More stories

  • in

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Dauvin, J. C. et al. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environ. Pollut. 224, 336–351 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obolewski, K. & Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration-A case study of the southern Baltic Sea. Ecol. Eng. 155, 1700 (2020).Article 

    Google Scholar 
    Dobrowolski, Z. Occurrence of macrobenthos in different littoral habitats of the polymictic Lebsko lake. Ekologia Polska 42, 19–40 (1994).
    Google Scholar 
    Paturej, E., Gutkowska, A. & Durczak, K. Biodiversity and indicative role of zooplankton in the shallow macrophyte-dominated lake Łuknajno. Pol. J. Nat. Sci. 27, 53–66 (2012).
    Google Scholar 
    Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 150 (2018).Article 
    CAS 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, 179 (2019).
    Google Scholar 
    Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).Article 

    Google Scholar 
    Törnroos, A. & Bonsdorff, E. Developing the multitrait concept for functional diversity: Lessons from a system rich in functions but poor in species. Ecol. Appl. 22, 2221–2236 (2012).PubMed 
    Article 

    Google Scholar 
    Baldrighi, E. & Manini, E. Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related?. Mar. Biodivers. 45, 469–488 (2015).Article 

    Google Scholar 
    Belley, R. & Snelgrove, P. V. R. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Front. Mar. Sci. 3, 7598 (2016).Article 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 689 (2015).
    Google Scholar 
    Ding, N. et al. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Sci. Total Environ. 574, 288–299 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Llanos, E. N., Saracho Bottero, M. A., Jaubet, M. L., Elías, R. & Garaffo, G. V. Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic. Mar. Pollut. Bull. 157, 7448 (2020).Article 
    CAS 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Nasi, F. et al. Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Mar. Environ. Res. 137, 121–132 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, C. et al. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107–1116 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. Responses of benthic scavengers to fishing disturbance by towed gears in different habitats. J. Exp. Mar. Biol. Ecol. 224, 4458 (1998).Article 

    Google Scholar 
    Sigala, K., Reizopoulou, S., Basset, A. & Nicolaidou, A. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202–209 (2012).ADS 
    Article 

    Google Scholar 
    de Loiola, P. P., Cianciaruso, M. V., Silva, I. A. & Batalha, M. A. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora Morphol. Distrib. Funct. Ecol. Plants 205, 674–681 (2010).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecological Monographs vol. 80 http://www.scopus.com/scopus/search/form.urli (2010).Wan, H. W. M. R., Cooper, K. M., Froján, C. R. S. B., Defew, E. C. & Paterson, D. M. Impacts of physical disturbance on the recovery of a macrofaunal community: A comparative analysis using traditional and novel approaches. Ecol. Indicators 12, 37–45 (2012).Article 

    Google Scholar 
    Millet, B. & Guelorget, O. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar. Ecol. Prog. Ser. 108, 161–174 (1994).ADS 
    Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem (Oxford University Press, 2004). https://doi.org/10.1093/acprof:oso/9780198525080.001.0001.Book 

    Google Scholar 
    Mrozińska, N. & Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern baltic coast. Int. J. Environ. Res. Public Health 17, 1–19 (2020).Article 
    CAS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 
    Article 

    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20, 1512–1522 (2010).PubMed 
    Article 

    Google Scholar 
    Dolédec, S. & Statzner, B. Theoretical habitat templets, species traits, and species richness: 548 plant and animal species in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 523–538 (1994).Article 

    Google Scholar 
    Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases?. Hydrobiologia 422, 153–162 (2000).Article 

    Google Scholar 
    Charvet, S., Statzner, B., Usseglio-Polatera, P. & Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 43, 277–296 (2000).Article 

    Google Scholar 
    Statzner, B., Dolédec, S. & Hugueny, B. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27, 470–488 (2004).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar Ecol Prog Ser 254, 5589 (2003).Article 

    Google Scholar 
    Tillin, H., Hiddink, J., Jennings, S. & Kaiser, M. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31–45 (2006).ADS 
    Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boikova, E., Botva, U. & Līcīte, V. Implementation of trophic status index in brackish water quality assessment of baltic coastal waters. Proc. Latv. Acad. Sci. Sect. B 62, 115–119 (2008).CAS 

    Google Scholar 
    Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. Nutrient fluxes and their impact on the phytoplankton in a Shallow Coastal Lake. Polish J. Environ. Stud. 24, 7780 (2015).Article 
    CAS 

    Google Scholar 
    Kruk, C., Devercelli, M. & Huszar, V. L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021).Article 

    Google Scholar 
    Trojanowski, J., Trojanowska, C. & Korzeniewski, K. Trophic state of coastal lakes. Polish Arch. Hydrobiol. 38, 23–34 (1975).
    Google Scholar 
    Astel, A. M., Bigus, K., Obolewski, K. & Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic. Estuar. Coast. Shelf Sci. 182, 47–59 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Choiński, A. Changes in morphometrics of the coastal lakes. in Hydroecological Determinants of Functioning of Southern Baltic Coastal Lakes (eds. Obolewski, K., Astel, A. & Kujawa, R.) 26–37 (PWN, 2017).Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M. & Mrozińska, N. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631–632, 951–961 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Szymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P. & Obolewski, K. Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 19, 4131 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mrozińska, N., Glińska-Lewczuk, K. & Obolewski, K. Salinity as a key factor on the benthic fauna diversity in the coastal lakes. Animals 11, 7440 (2021).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Ind. 6, 609–622 (2006).Article 

    Google Scholar 
    Papageorgiou, N., Sigala, K. & Karakassis, I. Changes of macrofaunal functional composition at sedimentary habitats in the vicinity of fish farms. Estuar. Coast. Shelf Sci. 83, 561–568 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol Indic 115, 5589 (2020).Article 

    Google Scholar 
    Kołodziejczyk, A. & Koperski, P. Bezkręgowce słodkowodne Polski: klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. (Wydawnictwa Uniwersytetu Warszawskiego, 2000).Wiederholm, Torgny. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: larvae. (1983).Antsulevich, A. et al. Helcom, 2012. Development of a set of core indicators: Interim report of the HELCOM CORESET project. PART A. Description of the selection process. (2012).Piechocki, A. & Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland. (2016).Zettler, M. L. et al. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49–57 (2014).ADS 
    Article 

    Google Scholar 
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. https://www.sealifebase.ca/ (2021).MarLIN. BIOTIC-biological traits information catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the UK. http://www.marlin.ac.uk/biotic/ (2006).Horton, T. et al. World Register of Marine Species (WoRMS). https://www.marinespecies.org (2021).Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).Article 

    Google Scholar 
    Oug, E., Fleddum, A., Rygg, B. & Olsgard, F. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Biol. Ecol. 432–433, 94–105 (2012).Article 

    Google Scholar 
    Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Ind. 96, 229–240 (2019).CAS 
    Article 

