Fossoriality in desert-adapted tenebrionid (Coleoptera) larvae
Matthews, E. G., Lawrence, J. F., Bouchard, P., Steiner, W. E. Jr. & ĆlipiĆski, S. A. Tenebrionidae Latreille, 1802. In Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom. Vol. IVâArthropoda: Insecta. Part 38 Coleoptera, Beetles. Vol. 2: Systematics (Part 2) (eds Leschen, R. A. B. et al.) 574â659 (Walter de Gruyter GmbH & Co, 2010).
Google ScholarÂ
Kergoat, G. J. et al. Higher-level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Syst. Entomol. 39, 486â499. https://doi.org/10.1111/syen.12065 (2014).ArticleÂ
Google ScholarÂ
Bouchard, P. et al. Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). Zookeys 26, 1â633. https://doi.org/10.3897/zookeys.1050.64217 (2021).ArticleÂ
Google ScholarÂ
Matthews, E. G. & Bouchard, P. Tenebrionid Beetles of Australia 398 (Australian Biological Resources Study, 2008).
Google ScholarÂ
Thomas, D. B. J. R. Patterns in the abundance of some tenebrionid beetles in the Mojave Desert. Environ. Entomol. 8, 568â657 (1979).ArticleÂ
Google ScholarÂ
Seely, M. K. & Louw, G. N. First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environ. 3, 25â54 (1980).ADSÂ
ArticleÂ
Google ScholarÂ
Crawford, C. S. The community ecology of macroarthropod detritivores. In The Ecology of Desert Communities (ed. Polis, G. A.) 89â112 (The University of Arizona Press, 1991).
Google ScholarÂ
Mordkovich, V. G. Species richness, population structure and functional significance of black-beetles (Coleoptera: Tenebrionidae) in steppes of Northern Asia. Russ. Entomol. J. 11, 57â68 (2002).
Google ScholarÂ
Bartholomew, A. & El Moghrabi, J. Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. J. Arid Environ. 156, 34â40 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
Cheli, G. H., Bosco, T. & Flores, G. The role of Nyctelia dorsata Fairmaire, 1905 (Coleoptera: Tenebrionidae) on litter fragmentation processes and soil biogeochemical cycles in arid Patagonia. Ann. Zool. 72, 129â134. https://doi.org/10.3161/00034541ANZ2022.72.1.011 (2022).ArticleÂ
Google ScholarÂ
NĂžrgaard, T. & Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 7, 23. https://doi.org/10.1186/1742-9994-7-23 (2010).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Comanns, P. Passive water collection with the integument: Mechanisms and their biomimetic potential. J. Exp. Biol. 221, jeb153130. https://doi.org/10.1242/jeb.153130 (2018).ArticleÂ
PubMedÂ
Google ScholarÂ
Doyen, J. T. Familial and subfamilial classification of the Tenebrionoidea (Coleoptera) and a revised generic classification of the Coniontini (Tentyriidae). Quest. Entomol. 8, 357â376 (1972).
Google ScholarÂ
Schulze, L. The Tenebrionidae of Southern Africa. XLII. Description of the early stages of Carchares macer Pascoe and Herpiscus sommeri Solier with a discussion of some phylogenetic aspects arising from the incongruities of adult and larval systematics. Sci. Pap. Namib Desert Res. Stn. 53, 139â149 (1969).
Google ScholarÂ
KamiĆski, M. J. et al. Reevaluation of Blapimorpha and Opatrinae: Addressing a major phylogeny-classification gap in darkling beetles (Coleoptera: Tenebrionidae: Blaptinae). Syst. Entomol. 46, 140â156. https://doi.org/10.1111/syen.12453 (2021).ArticleÂ
Google ScholarÂ
Skopin, N. G. [Larvae of the subfamily Pimeliinae (Coleoptera, Tenebrionidae)]. Lichinki podsemeystva Pimeliinae (Coleoptera, Tenebrionidae). Trudy Nauchno-Issledovatelskogo Instituta Zashchity Rastenii Kazakhstanskoy Akademii Selskokhozyastvennykh Nauk 7, 191â298 (1962).
