Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83. https://doi.org/10.1016/S0065-2881(08)60187-X (1989).Article
Google Scholar
Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS
Google Scholar
Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northw. Atl. Fish. Sci. 8, 55–66. https://doi.org/10.2960/J.v8.a6 (1988).Article
Google Scholar
McCarthy, I. D. Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. J. Fish Biol. 57, 224–238. https://doi.org/10.1111/j.1095-8649.2000.tb00788.x (2000).Article
Google Scholar
Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659. https://doi.org/10.1016/j.tree.2010.08.003,Pubmed:20832898 (2010).Article
PubMed
Google Scholar
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Pr., 1986).Meekan, M. G. & Fortier, L. Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar. Ecol. Prog. Ser. 137, 25–37. https://doi.org/10.3354/meps137025 (1996).ADS
Article
Google Scholar
Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 326, 1–17 (2006).ADS
Article
Google Scholar
Watanabe, H., Kubodera, T., Moku, M. & Kawaguchi, K. Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific. Mar. Ecol. Prog. Ser. 315, 187–197. https://doi.org/10.3354/meps315187 (2006).ADS
Article
Google Scholar
Phillips, K. L., Jackson, G. D. & Nichols, P. D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 215, 179–189. https://doi.org/10.3354/meps215179 (2001).ADS
CAS
Article
Google Scholar
Field, J. C., Baltz, K., Phillips, A. J. & Walker, W. A. Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep. 48, 131–146 (2007).
Google Scholar
Ellis, T. & Gibson, R. N. Size-selective predation of 0-group flatfishes on a Scottish coastal nursery ground. Mar. Ecol. Prog. Ser. 127, 27–37. https://doi.org/10.3354/meps127027 (1995).ADS
Article
Google Scholar
Takasuka, A., Aoki, I. & Oozeki, Y. Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar. Ecol. Prog. Ser. 350, 99–107. https://doi.org/10.3354/meps07158 (2007).ADS
Article
Google Scholar
Tucker, S., Hipfner, J. M. & Trudel, M. Size- and condition-dependent predation: A seabird disproportionately targets substandard individual juvenile salmon. Ecology 97, 461–471. https://doi.org/10.1890/15-0564.1,Pubmed:27145620 (2016).Article
PubMed
Google Scholar
Rodhouse, P. G. & Nigmatullin, C. M. Role as consumers. Phil. Trans. R. Soc. Lond. B 351, 1003–1022. https://doi.org/10.1098/rstb.1996.0090 (1996).ADS
Article
Google Scholar
Hunsicker, M. E. & Essington, T. E. Size-structured patterns of piscivory of the longfin inshore squid (Loligo pealeii) in the mid-Atlantic continental shelf ecosystem. Can. J. Fish. Aquat. Sci. 63, 754–765. https://doi.org/10.1139/f05-258 (2006).Article
Google Scholar
Hunsicker, M. E. & Essington, T. E. Evaluating the potential for trophodynamic control of fish by the longfin inshore squid (Loligo pealeii) in the northwest Atlantic Ocean. Can. J. Fish. Aquat. Sci. 65, 2524–2535. https://doi.org/10.1139/F08-154 (2008).Article
Google Scholar
Wang, K. Y., Liao, C. H. & Lee, K. T. Population and maturation dynamics of the swordtip squid (Photololigo edulis) in the southern East China Sea. Fish. Res. 90, 178–186. https://doi.org/10.1016/j.fishres.2007.10.015 (2008).Article
Google Scholar
Sassa, C., Yamamoto, K., Tsukamoto, Y., Konishi, Y. & Tokimura, M. Distribution and migration of age-0 jack mackerel (Trachurus japonicus) in the East China and Yellow Seas, based on seasonal bottom trawl surveys. Fish. Oceanogr. 18, 255–267. https://doi.org/10.1111/j.1365-2419.2009.00510.x (2009).Article
Google Scholar
Tokai, T., Shiode, D., Sakai, T. & Yoda, M. Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size. Fish. Sci. 85, 19–32. https://doi.org/10.1007/s12562-018-1270-x (2019).CAS
Article
Google Scholar
Sassa, C. & Konishi, Y. Vertical distribution of jack mackerel Trachurus japonicus larvae in the southern part of the East China Sea. Fish. Sci. 72, 612–619. https://doi.org/10.1111/j.1444-2906.2006.01191.x (2006).CAS
Article
Google Scholar
Takahashi, M., Sassa, C. & Tsukamoto, Y. Growth-selective survival of young jack mackerel Trachurus japonicus during transition from pelagic to demersal habitats in the East China Sea. Mar. Biol. 159, 2675–2685. https://doi.org/10.1007/s00227-012-2025-3 (2012).Article
Google Scholar
Ishida, K. Feeding ecology of swordtip squid (Loligo edulis). Rep. Shimane Pref. Fish. Exp. Stan. 3, 31–35 (1981) (in Japanese).