    Google Scholar 
    Charvet, S., Kosmala, A. & Statzner, B. Biomonitoring through biological traits of benthic macroinvertebrates: Perspectives for a general tool in stream management. Fundam. Appl. Limnol. 142, 415–432 (1998).Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (2006).Dobrowolski, Z. Density, biomass, and distribution of benthic invertebrates in the mid-lake zone of the coastal Lake Gardno. Oceanol. Stud. 30, 39–58 (2001).
    Google Scholar 
    Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).CAS 
    Article 

    Google Scholar 
    Taurusman, A. A. Community structure of macrozoobenthic feeding guilds in responses to eutrophication in Jakarta Bay. Biodivers. J. Biol. Divers. 11, 998 (2010).Article 

    Google Scholar 
    Uwadiae, R. E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Sci. J. 3, 778 (2010).
    Google Scholar 
    Obolewski, K., Glińska-Lewczuk, K., Sidoruk, M. & Szymańska, M. M. Response of benthic fauna to habitat heterogeneity in a shallow temperate lake. Animals 11, 558 (2021).Article 

    Google Scholar 
    Rhoads, D. C. Organism-sediment relations on the muddy sea floor. in Oceanography and Marine Biology: An Annual Review. vol. 12 263–300 (Aberdeen University Press/Allen & Unwin, 1974).Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. & Norkko, A. Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 1029–1040 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. in ICES Journal of Marine Science vol. 57 1303–1309 (Academic Press, 2000).Bradshaw, C., Veale, L. O. & Brand, A. R. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: A re-analysis of an historical dataset. J. Sea Res. 47, 161–184 (2002).ADS 
    Article 

    Google Scholar 
    Cañedo-Argüelles, M. et al. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci. Total Environ. 540, 3–10 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Herbst, D. B. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26, 475–485 (2006).Article 

    Google Scholar 
    Merritt, R. W. et al. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Am. Benthol. Soc. 21, 550 (2002).Article 

    Google Scholar 
    de Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).Article 

    Google Scholar 
    Reizopoulou, S. & Nicolaidou, A. Index of size distribution (ISD): A method of quality assessment for coastal lagoons. Hydrobiologia 577, 141–149 (2007).Article 

    Google Scholar 
    Basset, A., Pinna, M., Sabetta, L., Barbone, E. & Galuppo, N. Hierarchical scaling of biodiversity in lagoon ecosystems. Trans. Waters Bull. 2, 75–86 (2008).
    Google Scholar 
    Basset, A. et al. A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol. Ind. 12, 72–83 (2012).Article 

    Google Scholar 
    Robson, B. J., Barmuta, L. A. & Fairweather, P. G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56, 1–11 (2005).Article 

    Google Scholar 
    Parry, D. M., Kendall, M. A., Rowden, A. A. & Widdicombe, S. Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J. Mar. Biol. Assoc. U.K. 79, 793–801 (1999).Article 

    Google Scholar 
    Netto, S. A., Domingos, A. M. & Kurtz, M. N. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35, 1069–1081 (2012).CAS 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Montefalcone, M., Parravicini, V. & Bianchi, C. N. Quantification of Coastal Ecosystem Resilience. in Treatise on Estuarine and Coastal Science 49–70 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-374711-2.01003-2.Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).Article 

    Google Scholar 
    Smee, D. L., Reustle, J. W., Belgrad, B. A. & Pettis, E. L. Storms promote ecosystem resilience by alleviating fishing. Curr. Biol. 30, R869–R870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilby, B. L. et al. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 199, 132–140 (2017).ADS 
    Article 

    Google Scholar 
    Henderson, C. J. et al. Landscape transformation alters functional diversity in coastal seascapes. Ecography 43, 138–148 (2020).Article 

    Google Scholar 
    Yeager, L. A., Geyer, J. K. & Fodrie, F. J. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure. J. Anim. Ecol. 88, 1743–1754 (2019).PubMed 
    Article 

    Google Scholar 
    Darr, A., Gogina, M. & Zettler, M. L. Functional changes in benthic communities along a salinity gradient- a western Baltic case study. J. Sea Res. 85, 315–324 (2014).ADS 
    Article 

    Google Scholar 
    Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article 

    Google Scholar  More

  • in

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Basic information of intervieweesResults of the descriptive analysis summarized in Table 2 show that more than half of the respondents were males (69%) and were on average 41.3 years old while more than 32 years of farming experience. The study area is comprised of multiple ethnic groups (Han, Tibetan, Yugur, Mongolian, Hui, etc.). In most cases, the main livelihood activity of the Ethnic Minorities (Tibetan, Yugur, Mongolian, Hui, etc.) is livestock, while Han people main livelihood activity is farming. The majority of respondents (64%) were minority nationality. The vast majority of the agro-pastoralists (86%) have a primary school education or above, even though only 1% of them have Undergraduate education or Above. The results also reveal that 92% of respondents have access to weather information. The average cultivated land Per household is 10.23 Mu and Grassland is 156.21 Mu, respectively. The average per household income is RMB78000, and agricultural income is RMB52000.Table 2 Descriptive statistics of agro-pastoralist characteristics.Full size tableDue to their long-term farming experience, the agro-pastoralists were expected to have a high-level of understanding of local climate knowledge. Also contributing to this could be the information they receive about climate change and for some, the associated training through agro-pastoralists’ associations. Therefore, they also have a propensity to adapt to adverse conditions resulting from climate change impacts. In addition, the high-level of farming experience, the cultivated-land size, grassland size, Credit loan, Insurance, Village cadres all have a positive impact on the level of agro-pastoralists’ adaptation to new climate scenarios.However, the education level and cadres experience may be the major limiting factors for adopting specific long-term adaptation strategies. Ethnicity and gender are also expected to be key factors influencing awareness and adaptation to climate change. There are differences in relative perception intensity between Ethnic Minority and Han because of their cultural ecology (the main livelihood activity of minorities nationality is livestock, while Han main livelihood activity is farming.). In terms of gender, women in rural areas are less mobile and have less access to information and rights. They are also heavily involved in domestic work. However, men may have easier access to information (socializing, going out to work, etc.) Therefore, male headed households are expected to be more likely to adapt to the impact of climate change.Climate change trend in the study areaFigure 2 shows the trend of annual precipitation, annual rainfall and annual snow at different meteorological stations in the study area. As shown in the Fig. 2, precipitation, rainfall and snow show an increasing trend, but the increase range of snow (0.0325–0.375/a) is significantly lower than that of precipitation (1.22–3.1/a) and rainfall (1.04–2.81/a). Similarly, through the inspection, it is found that the multi-collinearity among precipitation, rainfall and snow at each meteorological station is obvious (most R2  > 0.5, and p  More

  • in

    Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity

    White, R., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems Technical Report (World Resources Institute, 2000).Thornton, P. K. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B 365, 2853–2867 (2010).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry 54, 1–39 (2001).CAS 
    Article 

    Google Scholar 
    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).CAS 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).Article 

    Google Scholar 
    Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).Article 

    Google Scholar 
    Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).Article 

    Google Scholar 
    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).Article 

    Google Scholar 
    Osem, Y., Perevolotsky, A. & Kigel, J. Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi-arid rangeland. J. Ecol. 92, 297–309 (2004).Article 

    Google Scholar 
    Gao, J. & Carmel, Y. Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale? Oikos 129, 493–502 (2020).Article 

