Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf
Lombard, F. et al. Consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. https://doi.org/10.3389/fmars.2019.00196 (2019).Article
Google Scholar
Sieracki, M. E., et al. Optical plankton imaging and analysis systems for ocean observation. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, 878–885 (2010). https://doi.org/10.5270/OceanObs09.cwp.81.Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Ann. Rev. Mar. Sci. 14(1), 277. https://doi.org/10.1146/annurev-marine-041921-013023 (2022).Article
PubMed
Google Scholar
Mars Brisbin, M., Brunner, O. D., Grossmann, M. M. & Mitarai, S. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65(12), 2953–2965. https://doi.org/10.1002/lno.11567 (2020).ADS
CAS
Article
Google Scholar
Benfield, M. et al. RAPID: Research on automated plankton identification. Oceanography 20(2), 172–187. https://doi.org/10.5670/oceanog.2007.63 (2007).Article
Google Scholar
Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066. https://doi.org/10.7554/eLife.26066 (2017).Article
PubMed
PubMed Central
Google Scholar
Kim, M. K. Principles and techniques of digital holographic microscopy. J. Photonics Energy. 1, 018005. https://doi.org/10.1117/6.0000006 (2010).Article
Google Scholar
Tahara, T., Quan, X., Otani, R., Takaki, Y. & Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 67(2), 55–67. https://doi.org/10.1093/jmicro/dfy007 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Jericho, S. K., Garcia-Sucerquia, J. F. W., Jericho, M. H. & Kreuzer, H. J. Submersible digital in-line holographic microscope. Rev. Sci. Instrum. 77(4), 043706. https://doi.org/10.1063/1.2193827 (2006).ADS
CAS
Article
Google Scholar
Bochdansky, A. B., Jericho, M. H. & Herndl, G. J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particlesto a depth of 6000 m. Limnol. Oceanogr: Methods 11, 28–40 (2013).Article
Google Scholar
Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22(6), 6661. https://doi.org/10.1364/OE.22.006661 (2014).ADS
Article
PubMed
Google Scholar
Jericho, M. H. & Kreuzer, H. J. Point source digital in-line holographic microscopy. In Coherent Light Microscopy (eds Ferraro, P. et al.) 3–30 (Springer, 2011).Chapter
Google Scholar
Kanka, M., Riesenberg, R. & Kreuzer, H. J. Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34(8), 1162. https://doi.org/10.1364/OL.34.001162 (2009).ADS
CAS
Article
PubMed
Google Scholar
Jericho, M. H., Kreuzer, H. J., Kanka, M. & Riesenberg, R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl. Opt. 51(10), 1503. https://doi.org/10.1364/AO.51.001503 (2012).ADS
CAS
Article
PubMed
Google Scholar
Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018).CAS
Article
Google Scholar
Sun, H. et al. digital holography for studies of marine plankton. Philos. Trans. R. Soc. A. 366, 1789–1806 (2008).ADS
CAS
Article
Google Scholar
Bianco, V. et al. microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2(2), 1900153. https://doi.org/10.1002/aisy.201900153 (2020).Article
Google Scholar
Guo, B. et al. Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. Oceanogr. 19(1), 21–36. https://doi.org/10.1002/lom3.10402 (2021).Article
Google Scholar
Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147. https://doi.org/10.3389/fmars.2020.572147 (2021).Article
Google Scholar
Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95(3), 401–414. https://doi.org/10.1016/j.mimet.2013.08.011 (2013).CAS
Article
PubMed
Google Scholar
Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).CAS
Article
PubMed
Google Scholar
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237), 1261605–1261605. https://doi.org/10.1126/science.1261605 (2015).CAS
Article
PubMed
Google Scholar
Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348(6237), 1262073–1262073. https://doi.org/10.1126/science.1262073 (2015).CAS
Article
PubMed
Google Scholar
Santoferrara, L. et al. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 67(5), 612–622. https://doi.org/10.1111/jeu.12813 (2020).Article
PubMed
Google Scholar
Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
Kirkham, A. R. et al. Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect: Marine photosynthetic picoeukaryote community structure. Environ. Microbiol. 13(4), 975–990. https://doi.org/10.1111/j.1462-2920.2010.02403.x (2011).CAS
Article
PubMed
Google Scholar
Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15(6), 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).CAS
Article
PubMed
Google Scholar
Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Phil. Trans. R. Soc. B. 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331 (2016).Article
PubMed
PubMed Central
Google Scholar
Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Stefanni, S. et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 8(1), 12085. https://doi.org/10.1038/s41598-018-30157-7 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Pappalardo, P. et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab082 (2021).Article
