More stories

  • in

    Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons

    Climate and land cover dataOur study of tropical dry season dynamics required climatic variables with high temporal resolution (i.e., daily) and full coverage of tropic regions. To reduce uncertainties associated with the choice of precipitation (P) and evapotranspiration (Ep or E) datasets, we used an ensemble of eight precipitation products, three reanalysis-based products for Ep, and one satellite-based land E product. These precipitation datasets were derived four gauge-based or satellite observation (CHIRPS58, GPCC59, CPC-U60 and PERSIANN-CDR61), three reanalyses (ERA-562, MERRA-263, and PGF64) and a multi-source weighted ensemble product (MSWEP v2.865). The potential evapotranspiration (Ep) was calculated using the FAO Penman–Monteith equation66 (Eqs. (1, 2)), which requires meteorological inputs of wind speed, net radiation, air temperature, specific humidity, and surface pressure. We derived these meteorological variables from the three reanalysis products (ERA-5, MERRA-2, and GLDAS-2.067). Since PGF reanalysis lacked upward short- and long-wave radiation output and thus net radiation, we used available meteorological outputs from GLDAS-2.0 instead, which was forced entirely with the PGF input data.$${Ep}=frac{0.408cdot triangle cdot left({R}_{n}-Gright)+gamma cdot frac{900}{T+273}cdot {u}_{2}cdot left({e}_{s}-{e}_{a}right)}{triangle +{{{{{rm{gamma }}}}}}cdot left(1+0.34cdot {u}_{2}right)}$$
    (1)
    $${VPD}={e}_{s}-{e}_{a}=0.6108cdot {e}^{frac{17.27cdot T}{T+237.3}}cdot left(1-frac{{RH}}{100}right)$$
    (2)
    Where Ep is the potential evapotranspiration (mm day−1). Rn is net radiation at the surface (MJ m−2 day−1), T is mean daily air temperature at 2 m height (°C), ({u}_{2}) is wind speed at 2 m height (m s−1), ((,{e}_{s}-{e}_{a})) is the vapor pressure deficit of the air (kPa), ({RH}) is the relative air humidity near surface (%), ∆ is the slope of the saturation vapor pressure-temperature relationship (kPa °C−1), γ is the psychrometric constant (kPa °C−1), G is the soil heat flux (MJ m−2 day−1, is often ignored for daily time steps G ≈ 0).We derived the daily evapotranspiration data from the Global Land Evaporation Amsterdam Model (GLEAM v3.3a68), which is a set of algorithms dedicated to developing terrestrial evaporation and root-zone soil moisture data. GLEAM fully assimilated the satellite-based soil moisture estimates from ESA CCI, microwave L-band vegetation optical depth (VOD), reanalysis-based temperature and radiation, and multi-source precipitation forcings. The direct assimilation of observed soil moisture allowed us to detect true soil moisture dynamic and its impacts on evapotranspiration. Besides, the incorporation of VOD, which is closely linked to vegetation water content69,70, allowed us to detect the effect of water stress, heat stress, and vegetation phenological constraints on evaporation. Other observation-driven ET products from remote-sensing physical estimation and flux-tower are not included due to their low temporal resolution (i.e., monthly)71 or short duration72,73. ET outputs of reanalysis products are not considered in our analysis, because the assimilation systems lack explicit representation of inter-annual variability of vegetation activities and thus may not fully capture hydrological response to vegetation changes62,63,67.We used land cover maps for the year 2001 from the Moderate-Resolution Imaging Spectroradiometer (MODIS, MCD12C1 C574) based on the IGBP classification scheme to exclude water-dominated and sparely-vegetated pixels (like Sahara, Arabian Peninsula). All climate and land cover datasets mentioned above were remapped to a common 0.25° × 0.25° grid and unified to daily resolution. The main characteristics of the datasets mentioned above are summarized in Supplementary Table 1.Outputs of CMIP6 simulationsTo understand how modeled dry season changes compare with observed changes, we analyzed outputs from the “historical” (1983-2014) runs of 34 coupled models participating in the 6th Coupled Model Inter-comparison Project75 (CMIP6, Supplementary Table 3). We used these models because they offered daily outputs of all climatic variables needed for our analysis, including precipitation, latent heat (convert to E), and multiple meteorological variables for Ep (air temperature, surface specific humidity, wind speed, and net radiation). All outputs were remapped to a common 1.0° × 1.0° grid and unified to daily resolution.Defining dry season length and timingFor each grid cell and each dry season definition (P  More

  • in

    Network metrics guide good control choices

    The management of introduced species, whether kudzu or zebra mussels, is costly and complex. Now, a paper reports a workable, effective solution that harnesses network analyses of ecological phenomena.Invasive species can pose severe economic and environmental problems, costing more than US$1 trillion worldwide since 1970 (ref. 1). Yet managing this human-driven issue is difficult in itself. The regions involved can be vast — entire continents or countries, for instance — while budgets are typically limited. As well, the sites potentially affected and management options can be numerous. Real systems (for example, all the lakes in the United States) can have thousands of locations that could potentially be infested. By contrast, considering just 40 locations means dealing theoretically with over 1 trillion unique combinations (240) where management could be applied (for instance, to reduce the number of invasive species leaving infested areas or entering uninfested ones). Given these constraints, a key problem is how and where to deploy control measures such as invasive-species removal. While sophisticated optimization approaches exist2, which use mathematical rules to exclude most suboptimal combinations and quickly zoom in to which locations should be managed to minimize new invasions, these algorithms are generally unfeasible for very large systems. Now, writing in Nature Sustainability, Ashander et al.3 demonstrate that simpler network metrics revealing linkages between patches can provide solutions that are often comparable to the more complex optimization algorithms. More

  • in

    Gentrified gardens

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Evaluating the temporal and spatio-temporal niche partitioning between carnivores by different analytical method in northeastern Japan

    Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Amarasekare, P. Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett. 6, 1109–1122 (2003).Article 

    Google Scholar 
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).Article 

    Google Scholar 
    Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).PubMed 
    Article 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).Article 