    Google Scholar 
    Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).PubMed 
    Article 

    Google Scholar 
    Mack, R. N. & Thompson, J. N. Evolution in steppe with few large, hooved mammals. Am. Nat. 119, 757–773 (1982).Article 

    Google Scholar 
    Axelrod, D. I. Rise of the grassland biome, central North America. Bot. Rev. 51, 163–201 (1985).Article 

    Google Scholar 
    Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).Article 

    Google Scholar 
    Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Proulx, M. & Mazumder, A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79, 2581–2592 (1998).Article 

    Google Scholar 
    Westoby, M., Walker, B. & Noy-Meir, I. Opportunistic management for rangelands not at equilibrium. J. Range Manag. 42, 266–274 (1989).Article 

    Google Scholar 
    Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).Article 

    Google Scholar 
    Seabloom, E. W., Harpole, W. S., Reichman, O. J. & Tilman, D. Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc. Natl Acad. Sci. USA 100, 13384–13389 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, J. N., Schultz, N. L., Hodges, J. A., Cleland, M. A. & Morgan, J. W. Land-use legacies limit the effectiveness of switches in disturbance type to restore endangered grasslands. Restor. Ecol. 29, e13271 (2021).Article 

    Google Scholar 
    Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337 (1992).Article 

    Google Scholar 
    MacDougall, A. S. et al. The Neolithic plant invasion hypothesis: the role of preadaptation and disturbance in grassland invasion. New Phytol. 220, 94–103 (2018).PubMed 
    Article 

    Google Scholar 
    Mörsdorf, M. A., Ravolainen, V. T., Yoccoz, N. G., Thórhallsdóttir, T. E. & Jónsdóttir, I. S. Decades of recovery from sheep grazing reveal no effects on plant diversity patterns within Icelandic tundra landscapes. Front. Ecol. Evol. 8, 602538 (2021).Mack, R. N. in Biological Invasions: A Global Perspective (eds Drake, J. A. et al.) 155–180 (John Wiley, 1989).Sinkins, P. A. & Otfinowski, R. Invasion or retreat? The fate of exotic invaders on the northern prairies, 40 years after cattle grazing. Plant Ecol. 213, 1251–1262 (2012).Article 

    Google Scholar 
    Stahlheber, K. A., D’Antonio, C. M. & Tyler, C. M. Livestock exclusion impacts on oak savanna habitats—differential responses of understory and open habitats. Rangel. Ecol. Manag. 70, 316–323 (2017).Article 

    Google Scholar 
    Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).PubMed 
    Article 

    Google Scholar 
    Gao, J. & Carmel, Y. A global meta-analysis of grazing effects on plant richness. Agric. Ecosyst. Environ. 302, 107072 (2020).Article 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).Article 

    Google Scholar 
    Mortensen, B. et al. Herbivores safeguard plant diversity by reducing variability in dominance. J. Ecol. 106, 101–112 (2018).CAS 
    Article 

    Google Scholar 
    Chen, Q. et al. Small herbivores slow down species loss up to 22 years but only at early successional stage. J. Ecol. 107, 2688–2696 (2019).Article 

    Google Scholar 
    Lunt, I. D., Eldridge, D. J., Morgan, J. W. & Witt, G. B. A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust. J. Bot. 55, 401–415 (2007).Article 

    Google Scholar 
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).PubMed 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrio, I. C. et al. The sheep in wolf’s clothing? Recognizing threats for land degradation in Iceland using state-and-transition models. Land Degrad. Dev. 29, 1714–1725 (2018).Article 

    Google Scholar 
    Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).PubMed 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 102, e03218 (2021).PubMed 
    Article 

    Google Scholar 
    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol. Lett. 24, 2100–2112 (2021).PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Astronomically controlled aridity in the Sahara since at least 11 million years ago

    Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).Article 

    Google Scholar 
    Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).Article 

    Google Scholar 
    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).Article 

    Google Scholar 
    Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).Article 

    Google Scholar 
    McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).Article 

    Google Scholar 
    Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).Article 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).Article 

    Google Scholar 
    Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).Article 

    Google Scholar 
    Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).Article 

    Google Scholar 
    Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).Article 

    Google Scholar 
    McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).Article 

    Google Scholar 
    Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).Article 

    Google Scholar 
    Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).Article 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).Article 

    Google Scholar 
    Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).Article 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 

    Google Scholar 
    Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).Article 

    Google Scholar 
    Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).Article 

    Google Scholar 
    Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).Article 

    Google Scholar 
    Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).Article 

    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).Article 

    Google Scholar 
    Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).Article 

    Google Scholar 
    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).Article 

    Google Scholar 
    Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).Article 

    Google Scholar 
    Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).Article 

    Google Scholar 
    Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).Article 

    Google Scholar 
    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).Article 

    Google Scholar 
    Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).Article 

    Google Scholar 
    Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).Article 

    Google Scholar 
    Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).Article 

    Google Scholar 
    DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).Article 

    Google Scholar 
    Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).Article 

    Google Scholar 
    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).Article 

    Google Scholar 
    Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).Article 

    Google Scholar 
    Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).Article 

    Google Scholar 
    Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).Article 

    Google Scholar 
    Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).Article 

    Google Scholar 
    Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).Article 

    Google Scholar 
    Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).Article 

    Google Scholar 
    Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).Article 

    Google Scholar 
    Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).Article 

    Google Scholar 
    Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).Article 

    Google Scholar 
    Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).Article 

    Google Scholar 
    Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).Article 

    Google Scholar 
    McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).Article 

    Google Scholar 
    Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).Article 

    Google Scholar 
    Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).Article 

    Google Scholar 
    Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).Article 

    Google Scholar 
    Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).Article 

    Google Scholar 
    Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).Article 

    Google Scholar 
    Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).Article 

    Google Scholar 
    Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).Article 

    Google Scholar 
    Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).Article 

    Google Scholar 
    Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).
    Google Scholar 
    Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).Article 

    Google Scholar 
    Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).
    Google Scholar 
    Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).Article 

    Google Scholar 
    Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).Article 

    Google Scholar 
    Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).Article 

    Google Scholar 
    Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).Article 

    Google Scholar 
    Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).Article 

    Google Scholar 
    Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).Article 

    Google Scholar 
    Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).Article 

    Google Scholar 
    Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).Article 

    Google Scholar 
    Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).Article 

    Google Scholar 
    Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).Article 

    Google Scholar 
    Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).Article 

    Google Scholar 
    Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).Article 

    Google Scholar 
    Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).Article 

    Google Scholar  More

  • in

    Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world

    IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) Contribution of working group 1 to the ‘Sixth assessment report of the intergovernmental panel on climate change’ (Cambridge University Press, 2021).Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosc. 7, 716–721 (2014).CAS 
    Article 

    Google Scholar 
    Lin, L., Gettelman, A., Feng, S. & Fu, Q. Simulated climatology and evolution of aridity in the 21st century. J. Geophys. Res. Atmos. 120, 5795–5815 (2015).Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).Article 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C. & Diffenbaugh, N. S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 526, 196–207 (2015).Article 

    Google Scholar 
    Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth Syst. Dyn. 9, 267–283 (2018).Article 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).Article 