Google ScholarÂ
Skopin, N. G. Die Larven der Tenebrioniden des Tribus Pycnocerini (Coleoptera, Heteromera). Ann. MuseĂ© R. lâAfrique Centrale 127, 1â35 (1964).
Google ScholarÂ
Iwan, D. & BeÄvĂĄĆ, S. Description of the early stages of Anomalipus plebejus plebejulus (Coleoptera: Tenebrionidae) from Zimbabwe with notes on the classifcation of the Opatrinae. Eur. J. Entomol. 97, 403â412 (2000).ArticleÂ
Google ScholarÂ
Koch, C. Monograph of the Tenebrionidae of southern Africa Vol I (Tentyriinae, Molurini Trachynotina: Somaticus Hope). Transvaal Mus. Mem. 7, 242 (1955).
Google ScholarÂ
Kergoat, G. J. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol. Biol. 14, 220. https://doi.org/10.1186/s12862-014-0220-1 (2014).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Smith, A. D., Dornburg, R. & Wheeler, Q. D. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): Matrix-based descriptions, cladistic analysis, and key to late instars. Zookeys 415, 217â268 (2014).ArticleÂ
Google ScholarÂ
KamiĆski, M. J. et al. Immature stages of beetles representing the âOpatrinoidâ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the larval morphology and some resulting taxonomic notes on Blapstinina. Zoomorphology 138, 349â370. https://doi.org/10.1007/s00435-019-00443-7 (2019).ArticleÂ
Google ScholarÂ
Rasa, O. A. E. Bechavioural adaptations to moisture as an environmental constraint in a nocturnal burrow-linhabiting Kalahari detritivore Parastizopus amraticpes Peringuey (Coleoptera: Tenebrionidae). Koedoe 37(1), 57â66 (1994).ArticleÂ
Google ScholarÂ
Rasa, O. A. E. Ecological factors influencing burrow location, group size and mortality in a nocturnal fossorial Kalahari detritivore, Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). J. Arid Environ. 29, 353â365 (1995).ADSÂ
ArticleÂ
Google ScholarÂ
Fabricius, J. C. Supplementum Entomologia Systematica. (Impensis CG Proft, 1978).PĂ©ringuey, L. Fourth contribution to the South African coleopterous fauna. Description of new Coleoptera in the South African Museum. Trans. S. Afr. Philos. Soc. 6, 95â136 (1892).ArticleÂ
Google ScholarÂ
Endrody-Younga, S. A revision of the subtribe Gonopina (Coleoptera: Tenebrionidae: Opatrinae: Platynotini). Ann. Transvaal Mus. 37, 1â54 (2000).
Google ScholarÂ
KamiĆski, M. J. Notes on species diversity patterns in Stizopina (Coleoptera: Tenebrionidae), with description of a new genus from Nama Karoo. Ann. Zool. 65, 131â148. https://doi.org/10.3161/00034541ANZ2015.65.2.002 (2015).ArticleÂ
Google ScholarÂ
Schulze, L. The Tenebrionidae of Southern Africa. XXXVIII. On the morphology of the larvae of some Stizopina (Coleoptera: Opatrini). Sci. Pap. Namib Desert Res. Stn. 19, 1â23 (1963).
Google ScholarÂ
Schulze, L. A review of silk production and spinning activities in Arthropoda with special reference to spinning in Tenebrionid larvae (Coleoptera) and Brown, J. M. M.: A chromatographic analysis of Tenebrionid silk. Mem. Transvaal Mus. 51, 409â410 (1975).
Google ScholarÂ
Rasa, O. A. E. & Endrödy-Younga, S. Intergeneric associations of stizopinid tenebrionids relative to their geographical distribution (Coleoptera: Tenebrionidae: Opatrini: Stitzopina). Afr. Entomol. 5, 231â239 (1997).