    Google Scholar 
    Davis, C. L. et al. Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecol. Lett. 21, 1401–1412 (2018).PubMed 
    Article 

    Google Scholar 
    Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).Article 

    Google Scholar 
    Fedriani, J. M., Fuller, T. K., Sauvajot, R. M. & York, E. C. Competition and intraguild predation among three sympatric carnivores. Oecologia 125, 258–270 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kamler, J. F., Ballard, W. B., Gilliland, R. L. & Mote, K. Spatial relationships between swift foxes and coyotes in northwestern Texas. Can. J. Zool. 81, 168–172 (2003).Article 

    Google Scholar 
    Vanak, A. T. et al. Moving to stay in place: Behavioral mechanisms for coexistence of African large carnivores. Ecology 94, 2619–2631 (2013).PubMed 
    Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Tsunoda, H. et al. Food niche segregation between sympatric golden jackals and red foxes in central Bulgaria. J. Zool. 303, 64–71 (2017).Article 

    Google Scholar 
    Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Linnell, J. D. C. & Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 6, 169–176 (2000).Article 

    Google Scholar 
    Kamler, J. F., Stenkewitz, U., Klare, U., Jacobsen, N. F. & MacDonald, D. W. Resource partitioning among cape foxes, bat-eared foxes, and black-backed jackals in South Africa. J. Wildl. Manag. 76, 1241–1253 (2012).Article 

    Google Scholar 
    Di Bitetti, M. S., Di Blanco, Y. E., Pereira, J. A., Paviolo, A. & Pírez, I. J. Time Partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas Foxes (Lycalopex gymnocercus). J. Mammal. 90, 479–490 (2009).Article 

    Google Scholar 
    Lesmeister, D. B., Nielsen, C. K., Schauber, E. M. & Hellgren, E. C. Spatial and temporal structure of a mesocarnivore guild in Midwestern North America. Wildl. Monogr. 191, 1–61 (2015).Article 

    Google Scholar 
    Di Bitetti, M. S., De Angelo, C. D., Di Blanco, Y. E. & Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36, 403–412 (2010).ADS 
    Article 

    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).Article 

    Google Scholar 
    Tsunoda, H., Ito, K., Peeva, S., Raichev, E. & Kaneko, Y. Spatial and temporal separation between the golden jackal and three sympatric carnivores in a human-modified landscape in central Bulgaria. Zool. Ecol. 28, 172–179 (2018).Article 

    Google Scholar 
    Tsunoda, H. et al. Spatio-temporal partitioning facilitates mesocarnivore sympatry in the Stara Planina Mountains, Bulgaria. Zoology 141, 125801 (2020).PubMed 
    Article 

    Google Scholar 
    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287, 269–275 (2012).Article 

    Google Scholar 
    Gómez-Ortiz, Y., Monroy-Vilchis, O. & Castro-Arellano, I. Temporal coexistence in a carnivore assemblage from central Mexico: Temporal-domain dependence. Mammal Res. 64, 333–342 (2019).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. https://cran.r-project.org/web/packages/overlaphttps://cran.r-project.org/web/packages/overlap/index.html (2018).Marinho, P. H., Fonseca, C. R., Sarmento, P., Fonseca, C. & Venticinque, E. M. Temporal niche overlap among mesocarnivores in a Caatinga dry forest. Eur. J. Wildl. Res. 66, 1–13 (2020).Article 

    Google Scholar 
    Vilella, M., Ferrandiz-Rovira, M. & Sayol, F. Coexistence of predators in time: Effects of season and prey availability on species activity within a Mediterranean carnivore guild. Ecol. Evol. 10, 11408–11422 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, G. et al. Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob. Ecol. Conserv. 21, e00897 (2020).Article 

    Google Scholar 
    Farmer, M. J., Allen, M. L., Olson, E. R., Van Stappen, J. & Van Deelen, T. R. Agonistic interactions and island biogeography as drivers of carnivore spatial and temporal activity at multiple scales. Can. J. Zool. 99, 309–317 (2021).Article 

    Google Scholar 
    Watabe, R. & Saito, M. U. Diel activity patterns of three sympatric medium-sized carnivores during winter and spring in a heavy snowfall area in northeastern Japan. Mammal Study 46, 69–75 (2021).Article 

    Google Scholar 
    Lashley, M. A. et al. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 4173 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niedballa, J., Wilting, A., Sollmann, R., Hofer, H. & Courtiol, A. Assessing analytical methods for detecting spatiotemporal interactions between species from camera trapping data. Remote Sens. Ecol. Conserv. 5, 272–285 (2019).Article 

    Google Scholar 
    Karanth, K. U. et al. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Biol. Sci. 284, 20161860 (2017).Article 

    Google Scholar 
    Cusack, J. J. et al. Revealing kleptoparasitic and predatory tendencies in an African mammal community using camera traps: A comparison of spatiotemporal approaches. Oikos 126, 812–822 (2017).Article 

    Google Scholar 
    Balme, G. et al. Big cats at large: density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267 (2019).Article 

    Google Scholar 
    Li, Z. et al. Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia. Landsc. Ecol. 34, 291–305 (2019).Article 

    Google Scholar 
    Lahkar, D., Ahmed, M. F., Begum, R. H., Das, S. K. & Harihar, A. Inferring patterns of sympatry among large carnivores in Manas National Park: A prey-rich habitat influenced by anthropogenic disturbances. Anim. Conserv. 24, 589–601 (2021).Article 

    Google Scholar 
    Paúl, M. J., Layna, J. F., Monterroso, P. & Álvares, F. Resource partitioning of sympatric African Wolves (Canis lupaster) and side-striped jackals (Canis adustus) in an arid environment from West Africa. Diversity 12, 477 (2020).Article 

    Google Scholar 
    Prat-Guitart, M., Onorato, D. P., Hines, J. E. & Oli, M. K. Spatiotemporal pattern of interactions between an apex predator and sympatric species. J. Mammal. 101, 1279–1288 (2020).Article 

