Influence of organic ammonium derivatives on the equilibria between NH4+, NO2− and NO3− ions in the Nistru River water
Britto, D. T., Siddiqi, M. Y., Glass, A. D. M. & Kronzucker, H. J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. PNAS 98(7), 4255–4258 (2001).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Britto, D. T. & Konzucker, H. J. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584 (2002).CAS
Article
Google Scholar
Müller, T., Walter, B., Wirtz, A. & Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 52, 400–406 (2006).PubMed
Article
CAS
Google Scholar
Mayes, M. A., Alexander, H. C., Hopkins, D. L. & Latvaitis, P. B. Acute and chronic toxicity of ammonia to freshwater fish: a site-specific study. Environ. Toxicol. Chem. 5, 437–442 (1986).CAS
PubMed
Article
Google Scholar
Archer, M. C. Hazards of nitrate, nitrite, and n-nitroso compounds in human nutrition. Nutr. Toxicol. 1, 329–381 (2012).
Google Scholar
Brione, E., Martin, G. & Morvan, J. Non-destructive technique for elimination of nutrients from pig manure, 33–37. In Horan, N. J., Lowe, P. & Stentiford, E. I. (ed.), Nutrient removal from wastewaters. Techonomic Publishing Co. (Lancaster 1994).Butler, D., Friedler, E. & Gatt, K. Characterising the quantity and quality of domestic wastewater inflows. Wal. Sci. Tech. 31(7), 13–24 (1995).CAS
Article
Google Scholar
Mahne, I., Prinčič, A. & Megušar, F. Nitrification/denitrification in nitrogen high-strength liquid wastes. Water Res. 30, 2107–2111 (1996).CAS
Article
Google Scholar
Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas Europaea. Arch. Microbiol. 178, 250–255. https://doi.org/10.1007/s00203-002-0452-0 (2002).CAS
Article
PubMed
Google Scholar
Dalton, H. Ammonia oxidation by the methane oxidizing bacterium Methylococcuscapsulatus strain bath. Arch. Microbiol. 114(3), 273–279 (1977).CAS
Article
Google Scholar
Daum, M. et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier pseudomonas putida. Curr Microbiol 37, 281–288 (1998).CAS
PubMed
Article
Google Scholar
Do, H. et al. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation. J. Ind. Microbiol. Biotechnol. 35, 1331–1338. https://doi.org/10.1007/s10295-008-0415-9 (2008).MathSciNet
CAS
Article
PubMed
Google Scholar
Lin, Y. et al. Physiological and molecular biological characteristics of heterotrophic ammonia oxidation by Bacillus sp. LY. World J. Microbiol. Biotechnol. 26, 1605–1612 (2010).ADS
CAS
Article
Google Scholar
Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122(46), 11507–11508 (2000).CAS
Article
Google Scholar
Zamora, R., León, M. M. & Hidalgo, F. J. Oxidative versus non-oxidative decarboxylation of amino acids: conditions for the preferential formation of either strecker aldehydes or amines in amino acid/lipid-derived reactive carbonyl model systems. J. Agric. Food Chem. 63(36), 8037–8043 (2015).CAS
PubMed
Article
Google Scholar
Perez, M. et al. The relationship among tyrosine decarboxylase and agmatine deiminase pathways in enterococcus faecalis. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02107/full (2017).Article
PubMed
PubMed Central
Google Scholar
Chen, B. Y., Lin, K. W., Wang, Y. M. & Yen, C. Y. Revealing interactive toxicity of aromatic amines to azo dye decolorizer Aeromonas hydrophila. J. Hazard Mater. 166(1), 187–194 (2009).CAS
PubMed
Article
Google Scholar
Greim, H., Bury, D., Klimisch, H. J., Oeben-Negele, M. & Ziegler-Skylakakis, K. Toxicity of aliphatic amines: structure-activity relationship. Chemosphere 36(2), 271–295. https://doi.org/10.1016/s0045-6535(97)00365-2 (1998).ADS
CAS
Article
PubMed
Google Scholar
Newsome, L. D., Johnson, D. E., Lipnick, R. L., Broderius, S. J. & Russom, C. L. A QSAR study of the toxicity of amines to the fathead minnow. Sci. Total Environ. 109–110, 537–551 (1991).ADS
PubMed
Article
Google Scholar
Pinheiro, H. M., Touraud, E. & Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm. 61, 121–139 (2004).CAS
Article
Google Scholar
Poste, A. E., Grung, M. & Wright, R. F. Wright Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Sci. Total Environ. 481, 274–279 (2014).ADS
CAS
PubMed
Article
Google Scholar
Ramos, E. U., Vaal, M. A. & Hermens, J. L. M. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharmacol. 11(3–4), 149–158 (2002).CAS
PubMed
Article
Google Scholar
