37, 153–158. https://doi.org/10.2525/ecb1963.37.153 (1999).Article 

    Google Scholar 
    Uetani, M., Fujitani, S. & Kimura, M. Mitigation techniques on fruit cracking in tomato cultivation under rain shelter in summer and autumn. Bull. Oita Pref Agr. For. Fish. Res. Cent. 4, 11–25 (2014) (in Japanese with English summary).
    Google Scholar 
    Kuhns, L. J. Efficacy and phytotoxicity of three landscape herbicides with and without a light mulch. Proc. Northeast. Weed Sci. Soc. 46, 85–89 (1992).
    Google Scholar 
    Petrikovszki, R., Zalai, M., Bogdányi, F. T. & Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil weed seed bank of tomato. Plants 9, 66. https://doi.org/10.3390/plants9010066 (2020).Article 
    PubMed Central 

    Google Scholar 
    Egley, G. H. Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci. 31, 404–409. https://doi.org/10.1017/S0043174500069253 (1983).Article 

    Google Scholar 
    Ashworth, S. & Harrison, H. Evaluation of mulches for use in the home garden. HortScience 18, 180–182 (1983).
    Google Scholar 
    Chakrabory, R. C. & Sadhu, M. K. Effect of mulch type and colour on growth and yield of tomato (Lycopersicon esculentum). Indian J. Agric. Sci. 64, 608–612 (1994).
    Google Scholar 
    Bhella, H. S. Tomato response to trickle irrigation and black polyethylene mulch. J. Am. Soc. Hortic. Sci. 113, 543–546 (1988).
    Google Scholar 
    Garnaud, J. C. The Intensification of Horticultural Crop Production in the Mediterranean Basin by Protected Cultivation (FAO of the United Nations, 1974).
    Google Scholar 
    Ahmad, S. et al. Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J. Anim. Plant Sci. 30, 154–162. https://doi.org/10.36899/japs.2020.1.0018 (2020).Article 

    Google Scholar 
    Ahmad, S. et al. Mulching strategies for weeds control and water conservation in cotton. ARPN J. Agric. Biol. Sci. 10, 299–306 (2015).
    Google Scholar 
    Hartwing, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50, 688–699. https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Samedani, B., Ranjbar, M., Rahimian, H. & Jahansoz, M. R. Utilization of rye and hairy vetch cover crops for weed control in transplanted tomato. Pak. J. Biol. Sci. 9, 2323–2327. https://doi.org/10.3923/pjbs.2006.2323.2327 (2006).Article 

    Google Scholar 
    Pickering, J. S. & Shepherd, A. Evaluation of organic landscape mulches: composition and nutrient releases characteristics. Arboric J. 24, 175–187. https://doi.org/10.1080/03071375.2000.9747271 (2000).Article 

    Google Scholar 
    Marí, A. I., Pardo, G., Aibar, J. & Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 263, 109111. https://doi.org/10.1016/j.scienta.2019.109111 (2020).CAS 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment of Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458. https://doi.org/10.1038/bmt.2012.244 (2013).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Vertically migrating phytoplankton fuel high oceanic primary production

    Westberry, T., Behrenfeld, M., Siegel, D. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22 (2008).Richardson, K. & Bendtsen, J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar. Ecol. Prog. Ser. 620, 33–46 (2019).CAS 

    Google Scholar 
    Oschlies, A. in Ocean Modeling in an Eddying Regime (eds Hecht, M. W. & Hasumi, H.) 115–130 (AGU, 2008).Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).CAS 

    Google Scholar 
    Johnson, K. S., Riser, S. C. & Karl, D. M. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465, 1062–1065 (2010).CAS 

    Google Scholar 
    Fawcett, S. E., Lomas, M. W., Casey, J. R., Ward, B. B. & Sigman, D. M. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4, 717–722 (2011).CAS 

    Google Scholar 
    Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G. & Capone, D. G. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl Acad. Sci. USA 113, 4398–4403 (2016).CAS 