    Google Scholar 
    Harpold, A. A. et al. Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol. Process. 29, 2782–2798 (2015).Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).PubMed 
    Article 

    Google Scholar 
    Parton, W. et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adair, E. C. et al. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob. Change Biol. 14, 2636–2660 (2008).Article 

    Google Scholar 
    Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A. & Lin, Y. Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems. Ecosphere 8, e01892 (2017).Article 

    Google Scholar 
    Chen, M. et al. Simulation of the effects of photodecay on long-term litter decay using DayCent. Ecosphere 7, e01631 (2016).
    Google Scholar 
    Asao, S., Parton, W. J., Chen, M. & Gao, W. Photodegradation accelerates ecosystem N cycling in a simulated California grassland. Ecosphere 9, e02370 (2018).Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article 

    Google Scholar 
    Whitford, W. G. & Duval, B. D. Ecology of Desert Systems 2nd edn (Academic Press, 2020).Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 21, 1407–1421 (2015).Article 

    Google Scholar 
    Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).Article 

    Google Scholar 
    Kim, D.-G., Mu, S., Kang, S. & Lee, D. Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biol. Biochem. 42, 576–585 (2010).Article 
    CAS 

    Google Scholar 
    Curiel Yuste, J., Janssens, I. A., Carrara, A., Meiresonne, L. & Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23, 1263–1270 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savage, K., Davidson, E. A., Richardson, A. D. & Hollinger, D. Y. Three scales of temporal resolution from automated soil respiration measurements. Agric. Meteorol. 149, 2012–2021 (2009).Article 

    Google Scholar 
    Hao, Y., Wang, Y., Mei, X. & Cui, X. The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecol. 209, 335–347 (2010).Article 

    Google Scholar 
    Krüger, J. P., Beckedahl, H., Gerold, G. & Jungkunst, H. F. Greenhouse gas emission peaks following natural rewetting of two wetlands in the southern Ukhahlamba-Drakensberg Park, South Africa. S. Afr. Geogr. J. 96, 113–118 (2013).Article 

    Google Scholar 
    Haverd, V., Ahlström, A., Smith, B. & Canadell, J. G. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob. Change Biol. 23, 793–800 (2017).Article 

    Google Scholar 
    Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).CAS 
    Article 

    Google Scholar 
    Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol. 193, 830–841 (2012).PubMed 
    Article 

    Google Scholar 
    Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).PubMed 
    Article 

    Google Scholar 
    Mooney, H. A., Gulmon, S. L., Rundel, P. W. & Ehleringer, J. Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44, 177–180 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richards, J. H. & Caldwell, M. M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73, 486–489 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell, M. M., Dawson, T. E. & Richards, J. H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151–161 (1998).PubMed 
    Article 

    Google Scholar 
    Brooks, J. R., Meinzer, F. C., Coulombe, R. & Gregg, J. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22, 1107–1117 (2002).PubMed 
    Article 

    Google Scholar 
    Lee, J. E., Oliveira, R. S., Dawson, T. E. & Fung, I. Root functioning modifies seasonal climate. Proc. Natl Acad. Sci. USA 102, 17576–17581 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, J. L., Slater, L. D. & Schäfer, K. V. R. Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. J. Hydrol. 430-431, 69–79 (2012).Article 

    Google Scholar 
    Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).PubMed 
    Article 

    Google Scholar 
    Zapater, M. et al. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885–894 (2011).Article 

    Google Scholar 
    Sardans, J. & Peñuelas, J. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology 7, 1–20 (2014).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems. J. Ecol. 90, 480–494 (2002).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017).
    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. New Phytol. 219, 1156–1169 (2018).PubMed 
    Article 

    Google Scholar 
    Agam, N. & Berliner, P. R. Dew formation and water vapor adsorption in semi-arid environments – a review. J. Arid. Environ. 65, 572–590 (2006).Article 

    Google Scholar 
    Dirks, I., Navon, Y., Kanas, D., Dumbur, R. & Grünzweig, J. M. Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob. Change Biol. 16, 2799–2812 (2010).Article 

    Google Scholar 
    Jacobson, K. et al. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS ONE 10, e0126977 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A. & Schwartz, E. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci. Rep. 5, 13767 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).PubMed 
    Article 

    Google Scholar 
    Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).Article 

    Google Scholar 
    Benzing, D. H. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim. Change 39, 519–540 (1998).Article 

    Google Scholar 
    Evans, S., Todd-Brown, K. E. O., Jacobson, K. & Jacobson, P. Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems 23, 1154–1169 (2020).CAS 
    Article 

    Google Scholar 
    Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C. & Groene, L. C. Influence of rain, tidal wetting and relative-humidity on release of carbon-dioxide by standing-dead salt-marsh plants. Oecologia 68, 73–79 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuehn, K. A., Steiner, D. & Gessner, M. O. Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85, 2504–2518 (2004).Article 

    Google Scholar 
    Doerr, S. H., Shakesby, R. A. & Walsh, R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51, 33–65 (2000).Article 

    Google Scholar 
    Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–26596 (2011).Article 

    Google Scholar 
    Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W. & Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments 19, 171–185 (2019).Article 

    Google Scholar 
    Doerr, S. H., Shakesby, R. A., Dekker, L. W. & Ritsema, C. J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57, 741–754 (2006).Article 

    Google Scholar 
    Lebron, I., Robinson, D. A., Oatham, M. & Wuddivira, M. N. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol. 414-415, 194–200 (2012).CAS 
    Article 

    Google Scholar 
    Buczko, U., Bens, O. & Hüttl, R. F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126, 317–336 (2005).Article 

    Google Scholar 
    Dekker, L. W. & Ritsema, C. J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 28, 89–105 (1996).CAS 
    Article 

    Google Scholar 
    de Blas, E., Almendros, G. & Sanz, J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils. Geoderma 206, 75–84 (2013).Article 
    CAS 

    Google Scholar 
    MacDonald, L. H. & Huffman, E. L. Post-fire soil water repellency. Soil Sci. Soc. Am. J. 68, 1729–1734 (2004).CAS 
    Article 

    Google Scholar 
    Hewelke, E. et al. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 10, 1121 (2018).Article 
    CAS 

    Google Scholar 
    Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).Article 

    Google Scholar 
    Siteur, K. et al. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 19, 1210–1224 (2016).CAS 
    Article 

    Google Scholar 
    Austin, A. T. & Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555–558 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    King, J. Y., Brandt, L. A. & Adair, E. C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111, 57–81 (2012).Article 

    Google Scholar 
    Moorhead, D. L. & Callaghan, T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol. Fertil. Soils 18, 19–26 (1994).CAS 
    Article 

    Google Scholar 
    Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Austin, A. T., Mendez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G. & Sinsabaugh, R. L. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13, 765–781 (2010).CAS 
    Article 

    Google Scholar 
    Pieristè, M. et al. Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 191, 191–203 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, C. et al. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. For. Ecol. Manage. 409, 225–232 (2018).Article 

