Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326, 123–125 (2009).ADS
CAS
PubMed
Article
Google Scholar
Tian H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature. 586, 248–256 (2020).WMO. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019. Tech. Rep. (2020).Butterbach-Bahl, K., Stange, F., Papen, H. & Li, C. Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J. Geophys. Res. – Atmospheres 106, 34155–34166 (2001).ADS
CAS
Article
Google Scholar
Kesik, M. et al. Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2, 353–375 (2005).ADS
CAS
Article
Google Scholar
Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).ADS
CAS
Article
Google Scholar
World Bank. World Development Indicators: Fertiliser consumption (AG.CON.FERT.ZS), https://data.worldbank.org/indicator/AG.CON.FERT.ZS (2019).Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS
Article
Google Scholar
Hurtt, G. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G. & Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl Acad. Sci. USA 110, 18185–18189 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Galloway, J. N. et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320, 889–892 (2008).ADS
CAS
PubMed
Article
Google Scholar
Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).
Google Scholar
Roy, E. D., Hammond Wagner, C. R. & Niles, M. T. Hot spots of opportunity for improved cropland nitrogen management across the United States. Environ. Res. Lett. 16, (2021).Lett, S. & Michelsen, A. Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath. Plant Soil 379, 193–204 (2014).CAS
Article
Google Scholar
Wang, W. et al. Characteristics of Atmospheric Reactive Nitrogen Deposition in Nyingchi City. Sci. Rep. 9, 1–11 (2019).ADS
Article
CAS
Google Scholar
Verma, P. & Sagar, R. Effect of nitrogen (N) deposition on soil-N processes: a holistic approach. Sci. Rep. 10, 1–16 (2020).Article
CAS
Google Scholar
Peng, J. et al. Global Carbon Sequestration Is Highly Sensitive to Model-Based Formulations of Nitrogen Fixation. Glob. Biogeochem. Cycles 34, 1–15 (2020).Article
CAS
Google Scholar
Leitner, S. et al. Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Curr. Opin. Environ. Sustain. 47, 95–105 (2020).Article
Google Scholar
Venterea, R. T. et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front. Ecol. Environ. 10, 562–570 (2012).Article
Google Scholar
Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K. & Petersen, S. O. Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments. Curr. Opin. Environ. Sustain. 47, 46–53 (2020).Article
Google Scholar
Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).ADS
CAS
PubMed
Article
Google Scholar
Hartmann, A. A., Barnard, R. L., Marhan, S. & Niklaus, P. A. Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia 171, 705–717 (2013).ADS
PubMed
Article
Google Scholar
Inatomi, M., Hajima, T. & Ito, A. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model. Plos One 14, e0219159 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Li, Z. et al. Global patterns and controlling factors of soil nitrification rate. Glob. Change Biol. 26, 4147–4157 (2020).ADS
Article
Google Scholar
Reichenau, T. G., Klar, C. W. & Schneider, K. Effects of Climate Change on Nitrate Leaching. In Regional Assessment of Global Change Impacts: The Project GLOWA-Danube (eds Mauser, W. & Prasch, M.) 623–629 (Springer, 2016).He, W. et al. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE 13, 1–19 (2018).
Google Scholar
Mas-Pla, J. & Menció, A. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environ. Sci. Pollut. Res. 26, 2184–2202 (2019).CAS
Article
Google Scholar
Stuart, M. E., Gooddy, D. C., Bloomfield, J. P. & Williams, A. T. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859–2873 (2011).ADS
CAS
PubMed
Article
Google Scholar
Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS
Article
Google Scholar
Mitchell, R. A., Mitchell, V. J., Driscoll, S. P., Franklin, J. & Lawlor, D. W. Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell Environ. 16, 521–529 (1993).CAS
Article
Google Scholar
Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: Impacts of elevated CO 2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).ADS
Article
Google Scholar
Ri, X. & Prentice, I. C. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob. Change Biol. 14, 1745–1764 (2008).ADS
Article
Google Scholar
Ri, X., Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. N. Phytologist 196, 472–488 (2012).Article
CAS
Google Scholar
Giltrap, D. L. & Ausseil, A.-G. E. Upscaling NZ-DNDC using a regression based meta-model to estimate direct N2O emissions from New Zealand grazed pastures. Sci. Total Environ. 539, 221–230 (2016).ADS
CAS
PubMed
Article
Google Scholar
Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability. Atmos. Chem. Phys. 14, 4349–4368 (2014).ADS
Article
Google Scholar
Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 2: Atmospheric inversion estimates of N2O emissions. Atmos. Chem. Phys. 14, 6177–6194 (2014).ADS
Article
CAS
Google Scholar
Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change, 8, (2019).Houlton, B. Z. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bai, E., Houlton, B. Z. & Wang, Y. P. Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9, 3287–3304 (2012).ADS
CAS
Article
Google Scholar
Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS
Article
Google Scholar
Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 1–8 (2015).