    Google Scholar 
    Böttjer, D. et al. Temporal variability of nitrogen fixation and particulate nitrogen export at station ALOHA. Limnol. Oceanogr. 62, 200–216 (2017).
    Google Scholar 
    Gruber, N., Keeling, C. D. & Stocker, T. F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep Sea Res. 1 45, 673–717 (1998).CAS 

    Google Scholar 
    Doney, S. C., Glover, D. M. & Najjar, R. G. A new coupled, one-dimensional biological–physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 43, 591–624 (1996).CAS 

    Google Scholar 
    Ascani, F. et al. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep Sea Res 2 93, 119–134 (2013).CAS 

    Google Scholar 
    Gran, H. H. in Rapport Vol. 56, 1–112 (Bureau du Conseil permanent international pour l’exploration de la mer, 1929).Hasle, G. R. Phototactic vertical migration in marine dinoflagellates. Oikos 2, 162–175 (1950).
    Google Scholar 
    Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).CAS 

    Google Scholar 
    Villareal, T. & Carpenter, E. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).CAS 

    Google Scholar 
    Wirtz, K. & Smith, S. L. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci. Rep. 10, 1142 (2020).CAS 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).CAS 

    Google Scholar 
    Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205–211 (2019).CAS 

    Google Scholar 
    Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F. & Winn, C. D. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J. et al.) 219–237 (Springer, 1992).Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).
    Google Scholar 
    Masuda, Y. et al. Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean. Commun. Earth Environ. 2, 1–8 (2021).
    Google Scholar 
    Anugerahanti, P., Kerimoglu, O. & Smith, S. L. Enhancing ocean biogeochemical models with phytoplankton variable composition. Front. Mar. Sci. 8, 675428 (2021).
    Google Scholar 
    Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G. & Zubkov, M. V. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res. 1 53, 1616–1634 (2006).
    Google Scholar 
    Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Glob. Biogeochem. Cycles 35, e2020GB006759 (2021).CAS 

    Google Scholar 
    Li, Q. P., Wang, Y., Dong, Y. & Gan, J. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120, 3913–3936 (2015).
    Google Scholar 
    Latif, S., Ayub, Z. & Siddiqui, G. Seasonal variability of phytoplankton in a coastal lagoon and adjacent open sea in Pakistan. Turk. J. Botany 37, 398–410 (2013).CAS 

    Google Scholar 
    Liang, Y. et al. Nutrient-limitation induced diatom–dinoflagellate shift of spring phytoplankton community in an offshore shellfish farming area. Mar. Pollut. Bull. 141, 1–8 (2019).CAS 

    Google Scholar 
    Rahlff, J. et al. Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 658, 59–74 (2021).CAS 

    Google Scholar 
    Kahru, M., Savchuk, O. & Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15–23 (2007).
    Google Scholar 
    Klais, R., Tamminen, T., Kremp, A., Spilling, K. & Olli, K. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6, e21567 (2011).CAS 

    Google Scholar 
    Klais, R., Norros, V., Lehtinen, S., Tamminen, T. & Olli, K. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31, 760–767 (2017).
    Google Scholar 
    Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).
    Google Scholar 
    Mignot, A. et al. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a bio-argo float investigation. Glob. Biogeochem. Cycles 28, 856–876 (2014).CAS 

    Google Scholar 
    Chen, B., Smith, S. L. & Wirtz, K. W. Effect of phytoplankton size diversity on primary productivity in the North Pacific: trait distributions under environmental variability. Ecol. Lett. 22, 56–66 (2019).
    Google Scholar 
    Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).
    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Mod. Earth Sys. 5, 572–597 (2013).
    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
    Google Scholar 
    Gliwicz, M. Z. Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–748 (1986).
    Google Scholar 
    Huettel, M., Forster, S., Kloser, S. & Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62, 1863–1872 (1996).CAS 