    Google Scholar 
    Stone, L. & Roberts, A. The checkerboard score and species distributions. Oecologia 85, 74–79 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in r. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Noor, A., Mir, Z. R., Veeraswami, G. G. & Habib, B. Activity patterns and spatial co-occurrence of sympatric mammals in the moist temperate forest of the Kashmir Himalaya, India. Folia Zool. 66, 231–241 (2017).Article 

    Google Scholar 
    de Satgé, J., Teichman, K. & Cristescu, B. Competition and coexistence in a small carnivore guild. Oecologia 184, 873–884 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kass, J. M., Tingley, M. W., Tetsuya, T. & Koike, F. Co-occurrence of invasive and native carnivorans affects occupancy patterns across environmental gradients. Biol. Invasions 22, 2251–2266 (2020).Article 

    Google Scholar 
    Louppe, V., Herrel, A., Pisanu, B., Grouard, S. & Veron, G. Assessing occupancy and activity of two invasive carnivores in two Caribbean islands: implications for insular ecosystems. J. Zool. 313, 182–194 (2020).Article 

    Google Scholar 
    Proulx, G. et al. World distribution and status of the genus Martes in 20. In Martens and Fishers (Martes) in Human-Altered Environments (eds Harrison, D. J. et al.) 21–76 (Springer, Berlin, 2005). https://doi.org/10.1007/b99487.Chapter 

    Google Scholar 
    Ohdachi, S. D., Ishibashi, Y., Iwasa, M., Fukuki, D. & Saitoh, T. The Wild Mammals of Japan 2nd edn. (Shokadoh Book Seller, Kyoto, 2015).
    Google Scholar 
    Kauhala, K. & Saeki, M. Nyctereutes procyonoides. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/species/14925/85658776 (2016).Yamamoto, Y. Comparative analyses on food habits of Japanese marten, red fox, badger and raccoon dog in the Mt. Nyugasa, Nagano Prefecture, Japan. Nat. Environ. Sci. Res. 7, 45–52 (1994) (in Japanese with English summary).
    Google Scholar 
    Hisano, M. et al. A comparison of visual and genetic techniques for identifying Japanese marten scats enabling diet examination in relation to seasonal food availability in a sub-alpine area of Japan. Zool. Sci. 34, 137–146 (2017).Article 

    Google Scholar 
    Lindstrom, E. R., Brainerd, S. M., Helldin, J. O. & Overskaug, K. Pine marten-red fox interactions: A case of intraguild predation?. Ann. Zool. Fenn. 32, 123–130 (1995).
    Google Scholar 
    Waggershauser, C. N., Ruffino, L., Kortland, K. & Lambin, X. Lethal interactions among forest-grouse predators are numerous, motivated by hunger and carcasses, and their impacts determined by the demographic value of the victims. Ecol. Evol. 11, 7164–7186 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watabe, R., Saito, M. U., Enari, H. S. & Enari, H. Mammalian fauna of the Kaminagawa Experimental Forest of Yamagata University detected by camera traps. Tohoku J. For. Sci. 25, 37–40 (2020) (in Japanese).
    Google Scholar 
    Hofmeester, T. R., Rowcliffe, J. M. & Jansen, P. A. A simple method for estimating the effective detection distance of camera traps. Remote Sens. Ecol. Conserv. 3, 81–89 (2017).Article 

    Google Scholar 
    Di Bitetti, M. S., Paviolo, A. & De Angelo, C. Camera trap photographic rates on roads vs. off roads: Location does matter. Mastozoología Neotrop. 21, 37–46 (2014).
    Google Scholar 
    Borcard, D. & Legendre, P. Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93, 1473–1481 (2012).PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. https://cran.r-project.org/web/packages/veganhttps://cran.r-project.org/web/packages/vegan/index.html (2019).R Core Team. R: a language environment for statistical computing. r foundation for statistical computing, Vienna, Austria. https://www.r-project.org/https://www.r-project.org/ (2021).Linkie, M. & Ridout, M. S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 284, 224–229 (2011).Article 

    Google Scholar 
    Watabe, R. & Saito, M. U. Effects of vehicle-passing frequency on forest roads on the activity patterns of carnivores. Landsc. Ecol. Eng. 17, 225–231 (2021).Article 

    Google Scholar 
    Furukawa, G. genkiFurukawa/rSetDayNightAttr documentation. https://rdrr.io/github/genkiFurukawa/rSetDayNightAhttps://rdrr.io/github/genkiFurukawa/rSetDayNightAttr/ (2019).Mielke, P. W., Berry, K. J. & Johnson, E. S. Multi-response permutation procedures for a priori classifications. Commun. Stat. Theory Methods 5, 1409–1424 (1976).MATH 
    Article 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).Article 

    Google Scholar 
    Hendrichsen, D. K. & Tyler, N. J. C. How the timing of weather events influences early development in a large mammal. Ecology 95, 1737–1745 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herfindal, I. et al. Weather affects temporal niche partitioning between moose and livestock. Wildlife Biol. https://doi.org/10.2981/wlb.00275 (2017).Article 

    Google Scholar 
    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: How mesopredators avoid costly interactions with apex predators. Oecologia 187, 573–583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barrull, J. et al. Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: An integrated study based on camera trapping and diet. Mamm. Biol. 79, 123–131 (2014).Article 

    Google Scholar 
    Tattersall, E. R., Burgar, J. M., Fisher, J. T. & Burton, A. C. Boreal predator co-occurrences reveal shared use of seismic lines in a working landscape. Ecol. Evol. 10, 1678–1691 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moll, R. J. et al. Humans and urban development mediate the sympatry of competing carnivores. Urban Ecosyst. 21, 765–778 (2018).Article 

    Google Scholar 
    McCreadie, J. W. & Bedwell, C. R. Patterns of co-occurrence of stream insects and an examination of a causal mechanism: Ecological checkerboard or habitat checkerboard?. Insect Conserv. Divers. 6, 105–113 (2013).Article 

    Google Scholar  More

  • in

    Urban tropical forest islets as hotspots of ants in general and invasive ants in particular

    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).Article 

    Google Scholar 
    Frizzo, T. L., Souza, L. M., Sujii, E. R. & Togni, P. H. Ants provide biological control on tropical organic farms influenced by local and landscape factors. Biol. Control 151, 104378 (2020).CAS 
    Article 

