Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (80-) https://doi.org/10.1126/science.aai9214 (2017).Article
Google Scholar
Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS
CAS
PubMed
Article
Google Scholar
Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).ADS
CAS
PubMed
Article
Google Scholar
Zimmermann, N. E., Edwards, T. C. Jr., Graham, C. H., Pearman, P. B. & Svenning, J. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).Article
Google Scholar
Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).Article
Google Scholar
Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).Article
Google Scholar
Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830 (2022).Article
CAS
Google Scholar
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed
Article
Google Scholar
Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. Int. J. 30, 224–235 (2010).Article
Google Scholar
Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20, 309–321 (2014).PubMed
PubMed Central
Article
Google Scholar
Dubuis, A. et al. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J. Veg. Sci. 24, 593–606 (2013).Article
Google Scholar
Walthert, L. & Meier, E. S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 7, 9473–9484 (2017).PubMed
PubMed Central
Article
Google Scholar
Figueiredo, F. O. G. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45, 190–200 (2018).Article
Google Scholar
Arar, A., Nouidjem, Y., Bounar, R., Tabet, S. & Kouba, Y. Potential future changes of the geographic range size of Juniperus phoenicea in Algeria based on present and future climate change projections. Contemp. Probl. Ecol. 13, 429–441 (2020).Article
Google Scholar
Coudun, C., Gégout, J., Piedallu, C. & Rameau, J. Soil nutritional factors improve models of plant species distribution: An illustration with Acer campestre (L.) in France. J. Biogeogr. 33, 1750–1763 (2006).Article
Google Scholar
Buri, A. et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J. Biogeogr. 47, 1143–1153 (2020).Article
Google Scholar
Buri, A. et al. Soil factors improve predictions of plant species distribution in a mountain environment. Prog. Phys. Geogr. 41, 703–722 (2017).Article
Google Scholar
Mod, H. K., Scherrer, D., Luoto, M. & Guisan, A. What we use is not what we know: environmental predictors in plant distribution models. J. Veg. Sci. 27, 1308–1322 (2016).Article
Google Scholar
Scherrer, D. & Guisan, A. Ecological indicator values reveal missing predictors of species distributions. Sci. Rep. 9, 1–8 (2019).ADS
CAS
Article
Google Scholar
Boulos, L. Flora of Egypt, Vol. 1. vol. 1 (Al Hadara Publishing, 1999).Farjon, A. & Filer, D. An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. (Brill, 2013).Allen, DJ. Juniperus phoenicea. The IUCN red list of threatened species 2017: e.T16348983A99965052. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS. T16348983A99965052.en. Downloaded on 19 May 2020El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai Egypt. Flora-Morphol. Distrib. Funct. Ecol. Plants 205, 171–178 (2010).Article
Google Scholar
Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. Growing in Gebel Halal, North Sinai Egypt. Catrina Int. J. Environ. Sci. 15, 11–23 (2016).
Google Scholar
Farahat, E. A. Age structure and static life tables of the endangered Juniperus phoenicea L. in North Sinai Mountains, Egypt. J. Mt. Sci. 17, 2170–2178 (2020).Article
Google Scholar
El-Wahab, A. Condition assessment of plant diversity of Gebel Maghara, North Sinai, Egypt. Catrina Int. J. Environ. Sci. 3, 21–40 (2008).
Google Scholar
Youssef, A. M., Morsy, A. A., Mosallam, H. A. & Hashim, A. M. Vegetation and soil relationships in some wadis from the North-Central part of Sinai Peninsula Egypt. Minia Sci. Bull. 25, 1–28 (2014).
Google Scholar
Fisher, M. Decline in the juniper woodlands of Raydah Reserve in southwestern Saudi Arabia: A response to climate changes?. Glob. Ecol. Biogeogr. Lett. 6, 379–386 (1997).Article
Google Scholar
Salvà-Catarineu, M. et al. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol. Evol. 11, 5075–5095 (2021).PubMed
PubMed Central
Article
Google Scholar
Quevedo, L., Rodrigo, A. & Espelta, J. M. Post-fire resprouting ability of 15 non-dominant shrub and tree species in Mediterranean areas of NE Spain. Ann. For. Sci. 64(8), 883–890 (2007).Article
Google Scholar
Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort. Spat. Inf. 89, 1–2 (2009).
Google Scholar
Hengl, T. et al. SoilGrids1km—Global soil information based on automated mapping. PLoS One 9, e105992 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Documentation for the global human modification of terrestrial systems (2020).Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (Cop.) 39, 368–375 (2016).Article
Google Scholar
Naimi, B. usdm: Uncertainty analysis for species distribution models. R Packag. Version 1, 1–12 (2015).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. In Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).Dakhil, M. A. et al. Global invasion risk assessment of Prosopis juliflora at biome level : Does soil matter?. Biology 10, 203 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Iturbide, M., Bedia, J. & Gutiérrez, J. M. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166, 19–29 (2018).ADS
Article
Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article
Google Scholar
Zhang, Z., Mammola, S., Xian, W. & Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 26, 126–137 (2020).Article
Google Scholar
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).CAS
Article
Google Scholar
Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article
Google Scholar
Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed
Article
Google Scholar
Haider, S. M., Benscoter, A. M., Pearlstine, L., D’Acunto, L. E. & Romañach, S. S. Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach. Ecol. Modell. 461, 109774 (2021).Article
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article
Google Scholar
Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book
Google Scholar
Kabiel, H. F., Hegazy, A. K., Lovett-Doust, L., Al-Rowaily, S. L. & Al Borki, A. E. N. S. Ecological assessment of populations of Juniperus phoenicea L. in the Al-Akhdar mountainous landscape of Libya. Arid L. Res. Manag. 30, 269–289 (2016).Article
Google Scholar
Camarero, J. J. et al. Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agric. For. Meteorol. 291, 108078 (2020).ADS
Article
Google Scholar
Sánchez-Salguero, R. & Camarero, J. J. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sci. Total Environ. 721, 137599 (2020).ADS
PubMed
Article
CAS
Google Scholar
Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).ADS
Article
Google Scholar
Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).ADS
Article
Google Scholar
González-Hidalgo, J. C. et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 66, 381–392 (2018).ADS
Article
Google Scholar
Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016).ADS
Article
Google Scholar
Navarro Cerrillo, R. M. et al. Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain?. New For. 52, 89–112 (2021).Article
Google Scholar More