    Google Scholar 
    Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W. & Watson, S. W. A cyanobacterium capable of swimming motility. Science 230, 74–76 (1985).CAS 

    Google Scholar 
    McCarren, J. et al. Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J. Bacteriol. 187, 224–230 (2005).CAS 

    Google Scholar 
    Eppley, R. W., Holm-Hansen, O. & Strickland, J. D. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4, 333–340 (1968).CAS 

    Google Scholar 
    Sengupta, A., Carrara, F. & Stocker, R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543, 555–558 (2017).CAS 

    Google Scholar 
    Waite, A., Fisher, A., Thompson, P. & Harrison, P. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).
    Google Scholar 
    Throndsen, J. Motility in some marine nanoplankton flagellates. Nor. J. Zool. 21, 193–200 (1973).
    Google Scholar 
    Gittleson, S. M., Hotchkiss, S. K. & Valencia, F. G. Locomotion in the marine dinoflagellate Amphidinium carterae (Hulburt). Trans. Am. Microsc. Soc. 93, 101–105 (1974).Barsanti, L. et al. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae). J. Phycol. 52, 209–218 (2016).
    Google Scholar 
    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).
    Google Scholar 
    Eppley, R. W., Holmes, R. W. & Strickland, J. D. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1, 191–208 (1967).
    Google Scholar 
    Bienfang, P. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61, 69–77 (1980).
    Google Scholar 
    Lisicki, M., Rodrigues, M. F. V., Goldstein, R. E. & Lauga, E. Swimming eukaryotic microorganisms exhibit a universal speed distribution. Elife 8, e44907 (2019).CAS 

    Google Scholar 
    Moore, J. & Villareal, T. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Mar. Ecol. Prog. Ser. 132 (1996).Hawaii Ocean Time-series (HOT) (School of Ocean and Earth Science and Technology at the University of Hawai’i, 2020); http://hahana.soest.hawaii.edu/hot/hot-dogsBermuda Atlantic Time-Series (BATS) (Bermuda Institure of Ocean Sciences, 2020); http://bats.bios.eduThe Japanese 55-Year Reanalysis (JRA-55) (Japan Meteorological Agency, 2020); http://jra.kishou.go.jp/JRA-55Ridgway, K., Dunn, J. & Wilkin, J. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Google Scholar 
    CSIRO Atlas of Regional Seas (CARS) (CSIRO, 2009); http://www.marine.csiro.au/~dunn/cars2009Ocean Colour (ESA-CCI, 2020); http://www.esa-oceancolour-cci.orgCloud (ESA-CCI, 2020); http://www.esa-cloud-cci.orgSea Surface Temperature (ESA-CCI, 2020); http://www.esa-sst-cci.orgRosati, A. & Miyakoda, K. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18, 1601–1626 (1988).
    Google Scholar 
    Ralston, D. K., McGillicuddy, D. J. & Townsend, D. W. Asynchronous vertical migration and bimodal distribution of motile phytoplankton. J. Plankton Res. 29, 803–821 (2007).
    Google Scholar 
    Kamykowski, D. & Yamazaki, H. A study of metabolism-influenced orientation in the diel vertical migration of marine dinoflagellates. Limnol. Oceanogr. 42, 1189–1202 (1997).
    Google Scholar 
    Richardson, T. L., Cullen, J. J., Kelley, D. E. & Lewis, M. R. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankton Res. 20, 219–241 (1998).
    Google Scholar 
    Ross, O. N. & Sharples, J. Phytoplankton motility and the competition for nutrients in the thermocline. Mar. Ecol. Prog. Ser. 347, 21–38 (2007).CAS 

    Google Scholar 
    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Saba, V. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).CAS 