Nicholas, G. A., Peter, J. B., Milton, W. G. & Stan, V. G. Microbial decomposition of wood in streams: distribution of microflora and factors affecting [14C] lignocellulose mineralization. Appl. Environ. Microbiol. 46(6), 1409–1416 (1983).Article
Google Scholar
Okabe, S., Kindaichi, T. & Ito, T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71(7), 3987–3994 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Qiao, Z. et al. Microbial Heterotrophic Nitrification-Aerobic Denitrification Dominates Simultaneous Removal of Aniline and Ammonium in Aquatic Ecosystems. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04476-3 (2020).Article
Google Scholar
Celik, A. Oxytetracycline and paracetamol biodegradation performance in the same enriched feed medium with aerobic nitrification/anaerobic denitrification SBR. Bioprocess Biosyst. Eng. 44, 1649–1658 (2021).CAS
PubMed
Article
Google Scholar
Spataru, P., Povar, I., Mosanu, E. & Trancalan, A. Study of stable nitrogen forms in natural surface waters in the presence of mineral substrates. Chem. J. Moldova 10, 26–32 (2015).CAS
Article
Google Scholar
Spataru, P. et al. Influence of the interaction of calcium carbonate particles with surfactants on the degree of water pollution in small rivers. Ecol. Process. https://doi.org/10.1186/s13717-017-0086-4#article-dates-history (2017).Article
Google Scholar
Spataru, P., Povar, I., Lupascu, T., Alder, A. C. & Mosanu, E. Study of nitrogen forms in seasonal dynamics and kinetics of nitrification and denitrification in Prut and Nistru river waters. Environ. Eng. Manag. J. 17(7), 1711–1719 (2018).CAS
Article
Google Scholar
Cui, Z. G., Cui, Y. Z., Cui, C. F., Chen, Z. & Binks, B. P. Aqueous foams stabilized by in situ surface activation of CaCO3 Nanoparticles via Adsorption of Anionic Surfactant. Langmuir 26(15), 12567–12574 (2010).CAS
PubMed
Article
Google Scholar
Cui, Z.-G., Cui, C.-F., Zhu, Y. & Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of Fatty acids. Langmuir 28(1), 314–320 (2012).PubMed
Article
CAS
Google Scholar
Tanaka, T. et al. Biodegradation of endocrine-disrupting chemical aniline by microorganisms. J. Health Sci. 55(4), 625–630 (2009).CAS
Article
Google Scholar
Ahmed, S. et al. Isolation and characterization of a bacterial strain for aniline degradation. Afr. J. Biotechnol. 9(8), 1173–1179 (2010).CAS
Article
Google Scholar
Spataru, P. Transformations of organic substances in surface waters of Republic of Moldova. PhD Dissertation, State University of Moldova (2011).Sandu, M. et al. The dynamic of nitrification process in the presence of cationic surfactants. Proc. SIMI Bucharest 1, 277–281 (2007).
Google Scholar
Spataru, P., Fernandez, F., Povar, I. & Spataru, T. Behavior of nitrogen soluble forms in natural water in the presence of anionic and cationic surfactants and mineral substrates. Adv. Sci. Eng. 11(2), 70–77. https://doi.org/10.32732/ase.2019.11.2.70 (2019).Article
Google Scholar
Reifferscheid, G., Buchinger, S., Cao, Z. & Claus, E. Identification of mutagens in freshwater sediments by the Ames-fluctuation assay using nitroreductase and acetyltransferase overproducing test strains. Environ. Mol. Mutagen. https://doi.org/10.1002/em.20638 (2011).Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N. & Nabyvanets, Y. Characteristics of Surface Water Quality in Processes Determining Surface Water Chemistry, Springer Link, 1–9. https://doi.org/10.1007/978-3-319-42159-9_1 (2016).Matveeva, N. P., Klimenko, O. A. & Trunov, N. M. Simulation of self-purification of natural treatment of organic pollutants in the laboratory, Gidrometeoizdat, Leningrad, 26–31 (in Russian) (1988).ISO 7150-1:2001.Water quality – Determination of ammonium – Spectrometric method.ISO 8466-1:1990. Water quality – Calibration and evaluation of analytical methods and estimation of performance characteristics, 1: Statistical evaluation of the linear calibration function.SR ISO 7890-3:2000 Water quality – The determination of the content of nitrates, 3: The spectrometric method with sulfosalicylic acid.SM SR EN 26777:2006 Water quality – determination of the content of nitrites. The method of the spectrometry of molecular absorption.Sandu, M. et al. Method for nitrate determination in water in the presence of nitrite. Chem. J. Moldova 9, 8–13 (2014).CAS
Article
Google Scholar
