More stories

  • in

    ORMEF: a Mediterranean database of exotic fish records

    Edelist, D., Rilov, G., Golani, D., Carlton, J. T. & Spanier, E. Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 19, 69–77, https://doi.org/10.1111/ddi.12002 (2013).Article 

    Google Scholar 
    Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253, https://doi.org/10.1111/ele.12401 (2015).Article 
    PubMed 

    Google Scholar 
    Galil, B. S. et al. International arrivals: widespread bioinvasions in European Seas. Ethol. Ecol. Evol. 26, 152–171, https://doi.org/10.1080/03949370.2014.897651 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golani, D. & Fricke, R. Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa 4509, 1–215, https://doi.org/10.11646/zootaxa.4509.1.1 (2018).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 191, 171–187, https://doi.org/10.1016/j.ecss.2017.03.031 (2017).Article 

    Google Scholar 
    Katsanevakis, S. et al. Advancing marine conservation in European and contiguous seas with the MarCons Action. Res. Ideas Outcomes 3, e11884, https://doi.org/10.3897/rio.3.e11884 (2017).Article 

    Google Scholar 
    Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M. & Ben Ismail, S. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 6, 23009, https://doi.org/10.1038/srep23009 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vargas-Yáñez, M. et al. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Change 63, 177–184, https://doi.org/10.1016/j.gloplacha.2007.09.001 (2008).Article 

    Google Scholar 
    D’Amen, M. & Azzurro, E. Lessepsian fish invasion in Mediterranean marine protected areas: a risk assessment under climate change scenarios. ICES J. Mar. Sci. 77, 388–397, https://doi.org/10.1093/icesjms/fsz207 (2020).Article 

    Google Scholar 
    Golani, D., Azzurro, E., Dulčić, J., Massutí, E. & Orsi-Relini, L. Atlas of Exotic Species in the Mediterranean Sea. F. Briand, Ed. 365 pages. CIESM Publishers, Paris, Monaco (2021).Editorial Board. AquaNIS. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. Version 2.36+ (2015).Roy, D. et al. DAISIE – Inventory of alien invasive species in Europe. https://doi.org/10.15468/ybwd3x (2020).European Commission – Joint Research Centre – European Alien Species Information Network (EASIN).Uludag, A, Scalera, R., Trichkova, T., Tomov, R. & Rat, M. East and South European Network for Invasive Alien Species (ESENIAS): Development, networking and role in the invasive alien species research and policy-making in Europe. (2016).Zenetos, A. et al. ELNAIS: A collaborative network on Aquatic Alien Species in Hellas (Greece). REABIC 6, 185–196, https://doi.org/10.3391/mbi.2015.6.2.09 (2015).Article 

    Google Scholar 
    European Network on Invasive Alien Species. NOBANIS (Gateway to information on Invasive Alien species in North and Central Europe) (2013).MAMIAS – Marine Mediterranean Invasive Alien Species. (2014).MedMIS – Mediterranean Marine Invasive SpeciesKatsanevakis, S. et al. Identifying where vulnerable species occur in a data-poor context: combining satellite imaging and underwater occupancy surveys. Mar. Ecol. Prog. Ser. 577, 17–32, https://doi.org/10.3354/meps12232 (2017).Article 

    Google Scholar 
    Galil, B. S. Alien species in the Mediterranean Sea—which, when, where, why? In Challenges to Marine Ecosystems (eds. Davenport, J. et al.) 105–116, https://doi.org/10.1007/978-1-4020-8808-7_10 (Springer Netherlands (2008).Galil, B. S. Taking stock: inventory of alien species in the Mediterranean sea. Biol. Invasions 11, 359–372, https://doi.org/10.1007/s10530-008-9253-y (2009).Article 

    Google Scholar 
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530, https://doi.org/10.1890/13-1380.1 (2014).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118, https://doi.org/10.12681/mms.186 (2005).Article 

    Google Scholar 
    Zenetos, A. et al. Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on Foraminifera and Parasites. Mediterr. Mar. Sci. 9, 119–166, https://doi.org/10.12681/mms.146 (2008).Article 

    Google Scholar 
    Zenetos, A. et al. Alien species in the Mediterranean sea by 2010. A contribution to the application of european union’s marine strategy framework directive (MSFD). Part I. Spatial distribution. https://doi.org/10.12681/mms.87 (2010)Zenetos, Α et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13, 328–352, https://doi.org/10.12681/mms.327 (2012).Article 

    Google Scholar 
    Dimitriadis, C. et al. Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 21, 62–69, https://doi.org/10.12681/mms.21845 (2020).Article 

    Google Scholar 
    Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106, https://doi.org/10.1016/0006-3207(96)00020-1 (1996).Article 

    Google Scholar 
    Olenin, S., Minchin, D., Daunys, D. & Zaiko, A. Pathways of aquatic invasions in Europe. Atlas of biodiversity risk 138–139 (2010).Essl, F. et al. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience 69, 908–919 (2019).Article 