    Google Scholar 
    Bhattathiri, P., Devassy, V. & Radhakrishna, K. Primary production in the Bay of Bengal during southwest monsoon of 1978. Mahasagar Bull. Natl Inst. Oceanogr. 13, 315–323 (1980).
    Google Scholar 
    Sarupria, J. & Bhargava, R. Seasonal primary production in different sectors of the EEZ of India. Mahasagar Bull. Natl Inst. Oceanogr. 26, 139–147 (1993).
    Google Scholar 
    Jyothibabu, R. et al. Differential response of winter cooling on biological production in the northeastern Arabian Sea and northwestern Bay of Bengal. Curr. Sci. 87, 783–791 (2004).
    Google Scholar 
    Kumar, S. P. et al. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 98, 1331–1339 (2010).CAS 

    Google Scholar 
    Kumar, S. P. et al. Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Ind. J. Mar. Sci. 39, 388–405 (2010).CAS 

    Google Scholar 
    Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).CAS 

    Google Scholar  More

  • in

    Impacts on tourism demand

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Selection on offspring size and contemporary evolution under ocean acidification

    Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).CAS 
    Article 

    Google Scholar 
    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).Article 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).Article 

    Google Scholar 
    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).Article 

    Google Scholar 
    Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).CAS 
    Article 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).Article 

    Google Scholar 
    Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).Article 

    Google Scholar 
    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).CAS 
    Article 

    Google Scholar 
    Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).CAS 
    Article 

    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).CAS 
    Article 

    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).CAS 
    Article 

    Google Scholar 
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).CAS 
    Article 

    Google Scholar 
    Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 
    Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).CAS 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).Article 

    Google Scholar 
    Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).Article 

    Google Scholar 
    Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).Article 

    Google Scholar 
    González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).Article 

    Google Scholar 
    Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).CAS 
    Article 

    Google Scholar 
    Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).Article 

    Google Scholar 
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).Article 

    Google Scholar 
    Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).Article 

    Google Scholar 
    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).Article 

    Google Scholar 
    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).CAS 
    Article 

    Google Scholar 
    Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).Article 
    CAS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).CAS 
    Article 

    Google Scholar 
    Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).Article 

    Google Scholar 
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).CAS 
    Article 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).Article 

    Google Scholar 
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).Article 

    Google Scholar 
    Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022) More

  • in

    Last glacial loess dynamics in the Southern Caucasus (NE-Armenia) and the phenomenon of missing loess deposition during MIS-2

    Lehmkuhl, F. et al. Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 215, 103496 (2021).Article 

    Google Scholar 
    Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M. A. & Gao, G. Loess genesis and worldwide distribution. Earth Sci. Rev. 201, 102947 (2020).Article 

    Google Scholar 
    Moine, O. et al. The impact of last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. PNAS 114, 6209–6214 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS 114, E10632–E10638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rousseau, D.-D. et al. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophys. Res. Lett. 34, L22713 (2007).ADS 
    Article 

    Google Scholar 
    Rousseau, D.-D. et al. Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Clim. Past. 13, 1181–1197 (2017).Article 

    Google Scholar 
    Fischer, P. et al. Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). CATENA 196, 104913 (2021).Article 

    Google Scholar 
    Wolf, D. et al. Evidence for strong relations between the Upper Tagus Loess Formation (Central Iberia) and the marine atmosphere off the Iberian Margin during the Last Glacial Period. Quat. Res. 101, 84–113 (2021).Article 

    Google Scholar 
    Porter, S. & An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sun, Y. et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci. 5, 46–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Patterns and timing of loess-palaeosol transitions in Eurasia: Constraints for palaeoclimate studies. Glob. Planet. Change 162, 1–7 (2018).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705 (2012).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).ADS 
    Article 

    Google Scholar 
    Youn, J. H., Seong, Y. B., Choi, J. H., Abdrakhmatov, K. & Ormukov, C. Loess deposits in the northern Kyrgyz Tien Shan: Implications for the paleoclimate reconstruction during the Late Quaternary. CATENA 117, 81–93 (2014).Article 

    Google Scholar 
    Li, Y. et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 14, 271–286 (2018).Article 