Google Scholar
Tashiro, M., Tokunaga, T., Machida, S. & Takata, J. Distribution of a squidfish, Loliogo edulis HOYLE, in the East China Sea. Bull. Nagasaki Pref. Inst. Fish. 7, 21–30 (1981) (in Japanese).
Google Scholar
Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. Biol. Sci. 270, 1413–1417. https://doi.org/10.1098/rspb.2003.2392 (2003).Article
PubMed
PubMed Central
Google Scholar
Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232. https://doi.org/10.1890/08-2061.1 (2010).Article
PubMed
Google Scholar
Cabana, G. & Rasmussen, J. B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257. https://doi.org/10.1038/372255a0 (1994).ADS
CAS
Article
Google Scholar
Castilla, A. C., Hernández-Urcera, J., Gouranguine, A., Guerra, Á. & Cabanellas-Reboredo, M. Predation behaviour of the European squid Loligo vulgaris. J. Ethol. 38, 311–322. https://doi.org/10.1007/s10164-020-00652-4 (2020).Article
Google Scholar
Fiorito, G. et al. Guidelines for the Care and Welfare of Cephalopods in Research–A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab. Anim. 49, 1–90. https://doi.org/10.1177/0023677215580006la.sagepub.com (2015).Article
PubMed
Google Scholar
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020). https://doi.org/10.1371/journal.pbio.3000411Campana, S. E. How reliable are growth back-calculations based on otoliths?. Can. J. Fish. Aquat. Sci. 47, 2219–2227. https://doi.org/10.1139/f90-246 (1990).Article
Google Scholar
Xie, S. et al. Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J. Fish Biol. 66, 1704–1719. https://doi.org/10.1111/j.0022-1112.2005.00717.x (2005).Article
Google Scholar
Yasui, T. & Sakurai, Y. Gastric evacuation rate of Todarodes pacificus. Rep. Annu. Meet. Squid Res 32, 55–57 (2005) (in Japanese).
Google Scholar
Šifner, S. K. & Vrgoč, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the Central Adriatic Sea. Fish. Res. 69, 239–249. https://doi.org/10.1016/j.fishres.2004.04.011 (2004).Article
Google Scholar
Kono, N., Tsukamoto, Y. & Zenitani, H. RNA:DNA ratio for diagnosis of the nutritional condition of Japanese anchovy larvae Engraulis japonicus during the first-feeding stage. Fish. Sci. 69, 1096–1102. https://doi.org/10.1111/j.0919-9268.2003.00733.x (2003).CAS
Article
Google Scholar
Booman, C., Folkvord, A. & Hunter, J. R. Responsiveness of starved northern anchovy Engraulis mordax larvae to predation attacks by adult anchovy. Fish. Bull. 89, 707–711 (1991).