    Google Scholar 
    Marinho, O. A., Martinelli, L. A., Duarte-Neto, P. J. R., Mazzi, E. A. & King, J. Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Sci. Total Environ. 715, 136601 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Q. W. et al. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol. 229, 2625–2636 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutledge, S., Campbell, D. I., Baldocchi, D. & Schipper, L. A. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob. Change Biol. 16, 3065–3074 (2010).
    Google Scholar 
    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).Article 

    Google Scholar 
    Zepp, R. G., Erickson, D. J. III, Paul, N. D. & Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10, 261–271 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Austin, A. Has water limited our imagination for aridland biogeochemistry? Trends Ecol. Evol. 26, 229–235 (2011).PubMed 
    Article 

    Google Scholar 
    McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. L. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Change Biol. 18, 1185–1195 (2012).Article 

    Google Scholar 
    Wang, B., Lerdau, M. & He, Y. Widespread production of nonmicrobial greenhouse gases in soils. Glob. Change Biol. 23, 4472–4482 (2017).Article 

    Google Scholar 
    Soper, F. M., McCalley, C. K., Sparks, K. & Sparks, J. P. Soil carbon dioxide emissions from the Mojave desert: isotopic evidence for a carbonate source. Geophys. Res. Lett. 44, 245–251 (2017).CAS 
    Article 

    Google Scholar 
    Day, T. A. & Bliss, M. S. Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss. Ecosystems 23, 1344–1361 (2020).CAS 
    Article 

    Google Scholar 
    Throop, H. L. & Belnap, J. Connectivity dynamics in dryland litter cycles: moving decomposition beyond spatial stasis. Bioscience 69, 602–614 (2019).Article 

    Google Scholar 
    Throop, H. L. & Archer, S. R. Resolving the dryland decomposition conundrum: some new perspectives on potential drivers. Prog. Bot. 70, 171–194 (2009).CAS 

    Google Scholar 
    Barnes, P. W. et al. in Progress in Botany Vol. 76 (eds Lüttge, U. & Beyschlag, W.) 273–302 (Springer, 2015).Barnes, P. W., Throop, H. L., Hewins, D. B., Abbene, M. L. & Archer, S. R. Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15, 311–321 (2012).CAS 
    Article 

    Google Scholar 
    Joly, F. X., Kurupas, K. L. & Throop, H. L. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).PubMed 
    Article 

    Google Scholar 
    Weber, B., Büdel, B. & Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands Vol. 226 (Springer, 2016).Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).Article 

    Google Scholar 
    Belnap, J. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1, 181–189 (2003).Article 

    Google Scholar 
    Rodríguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).Article 
    CAS 

    Google Scholar 
    Hawkes, C. V. & Flechtner, V. R. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43, 1–12 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Langhans, T. M., Storm, C. & Schwabe, A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58, 394–407 (2009).PubMed 
    Article 

    Google Scholar 
    Veluci, R. M., Neher, D. A. & Weicht, T. R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 51, 189–196 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabała, J. & Rahmonov, O. Cyanophyta and algae as an important component of biological crust from the Pustynia Błędowska Desert (Poland). Pol. Bot. J. 49, 93–100 (2004).
    Google Scholar 
    Thiet, R. K., Boerner, R. E. J., Nagy, M. & Jardine, R. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278, 235–251 (2005).CAS 
    Article 

    Google Scholar 
    Jentsch, A. & Beyschlag, W. Vegetation ecology of dry acidic grasslands in the lowland area of Central Europe. Flora 198, 3–25 (2003).Article 

    Google Scholar 
    Dümig, A. et al. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. CATENA 122, 196–208 (2014).Article 
    CAS 

    Google Scholar 
    Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).Article 

    Google Scholar 
    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldridge, D. J. & Greene, R. S. B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389–415 (1994).Article 

    Google Scholar 
    Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M., Maestre, F. T., Rodríguez, J. G. P. & Gallardo, A. Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol. Biochem. 62, 22–27 (2013).CAS 
    Article 

    Google Scholar 
    Meron, E. From patterns to function in living systems: dryland ecosystems as a case study. Annu. Rev. Condens. Matter Phys. 9, 79–103 (2018).Article 

    Google Scholar 
    Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).PubMed 
    Article 

    Google Scholar 
    Meron, E. Vegetation pattern formation: the mechanisms behind the forms. Phys. Today 72, 30–36 (2019).Article 

    Google Scholar 
    Gandhi, P., Iams, S., Bonetti, S. & Silber, M. in Dryland Ecohydrology 2nd edn (eds D’Odorico, P. et al.) 469–509 (Springer, 2019).Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lejeune, O., Tlidi, M. & Couteron, P. Localized vegetation patches: a self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002).CAS 
    Article 

    Google Scholar 
    Belyea, L. R. & Lancaster, J. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. J. Ecol. 90, 223–234 (2002).Article 

    Google Scholar 
    Eppinga, M. B. et al. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11, 520–536 (2008).CAS 
    Article 

    Google Scholar 
    Hiemstra, C. A., Liston, G. E. & Reiners, W. A. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell. 197, 35–51 (2006).Article 

    Google Scholar 
    Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86, 2695–2704 (2005).Article 

    Google Scholar 
    Stanton, D. E., Armesto, J. J. & Hedin, L. O. Ecosystem properties self-organize in response to a directional fog-vegetation interaction. Ecology 95, 1203–1212 (2014).PubMed 
    Article 

    Google Scholar 
    van de Koppel, J., van der Wal, D., Bakker, J. P. & Herman, P. M. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).PubMed 
    Article 

    Google Scholar 
    Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).PubMed 
    Article 

    Google Scholar 
    Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bera, B. K., Tzuk, O., Bennett, J. J. & Meron, E. Linking spatial self-organization to community assembly and biodiversity. eLife 10, e73819 (2021).Garcia-Moya, E. & McKell, C. M. Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51, 81–88 (1970).Article 

    Google Scholar 
    Peters, D. P. C. et al. Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56, 491–501 (2006).Article 

    Google Scholar 
    Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).Article 

    Google Scholar 
    Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).Article 

    Google Scholar 
    Fahnestock, J. T., Povirk, K. L. & Welker, J. M. Ecological significance of litter redistribution by wind and snow in Arctic landscapes. Ecography 23, 623–631 (2000).Article 

    Google Scholar 
    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J. & Bhattachan, A. The interactive role of wind and water in functioning of drylands: what does the future hold? Bioscience 68, 670–677 (2018).Article 

    Google Scholar 
    Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).Article 

    Google Scholar 
    Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255 (2017).Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X.-G. et al. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087 (2020).CAS 
    Article 

    Google Scholar 
    Mulder, C. et al. Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. Adv. Ecol. Res. 49, 69–175 (2013).Article 

    Google Scholar 
    Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).CAS 
    Article 

    Google Scholar 
    Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee, T., De Roo, F. & Mauder, M. Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrol. Earth Syst. Sci. 21, 2987–3000 (2017).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).CAS 
    Article 

    Google Scholar 
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).De Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).Article 

    Google Scholar 
    Pan, N. et al. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends. Remote Sens. Environ. 214, 59–72 (2018).Article 

    Google Scholar 
    Mueller, T. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6, 5717–5731 (2014).Article 

