Decadal trends in 137Cs concentrations in the bark and wood of trees contaminated by the Fukushima nuclear accident
Monitoring sites and speciesThe monitoring survey was conducted at five sites in Fukushima Prefecture (sites 1–4 and A1) and at one site in Ibaraki Prefecture (site 5), Japan (Fig. 1). Sites 1, 2, and A1 are located in Kawauchi Village, site 3 in Otama Village, site 4 in Tadami Town, and site 5 in Ishioka City. Monitoring at sites 1–5 was started in 2011 or 2012, and site A1 was additionally monitored since 2017. The tree species, age, mean diameter at breast height, initial deposition density of 137Cs, and sampling year of each sample at each site are listed in Table 1. The dominant tree species in the contaminated area, namely, Japanese cedar (Cryptomeria japonica [L.f.] D.Don), Japanese cypress (Chamaecyparis obtusa [Siebold et Zucc.] Endl.), konara oak (Quercus serrata Murray), and Japanese red pine (Pinus densiflora Siebold et Zucc.) were selected for monitoring. Japanese chestnut (Castanea crenata Siebold et Zucc.) was supplementally added in 2017. The cedar, cypress, and pine are evergreen coniferous species, and the oak and chestnut are deciduous broad-leaved species. Sites 1 and 3 each have three plots, and each plot contains a different monitoring species. Site A1 has one plot containing two different monitoring species, and the remaining sites each have one plot with one monitoring species, giving ten plots in total.Figure 1Locations of the monitoring sites and initial deposition densities of 137Cs (decay-corrected to July 2, 2011) following the Fukushima nuclear accident in Fukushima and Ibaraki Prefectures. Open circles indicate the monitoring sites and the cross mark indicates the Fukushima Dai-ichi Nuclear Power Plant. Data on the deposition density were provided by MEXT19,20 and refined by Kato et al.21. The map was created using R (version 4.1.0)22 with ggplot2 (version 3.3.5)23 and sf (version 1.0–0)24 packages.Full size imageTable 1 Description of the sampled trees and monitoring sites.Full size tableSample collection and preparationBulk sampling of bark and wood disks was conducted by felling three trees per year at all sites during 2011–20168,25 and at sites 3–5 and A1 during 2017–2020. Partial sampling from six trees per year was conducted at sites 1 and 2 during 2017–2020 (from seven trees at site 2 in 2017) to sustain the monitoring trees. All the samples were obtained from the stems around breast height. During the partial sampling, bark pieces sized approximately 3 cm × 3 cm (axial length × tangential length) were collected from four directions of the tree stem using a chisel, and 12-mm-diameter wood cores were collected from two directions of the tree stem using an automatic increment borer (Smartborer, Seiwa Works, Tsukuba, Japan) equipped with a borer bit (10–101-1046, Haglöf Sweden, Långsele, Sweden). Such partial sampling increases the observational errors in the bark and wood 137Cs concentrations in individual trees26. To mitigate this error and maintain an accurate mean value of the 137Cs concentration, we increased the number of sampled trees from three to six. The sampling was conducted mainly in July–September of each year; the exceptions were site-5 samples in 2011 and 2012, which were collected irregularly during January–February of the following year. The collected bark pieces were separated into outer and inner barks, and the wood disks and cores were split into sapwood and heartwood. The outer and inner bark samples during 2012–2016 were obtained by partial sampling of barks sized approximately 10 cm × 10 cm from 2–3 directions on 2–3 trees per year.The bulk samples of bark, sapwood, and heartwood were air-dried and then chipped into flakes using a cutting mill with a 6-mm mesh sieve (UPC-140, HORAI, Higashiosaka, Japan). The pieces of the outer and inner bark were chipped into approximately 5 mm × 5 mm pieces using pruning shears, and the cores of the sapwood and heartwood were chipped into semicircles of thickness 1–2 mm. Each sample was packed into a container for radioactivity measurements and its mass was measured after oven-drying at 75 °C for at least 48 h. Multiplying this mass by the conversion factor (0.98 for bark and 0.99 for wood)8 yielded the dry mass at 105 °C.Radioactivity measurementsThe radioactivity of 137Cs in the samples was determined by γ-ray spectrometry with a high-purity Ge semiconductor detector (GEM20, GEM40, or GWL-120, ORTEC, Oak Ridge, TN). For measurements, the bulk and partial samples were placed into Marinelli containers (2.0 L or 0.7 L) and cylindrical containers (100 mL or 5 mL), respectively. The peak efficiencies of the Marinelli containers, the 100-mL container, and the 5-mL container were calibrated using standard sources of MX033MR, MX033U8PP (Japan Radioisotope Association, Tokyo, Japan), and EG-ML (Eckert & Ziegler Isotope Products, Valencia, CA), respectively. For the measurement of the 5-mL container, a well-type Ge detector (GWL-120) was