Google Scholar
Toyoda, S. et al. Decadal time series of tropospheric abundance of N2O isotopomers and isotopologues in the northern hemisphere obtained by the long-term observation at Hateruma Island, Japan. J. Geophys. Res. – Atmospheres 118, 1–13 (2013).
Google Scholar
Harris, E. et al. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition. J. Geophys. Res. – Atmospheres 122, 1–21 (2017).CAS
Google Scholar
Harris, E. et al. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Sci. Adv. 7, eabb7118 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Yu, L. et al. Atmospheric nitrous oxide isotopes observed at the high-altitude research station Jungfraujoch, Switzerland. Atmos. Chem. Phys. 20, 6495–6519 (2020).ADS
CAS
Article
Google Scholar
Sowers, T., Rodebaugh, A., Yoshida, N. & Toyoda, S. Extending records of the isotopic composition of atmospheric N2O back to 1800 A.D. from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core. Glob. Biogeochem. Cycles 16, 1129 (2002).ADS
Article
CAS
Google Scholar
Scheer, C., Fuchs, K., Pelster, D. E. & Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Environ. Sustainability 47, 72–80 (2020).Article
Google Scholar
Pilegaard, K. Processes regulating nitric oxide emissions from soils. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–8, (2013).Thompson, R. Documentation of N2O flux service: Description of the N2O inversion production chain. Technical report, Copernicus Atmospheric Monitoring Service, CAMS73_2018SC2 -Documentation of N2O flux service (2021).Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).ADS
CAS
Article
Google Scholar
Pan, B., Lam, S. K., Wang, E., Mosier, A. & Chen, D. New approach for predicting nitrification and its fraction of N2O emissions in global terrestrial ecosystems. Environ. Res. Lett. 16, (2021).Corbeels, M., Hofman, G. & Van Cleemput, O. Fate of fertiliser N applied to winter wheat growing on a Vertisol in a Medditerranean environment. Nutrient Cycl. Agroecosystems 53, 249–258 (1999).Article
Google Scholar
Jenkinson, D. S., Poulton, P. R., Johnston, A. E. & Powlson, D. S. Turnover of Nitrogen-15-Labeled Fertilizer in Old Grassland. Soil Sci. Soc. Am. J. 68, 865–875 (2004).ADS
CAS
Article
Google Scholar
Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).PubMed
Article
Google Scholar
Smith, W. et al. Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci. Total Environ. 728, 138845 (2020).ADS
CAS
PubMed
Article
Google Scholar
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, Switzerland, 2014).Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).Congreves, K. A., Wagner-Riddle, C., Si, B. C. & Clough, T. J. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol. Biochem. 117(October 2017), 5–15 (2018).Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nat. Geosci. 10, 279–283 (2017).ADS
CAS
Article
Google Scholar
Byers, E., Bleken, M. A. & Dörsch, P. Winter N2O accumulation and emission in sub-boreal grassland soil depend on clover proportion and soil ph. Environ. Res. Commun. 3, (2021).Doersch, P., Sturite, I. & Trier Kjaer, S. High off-season nitrous oxide emissions negate potential soil C-gain from cover crops in boreal cereal cropping (EGU22-3066). EGU General Assembly 2022, https://doi.org/10.5194/egusphere-egu22-3066 (2022).Prokopiou, M. et al. Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres. Atmos. Chem. Phys. 17, 4539–4564 (2017).ADS
CAS
Article
Google Scholar
Yu, L., Harris, E., Lewicka-Szczebak, D. & Mohn J. What can we learn from N2O isotope data? Analytics, processes and modelling. Rap. Commun. Mass Spectr. 34, 1–13 (2020).Smith, K., Thomson, P., Clayton, H., Mctaggart, I. & Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301–3309 (1998).ADS
CAS
Article
Google Scholar
Yao, Z. et al. Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events. J. Geophys. Res. – Atmospheres 115, 1–17 (2010).