    Google Scholar 
    Golani, D., Orsi-Relini, L., Massuti, E. & Quignard, J. P. CIESM Atlas of Exotic Species in the Mediterranean. vol. 1 (2002).D’Amen, M. & Azzurro, E. Integrating univariate niche dynamics in species distribution models: A step forward for marine research on biological invasions. J. Biogeogr. 47, 686–697, https://doi.org/10.1111/jbi.13761 (2020).Article 

    Google Scholar 
    Azzurro, E., Smeraldo, S. & D’Amen, M. ORMEF: Occurrence Records of Mediterranean Exotic Fishes database. SEANOE. https://doi.org/10.17882/84182 (2021).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van Der Laan, R. Eschmeyer’s Catalog of Fishes: genera, species, references. California Academy of Sciences (2022).Azzurro, E., Goren, M., Diamant, A., Galil, B. & Bernardi, G. Establishing the identity and assessing the dynamics of invasion in the Mediterranean Sea by the dusky sweeper, Pempheris homboidei Kossmann & Räuber, 1877 (Pempheridae, Perciformes). Biol. Invasions 17, 815–826, https://doi.org/10.1007/s10530-014-0836-5 (2015).Article 

    Google Scholar 
    Evans, J. & Schembri, P. On the occurrence of Cephalopholis hemistiktos and C. taeniops (Actinopterygii, Perciformes, Serranidae) in Malta, with corrections of previous misidentifications. Acta Ichthyol. Piscat. 47, 197–200, https://doi.org/10.3750/AIEP/02064 (2017).Article 

    Google Scholar 
    Dragicevic, B. et al. New Mediterranean Biodiversity Records (December 2019). https://doi.org/10.12681/mms.20913 (2019).UNEP/MAP – United Nation Environment Programme – Mediterranean Action Plan. Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria (IMAP). (2016). More

  • in

    Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds

    Hewitt, G. M. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Drovetski, S. V. et al. A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proc. R. Soc. B 285, 20181606 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).PubMed 
    Article 

    Google Scholar 
    Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, I. Speciation and Biogeography of Birds (Academic Press, 2003).
    Google Scholar 
    Pellegrino, I. et al. Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156, 639–657 (2014).Article 

    Google Scholar 
    Tietze, D. T. Bird Species: How they Arise, Modify and Vanish (Springer Nature, 2018).Book 

    Google Scholar 
    Carrera, L., Pavia, M., Peresani, M. & Romandini, M. Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate. Boll. Soc. Paleontol. I(57), 145–174 (2018).
    Google Scholar 
    Carrera, L., Pavia, M., Romandini, M. & Peresani, M. Avian fossil assemblages at the onset of the LGM in the eastern Alps: a palaecological contribution from the Rio Secco Cave (Italy). C. R. Palevol 17, 166–177 (2018).Article 

    Google Scholar 
    Carrera, L., Scarponi, D., Martini, F., Sarti, L. & Pavia, M. Mid-Late Pleistocene Neanderthal landscapes in southern Italy: paleoecological contributions of the avian assemblage from Grotta del Cavallo, Apulia, southern Italy. Palaeogeogr. Palaeocl. 567, 110256 (2021).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hampe, A. & Jump, A. S. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. S. 42, 313–333 (2011).Article 

    Google Scholar 
    Holm, S. R. & Svenning, J. C. 180,000 years of climate change in Europe: avifaunal responses and vegetation implications. PLoS ONE 9, e94021 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Sanchez Marco, A. Avian zoogeographical patterns during the Quaternary in the Mediterranean region and paleoclimatic interpretation. Ardeola 51, 91–132 (2004).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677–697 (2009).Article 

    Google Scholar 
    Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54 (2014).PubMed 
    Article 

    Google Scholar 
    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).Article 

    Google Scholar 
    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nogues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).Article 
    ADS 

    Google Scholar 
    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeocl. 310, 451–463 (2011).Article 

    Google Scholar 
    Arcones, A., Ponti, R., Ferrer, X. & Vieites, D. R. Pleistocene glacial cycles as drivers of allopatric differentiation in Arctic shorebirds. J. Biogeogr. 48, 747–759 (2021).Article 

    Google Scholar 
    Kozma, R., Melsted, P., Magnússon, K. P. & Höglund, J. Looking into the past–the reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol. Ecol. 25, 570–580 (2016).PubMed 
    Article 

    Google Scholar 
    Lagerholm, V. K. et al. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds. Glob. Change Biol. 23, 1425–1435 (2017).Article 
    ADS 

    Google Scholar 
    Metcalf, J. L. et al. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proc. R. Soc. B 281, 20132782. https://doi.org/10.1098/rspb.2013.2782 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perktaş, U., Peterson, A. T. & Dyer, D. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J. Ornithol. 158, 1–13 (2017).Article 

    Google Scholar 
    Perktaş, U., De Silva, T. N., Quintero, E. & Tavşanoğlu, Ç. Adding ecology into phylogeography: ecological niche models and phylogeography in tandem reveals the demographic history of the subalpine warbler complex. Bird Study 66, 234–242 (2019).Article 

    Google Scholar 
    Fløjgaard, C., Normand, S., Skov, F. & Svenning, J. C. Ice age distributions of European small mammals: insights from species distribution modelling. J. Biogeogr. 36, 1152–1163 (2009).Article 