    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).PubMed 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Stocker, B. D. et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).CAS 
    Article 

    Google Scholar 
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).Article 

    Google Scholar 
    Davenport, D. W., Breshears, D. D., Wilcox, B. P. & Allen, C. D. Viewpoint: sustainability of piñon-juniper ecosystems – a unifying perspective of soil erosion thresholds. J. Range Manage. 51, 231 (1998).Article 

    Google Scholar 
    Briske, D. D., Fuhlendorf, S. D. & Smeins, F. E. A unified framework for assessment and application of ecological thresholds. Rangel. Ecol. Manage. 59, 225–236 (2006).Article 

    Google Scholar 
    Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).Article 

    Google Scholar 
    Haase, P. et al. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Halbritter, A. H. et al. The handbook for standardised field and laboratory measurements in terrestrial climate‐change experiments and observational studies (ClimEx). Methods Ecol. Evol. 11, 22–37 (2020).Article 

    Google Scholar 
    De Boeck, H. J. et al. Global change experiments: challenges and opportunities. Bioscience 65, 922–931 (2015).Article 

    Google Scholar 
    Kreyling, J. et al. To replicate, or not to replicate – that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).De Boeck, H. J. et al. Understanding ecosystems of the future will require more than realistic climate change experiments – a response to Korell et al. Glob. Change Biol. 26, e6–e7 (2020).Article 

    Google Scholar 
    Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: where have we been and where might we go? Glob. Change Biol. 26, 287–299 (2020).Article 

    Google Scholar 
    Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).Article 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonicke, K. et al. Advancing the understanding of adaptive capacity of social‐ecological systems to absorb climate extremes. Earths Future 8, e2019EF001221 (2020). More

  • in

    Impacts of urban expansion on natural habitats in global drylands

    Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, 2005).Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).Article 

    Google Scholar 
    Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).Article 

    Google Scholar 
    He, C. et al. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 14, 034008 (2019).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2019).Article 

    Google Scholar 
    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, 2013).van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).Article 

    Google Scholar 
    Sharp, R. et al. InVEST 3.2.0 User’s Guide (The Natural Capital Project, Stanford Univ., Univ. Minnesota, The Nature Conservancy and World Wildlife Fund, 2015).Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016).CAS 
    Article 

    Google Scholar 
    Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).Article 
    CAS 

    Google Scholar 
    McDonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).Article 

    Google Scholar 
    Mirzabaev, A. et al. in Climate Change and Land (eds Shukla, P. R. et al.) 249–343 (IPCC, 2019).Friis, C. & Nielsen, J. Telecoupling. Exploring Land-use Change in a Globalised World (Palgrave Macmillan, 2019).Maestre, F. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    Leh, M. D. K., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: a case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).Article 

    Google Scholar 
    Whitford, W. & Wade, E. L. Ecology of Desert Systems (Academic Press, 2002).Brito, J. C. et al. Conservation biogeography of the Sahara‐Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384 (2016).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Article 
    CAS 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Díaz, S. M. et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019).Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    Article 

    Google Scholar 
    Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).Article 

    Google Scholar 
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Phil. Soc. 82, 607–645 (2007).Article 

    Google Scholar 
    McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. C. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2017-3 (IUCN, 2017); https://www.iucnredlist.org/resources/spatial-data-downloadTucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).CAS 
    Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).CAS 
    Article 

    Google Scholar 
    Guidelines for Geoconservation in Protected and Conserved Areas (IUCN, 2020).Gao, J. How China will protect one-quarter of its land. Nature 569, 457 (2019).CAS 
    Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Gao, B., Huang, Q., He, C., Sun, Z. & Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 148, 89–98 (2016).Article 

    Google Scholar 
    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Lambin, E. A. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).CAS 
    Article 

    Google Scholar 
    Arlidge, W. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).Article 

    Google Scholar 
    Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).Article 

    Google Scholar 
    Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).Article 

    Google Scholar 
    Ramaswami, A. et al. A social‐ecological‐infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16, 801–813 (2012).Article 

    Google Scholar 
    Boerema, A. et al. Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 11, e0155222 (2016).Article 
    CAS 

    Google Scholar 
    Garrett, R. D., Lambin, E. F. & Naylor, R. L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 31, 385–396 (2013).Article 

    Google Scholar 
    Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W. & Shi, S. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).Article 

    Google Scholar 
    Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manage. 125, 38–46 (2016).Article 

    Google Scholar 
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 201510272 (2016).
    Google Scholar 
    García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).Article 

    Google Scholar 
    Martínez-Valderrama, J., Guirado, E. & Maestre, F. Desertifying deserts. Nat. Sustain. 3, 572–575 (2020).Article 

    Google Scholar 
    Maestre, F. et al. Biogeography of global drylands. New Phytol. 231, 540–558 (2021).Article 

    Google Scholar 
    United Nations Environment World Conservation Monitoring Centre. World dryland areas according to UNCCD and CBD definitions. https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08 (2022).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).Article 

    Google Scholar 
    Revision of World Urbanization Prospects (United Nations, 2018); https://esa.un.org/unpd/wupLand Cover CCI—Product User Guide Version 2.0. (European Space Agency, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/index.phpGrekousis, G., Mountrakis, G. & Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335 (2015).Article 

    Google Scholar 
    Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Change Biol. 25, 2137–2151 (2019).Article 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).Article 

    Google Scholar 
    Huang, Q. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 084037 (2020).Article 

    Google Scholar 
    He, C., Liu, Z., Tian, J. & Ma, Q. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Change Biol. 20, 2886–2902 (2014).Article 

    Google Scholar 
    Di Febbraro, M. et al. Expert-based and correlative models to map habitat quality: which gives better support to conservation planning? Glob. Ecol. Conserv. 16, e00513 (2018).Article 

    Google Scholar 
    Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115 (2010).Article 

    Google Scholar  More

  • in

    Climate legacies drive the distribution and future restoration potential of dryland forests

    Middleton, N., Stringer, L., Goudie, A., & Thomas, D. The Forgotten Billion: MDG Achievement in the Drylands (UNDP United Nations Convention to Combat Desertification, 2011).Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. 125, e2019JG005266 (2020).
    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlaepfer, D. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, H. in The End of Desertification? (eds Behnke, R. & Mortimore, M.) 513–536 (Springer, 2016).Gadzama, N. M. Attenuation of the effects of desertification through sustainable development of Great Green Wall in the Sahel of Africa. World J. Sci. Technol. Sustain. Dev. 14, 279–289 (2017).Article 

    Google Scholar 
    United Nations Decade on Restoration (accessed January 2021); https://www.decadeonrestoration.org/Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).Article 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 

    Google Scholar 
    Megdal, S. B. Transboundary groundwater resources: sustainable management and conflict resolution. Groundwater 55, 701–702 (2017).CAS 
    Article 

    Google Scholar 
    Jarvis, W.T. in Advances in Groundwater Governance (eds Villholth, K. G. et al.) 177–192 (CRC Press, 2017).Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mbow, C. The Great Green Wall in the Sahel. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.559 (2017).Petrie, M. D. et al. Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98, 1548–1559 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, S., Jiang, D. & Lang, X. Mid-Holocene drylands: a multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations. Holocene 29, 1425–1438 (2019).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Effects of climate legacies on above- and belowground community assembly. Glob. Change Biol. 24, 4330–4339 (2018).Article 