Google Scholar
Cantarel, A. A. M. et al. Four years of experimental climate change modifies the microbial drivers of N 2O fluxes in an upland grassland ecosystem. Glob. Change Biol. 18, 2520–2531 (2012).ADS
Article
Google Scholar
Zhang, Y. et al. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 691, 1127–1136 (2019).ADS
CAS
PubMed
Article
Google Scholar
Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl Sci. Rev. 7, 441–452 (2020).CAS
PubMed
Article
Google Scholar
Rütting, T., Cizungu Ntaboba, L., Roobroeck, D., Bauters, M., Huygens, D. & Boeckx, P. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. biogeochemical cycles 29, 1754–1762 (2015).ADS
Article
CAS
Google Scholar
Brookshire, E. N., Gerber, S., Greene, W., Jones, R. T. & Thomas, S. A. Global bounds on nitrogen gas emissions from humid tropical forests. Geophys. Res. Lett. 44, 2502–2510 (2017).ADS
CAS
Article
Google Scholar
Homyak, P. M. et al. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. PNAS 113, E2608–E2616 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (IGES, Japan, 2006).Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More Food, Low Pollution (Mo Fo Lo Po): A Grand Challenge for the 21st Century. J. Environ. Qual. 44, 305–311 (2015).CAS
PubMed
Article
Google Scholar
Cui, X. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, In press, (2021).McDaniel, M. D., Mas-Pla, J. & Kaye, M. W. Do “hot moments” become hotter under climate change? Soil nitrogen dynamics from a climate manipulation experiment in a post-harvest forest. Biogeochemistry. https://doi.org/10.1007/s10533-014-0001-3 (2014).Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).ADS
CAS
Article
Google Scholar
New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article
Google Scholar
FAO, IIASA, ISRIC, ISSCAS, and JRC. Harmonized World Soil Database (version 1.2). (Technical report, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012).Hiederer, R. & Köchy M. Global soil organic carbon estimates and the harmonized world soil database. EUR 25225EN (2012).Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2, https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).ADS
CAS
PubMed
Article
Google Scholar
Zinke, P., Stangenberger, A., Post, W., Emanual, E. & Olson, J. WORLDWIDE ORGANIC SOIL CARBON AND NITROGEN DATA. Technical report, Oak Ridge National Laboratory, https://cdiac.ess-dive.lbl.gov/ndps/ndp018.html (2004).Kowalczyk, E. A., Wang, Y. P. & Law, R. M. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Mar. Atmos. Res. Pap. 13, 1–42 (2006).
Google Scholar
Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).ADS
CAS
PubMed
Article
Google Scholar
Chen, C. et al. Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: South slope versus north slope. Biogeosciences 15, 369–377 (2018).ADS
CAS
Article
Google Scholar
Brenner, D., Amundson, R., Baisden, T., Kendall, C. & Harden, J. N variation with time in a California annual grassland ecosystem. Geochimica et. Cosmochimica Acta. 65, 4171–4186 (2001).ADS
CAS
Article
Google Scholar
Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).Article
Google Scholar
Inglett, P. W., Reddy, K. R., Newman, S. & Lorenzen, B. Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia 153, 99–109 (2007).ADS
CAS
PubMed
Article
Google Scholar
Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 5, (2016).Bauters, M. et al. Functional Composition of Tree Communities Changed Topsoil Properties in an Old Experimental Tropical Plantation. Ecosystems 20, 861–871 (2017).CAS
Article
Google Scholar
Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).ADS
CAS
Article
Google Scholar
Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monograp. 89, 1–17 (2019).Bauters, M. et al. Long-term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica 51, 319–329 (2019).Article
Google Scholar
Gallarotti, N. et al. In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. (2021).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 1–8 (2022).Article
CAS
Google Scholar
Baumgartner, S. et al. Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin. Soil 7, 83–94 (2021).ADS
CAS
Article
Google Scholar
Chollet, F. Keras, Keras package for Python https://keras.io (2015).IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”), online version created by S.J. Chalk. Blackwell Science Ltd, https://doi.org/10.1351/goldbook (2019).Yu, L. et al. Constraining global N2O budgets with decadal trends of multiple isotope signatures. In preparation, (2022).Machida, T., Nakazawa, T., Fujii, Y., Aoki, S. & Watanabe, O. Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett. 22, 2921–2924 (1995).ADS