Google Scholar
Chick, J. H. & Van Den Avyle, M. J. Effects of feeding ration on larval swimming speed and responsiveness to predator attacks: Implications for cohort survival. Can. J. Fish. Aquat. Sci. 57, 106–115. https://doi.org/10.1139/f99-185 (2000).Article
Google Scholar
Hunsicker, M. E. et al. Functional responses and scaling in predator-prey interactions of marine fishes: Contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299. https://doi.org/10.1111/j.1461-0248.2011.01696.x (2011).Article
PubMed
Google Scholar
Chambers, R. C. & Miller, T. J. Evaluating fish growth by means of otolith increment analysis: spectral properties of individual-level longitudinal data in in Recent Developments in Fish Otolith Research (ed. Secor, D. H., Dean, J. M. & Campana, S. E.) 155–175 (University of South Carolina Press, 1995).Mizutani, T. et al. Diel variability in the catch composition of bottom trawl survey in East China Sea. Nippon Suisan Gakkaishi 71, 44–53 (2005). (in Japanese with English abstract). https://doi.org/10.2331/suisan.71.44.Sassa, C., Takahashi, M., Konishi, Y. & Tsukamoto, Y. Interannual variations in distribution and abundance of Japanese jack mackerel Trachurus japonicus larvae in the East China Sea. ICES J. Mar. Sci. 73, 1170–1185. https://doi.org/10.1093/icesjms/fsv269 (2016).Article
Google Scholar
Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Interannual variations in rates of larval growth and development of jack mackerel (Trachurus japonicus) in the East China Sea: Implications for juvenile survival. Can. J. Fish. Aquat. Sci. 73, 155–162. https://doi.org/10.1139/cjfas-2015-0077 (2016).Article
Google Scholar
Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Variability in growth rates of Japanese jack mackerel Trachurus japonicus larvae and juveniles in the East China Sea—effects of temperature and prey abundance in in Kuroshio Current, Physical, Biogeochemical and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K. & Takahashi, M.) 295–307 (Wiley, 2019).Anraku, M. & Azeta, M. The feeding habits of larvae and juveniles of the yellowtail, Seriola quinqueradiata Temminck et Schlegel, associated with floating seaweeds. Bull. Seikai Reg. Fish. Res. Lab 33, 13–45 (1965) (in Japanese with English abstract).
Google Scholar
Villanueva, R., Perricone, V. & Fiorito, G. Cephalopods as predators: a short journey among behavioral flexibilities, adaptations, and feeding habits. Front. Physiol. 8, 598. https://doi.org/10.3389/fphys.2017.00598,Pubmed:28861006 (2017).Article
PubMed
PubMed Central
Google Scholar
Wang, R., Zuo, T. & Wang, K. The Yellow Sea Cold Bottom Water—an oversummering site for Calanus sinicus (Copepoda, Crustacea). J. Plankton Res. 25, 169–183. https://doi.org/10.1093/plankt/25.2.169 (2003).CAS
Article
Google Scholar
Sassa, C., Kitajima, S., Nishiuchi, K. & Takahashi, M. Ontogenetic and inter-annual variation in the diet of Japanese jack mackerel (Trachurus japonicus) juveniles in the East China Sea. J. Mar. Biol. Assoc. U K 99, 525–538. https://doi.org/10.1017/S0025315418000206 (2019).Article
Google Scholar
Nakazawa, T., Ushio, M. & Kondoh, M. Scale dependence of predator–prey mass ratio: Determinants and applications. Adv. Ecol. Res. 45, 269–302. https://doi.org/10.1016/B978-0-12-386475-8.00007-1 (2011).Article
Google Scholar
Ohshimo, S., Tanaka, H., Nishiuchi, K. & Yasuda, T. Trophic positions and predator-prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan. Mar. Freshw. Res. 67, 1692–1699. https://doi.org/10.1071/MF15115 (2016).Article
Google Scholar
Vidal, E. A. G. & Salvador, B. The tentacular strike behavior in squid: functional interdependency of morphology and predatory behaviors during ontogeny. Front. Physiol. 10, 1558. https://doi.org/10.3389/fphys.2019.01558 (2019).Article
PubMed
PubMed Central
Google Scholar
Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407. https://doi.org/10.1016/j.cub.2016.04.002 (2016).CAS
Article
PubMed
Google Scholar
Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159. https://doi.org/10.1006/jmsc.2000.0802 (2000).Article
Google Scholar
Montevecchi, W. A. & Myers, R. A. Prey harvests of seabirds reflect pelagic fish and squid abundance on multiple spatial and temporal scales. Mar. Ecol. Prog. Ser. 117, 1–9. https://doi.org/10.3354/meps117001 (1995).ADS
Article
Google Scholar More