    Google Scholar 
    Elizalde, L. et al. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 95, 1418–1441 (2020).PubMed 
    Article 

    Google Scholar 
    Zhong, Z. et al. Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology 102, e03312 (2021).PubMed 
    Article 

    Google Scholar 
    Ortiz, D. P., Elizalde, L. & Pirk, G. I. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecol. Entomol. 46, 626–636 (2021).Article 

    Google Scholar 
    Li, X. et al. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct. Ecol. 35, 1822–1832 (2021).Article 

    Google Scholar 
    Wendt, C. F. et al. Local environmental variables are key drivers of ant taxonomic and functional beta-diversity in a Mediterranean dryland. Sci. Rep. 11, 1–10 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Lach, L. Invasive ant establishment, spread, and management with changing climate. Curr. Opin. Insect Sci. 47, 119–124 (2021).PubMed 
    Article 

    Google Scholar 
    Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    Miguelena, J. G. & Baker, P. B. Effects of urbanization on the diversity, abundance, and composition of ant assemblages in an arid city. Environ. Entomol. 48, 836–846 (2019).PubMed 
    Article 

    Google Scholar 
    Nielsen, A. B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).Article 

    Google Scholar 
    Peng, M.-H., Hung, Y.-C., Liu, K.-L. & Neoh, K.-B. Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Sci. Rep. 10, 16043 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos, M. N., Delabie, J. H. & Queiroz, J. M. Biodiversity conservation in urban parks: A study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B Biol. Sci. 285, 20180643 (2018).Article 
    CAS 

    Google Scholar 
    Abdel-Dayem, M. S. et al. Ant diversity and composition patterns along the urbanization gradients in an arid city. J. Nat. Hist. 55, 2521–2547 (2021).Article 

    Google Scholar 
    Nooten, S. S., Lee, R. H. & Guénard, B. Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biol. Conserv. 261, 109286 (2021).Article 

    Google Scholar 
    Bhagwat, S. A. & Rutte, C. Sacred groves: Potential for biodiversity management. Front. Ecol. Environ. 4, 519–524 (2006).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Rajesh, T. P., Unni, A. P., Ballullaya, U. P., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves–an island habitat–using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90 (2021).Article 

    Google Scholar 
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    Plowes, R. M., Dunn, J. G. & Gilbert, L. E. The urban fire ant paradox: Native fire ants persist in an urban refuge while invasive fire ants dominate natural habitats. Biol. Invasions 9, 825–836 (2007).Article 

    Google Scholar 
    Rajesh, T. P., Ballullaya, U. P., Surendran, P. & Sinu, P. A. Ants indicate urbanization pressure in sacred groves of southwest India: A pilot study. Curr. Sci. 113, 317–322 (2017).Article 

    Google Scholar 
    Wetterer, J. K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 77–97 (2005).
    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. A landscape approach to biodiversity conservation of sacred groves in the Western Ghats of India. Conserv. Biol. 19, 1853–1862 (2005).Article 

    Google Scholar 
    Chandrashekara, U. M. & Sankar, S. Ecology and management of sacred groves in Kerala, India. For. Ecol. Manag. 112, 165–177 (1998).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Manoj, K. et al. Diversity of Platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats Biodiversity Hotspot, India. Environ. Entomol. 46, 685–692 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hariraveendra, M., Rajesh, T. P., Unni, A. P. & Sinu, P. A. Prey–predator interaction suggests sacred groves are not functionally different from neighbouring used lands. J. Trop. Ecol. 36, 220–224 (2020).Article 

    Google Scholar 
    Bingham, C. T. The fauna of British India, including Ceylon and Burma. Hymenoptera, Vol. II. Ants and Cuckoo-wasps. (1903).Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, 1994).
    Google Scholar 
    Bellow, J. G. & Nair, P. K. R. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. For. Meteorol. 114, 197–211 (2003).ADS 
    Article 

    Google Scholar 
    Dobson, A. J. & Barnett, A. G. An Introduction to Generalized Linear Models (Chapman and Hall/CRC, 2018).MATH 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Kim, T. N., Savannah, B., Bill, D. W., Douglas, A. L. & Claudio, G. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).Article 

    Google Scholar 
    Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Nash, J. C. On best practice optimization methods in R. J. Stat. Softw. 60, 1–14 (2014).Article 

    Google Scholar 
    Berman, M., Andersen, A. N. & Ibanez, T. Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biol. Invasions 15, 2311–2331 (2013).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H.-P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guénard, B., Cardinal-De Casas, A. & Dunn, R. R. High diversity in an urban habitat: Are some animal assemblages resilient to long-term anthropogenic change?. Urban Ecosyst. 18, 449–463 (2015).Article 

    Google Scholar 
    Slipinski, P., Zmihorski, M. & Czechowski, W. Species diversity and nestedness of ant assemblages in an urban environment. Eur. J. Entomol. 109, 197 (2012).Article 

    Google Scholar 
    Heterick, B. E., Lythe, M. & Smithyman, C. Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: Two case studies. Urban Ecosyst. 16, 145–173 (2013).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Goodman, M. & Warren, R. J. II. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol. Invasions 21, 2713–2722 (2019).Article 

    Google Scholar 
    Philpott, S. M. & Armbrecht, I. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31, 369–377 (2006).Article 

    Google Scholar 
    Philpott, S. M., Perfecto, I. & Vandermeer, J. Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. Biodivers. Conserv. 15, 139–155 (2006).Article 

    Google Scholar 
    García-Cárdenas, R., Montoya-Lerma, J. & Armbrecht, I. Ant diversity under three coverages in a Neotropical coffee landscape. Rev. Biol. Trop. 66, 1373–1389 (2018).Article 

    Google Scholar 
    Sinu, P. A. et al. Invasive ant (Anoplolepis gracilipes) disrupts pollination in pumpkin. Biol. Invasions 19, 2599–2607 (2017).Article 

    Google Scholar 
    Tsang, T. P., Dyer, E. E. & Bonebrake, T. C. Alien species richness is currently unbounded in all but the most urbanized bird communities. Ecography 42, 1426–1435 (2019).Article 