used under the empirical assumption that the difference in γ-ray self-absorption between the standard source and the samples is negligible27. The measurement was continued until the counting error became less than 5% (higher counting errors were allowed for small or weakly radioactive samples). The activity concentration of 137Cs in the bark (whole) collected by partial sampling was calculated as the mass-weighted mean of the concentrations in the outer and inner barks; meanwhile, the concentration in the wood (whole) was calculated as the cross-sectional-area-weighted mean of sapwood and heartwood concentrations. The activity concentrations were decay-corrected to September 1, 2020, to exclude the decrease due to the radioactive decay.Trend analysesThe yearly representative values (true states) of 137Cs activity concentration in each stem part in each plot were estimated using a DLM, a state-space model in which the noise follows a normal distribution and the relationship between variables is linear. One basic DLM is the local linear trend model defined by the following equations:$$Y_{t} = mu _{t} + varepsilon _{t} ,quad quad quad varepsilon _{t} sim Normal left( {0,sigma _{varepsilon }^{2} } right)$$
(1)
$$mu_{t} = mu_{t – 1} + beta_{t – 1} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
(2)
$$beta_{t} = beta_{t – 1} + zeta_{t} ,quad quad quad zeta_{t} sim Normal left( {0,sigma_{zeta }^{2} } right)$$
(3)
where Yt, μt, and βt are the observation values, level (true state), and slope, respectively, and εt, ηt, and ζt denote their corresponding noises. The subscript t is the time index. The noises εt, ηt, and ζt follow normal distributions with a mean of 0 and variances of ({sigma }_{varepsilon }^{2}), ({sigma }_{eta }^{2}), and ({sigma }_{zeta }^{2}), respectively. To detect relatively long-term trends, we employed the smooth local linear trend model28 (also called the smooth trend model, integrated random walk model, or second-order trend model), which is obtained by considering that μt and βt are driven by the same noise. The trend changes are assumed to be smoother in this model than in the local linear trend model28,29. Combining Eqs. (2) and (3), μt in the smooth local linear trend model is finally obtained as$$mu_{t} = 2mu_{t – 1} – mu_{t – 2} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
(4)
The parameters μt, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}) of each stem part in each plot were determined by Bayesian estimation with a Markov chain Monte Carlo (MCMC) method. The Bayesian estimation was performed in R (version 4.1.0)22 with the rstan package (version 2.21.2)30. Uninformative prior distributions were used for μ1, μ2, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}). The log-transformed values of the 137Cs activity concentration (decay-corrected to September 1, 2020) were given as Yt (the observed values of multiple individuals in each year were passed via the segment function of Stan). MCMC sampling was conducted for four chains of 50,000 iterations (the first 25,000 were discarded as warmup), obtaining 100,000 MCMC samples for each parameter. The MCMC was judged to have converged when the maximum value of Rhat was less than 1.05 and the divergent transitions after warmup were fewer than 1,000 (i.e., less than 1% of the MCMC sample size). On the datasets of the outer and inner barks from site-3 oaks and all stem parts from site-A1 pines and chestnuts, the MCMC converged poorly owing to the small number of monitoring years. Thus, the temporal trends in these datasets were not analyzed (the observational data at site A1 are shown in Supplementary Fig. S1 and Table S1).To detect decadal trends rather than yearly variations, we determined the temporal trends in the true state (μ) by setting 2–4 delimiting years and examining whether μ varied significantly from one delimiting year to the next. As the delimiting years, we selected the initial and final years of monitoring and the years in which the median µ was highest (µ-max year) and lowest (µ-min year). When the µ-max year and/or the µ-min year coincided with the initial year and/or final year of monitoring, the number of delimiting years reduced from four to two or three. The trend in µ between two delimiting years was determined to be increasing and decreasing when the 95% credible interval of µ2nd delimiting year − µ1st delimiting year (obtained from the MCMC samples) was higher and lower than zero, respectively. A flat trend (no significant variation) was detected when the 95% credible interval included zero. If the 3rd and 4th delimiting years existed, the trends between the 2nd and 3rd delimiting years and between the 3rd and 4th delimiting years were determined in the same manner.The 137Cs CRs of outer bark/inner bark, heartwood/sapwood, and inner bark/sapwood were also subjected to the above trend analyses. On datasets with less than five years of monitoring, the MCMC did not converge so the trend analysis was not attempted. More