CAS
Article
Google Scholar
Rubino, M. et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11, 473–492 (2019).ADS
Article
Google Scholar
Dorich, C. et al. Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustainability 47, 13–20 (2020).Article
Google Scholar
Mariotti, A. et al. Experimental-determination of Nitrogen Kinetic Isotope Fractionation – Some Principles – Illustration For the Denitrification and Nitrification Processes. Plant Soil 62, 413–430 (1981).CAS
Article
Google Scholar
Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry. Geochimica et. Cosmochimica Acta. 105, 422–432 (2013).ADS
Article
CAS
Google Scholar
Stern, L., Baisden, W. T. & Amundson, R. Processes controlling the oxygen isotope ratio of soil CO2: Analytic and numerical modeling. Geochimica Et. Cosmochimica Acta. 63, 799–814 (1999).ADS
CAS
Article
Google Scholar
Denk, T. R. A. et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 105, 121–137 (2017).CAS
Article
Google Scholar
Rohe, L. et al. Comparing modified substrate induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021 (2021).Wei, J. et al. N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 132, 325–342 (2017).CAS
Article
Google Scholar
Clough, T. J. et al. Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Sci. Rep. 7, 1–12 (2017).CAS
Article
Google Scholar
Bai, E. & Houlton, B. Z. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Glob. Biogeochemical Cycles 23, 1–10 (2009).
Google Scholar
Wen, Y. et al. Disentangling gross N2O production and consumption in soil. Sci. Rep. 6, 1–8 (2016).Article
CAS
Google Scholar
Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. & Zhang, F. S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 42, 1436–1448 (2008).ADS
CAS
Article
Google Scholar
Unkovich, M. Isotope discrimination provides new insight into biological nitrogen fixation. N. Phytologist 198, 643–646 (2013).CAS
Article
Google Scholar
Beyn, F., Matthias, V., Aulinger, A. & Dähnke, K. Do N-isotopes in atmospheric nitrate deposition reflect air pollution levels? Atmos. Environ. 107, 281–288 (2015).ADS
CAS
Article
Google Scholar
Vereecken, H. et al. Modeling Soil Processes: Review, Key challenges and New Perspectives. Vadose Zone J. 15, 1–57 (2016).CAS
Google Scholar
Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).ADS
Article
CAS
Google Scholar
Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009).ADS
CAS
PubMed
Article
Google Scholar
Kim, D. G., Hernandez-Ramirez, G. & Giltrap, D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosyst. Environ. 168, 53–65 (2013).CAS
Article
Google Scholar
Scheer, C. et al. Addressing nitrous oxide: An often ignored climate and ozone threat. Tech. Rep. (2019).Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).CAS
PubMed
Article
Google Scholar
Zaehle, S. Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–9 (2013).Jones, P. et al. Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).ADS
Google Scholar
Olivier, J. & Berdowski, J. EDGAR 3.x by RIVM/TNO. In The Climate System (eds Berdowski, R. G. J. & Heij, B.) 33–77. (Swets and Zeitlinger Publishers, 2001).Crippa, M. et al. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 7, 1–17 (2020).Article
Google Scholar
Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).CAS
PubMed
Article
Google Scholar
Savard, M. M. et al. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J. Hydrol. 381, 134–141 (2010).ADS
CAS
Article
Google Scholar
Bowman, K. P. & Cohen, P. J. Interhemispheric exchange by seasonal modulation of the Hadley circulation. J. Atmos. Sci. 54, 2045–2059 (1997).ADS
Article
Google Scholar
Moseman-Valtierra, S. et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 45, 4390–4397 (2011).ADS
CAS
Article
Google Scholar
Brase, L., Bange, H. W., Lendt, R., Sanders, T. & Dähnke, K. High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Front. Mar. Sci. 4, 1–11 (2017).Article
Google Scholar
Wells, N. S. et al. Estuaries as Sources and Sinks of N2O Across a Land Use Gradient in Subtropical Australia. Glob. Biogeochemical Cycles 32, 877–894 (2018).ADS
CAS
Article
Google Scholar
Rayner, P. Data Assimilation using an ensemble of models: A hierarchical approach. Atmos. Chem. Phys. 20, 1–13 (2020).Article
CAS
Google Scholar
Met Office. Cartopy: a cartographic python library with a Matplotlib interface (https://scitools.org.uk/cartopy), (2015). More