    Google Scholar 
    Frechen, M., Oches, E. A. & Kohfeld, K. E. Loess in Europe—Mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. 22, 1835–1857 (2003).ADS 
    Article 

    Google Scholar 
    Antoine, P. et al. High resolution record of the last climatic cycle in the southern carpathian basin at Surduk (vojvodina, Serbia). Quat. Int. 198, 19–36 (2009).MathSciNet 
    Article 

    Google Scholar 
    Antoine, P. et al. Upper Pleistocene loess-palaeosols records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 411, 4–24 (2016).Article 

    Google Scholar 
    Kang, S., Roberts, H. M., Wang, X., An, Z. S. & Wang, M. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the last glacial maximum. Aeol. Res. 19, 251–258 (2015).Article 

    Google Scholar 
    Fitzsimmons, K. E. et al. Loess accumulation in the Tian Shan piedmont: Implications for palaeoenvironmental change in arid Central Asia. Quat. Int. 469, 30–43 (2018).Article 

    Google Scholar 
    Li, Y., Song, Y., Qiang, M., Miao, Y. & Zeng, M. Atmospheric dust variations in the Ili Basin, northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence. J. Geophys. Res. Atmos. 124, 8449–8466 (2019).ADS 
    Article 

    Google Scholar 
    Pinto, J. G. & Ludwig, P. Extratropical cyclones over the North Atlantic and western Europe during the last glacial maximum and implications for proxy interpretation. Clim. Past 16, 611–626 (2020).Article 

    Google Scholar 
    Cheng, L. et al. Drivers for asynchronous patterns of dust accumulation in central and eastern Asia and in Greenland during the Last Glacial Maximum. Geophys. Res. Lett. 48, e2020GL01194 (2021).
    Google Scholar 
    Fenn, K. et al. A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube. Quat. Sci. Rev. 274, 107264 (2021).Article 

    Google Scholar 
    Song, Y. et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclim. Palaeoecol. 567, 110279 (2021).ADS 
    Article 

    Google Scholar 
    Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).Article 

    Google Scholar 
    Baykal, Y. et al. Detrital zircon U-Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain. Quat. Sci. Rev. 274, 107265 (2021).Article 

    Google Scholar 
    Pötter, S. et al. Disentangling sedimentary pathways for the Pleniglacial Lower Danube loess based on geochemical signatures. Front. Earth Sci. 9, 150 (2021).ADS 
    Article 

    Google Scholar 
    Prud’homme, C. et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe. Quat. Sci. Rev. 179, 158–166 (2018).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Sci. Rev. 190, 498–520 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Joannin, S. et al. Vegetation, fire and climate history of the Lesser Caucasus: A new Holocene record from Zarishat fen (Armenia). J. Quat. Sci. 29, 70–82 (2014).Article 

    Google Scholar 
    Brittingham, A. et al. Influence of the north atlantic oscillation on δD and δ18O in meteoric water in the Armenian highland. J. Hydrol. 575, 513–522 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Bohn, U., Zazanashvili, N. & Nakhutsrishvili, G. The map of the natural vegetation of Europe and its application in the caucasus ecoregion. Bull. Georgian Natl. Acad. Sci. 175, 112–121 (2007).
    Google Scholar 
    Trigui, Y. et al. First calibration and application of leaf wax n-alkane biomarkers in Loess-Paleosol sequences and modern plants and soils in Armenia. Geosciences 9, 263 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Richter, C. et al. New insights into southern Caucasian glacial-interglacial climate conditions inferred from Quaternary Gastropod Fauna. J. Quat. Sci. 35, 634–649 (2020).Article 

    Google Scholar 
    Kharzyan, E. Geological Map of Republic of Armenia (Ministry of Nature Protection of Republic of Armenia, 2005).
    Google Scholar 
    Sosson, M. et al. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geol. Soc. Spec. Publ. 340, 329–352 (2010).ADS 
    Article 