    Google Scholar 
    D’ettorre, P. Invasive eusocieties: commonalities between ants and humans. In Human Dispersal and Species Movement (eds Boivin, N. et al.) (Cambridge University Press, 2017).
    Google Scholar 
    Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    Lizon à l’Allemand, S. & Witte, V. sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biol. invasions 12, 3551–3561 (2010).Article 

    Google Scholar 
    Silverman, J. & Buczkowski, G. Behaviours mediating ant invasions. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) (Cambridge University Press, 2016).
    Google Scholar  More

  • in

    Increasing climatic decoupling of bird abundances and distributions

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. IPBES (2019): Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).CAS 
    PubMed 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270, 467–473 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, J. K. et al. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 4, 313–321 (2001).
    Google Scholar 
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).
    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
    Google Scholar 
    Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).
    Google Scholar 
    Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).PubMed 

    Google Scholar 
    McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).PubMed 

    Google Scholar 
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111–113 (2006).PubMed 

    Google Scholar 
    Partners in Flight. Avian Conservation Assessment Database Version 2021 (accessed 5 February 2021); http://pif.birdconservancy.org/ACADHill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sens. (Basel) 12, 406 (2020).
    Google Scholar 
    Wiebe, K. L. & Gerstmar, H. Influence of spring temperatures and individual traits on reproductive timing and success in a migratory woodpecker. Auk 127, 917–925 (2010).
    Google Scholar 
    Viana, D. S. & Chase, J. M. Ecological traits underlying interspecific variation in climate matching of birds. Glob. Ecol. Biogeogr. 31, 1021–1034 (2022).
    Google Scholar 
    Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).CAS 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
    Google Scholar 
    Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).
    Google Scholar 
    Coyle, J. R., Hurlbert, A. H. & White, E. P. Opposing mechanisms drive richness patterns of core and transient bird species. Am. Nat. 181, E83–E90 (2013).PubMed 

    Google Scholar 
    Valiela, I. & Martinetto, P. Changes in bird abundance in eastern North America: urban sprawl and global footprint? BioScience 57, 360–370 (2007).
    Google Scholar 
    Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).
    Google Scholar 
    Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).
    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnagaud, J.-Y. et al. Relating habitat and climatic niches in birds. PLoS ONE 7, e32819 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).
    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).
    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 

    Google Scholar 
    Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390–1399 (2017).
    Google Scholar 
    Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).PubMed 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).
    Google Scholar 
    van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).
    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87, 1034–1045 (2018).PubMed 

    Google Scholar 
    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).
    Google Scholar 
    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pardieck, K. L., Ziolkowski, D. J. Jr, Lutmerding, M., Aponte, V. & Hudson, M.-A. R. North American Breeding Bird Survey Dataset 1966–2018 Version 2018.0. (US Geological Survey, 2019); https://www.sciencebase.gov/catalog/item/5d65256ae4b09b198a26c1d7Harris, D. J., Taylor, S. D. & White, E. P. Forecasting biodiversity in breeding birds using best practices. PeerJ 6, e4278 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: a Grammar of Data Manipulation. R package version 1.0.0 https://cran.r-project.org/web/packages/dplyr/index.html (2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.1.0 https://cran.r-project.org/web/packages/tidyr/index.html (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-12 https://cran.r-project.org/web/packages/raster/index.html (2015).Bivand, R., Pebesma, E. J. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5–10 https://cran.r-project.org/web/packages/geosphere/index.html (2019).Hart, E. M. & Bell, K. prism. R package version 0.0.6 https://github.com/ropensci/prism (2015).Senyondo, H. et al. rdataretriever: R interface to the data retriever. J. Open Source Softw. 6, 2800 (2021).
    Google Scholar 
    Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological data. PLoS ONE 8, e65848 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Senyondo, H. et al. Retriever: data retrieval tool. J. Open Source Softw. 2, 451 (2017).
    Google Scholar 
    Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).
    Google Scholar 
    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).
    Google Scholar 
    Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).PubMed 

    Google Scholar 
    Sauer, J. R. & Link, W. A. Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128, 87–98 (2011).
    Google Scholar 
    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    Krenek, S., Berendonk, T. U. & Petzoldt, T. Thermal performance curves of Paramecium caudatum: a model selection approach. Eur. J. Protistol. 47, 124–137 (2011).PubMed 

    Google Scholar 
    Bahn, V. & McGill, B. J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16, 733–742 (2007).
    Google Scholar 
    Dobson, L. L., La Sorte, F. A., Manne, L. L. & Hawkins, B. A. The diversity and abundance of North American bird assemblages fail to track changing productivity. Ecology 96, 1105–1114 (2015).PubMed 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.5 https://cran.r-project.org/web/packages/gbm/index.html (2019).Wood, S. N. Generalized Additive Models: an Introduction with R (CRC Press/Taylor & Francis Group, 2017).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Stan Development Team. Stan Modeling Language Users Guide and Reference Manual (2020); https://mc-stan.org/users/documentation/ More

  • in

    Social support correlates with glucocorticoid concentrations in wild African elephant orphans

    Wu, A. Social buffering of stress – Physiological and ethological perspectives. Appl. Anim. Behav. Sci. 239, 105325 (2021).
    Google Scholar 
    Hennessy, M. B., Kaiser, S. & Sachser, N. Social buffering of the stress response: diversity, mechanisms, and functions. Front. Neuroendocrinol. 30, 470–482 (2009).CAS 
    PubMed 

    Google Scholar 
    Young, C., Majolo, B., Heistermann, M., Schülke, O. & Ostner, J. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proc. Natl Acad. Sci. USA 111, 18195–18200 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stanton, M. E., Patterson, J. M. & Levine, S. Social influences on conditioned cortisol secretion in the squirrel monkey. Psychoneuroendocrinology 10, 125–134 (1985).CAS 
    PubMed 

    Google Scholar 
    Caldji, C., Diorio, J. & Meaney, M. J. Variations in maternal care in infancy regulate the development of stress reactivity. Biol. Psychiatry 48, 1164–1174 (2000).CAS 
    PubMed 