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article
PubMed
PubMed Central
Google Scholar
Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52(1), 79–92. https://doi.org/10.1016/j.femsec.2004.10.006 (2005).CAS
Article
PubMed
Google Scholar
Sargent, E. C. et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol. Lett. 363(21), 244. https://doi.org/10.1093/femsle/fnw244 (2016).CAS
Article
Google Scholar
Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219. https://doi.org/10.3389/fmars.2019.00219 (2019).Article
Google Scholar
Biard, T. et al. Biogeography and diversity of collodaria (radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).Article
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article
PubMed
PubMed Central
Google Scholar
Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6, 122. https://doi.org/10.3389/fmars.2019.00122 (2019).Article
Google Scholar
Bolaños, L. M. et al. Seasonality of the microbial community composition in the North Atlantic. Front. Mar. Sci. 8, 624164. https://doi.org/10.3389/fmars.2021.624164 (2021).Article
Google Scholar
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x (1982).MathSciNet
Article
MATH
Google Scholar
Decelle, J. & Not, F. Acantharia. ELS, 1–10 (2015). https://doi.org/10.1002/9780470015902.a0002102.pub2.Yu, L., An, Y. & Cai, L. Numerical reconstruction of digital holograms with variable viewing angles. Opt. Express 10(22), 1250. https://doi.org/10.1364/OE.10.001250 (2002).ADS
Article
PubMed
Google Scholar
Della Penna, A. & Gaube, P. Overview of (sub)mesoscale Ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 384. https://doi.org/10.3389/fmars.2019.00384 (2019).Article
Google Scholar
Sverdrup, H. U. Oceanography for Meteorologists (Prentice Hall, 1942).Book
Google Scholar
Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8(1), 161–184. https://doi.org/10.1146/annurev-marine-010814-015912 (2016).ADS
Article
Google Scholar
Fratantoni, P. S. & Pickart, R. S. The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37(10), 2509–2533. https://doi.org/10.1175/JPO3123.1 (2007).ADS
Article
Google Scholar
Bolaños, L. M. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 14(7), 1663–1674. https://doi.org/10.1038/s41396-020-0636-0 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Kramer, S. J., Siegel, D. A. & Graff, J. R. Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign. Front. Mar. Sci. 7, 215. https://doi.org/10.3389/fmars.2020.00215 (2020).Article
Google Scholar
Faure, E. et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 13(4), 1072–1083. https://doi.org/10.1038/s41396-018-0340-5 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Fratantoni, P. S. & McCartney, M. S. Freshwater export from the labrador current to the North Atlantic Current at the tail of the grand banks of Newfoundland. Deep Sea Res. I. 57(2), 258–283. https://doi.org/10.1016/j.dsr.2009.11.006 (2010).Article
Google Scholar
Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007 (2015).Article
Google Scholar
Jian, C., Salonen, A. & Korpela, K. Commentary: How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 11, 627910. https://doi.org/10.3389/fcimb.2021.627910 (2021).Article
PubMed
PubMed Central
Google Scholar
Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA. Limnol. Oceanogr. Methods 16(4), 209–221. https://doi.org/10.1002/lom3.10237 (2018).Article
PubMed
PubMed Central
Google Scholar
del Campo, J. et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006 (2014).Article
PubMed
PubMed Central
Google Scholar
Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotech. 36(2), 190–195. https://doi.org/10.1038/nbt.4045 (2018).CAS
Article
Google Scholar
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47(18), e103–e103. https://doi.org/10.1093/nar/gkz569 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85(5), 18. https://doi.org/10.1128/AEM.02634-18 (2019).Article
Google Scholar
Vogt, M. et al. Global marine plankton functional type biomass distributions: Phaeocystis spp. Earth Syst. Sci. Data 5, 405–443. https://doi.org/10.5194/essdd-5-405-2012 (2012).ADS
Article
Google Scholar
MacNeil, L., Missan, S., Luo, J., Trappenberg, T. & LaRoche, J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol. Evol. 21(1), 123. https://doi.org/10.1186/s12862-021-01839-0 (2021).Article
PubMed
PubMed Central
Google Scholar
Pan, J., del Campo, J. & Keeling, P. J. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukary. Microbiol. 64(1), 88–96. https://doi.org/10.1111/jeu.12342 (2017).Article
Google Scholar
Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11(2), 362–373. https://doi.org/10.1038/ismej.2016.113 (2017).Article
PubMed
Google Scholar
Xie, N., Hunt, D. E., Johnson, Z. I., He, Y. & Wang, G. Annual partitioning patterns of Labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01652-20 (2021).Article