    Google Scholar 
    Lomax, J. et al. Testing post-IR-IRSL dating on Armenian loess palaeosol sections against independent age control. Quat. Geochron. 69, 101265 (2021).Article 

    Google Scholar 
    Újvári, G., Kovács, J., Varga, G., Raucsik, B. & Markovic, S. B. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: A review. Quat. Sci. Rev. 29, 3157–3166 (2010).ADS 
    Article 

    Google Scholar 
    Rudnick, R. L. & Gao, S. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).
    Google Scholar 
    Újvári, G., Varga, A. & Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 69, 421–437 (2008).Article 
    CAS 

    Google Scholar 
    Galoyan, G. et al. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. J. Asian Earth Sci. 34, 135–153 (2009).ADS 
    Article 

    Google Scholar 
    Hässig, M. et al. New structural and petrological data on the Amasia ophiolites (NW Sevan-Akera suture zone, Lesser Caucasus): Insights for a large-scale obduction in Armenia and NE Turkey. Tectonophysics 588, 135–153 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Sahakyan, L. et al. Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. in Tectonic Evolution of the Eastern Black Sea and Caucasus (eds. Sosson, M., Stephenson, R. A., Adamia, S. A.). Geological Society Special Publication. Vol. 428. (2016).Obreht, I. et al. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Sci. Rep. 6, 36334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Profe, J., Wacha, L., Frechen, M., Ohlendorf, C. & Zolitschka, B. XRF scanning of discrete samples—A chemostratigraphic approach exemplified for loess-paleosol sequences from the Island of Susak, Croatia. Quat. Int. 494, 34–51 (2018).Article 

    Google Scholar 
    Profe, J., Zolitschka, B., Schirmer, W., Frechen, M. & Ohlendorf, C. Geochemistry unravels MIS3/2 paleoenvironmental dynamics at the loess-paleosol sequence Schwalbenberg II, Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 459, 537–551 (2016).ADS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)—Implications for dust accumulation in south-eastern Europe. Quat. Sci. Rev. 154, 130–142 (2016).ADS 
    Article 

    Google Scholar 
    Song, Y. et al. Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. J. Asian Earth Sci. 155, 68–80 (2018).ADS 
    Article 

    Google Scholar 
    Rouzaut, S. & Orgeira, M. J. Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud. Geophys. Geod. 61, 361–384 (2017).ADS 
    Article 

    Google Scholar 
    Campodonico, V. A., Rouzaut, S. & Pasquini, A. I. Geochemistry of a Late Quaternary loess-paleosol sequence in central Argentina: Implications for weathering, sedimentary recycling and provenance. Geoderma 351, 235–249 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wolf, D. et al. Loess in Armenia—Stratigraphic findings and palaeoenvironmental indications. Proc. Geol. Assoc. 127, 29–39 (2016).Article 

    Google Scholar 
    Buggle, B. et al. Iron mineralogical proxies and Quaternary climate change in SE-European Loess–Paleosol sequences. CATENA 117, 4–22 (2014).CAS 
    Article 

    Google Scholar 
    Bradák, B. et al. Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in Loess. Palaeogeogr. Palaeoclim. Palaeoecol. 569, 110329 (2021).ADS 
    Article 

    Google Scholar 
    Laag, C. et al. A detailed paleoclimate proxy record for the Middle Danube Basin over the Last 430 kyr: A rock magnetic and colorimetric study of the Zemun loess-paleosol sequence. Front. Earth Sci. 9, 600086 (2021).ADS 
    Article 

    Google Scholar 
    Baumgart, P., Hambach, U., Meszner, S. & Faust, D. An environmental magnetic fingerprint of periglacial loess: Records of Late Pleistocene loess–palaeosol sequences from eastern Germany. Quat. Int. 296, 82–93 (2013).Article 

    Google Scholar 
    Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles. PNAS 115, E11005–E11014 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard-Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).ADS 
    Article 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).ADS 
    Article 