    Google Scholar 
    Novak, M. A., Hamel, A. F., Kelly, B. J., Dettmer, A. M. & Meyer, J. S. Stress, the HPA axis, and nonhuman primate well-being: a review. Appl. Anim. Behav. Sci. 143, 135–149 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Liu, D. et al. Maternal Care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Sci. Ment. Heal. Stress Brain 9, 75–78 (1997).
    Google Scholar 
    Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403–416 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spiga, F., Walker, J. J., Terry, J. R. & Lightman, S. L. HPA axis-rhythms. Compr. Physiol. 4, 1273–1298 (2014).PubMed 

    Google Scholar 
    Sapolsky, R. M. Why Zebras Don’t Get Ulcers (Henry Holt and Company, LLC, 2004).Campos, F. A. et al. Glucocorticoid exposure predicts survival in female baboons. Sci. Adv. 7, 1–10 (2021).
    Google Scholar 
    Banerjee, S. B., Arterbery, A. S., Fergus, D. J. & Adkins-Regan, E. Deprivation of maternal care has long-lasting consequences for the hypothalamic-pituitary-adrenal axis of zebra finches. Proc. R. Soc. B Biol. Sci. 279, 759–766 (2012).
    Google Scholar 
    Hennessy, M. B., Nigh, C. K., Sims, M. L. & Long, S. J. Plasma cortisol and vocalization responses of postweaning age guinea pigs to maternal and sibling separation: evidence for filial attachment after weaning. Dev. Psychobiol. 28, 103–115 (1995).CAS 
    PubMed 

    Google Scholar 
    Hennessy, M. B., O’Leary, S. K., Hawke, J. L. & Wilson, S. E. Social influences on cortisol and behavioral responses of preweaning, periadolescent, and adult guinea pigs. Physiol. Behav. 76, 305–314 (2002).CAS 
    PubMed 

    Google Scholar 
    Wiener, S. G., Johnson, D. F. & Levine, S. Influence of postnatal rearing conditions on the response of squirrel monkey infants to brief perturbations in mother-infant relationships. Physiol. Behav. 39, 21–26 (1987).CAS 
    PubMed 

    Google Scholar 
    Girard-Buttoz, C. et al. Early maternal loss leads to short-but not long-term effects on diurnal cortisol slopes in wild chimpanzees. Elife 10, e64134 (2021).Rosenbaum, S. et al. Social bonds do not mediate the relationship between early adversity and adult glucocorticoids in wild baboons. Proc. Natl Acad. Sci. USA 117, 20052–20062 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moss, C. Elephant Memories: Thirteen Years in the Life of an Elephant Family (Univ. Chicago Press, 1988).Douglas-Hamilton, I., Bhalla, S., Wittemyer, G. & Vollrath, F. Behavioural reactions of elephants towards a dying and deceased matriarch. Appl. Anim. Behav. Sci. 100, 87–102 (2006).
    Google Scholar 
    Shoshani, J., Kupsky, W. J. & Marchant, G. H. Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res. Bull. 70, 124–157 (2006).PubMed 

    Google Scholar 
    Goldenberg, S. Z. & Wittemyer, G. Orphaned female elephant social bonds reflect lack of access to mature adults. Sci. Rep. 7, 14408 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Goldenberg, S. Z. & Wittemyer, G. Orphaning and natal group dispersal are associated with social costs in female elephants. Anim. Behav. 143, 1–8 (2018).
    Google Scholar 
    Lee, P. C. Allomothering among African elephants. Anim. Behav. 35, 278–291 (1987).
    Google Scholar 
    Parker, J. M. et al. Poaching of African elephants indirectly decreases population growth through lowered orphan survival. Curr. Biol. 31, 4156–4162.e5 (2021).Wittemyer, G. et al. Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc. R. Soc. B Biol. Sci. 276, 3513–3521 (2009).
    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Vertical transmission of social roles drives resilience to poaching in elephant metworks. Curr. Biol. 26, 75–79 (2016).CAS 
    PubMed 

    Google Scholar 
    Gobush, K. S., Mutayoba, B. M. & Wasser, S. K. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female African elephants. Conserv. Biol. 22, 1590–1599 (2008).CAS 
    PubMed 

    Google Scholar 
    Gobush, K. S. et al. Loxodonta africana (African Savanna Elephant). Loxodonta africana: the IUCN red list of threatened species 2021 e.T181008073A181022663 https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T181008073A181022663.en (2021).Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittemyer, G., Daballen, D. & Douglas-Hamilton, I. Comparative Demography of an At-Risk African Elephant Population. PLoS ONE 8, e53726 (2013).McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).
    Google Scholar 
    Wittemyer, G. The elephant population of Samburu and Buffalo Springs National Reserves, Kenya. Afr. J. Ecol. 39, 357–369 (2001).
    Google Scholar 
    Cockrem, J. F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181, 45–58 (2013).CAS 
    PubMed 

    Google Scholar 
    Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of glucocorticoids: a review and meta-analysis. Gen. Comp. Endocrinol. 260, 136–145 (2018).CAS 
    PubMed 

    Google Scholar 
    Hooten, M. B. & Hobbs, N. T. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 85, 3–28 (2015).
    Google Scholar 
    Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Anim. Behav. 73, 671–681 (2007).
    Google Scholar 
    Heim, C., Ehlert, U. & Hellhammer, D. H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25, 1–35 (2000).CAS 
    PubMed 

    Google Scholar 
    Dickens, M. J. & Romero, L. M. A consensus endocrine profile for chronically stressed wild animals does not exist. Gen. Comp. Endocrinol. 191, 177–189 (2013).CAS 
    PubMed 

    Google Scholar 
    Ma, D., Serbin, L. A. & Stack, D. M. How children’s anxiety symptoms impact the functioning of the hypothalamus–pituitary–adrenal axis over time: a cross-lagged panel approach using hierarchical linear modeling. Dev. Psychopathol. 31, 1–15 (2018).
    Google Scholar 
    Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl Acad. Sci. USA 104, 8880–8884 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boonstra, R. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23 (2013).
    Google Scholar 
    Gunnar, M. R. & Vazquez, D. M. Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Dev. Psychopathol. 13, 515–538 (2001).CAS 
    PubMed 