PubMed
PubMed Central
Google Scholar
Walcutt, N. L. et al. Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 3, 10379. https://doi.org/10.1002/lom3.10379 (2020).Article
Google Scholar
Axler, K. et al. Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem. Mar. Ecol. Prog. Ser. 650, 37–61. https://doi.org/10.3354/meps13397 (2020).ADS
Article
Google Scholar
Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12(1), 2816. https://doi.org/10.1038/s41467-021-22994-4 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
González, P. et al. Automatic plankton quantification using deep features. J. Plankton Res. 41(4), 449–463. https://doi.org/10.1093/plankt/fbz023 (2019).Article
Google Scholar
Briseño-Avena, C. et al. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions. Prog. Oceanogr. 188, 102436. https://doi.org/10.1016/j.pocean.2020.102436 (2020).Article
Google Scholar
Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS
CAS
Article
Google Scholar
Orenstein, E. C. et al. The scripps plankton camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18(11), 681–695. https://doi.org/10.1002/lom3.10394 (2020).Article
Google Scholar
Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. PNAS 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x (2018).ADS
CAS
Article
Google Scholar
Ryabov, A. et al. Shape matters: The relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4), 847–861. https://doi.org/10.1111/ele.13680 (2021).MathSciNet
Article
PubMed
Google Scholar
Keeling, P. J. & del Campo, J. marine protists are not just big bacteria. Curr. Biol. 27(11), R541–R549. https://doi.org/10.1016/j.cub.2017.03.075 (2017).CAS
Article
PubMed
Google Scholar
Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8(1), 14375. https://doi.org/10.1038/ncomms14375 (2017).CAS
Article
PubMed Central
Google Scholar
Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2(1), 48. https://doi.org/10.1038/s43247-021-00120-y (2021).ADS
Article
Google Scholar
Mitchell, M. R. et al. Atlantic zone monitoring program protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223, 1–23 (2002).
Google Scholar
Li, W. K. W., Glen Harrison, W. & Head, E. J. H. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc. B. 273(1596), 1953–1960. https://doi.org/10.1098/rspb.2006.3529 (2006).Article
PubMed
PubMed Central
Google Scholar
Richardson, P. L. Florida current, gulf stream, and labrador current. In Encyclopedia of Ocean Sciences (ed. Steele, J. H.) 1054–1064 (Academic Press, 2001). https://doi.org/10.1006/rwos.2001.0357.Chapter
Google Scholar
Henson, S. A., Dunne, J. P. & Sarmiento, J. L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. 114(C4), C04013. https://doi.org/10.1029/2008JC005139 (2009).ADS
CAS
Article
Google Scholar
Han, G., Lu, Z., Wang, Z., Helbig, J. & Chen, N. Seasonal variability of the labrador current and shelf circulation off Newfoundland. J. Geophys. Res. 113, 10. https://doi.org/10.1029/2007JC004376 (2008).Article
Google Scholar
Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Kelley, D. “The Oce Package” In Oceanographic Analysis with R 91–101 (Springer, 2018).Book
Google Scholar
Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.Tomas, C. R. Identifying Marine Phytoplankton (Academic Press Inc, 1997).
Google Scholar
Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6(11), e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS
Article
PubMed
Google Scholar
Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems https://doi.org/10.1128/mSystems.00009-15 (2016).Article
PubMed
Google Scholar
Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS
Article
Google Scholar
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2(2), e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article
PubMed
PubMed Central
Google Scholar
Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).CAS
Article
PubMed
Google Scholar
Mohsen, A., Park, J., Chen, Y.-A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinform. 20(1), 581. https://doi.org/10.1186/s12859-019-3187-5 (2019).Article
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).MathSciNet
Article
PubMed
PubMed Central
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Willis, A. & Bunge, J. Estimating diversity via frequency ratios: estimating diversity via ratios. Biometrics 71(4), 1042–1049. https://doi.org/10.1111/biom.12332 (2015).MathSciNet
Article
PubMed
MATH
Google Scholar
Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407. https://doi.org/10.3389/fmicb.2019.02407 (2019).Article
PubMed
PubMed Central
Google Scholar
Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8(9), 107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS
Article
Google Scholar
Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are the same. Comput. Struct. Biotech. J. 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014 (2020).CAS
Article
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Google Scholar More