    Google Scholar 
    Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).CAS 
    Article 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Glob. Change Biol. 19, 2401–2412 (2013).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Schmidt, R. et al. GRACE observations of changes in continental water storage. Glob. Planet. Change 50, 112–126 (2006).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M. A. et al. ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000–2001 (ORNL DAAC, Oak Ridge, TN, USA, 2010); https://doi.org/10.3334/ORNLDAAC/968Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    National Centre for Earth Observation & Los, S.O. Global Vegetation Height Frequency Distributions from the ICESAT GLAS instrument produced as part of the National Centre for Earth Observation (NCEO) (NERC Earth Observation Data Centre, accessed 10 December 2020); http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management (Publications Office of the European Union, 2018).Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene. Science 280, 1916–1919 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. Tipping Points (Princeton Univ. Press, 2009).Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Runyan, C. W. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 2016).Herzschuh, U. et al. Global taxonomically harmonized pollen data set for Late Quaternary with revised chronologies (LegacyPollen 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.929773 (2021).Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belsky, A. J. et al. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26, 1005–1024 (1989).Article 

    Google Scholar 
    Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article 

    Google Scholar 
    Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).CAS 
    Article 

    Google Scholar 
    Trees, Forests and Land Use in Drylands: the First Global Assessment. Full Report (FAO, 2019).Diallo, H. A. in The Future of Drylands (eds Lee, C. & Schaaf, T.) 13–16 (Springer, 2008).A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands (UNEP-WCMC, 2014).Abatzoglou, J. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. IEEE Int. Geosci. Remote Sens. Symp. Proc. https://doi.org/10.1109/igarss.2011.6050017 (2011).Alibakhshi, S., Crowther, T. W. & Naimi, B. Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Data Brief. 31, 105720 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamazaki, T. Advanced land observation satellite (ALOS). 5 Outline of ALOS satellite system. J. Jpn Soc. Photogramm. Remote Sens. 38, 25–26 (1999).
    Google Scholar 
    Mu, Q., Zhao, M., & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).https://doi.org/10.1016/j.rse.2011.02.019Zlotnicki, V., Bettadpur, S., Landerer, F. W. & Watkins, M. M. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 4563–4584 (Springer, 2012).https://doi.org/10.1007/978-1-4419-0851-3_745Schepaschenko, D. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, 6362 (2017).Article 
    CAS 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017).Article 

    Google Scholar 
    Xia, X., Xu, C. & Nan, B. Inception-v3 for flower classification. In Proc. 2nd International Conference on Image, Vision and Computing (ICIVC) 783–787 (IEEE, 2017).Fei-Fei, L., Deng, J. & Li, K. ImageNet: constructing a large-scale image database. J. Vis. 9, 1037 (2010).Article 

    Google Scholar 
    Guirado, E. et al. Tree cover estimation in global drylands from space using deep learning. Remote Sens. 12, 343 (2020).Article 

    Google Scholar 
    Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).PubMed 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Lahouar, A. & Slama, J. B. H. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015).Article 

    Google Scholar 
    Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995).
    Google Scholar 
    Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–322 (2008).Article 

    Google Scholar 
    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109.1, 213–241 (2011).Article 
    CAS 

    Google Scholar 
    Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).Article 

    Google Scholar 
    Cao, X. et al. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).Article 

    Google Scholar 
    Li, C. et al. Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0). PANGAEA https://doi.org/10.1594/PANGAEA.933132 (2021).GlobalTreeSearch Online Database (Botanic Gardens Conservation International, UK, accessed 20 January 2022); https://tools.bgci.org/global_tree_search.php More

  • in

    Density estimates reveal that fragmented landscapes provide important habitat for conserving an endangered mesopredator, the spotted-tailed quoll

    Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993. https://doi.org/10.1111/jbi.12478 (2015).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502. https://doi.org/10.1046/j.1523-1739.2002.00386.x (2002).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51, 1169–1178. https://doi.org/10.1111/1365-2664.12282 (2014).Article 

    Google Scholar 
    Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104. https://doi.org/10.1111/j.1523-1739.2007.00719.x (2007).Article 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Farris, Z. J. et al. Hunting, exotic carnivores, and habitat loss: Anthropogenic effects on a native carnivore community, Madagascar. PLOS ONE 10, e0136456. https://doi.org/10.1371/journal.pone.0136456 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farris, Z. J. et al. Threats to a rainforest carnivore community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biol. Cons. 210, 116–124. https://doi.org/10.1016/j.biocon.2017.04.010 (2017).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of “resistant” vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18. https://doi.org/10.1046/j.1472-4642.2003.00158.x (2003).Article 

    Google Scholar 
    Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: The importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-MAMM-A-149.1 (2012).Article 

    Google Scholar 
    Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    Fleschutz, M. M. et al. Response of a small felid of conservation concern to habitat fragmentation. Biodivers. Conserv. 25, 1447–1463. https://doi.org/10.1007/s10531-016-1118-6 (2016).Article 

    Google Scholar 
    Gálvez, N. et al. Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47, 251–258. https://doi.org/10.1017/S0030605312000099 (2013).Article 

    Google Scholar 
    Belcher, C. A. Demographics of tiger quoll (Dasyurus maculatus maculatus) populations in south-eastern Australia. Aust. J. Zool. 51, 611–626. https://doi.org/10.1071/ZO02051 (2003).Article 

    Google Scholar 
    Maxwell, S., Burbidge, A. & Morris, K. Spotted-tailed Quoll (SE mainland and Tas); recovery outline. (1996).Jones, M. E., Rose, R. K. & Burnett, S. Dasyurus maculatus. Mammalian Species 676, 1–9 (2001).Article 

    Google Scholar 
    Long, K. & Nelson, J. National recovery plan for the spotted-tailed Quoll Dasyurus maculatus. Victorian Department of Sustainability and Environment (2010).Claridge, A. W. et al. Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildl. Res. 32, 7–14. https://doi.org/10.1071/WR04031 (2005).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. J. Zool. 268, 347–354. https://doi.org/10.1111/j.1469-7998.2006.00064.x (2006).Article 

    Google Scholar 
    Körtner, G. et al. Population structure, turnover and movement of spotted-tailed quolls on the New England Tablelands. Wildl. Res. 31, 475–484. https://doi.org/10.1071/WR03041 (2004).Article 

    Google Scholar 
    Belcher, C. The Largest Surviving Marsupial Carnivore on Mainland Australia: The Tiger or Spotted-Tailed Quoll Dasyurus maculatus, A Nationally Threatened, Forest-Dependent Species 612–623 (Royal Zoological Society of New South Wales, Sydney, 2004).
    Google Scholar 
    Henderson, T., Fancourt, B. A., Rajaratnam, R., Vernes, K. & Ballard, G. Spatial and temporal interactions between endangered spotted-tailed quolls and introduced red foxes in a fragmented landscape. J. Zool. https://doi.org/10.1111/jzo.12919 (2021).Article 