Google ScholarÂ
KamiĆski, M. J., RaĆ, M., Steiner, W. E. & Iwan, D. Immature stages of beetles representing the âOpatrinoidâ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the pupal morphology. Ann. Zool. 68, 825â836. https://doi.org/10.3161/00034541ANZ2018.68.4.006 (2018).ArticleÂ
Google ScholarÂ
Doyen, J. T. The skeletal anatomy of Tenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 5, 103â150 (1966).
Google ScholarÂ
Ohde, T., Yaginuma, T. & Niimi, T. Insect morphological diversification through the modification of wing serial homologs. Science 340, 495 (2013).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Zhu, J. Y., Yang, P., Zhang, Z., Wu, G. X. & Yang, B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS ONE 8, e54411 (2013).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
RaĆ, M., Iwan, D. & KamiĆski, M. J. Tracheal system in post-embryonic development of holometabolous insects: A case study using mealworm beetle. J. Anat. 232, 997â1015. https://doi.org/10.1111/joa.12808 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kwon, G. T. et al. Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Sci. Biotechnol. 29(4), 531â537. https://doi.org/10.1007/s10068-019-00699-1 (2019).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Machona, O., Chidzwondo, F. & Mangoyi, R. Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnol. 22, 2. https://doi.org/10.1186/s12896-021-00733-3 (2022).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Jösting, E. A. Die Innervierung des Skelettmuskelsystems des Mehlwurms (Tenebrio molitor L., Larve). Zool. Jb. Anat. 67, 381â460 (1942).
Google ScholarÂ
Burakowski, B., Mroczkowski, M. & StefaĆska, J. ChrzÄ
szcze: Coleoptera. Cucujoidea, CzÄĆÄ 3. Katalog Fauny Polski, XXIII, 14 (1987).Schulze, L. The Tenebrionidae of southern Africa. XXXIII. Description of the larvae of Gonopus tibialis Fabricius and Gonopus agrestis Fahraeus (Gonopina, sensu Koch 1956). Cimbebasia 5, 1â12 (1962).
Google ScholarÂ
Lawrence, J. F., Pollock, D. A. & ĆlipiĆski, A. Tenebrionoidea. In Handbook of Zoology. A Natural History of the Phyla of the Animal kingdom, Vol. IV. Arthropoda: Insecta (eds Leschen, R. A. B. et al.) 487â659 (Walter de Gruyter, 2010).
Google ScholarÂ
Lawrence, J. F. et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 61(1), 1â217 (2011).ArticleÂ
Google ScholarÂ
Beutel, R. G. & Friedrich, F. Comparative study of larvae of Tenebrionoidea (Coleoptera: Cucujiformia). Eur. J. Entomol. 102, 241â264 (2005).ArticleÂ
Google ScholarÂ
Fredrich, F. & Beutel, R. G. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 37, 29â54 (2008).ArticleÂ
Google ScholarÂ
Beutel, R. G., Friedrich, F., Yang, X.-K. & Ge, S.-Q. Insect Morphology and Phylogeny: A Textbook for Students of Entomology 515 (Walter de Gruyter, 2014).
Google ScholarÂ
Aibekova, L. et al. The skeletomuscular system of the mesosoma of Formica rufa workers (Hymenoptera: Formicidae). Insect Syst. Divers. 6(2), 1â26. https://doi.org/10.1093/isd/ixac002 (2022).ArticleÂ
Google ScholarÂ
RaĆ, M. Digging adaptations in psammophilous beetle larvae. Harvard Dataverse https://doi.org/10.7910/DVN/NNAETE (2022).SkyScan. Method Notes, Skyscan 1172 Desktop Micro-CT (Skyscan, 2008).
Google ScholarÂ
R Core Team. 2020. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) https://www.R-project.org/.Sokal, R. R. & Rohlf, F. J. Biometry 937 (W.H. Freeman, 2011).
Google ScholarÂ
Cloudsley-Thompson, J. L. Terrestrial animals in dry heat: Arthropods. In Handbook of Physiology. Section 4: Adaptation to the Environment 414â436 (American Physiological Society, 1964).