    Google Scholar 
    Martrat, B. et al. Four climate cycles ofrecurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Jin, L., Chen, F., Ganopolski, A. & Claussen, M. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res. 112, D06117 (2007).ADS 

    Google Scholar 
    Sun, Y., Wang, X., Liu, Q. & Clemens, S. C. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171–179 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S. & Ding, Z. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem. Geophys. Geosyst. 15, 798–814 (2014).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Antoine, P. et al. Evidence of rapid and cyclic eolian deposition during the Last Glacial in European loess series (Loess events): The high-resolution records from Nussloch (Germany). Quat. Sci. Rev. 28, 2955–2973 (2009).ADS 
    Article 

    Google Scholar 
    Rousseau, D. D. et al. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Clim. Past 7, 221–234 (2011).Article 

    Google Scholar 
    Machalett, B. et al. Aeolian dust dynamics in Central Asia during the Pleistocene: driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophys. Geochem. Geosyst. 9, Q08Q09 (2008).Article 
    CAS 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Kutzbach, J., Chen, G., Cheng, H., Edwards, R. & Liu, Z. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim. Dynam. 42, 1079–1095 (2014).ADS 
    Article 

    Google Scholar 
    Marković, S. B. et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth Sci. Rev. 148, 228–258 (2015).ADS 
    Article 

    Google Scholar 
    Li, G. et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the penultimate glaciation. Earth Planet. Sci. Lett. 448, 1–12 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. A luminescence-based chronology for the Harletz Loess sequence, Bulgaria. Boreas 48, 179–194 (2019).Article 

    Google Scholar 
    Kehl, M. et al. Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands—New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quat. Sci. Rev. 253, 106774 (2021).Article 

    Google Scholar 
    Ganopolski, A., Calov, R. & Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 6, 229–244 (2010).Article 

    Google Scholar 
    Malinsky-Buller, A. et al. Evidence for Middle Palaeolithic occupation and landscape change in central Armenia at the open-air site of Alapars-1. Quat. Res. 99, 223–247 (2021).Article 

    Google Scholar 
    Rao, Z. et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci. Rep. 3, 2785 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, T., Marković, S. B., Zech, M., Hambach, U. & Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 30, 662–681 (2011).ADS 
    Article 

    Google Scholar 
    Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).ADS 
    Article 

    Google Scholar 
    Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Clim. Past 11, 1491–1505 (2015).Article 

    Google Scholar 
    Wegwerth, A. et al. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea “Lake”. Quat. Sci. Rev. 135, 41–53 (2016).ADS 
    Article 

    Google Scholar 
    Ollivier, V., Fontugne, M. & Lyonnet, B. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109–124 (2015).ADS 
    Article 

    Google Scholar 
    Egeland, C. P. et al. Bagratashen 1, a stratified open-air Middle Paleolithic site in the Debed river valley of northeastern Armenia: A preliminary report. Archaeol. Res. Asia 8, 1–20 (2016).Article 

    Google Scholar 
    von Suchodoletz, H., Gärtner, A., Zielhofer, C. & Faust, D. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus. Quat. Sci. Rev. 191, 189–203 (2018).ADS 
    Article 

    Google Scholar 
    Langbein, W. B. & Schumm, S. A. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 39, 1076–1084 (1958).ADS 
    Article 

    Google Scholar 
    Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).ADS 
    Article 

    Google Scholar 
    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).Article 

    Google Scholar 
    Reber, R. et al. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quat. Sci. Rev. 101, 177–192 (2014).ADS 
    Article 

    Google Scholar 
    Ammann, C., Jenny, B., Kammer, K. & Messerli, B. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 °S). Palaeogeogr. Palaeoclim. Palaeoecol. 172, 313–326 (2001).ADS 
    Article 

    Google Scholar 
    Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spötl, C. et al. Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps. Nat. Commun. 12, 1839 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shumilovskikh, L. S. et al. Orbital and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments. Clim. Past 10, 939–954 (2014).Article 