    Google Scholar 
    Troy, S. N. Spatial Ecology of the Tasmanian Spotted-Tailed Quoll. Ph.D. Thesis, University of Tasmania, (2014).Jones, M. E. et al. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. Ecol. Manag. Restor. 22, 65–74. https://doi.org/10.1111/emr.12504 (2021).Article 

    Google Scholar 
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports 7, 1–11. https://doi.org/10.1038/s41598-017-11454-z (2017).CAS 
    Article 

    Google Scholar 
    Nichols, J. D. in Applied Ecology and Human Dimensions in Biological Conservation (eds L. M. Verdade, M.C. Lyra-Jorge, & C.I. Pina) 117–131 (Springer, 2014).Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. in Spatial Capture-Recapture (eds J. Andrew Royle, Richard B. Chandler, Rahel Sollmann, & Beth Gardner) 3–19 (Academic Press, 2014).Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Density of tiger and leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as estimated using photographic capture–recapture sampling. Acta Theriol. 56, 335–342. https://doi.org/10.1007/s13364-011-0038-9 (2011).Article 

    Google Scholar 
    Vissia, S., Wadhwa, R. & van Langevelde, F. Co-occurrence of high densities of brown hyena and spotted hyena in central Tuli, Botswana. J. Zool. 314, 143–150. https://doi.org/10.1111/jzo.12873 (2021).Article 

    Google Scholar 
    Henderson, T., Fancourt, B. A. & Ballard, G. The importance of species-specific survey designs: Prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Aust. Mammalogy https://doi.org/10.1071/AM21039 (2022).Gorta, S. B. Z., Alting, B., Claridge, A. & Henderson, T. Apparent piebald variants in quolls (Dasyurus): Examples of three recent cases in the spotted-tailed quoll Dasyurus maculatus. Aust. Mammalogy 43, 373–377. https://doi.org/10.1071/AM20058 (2021).Article 

    Google Scholar 
    Kowalksi, M. (https://exifpro.informer.com/2.1/, 2011).Efford, M. in R package version 4.5.3 (2022).R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, London, 2016).
    Google Scholar 
    Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610. https://doi.org/10.1111/j.0030-1299.2004.13043.x (2004).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462. https://doi.org/10.1111/2041-210X.12600 (2016).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 70–71 (2002).MATH 

    Google Scholar 
    Hamer, R. P. et al. Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Res. 49, 158–168. https://doi.org/10.1071/WR20134 (2021).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80, 387–401. https://doi.org/10.1017/s1464793105006718 (2005).Article 
    PubMed 

    Google Scholar 
    Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecol. 36, 290–296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).Article 

    Google Scholar 
    Glen, A. S. & Dickman, C. R. Population viability analysis shows spotted-tailed quolls may be vulnerable to competition. Aust Mammalogy 35, 180–183. https://doi.org/10.1071/AM12045 (2013).Article 

    Google Scholar 
    Graham, C. A., Maron, M. & McAlpine, C. A. Influence of landscape structure on invasive predators: Feral cats and red foxes in the brigalow landscapes, Queensland Australia. Wildl. Res. 39, 661–676. https://doi.org/10.1071/WR12008 (2012).Article 

    Google Scholar 
    Glen, A. S. Population attributes of the spotted-tailed quoll (Dasyurus maculatus) in north-eastern New South Wales. Aust. J. Zool. 56, 137–142. https://doi.org/10.1071/ZO08025 (2008).Article 

    Google Scholar 
    Chua, M. A., Sivasothi, N. & Meier, R. Population density, spatiotemporal use and diet of the leopard cat (Prionailurus bengalensis) in a human-modified succession forest landscape of Singapore. Mammal Res. 61, 99–108 (2016).Article 

    Google Scholar 
    Lorica, M. & Heaney, L. Survival of a native mammalian carnivore, the leopard cat Prionailurus bengalensis Kerr, 1792 (Carnivora: Felidae), in an agricultural landscape on an oceanic Philippine island. J. Threatened Taxa, 4451–4460 (2013).Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).Article 

    Google Scholar 
    Belcher, C. A. & Darrant, J. P. Den use by the spotted-tailed quoll Dasyurus maculatus in south-eastern Australia. Aust Mammalogy 28, 59–64. https://doi.org/10.1071/AM06007 (2006).Article 

    Google Scholar 
    Glen, A. & Dickman, C. Why are there so many spotted-tailed Quolls Dasyurus maculatus in parts of north-eastern New South Wales?. Aust Zool 35, 711–718. https://doi.org/10.7882/az.2011.023 (2011).Article 

    Google Scholar 
    Hanski, I. Metapopulation ecology (Oxford University Press, Oxford, 1999).
    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Belcher, C. A. Susceptibility of the tiger quoll, Dasyurus maculatus, and the eastern quoll, D. viverrinus, to 1080-poisoned baits in control programmes for vertebrate pests in eastern Australia. Wildl. Res. 25, 33–40. https://doi.org/10.1071/WR95077 (1998).Article 

    Google Scholar 
    Schmidt, G. M., Graves, T. A., Pederson, J. C. & Carroll, S. L. Precision and bias of spatial capture–recapture estimates: A multi-site, multi-year Utah black bear case study. Ecological Applications 32, e2618. https://doi.org/10.1002/eap.2618 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. Capture-Recapture and Removal Methods for Sampling Closed Populations (Los Alamos National Laboratory, New Mexico, 1982).
    Google Scholar 
    Thornton, D. H. & Pekins, C. E. Spatially explicit capture–recapture analysis of bobcat (Lynx rufus) density: Implications for mesocarnivore monitoring. Wildl. Res. 42, 394–404. https://doi.org/10.1071/WR15092 (2015).Article 

    Google Scholar 
    Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Cons. 144, 1017–1024 (2011).Article 

    Google Scholar 
    Green, A. M., Chynoweth, M. W. & Şekercioğlu, Ç. H. Spatially explicit capture-recapture through camera trapping: A review of benchmark analyses for wildlife density estimation. Front. Ecol. Evol. 8, 473. https://doi.org/10.3389/fevo.2020.563477 (2020).Article 

    Google Scholar 
    du Preez, B. D., Loveridge, A. J. & Macdonald, D. W. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Cons. 176, 153–161 (2014).Article 

    Google Scholar 
    Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).Article 

    Google Scholar 
    Dupont, P., Milleret, C., Gimenez, O. & Bischof, R. Population closure and the bias-precision trade-off in spatial capture–recapture. Methods Ecol. Evol. 10, 661–672. https://doi.org/10.1111/2041-210X.13158 (2019).Article 

    Google Scholar 
    Mergey, M., Helder, R. & Roeder, J. J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335. https://doi.org/10.1644/09-MAMM-A-366.1 (2011).Article 

    Google Scholar 
    Silmi, M. et al. Activity and ranging behavior of leopard cats (Prionailurus bengalensis) in an oil palm landscape. Frontiers in Environmental Science 9, 651939. https://doi.org/10.3389/fenvs.2021.651939 (2021).Article 

    Google Scholar  More