    Google Scholar 
    Perry, R. E. et al. Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Dev. Cogn. Neurosci. 40, 100716 (2019).Fries, E., Hesse, J., Hellhammer, J. & Hellhammer, D. H. A new view on hypocortisolism. Psychoneuroendocrinology 30, 1010–1016 (2005).CAS 
    PubMed 

    Google Scholar 
    Dorsey, C., Dennis, P., Guagnano, G., Wood, T. & Brown, J. L. Decreased baseline fecal glucocorticoid concentrations associated with skin and oral lesions in black rhinoceros (Diceros bicornis). J. Zoo. Wildl. Med. 41, 616–625 (2010).PubMed 

    Google Scholar 
    Pawluski, J. et al. Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS ONE 12, 1–18 (2017).
    Google Scholar 
    Feng, X. et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc. Natl Acad. Sci. USA 108, 14312–14317 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González Ramírez, C. et al. The NR3C1 gene expression is a potential surrogate biomarker for risk and diagnosis of posttraumatic stress disorder. Psychiatry Res. 284, 112797 (2020).PubMed 

    Google Scholar 
    Cluver, L., Fincham, D. S. & Seedat, S. Posttraumatic stress in AIDS-orphaned children exposed to high levels of trauma: the protective role of perceived social support. J. Trauma. Stress 22, 106–112 (2009).PubMed 

    Google Scholar 
    Bastille-Rousseau, G. et al. Landscape-scale habitat response of African elephants shows strong selection for foraging opportunities in a human dominated ecosystem. Ecography 43, 149–160 (2020).
    Google Scholar 
    Foley, C. A. H., Papageorge, S. & Wasser, S. K. Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv. Biol. 15, 1134–1142 (2001).
    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    Wittemyer, G., Daballen, D. & Douglas‐Hamilton, I. Differential influence of human impacts on age‐specific demography underpins trends in an African elephant population. Ecosphere 12, e03720 (2021).Brown, J. L. et al. Individual and environmental risk factors associated with fecal glucocorticoid metabolite concentrations in zoo-housed Asian and African elephants. PLoS ONE 14, 1–18 (2019).
    Google Scholar 
    Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. Glob. Ecol. Conserv. 18, e00604 (2019).Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conserv. Physiol. 2, 1–18 (2014).
    Google Scholar 
    Kaisin, O., Fuzessy, L., Poncin, P., Brotcorne, F. & Culot, L. A meta-analysis of anthropogenic impacts on physiological stress in wild primates. Conserv. Biol. 0, 1–14 (2020).CAS 

    Google Scholar 
    Ganswindt, A., Rasmussen, H. B., Heistermann, M. & Hodges, J. K. The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Horm. Behav. 47, 83–91 (2005).CAS 
    PubMed 

    Google Scholar 
    Santymire, R. M. et al. Using ACTH challenges to validate techniques for adrenocortical activity analysis in various African wildlife species. Int. J. Anim. Vet. Adv. 4, 99–108 (2012).CAS 

    Google Scholar 
    Watson, R. et al. Development of a versatile enzyme immunoassay for non-invasive assessment of glucocorticoid metabolites in a diversity of taxonomic species. Gen. Comp. Endocrinol. 186, 16–24 (2013).CAS 
    PubMed 

    Google Scholar 
    Oduor, S. et al. Differing physiological and behavioral responses to anthropogenic factors between resident and non-resident African elephants at Mpala Ranch, Laikipia County, Kenya. PeerJ 8, e10010 (2020).Brown, J. L., Kersey, D. C., Freeman, E. W. & Wagener, T. Assessment of diurnal urinary cortisol excretion in Asian and African elephants using different endocrine methods. Zoo. Biol. 29, 274–283 (2010).PubMed 

    Google Scholar 
    Justice, C. O. et al. The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998).
    Google Scholar 
    Lafferty, D. J. R., Zimova, M., Clontz, L., Hackländer, K. & Mills, L. S. Noninvasive measures of physiological stress are confounded by exposure. Sci. Rep. 9, 1–6 (2019).
    Google Scholar 
    O’Dwyer, K., Dargent, F., Forbes, M. R. & Koprivnikar, J. Parasite infection leads to widespread glucocorticoid hormone increases in vertebrate hosts: a meta-analysis. J. Anim. Ecol. 89, 519–529 (2020).PubMed 

    Google Scholar 
    Parker, J. M., Goldenberg, S. Z., Letitiya, D. & Wittemyer, G. Strongylid infection varies with age, sex, movement and social factors in wild African elephants. Parasitology 147, 348–359 (2020).PubMed 

    Google Scholar 
    Gibbons, L., Jacobs, D. E., Fox, M. T. & Hansen, J. The RVC/FAO guide to veterinary diagnostic parasitology. McMaster egg-counting technique. http://www.rvc.ac.uk/review/Parasitology/EggCount/Purpose.htm (2004)R Core Team. A language and environment for statistical computing. https://www.r-project.org/. (2020).Rstudio Team. RStudio: integrated development for R. http://www.rstudio.com/ (2020).Plummer, M. rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/package=rjags (2019).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).
    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
    Google Scholar 
    Wickham, H. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).
    Google Scholar 
    Parker, J. M. The Physiological Condition of Orphaned African Elephants (Loxodonta africana). Doctoral dissertation, Colorado State University. (2021). More

  • in

    Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling

    Giorgi, A., Pentimalli, D., Giupponi, L. & Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2(1), 52–57 (2017).Article 

    Google Scholar 
    Winterhalter, P. & Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Intl. 16(1), 39–59 (2000).CAS 
    Article 

    Google Scholar 
    Schmidt, M., Betti, G. & Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med. Wochenschr. 157, 315–319 (2007).PubMed 
    Article 

    Google Scholar 
    Siddique, H. R., Fatma, H. & Khan, M. A. Medicinal properties of saffron with special reference to cancer—A review of preclinical studies. in Saffron: The Age-Old Panacea in a New Light (ed. Sarwat,
    M. & Sumaiya, S.) 233–244 (Academic Press, 2020).Chapter 