    Google Scholar 
    Wegwerth, A. et al. Black Sea temperature response to glacial millennial-scale climate variability. Geophys. Res. Lett. 42, 8147–8154 (2015).ADS 
    Article 

    Google Scholar 
    Sarıkaya, M. A., Zreda, M., Çiner, A. & Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat. Sci. Rev. 27, 769–780 (2008).ADS 
    Article 

    Google Scholar 
    Lézine, A.-M. et al. Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. Palaeogeogr. Palaeoclim. Palaeoecol. 287, 116–127 (2010).ADS 
    Article 

    Google Scholar 
    Tecsa, V. et al. Revisiting the chronostratigraphy of late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quat. Int. 542, 65–79 (2020).Article 

    Google Scholar 
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 6344 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ludwig, P., Schaffernicht, E. J., Shao, Y. & Pinto, J. G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res.-Atmos. 121, 2130–2145 (2016).ADS 
    Article 

    Google Scholar 
    Schaffernicht, E. J., Ludwig, P. & Shao, Y. Linkage between dust cycle and loess of the last glacial maximum in Europe. Atmos. Chem. Phys. 20, 4969–4986 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Beghin, P. et al. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Clim. Dyn. 46, 2611–2631 (2016).Article 

    Google Scholar 
    Sümegi, P. et al. Vegetation and land snail-based reconstruction of the palaeocological changes in the forest steppe eco-region of the Carpathian Basin during last glacial warming. Glob. Ecol. Conserv. 33, e01976 (2022).Article 

    Google Scholar 
    Chen, J. et al. Revisiting Late Pleistocene Loess-Paleosol sequences in the Azov Sea Region of Russia: Chronostratigraphy and paleoenvironmental record. Front. Earth Sci. 9, 808157 (2022).Article 

    Google Scholar 
    Xepos, S. Analysis of trace elements in geological materials, soils and sludges. Spectro XRF Rep. 193, 1–5 (2007).
    Google Scholar 
    Buggle, B. et al. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 27, 1058–1075 (2008).ADS 
    Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System (Chi Publishing, 1999).
    Google Scholar 
    Buylaert, J., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. Establishing a luminescence-based chronostratigraphy for the Last Glacial-interglacial cycle of the Loess-Palaeosol sequence Achajur (Armenia). Front. Earth Sci. 9, 755084 (2021).Article 

    Google Scholar 
    Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37, 493–498 (2003).CAS 
    Article 

    Google Scholar 
    Tudyka, K. et al. Increased dose rate precision in combined α and β counting in the μDose system—A probabilistic approach to data analysis. Radiat. Meas. 134, 106310 (2020).CAS 
    Article 

    Google Scholar 
    Kolb, T. et al. The µDose-system: Determination of environmental dose rates by combined alpha and beta counting—Performance tests and practical experiences. GChron 4, 1–31 (2021).ADS 

    Google Scholar 
    Durcan, J. A., King, G. & Duller, G. DRAC: Dose rate and age calculator for trapped charge dating. Quat. Geochron. 28, 54–61 (2015).Article 

    Google Scholar 
    von Suchodoletz, H. & Faust, D. Late Quaternary fluvial dynamics and landscape evolution at the lower Shulaveris Ghele River (southern Caucasus). Quat. Res. 89, 254–269 (2018).Article 

    Google Scholar 
    von Suchodoletz, H. et al. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering e the Kura River (southern Caucasus). Geomorphology 266, 53–65 (2016).ADS 
    Article 

    Google Scholar 
    Ryan, W. B. F. et al. Global multi-resolution topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10, Q03014 (2009).ADS 
    Article 

    Google Scholar 
    Nalivkin, D. V. et al. Geologicheskaya Karta Kavkaza, Mashtav 1:500.000 (Geological Map of the Caucasus, Scale 1:500,000). (Ministry of Geology of the USSR, 1976). More