Bentzon-Tilia, M. et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME 9, 273–285 (2015).CAS
Article
Google Scholar
Farnelid, H. et al. Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME J. 7, 1413–1423. https://doi.org/10.1038/ismej.2013.26 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Nagatani, H., Shimizu, M. & Valentine, R. C. The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Mikrobiol. 79, 164–175 (1971).CAS
PubMed
Article
Google Scholar
Allen, A. E., Booth, M. G., Verity, P. G. & Frischer, M. E. Influence of nitrate availability on the distribution and abundance of heterotrophic bacterial nitrate assimilation genes in the Barents Sea during summer. Aquat. Microb. Ecol. 39, 247–255 (2005).Article
Google Scholar
Davidson, K. et al. The influence of the balance of inorganic and organic nitrogen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52(5), 2147–2163 (2007).ADS
CAS
Article
Google Scholar
Domingues, R. B., Barbosa, A. B., Sommer, U. & Galvão, H. M. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat. Sci. 73, 331–343. https://doi.org/10.1007/s00027-011-0180-0 (2011).CAS
Article
Google Scholar
Hollibaugh, J. T., Gifford, S., Sharma, S., Bano, N. & Moran, M. A. Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage. ISME J. 5, 866–878 (2011).CAS
PubMed
Article
Google Scholar
Yang, J. et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ. Sci. Technol. 51, 3057–3064 (2017).ADS
CAS
PubMed
Article
Google Scholar
Jones, Z. L., Jasper, J. T., Sedlak, D. L. & Sharpa, J. O. Sulfide-Induced dissimilatory nitrate reduction to ammonium supports anaerobic Ammonium oxidation (anammox) in an open-water unit process wetland. Appl. Environ. Microbiol. 83(15), 1–14 (2017).Article
Google Scholar
Nizzoli, D., Carraro, E., Nigro, V. & Viaroli, P. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res. 4, 2715–2724 (2010).Article
CAS
Google Scholar
Rutting, T., Boeckx, P., Muller, C. & Klemedtsson, L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791 (2011).ADS
Article
CAS
Google Scholar
Roberts, K. L., Kessler, A. J., Grace, M. R. & Cook, P. L. M. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary. Cosmochim. Acta 133, 313–324 (2014).ADS
CAS
Article
Google Scholar
Broman, E. et al. Active DNRA and denitrification in oxic hypereutrophic waters. Water Res. 194, 116954 (2021).CAS
PubMed
Article
Google Scholar
Han, X., Peng, S., Zhang, L., Lu, P. & Zhang, D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. Chemosphere 247, 125968 (2020).ADS
CAS
PubMed
Article
Google Scholar
Rantanen, P.-L. et al. Decreased natural organic matter in water distribution decreases nitrite formation in non-disinfected conditions, via enhanced nitrite oxidation. Water Res. X 9, 100069 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Raimonet, M., Cazier, T., Rocher, V. & Laverman, A. M. Nitrifying kinetics and the persistence of nitrite in the Seine River, France. J. Environ. Qual. https://doi.org/10.2134/jeq2016.06.0242 (2017).Article
PubMed
Google Scholar
Philip, S., Laanbroek, H. J. & Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 1, 115–141. https://doi.org/10.1023/A:1020892826575 (2002).Article
Google Scholar
Baneshi, M. M. et al. Aniline bio-adsorption from aqueous solutions using dried activated sludge: Aniline bio-adsorption from aqueous solutions using dried activated sludge. Poll. Res. 36(3), 403–409 (2017).CAS
Google Scholar
Börnick, H., Eppinger, P., Grischek, T. & Worch, E. Simulation of biological degradation of aromatic amines in river bed sediments. Water Res. 35(3), 619–624 (2001).PubMed
Article
Google Scholar
Norzaee, S., Djahed, B., Khaksefidi, R. & Mostafapour, F. K. Photocatalytic degradation of aniline in water using CuO nanoparticles. Water Supply 66(3), 178–185 (2017).Article
Google Scholar
Paździor, K. et al. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75, 250–255 (2009).ADS
PubMed
Article
CAS
Google Scholar
Babcock, R. W., Chen, W., Ro, K. S., Mah, R. A. & Stenstrom, M. K. Enrichment and kinetics of biodegradation of 1-naphthylamine in activated sludge. Appl. Microbiol. Biotechnol. 39, 264–269 (1993).CAS
Article
Google Scholar
Shin, K. A. & Spain, J. C. Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. Strain JS667. Appl. Microbiol. Biotechnol. 75(9), 2694–2704 (2009).ADS
CAS
Google Scholar More