    Google Scholar 
    Abdullaev, F. I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227(1), 20–25 (2002).CAS 
    Article 

    Google Scholar 
    Kafi, M., Koocheki, A. & Rashed, M. H. Saffron (Crocus sativus): Production and Processing (Science Publishers, 2006).Book 

    Google Scholar 
    Mir, G.M. Saffron Agronomy in Kashmir (1992).Melnyk, J. P., Wang, S. & Marcone, M. F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43(8), 1981–1989 (2010).CAS 
    Article 

    Google Scholar 
    Menia, M. et al. Production technology of saffron for enhancing productivity. J. Pharmacognosy Phytochem. 7(1), 1033–1039 (2018).
    Google Scholar 
    Tanra, M. A., Dar, B. A. & Sing, S. Economic analysis of Production and Marketing of saffron in Jammu and Kashmir. J. Social Relevance Concern 5(10), 12–19 (2017).
    Google Scholar 
    Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A. & Kirmani, N. A. saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Sci. Biotechnol. 4(2), 108–115 (2010).
    Google Scholar 
    Amirnia, R., Bayat, M. & Tajbakhsh, M. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crops. 19(2), 158–168 (2014).Article 

    Google Scholar 
    Kumar, R. et al. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 25(1), 44–85 (2009).Article 

    Google Scholar 
    Dhar, A. K. Saffron breeding and agrotechnology. Status Rep. PAFAI J. 12, 18–22 (1990).
    Google Scholar 
    Ehsanzadeh, P., Yadollahi, A. A. & Maibodi, A. M. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Int. Symp. Saffron Biol. Biotechnol. 650, 183–188 (2003).
    Google Scholar 
    Duke, J. A. Ecosystematic data on economic plants. Quart. J. Crude Drug Res. 17(3–4), 91–109 (1979).Article 

    Google Scholar 
    Kanth, R.H., Khanday, B.A. & Tabassum, S. Crop weather relationship for saffron production. Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India 170–188 (2008).Shinde, D. A., Talib, A. R. & Gorantiwar, S. M. Composition and classification of some typical soils of saffron growing areas of Jammu and Kashmir. J. Indian Soc. Soil Sci. 32(3), 473–477 (1984).CAS 

    Google Scholar 
    Nazir, N. A., Khitrov, N. B. & Chizhikova, N. P. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci. 28(4), 120–138 (1996).
    Google Scholar 
    Ganai, M. R., Wani, M. A. & Zargar, G. H. Characterization of saffron growing soils of Kashmir. Appl. Biol. Res. 2(1/2), 27–30 (2000).
    Google Scholar 
    Ganai, M.R.D. Nutrient status of saffron soils and their management. in Proceedings of Seminar-cum-Workshop on saffron (Crocus sativus) 51–54 (2001).Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). ScientiaHorticulturae 103(3), 361–379 (2005).
    Google Scholar 
    Galavi, M., Soloki, M., Mousavi, S. R. & Ziyaie, M. Effect of planting depth and soil summer temperature control on growth and yield of saffron (Crocus sativus L.). Asian J. Plant Sci. 7(8), 747 (2008).Article 

    Google Scholar 
    Kamyabi, S., Habibi Nokhandan, M. & Rouhi, A. Effect of climatic factors affecting saffron using analytic hierarchy process (AHP); Case Study Roshtkhar Region, Iran. (2014).Gupta, R. K. Saffron status and cultivation in northwestern Himalayas. Vegetos 20(1), 1–7 (2007).
    Google Scholar 
    Qin, A. et al. Maxent modelling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evaluat. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Hao, T., Elith, J., Arroita, G. G. & Monfort, J. J. L. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25(5), 839–852 (2019).Article 

    Google Scholar 
    Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Mykhailenko, O., Desenko, V., Ivanauskas, L. & Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according to with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 151, 112376. https://doi.org/10.1016/j.indcrop.2020.112376 (2020).CAS 
    Article 

    Google Scholar 
    Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 12, 657819. https://doi.org/10.3389/fpls.2021.657819 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mir, J. I., Ahmed, N., Wafai, A. H. & Qadri, R. A. Variability in stigma length and apocarotenoid content in Crocus sativus L. selections of Kashmir. J. Spices Aromatic Crops. 21(2), 169–171 (2012).
    Google Scholar 
    Nehvi, F. A. et al. New emerging trends on production technology of saffron. II Int. Symp. Saffron Biol. Technol. 739, 375–381 (2006).
    Google Scholar 
    Golmohammadi, F. Sustainable agriculture and rural development in Iran, Some modern issues in sustainable agriculture and rural development in Iran Germany, LAP LAMBERT Academic Publishing GmbH & Co. LAP Lambert Academic Publishing. Germany. ISBN-13, 978-3 (2012).Golmohammadi, F. Saffron and its importance, medical uses and economical export situation in Iran. in Oral Article Presented in: International Conference on Advances in Plant Sciences 14–18 (2012).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Wisz, M. S. et al. NCEAS Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diversity Distributions. 14(5), 763–773 (2008).Article 

    Google Scholar 
    Rebelo, H. & Jones, G. Ground validation of presence only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47(2), 410–420 (2010).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Palomera, S. et al. Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity Conservation 21(11), 2927–2948 (2012).Article 

    Google Scholar 
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166, 221–230 (2013).Article 

    Google Scholar 
    Phillips, S.J., Dudík, M. & Schapire, R.E. A maximum entropy approach to species distribution modelling. in Proceedings of the Twenty-First International Conference on Machine Learning 83 (2004).Baldwin, R. A. Use of maximum entropy modelling in wildlife research. Entropy 11(4), 854–866 (2009).ADS 
    Article 

    Google Scholar 
    Izadpanah, F., Kalantari, S., Hassani, M. E., Naghavi, M. R. & Shokrpour, M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst. Evolut. 300, 1941–1944 (2014).Article 

    Google Scholar 
    Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).PubMed 
    Article 

    Google Scholar 
    Proosdij, A. S. J. V., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar  More