Google ScholarÂ
Cloudsley-Thompson, J. L. Adaptations of Arthropoda to arid environments. Annu. Rev. Entomol. 20, 261â283. https://doi.org/10.1146/annurev.en.20.010175.001401 (1975).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Draney, M. L. The subelytral cavity of desert tenebrionids. Fla. Entomol. 76, 539â549 (1993).ArticleÂ
Google ScholarÂ
Duncan, F. D. The role of the subelytral cavity in water loss in the flightless dung beetle, Circellium bacchus (Coleoptera: Scarabaeinae). Eur. J. Entomol. 99(2), 253â258. https://doi.org/10.14411/eje.2002.034 (2002).ArticleÂ
Google ScholarÂ
Endrödy-Younga, S. & Tschinkel, W. Estimation of population size and dispersal in Anomalipus mastodon FĂ„hraeus, 1870 (Coleoptera: Tenebrionidae: Platynotini). Ann. Transvaal Mus. 36(4), 21â30 (1993).
Google ScholarÂ
Iwan, D. Insecta Coleoptera Tenebrionidae Pedinini Platynotina. Vol. 93 of Faune de Madagascar 178 (Editions Quae, 2010).
Google ScholarÂ
Wallwork, J. A. Desert Soil Fauna 296 (Praeger Publication, 1982).
Google ScholarÂ
Iwan, D. Oviviparity in tenebrionid beetles of the melanocratoid Platynotina (Coleoptera: Tenebrionidae: Platynotini) from Madagascar with notes on the viviparous beetles. Ann. Zool. 50, 15â25 (2000).
Google ScholarÂ
Kaufmann, T. Observations on some factors which influence aggregated by Blaps sulcata in Israel. Ann. Entomol. Soc. Am. 59, 660â664 (1966).ArticleÂ
Google ScholarÂ
Kiihnelt, G. On the biology and temperature accommodation of Lepidochora argentogrisea Koch. Sci. Pap. Namib Desert Res. Stn. 51, 121â122 (1969).
Google ScholarÂ
Hamilton, W. J. Competition and thermoregulatory behaviour of the Namib desert tenebrionid beetle genus Cardiosis. Ecology 52, 810â822 (1971).ArticleÂ
Google ScholarÂ
Watt, J. A revised subfamily classifcation of Tenebrionidae (Coleoptera). N. Z. J. Zool. 11, 381â452 (1974).ArticleÂ
Google ScholarÂ
Burakowski, B. Laboratory methods for rearing soil beetles (Coleoptera). Memorab. Zool. 46, 1â66 (1993).
Google ScholarÂ
De Block, M. & Stoks, R. Fitness effects from egg to reproduction: Bridging the life history transition. Ecology 86, 185â197 (2005).ArticleÂ
Google ScholarÂ
Pechenik, J. A. Larval experience and latent effects: Metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323â333 (2006).PubMedÂ
ArticleÂ
Google ScholarÂ
Doyen, J. T. Reconstitution of Coelometopini, Tenebrionini and related tribes of America north of Colombia (Coleoptera: Tenebrionidae). J. N. Y. Entomol. Soc. 97, 277â304 (1989).
Google ScholarÂ
St. George, R. A. Studies on the larvae on North American beetles of the subfamily Tenebrioninae with a description of the larva and pupa of Merinus laevis (Olivier). Proc. U.S. Natl. Mus. 65, 1â22. https://doi.org/10.5479/si.00963801.65-2514.1 (1924).ArticleÂ
Google ScholarÂ
Purchart, L. & Nabozhenko, M. V. First description of larva and pupa of the genus Deretus (Coleoptera: Tenebrionidae) with key to the larvae of the tribe Helopini. Acta Entomol. Musei Natl. Pragae 52, 295â302 (2012).
Google ScholarÂ
Steiner, W. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities. ZooKeys 415, 311â327. https://doi.org/10.3897/zookeys.415.6891 (2014).ArticleÂ
Google ScholarÂ
Wagner, G. & Gosik, R. Comparative morphology of immature stages of two sympatric Tenebrionidae species, with comments on their biology. Zootaxa 4111, 201â222 (2017).ArticleÂ
Google Scholar More