    Google Scholar 
    Lima-Ribeiro, M. S., Varela, S., Nogués-Bravo, D. & Diniz-Filho, J. A. F. Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Nat. Conserv. 10, 145–151 (2012).Article 

    Google Scholar 
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waltari, E. et al. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2, e563 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barrientos, R. et al. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Mol. Ecol. 23, 390–407 (2014).PubMed 
    Article 

    Google Scholar 
    Huntley, B. & Green, R. E. Bioclimatic models of the distributions of Gyrfalcons and ptarmigan. In Gyrfalcons and Ptarmigan in a Changing World Vol. II (eds Watson, R. T. et al.) 329–338 (The Peregrine Fund, 2011).
    Google Scholar 
    Huntley, B., Allen, J. R. M., Barnard, P., Collingham, Y. C. & Holliday, P. R. Species distribution models indicate contrasting late-Quaternary histories for Southern and Northern Hemisphere bird species. Glob. Ecol. Biogeogr. 22, 277–288 (2013).Article 

    Google Scholar 
    Kiss, O. et al. Past and future climate-driven shifts in the distribution of a warm-adapted bird species, the European Roller Coracias garrulus. Bird Study 67, 143–159 (2020).Article 

    Google Scholar 
    Koparde, P., Mehta, P., Mukherjee, S. & Robin, V. V. Quaternary climatic fluctuations and resulting climatically suitable areas for Eurasian owlets. Ecol. Evol. 9, 4864–4874 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peterson, A. T. & Ammann, C. M. Global patterns of connectivity and isolation of populations of forest bird species in the late Pleistocene. Glob. Ecol. Biogeogr. 22, 596–606 (2013).Article 

    Google Scholar 
    Peterson, A. T., Martínez-Meyer, E. & González-Salazar, C. Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Divers. Distrib. 10, 237–246 (2004).Article 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Lack of evidence of a Pleistocene migratory switch in current bird long-distance migrants between Eurasia and Africa. J. Biogeogr. 47, 1564–1573 (2020).Article 

    Google Scholar 
    Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).Article 

    Google Scholar 
    Smith, S. E., Gregory, R. D., Anderson, B. J. & Thomas, C. D. The past, present and potential future distributions of cold-adapted bird species. Divers. Distrib. 19, 352–362 (2013).Article 

    Google Scholar 
    Sutton, L. J. et al. Geographic range estimates and environmental requirements for the harpy eagle derived from spatial models of current and past distribution. Ecol. Evol. 11, 481–497 (2021).PubMed 
    Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Storch, D. Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions. Glob. Change Biol. 21, 1475–1481 (2015).Article 
    ADS 

    Google Scholar 
    Scridel, D. et al. Thermal niche predicts recent changes in range size for bird species. Clim. Res. 73, 207–216 (2017).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Relating Habitat and Climatic Niches in Birds. PLoS Biol. 7, e32819 (2012).CAS 
    ADS 

    Google Scholar 
    Devictor, V., Julliard, R., Jiguet, F. & Couvet, D. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. Lond. [Biol.] 275, 2743–2748 (2008).
    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Glob. Change Biol. 21, 3367–3378 (2015).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A., Julliard, R., Newson, S. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1673–1685 (2007).Article 
    ADS 

    Google Scholar 
    Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. Lond. [Biol.] 277, 3601–3608 (2010).
    Google Scholar 
    Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Glob. Change Biol. 16, 497–505 (2010).Article 
    ADS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).PubMed 
    Article 

    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    BirdLife International. Crex crex. The IUCN Red List of Threatened Species 2016: e.T22692543A86147127. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692543A86147127.en (2016).BirdLife International. Perdix perdix. The IUCN Red List of Threatened Species 2016: e.T22678911A85929015. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678911A85929015.en (2016).BirdLife International. Pyrrhocorax graculus. The IUCN Red List of Threatened Species 2016: e.T22705921A87386602. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22705921A87386602.en (2016).BirdLife International. Coturnix coturnix. The IUCN Red List of Threatened Species 2018: e.T22678944A131904485. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22678944A131904485.en (2018).BirdLife International. Athene noctua. The IUCN Red List of Threatened Species 2019: e.T22689328A155470112. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22689328A155470112.en (2019).BirdLife International. Bubo scandiacus. The IUCN Red List of Threatened Species 2020: e.T22689055A181375387. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22689055A181375387.en (2020).Cramp, S. The Complete Birds of the Western Palearctic on CD-ROM (Oxford University Press, 1998).
    Google Scholar 
    Tyrberg, T. Pleistocene Birds of the Palearctic: A Catalogue. (Publications of the Nuttall Ornithological Club No. 27, 1998).Tyrberg, T. Pleistocene Birds of the Palaearctic. http://web.telia.com/~u11502098/pleistocene.pdf (2008).Pellegrino, I. et al. Evidence for strong genetic structure in European populations of the little owl Athene noctua. J. Avian Biol. 46, 462–475 (2015).Article 

    Google Scholar 
    van Nieuwenhuyse, D., Génot, J. C. & Johnson, D. H. The Little Owl: Conservation, Ecology and Behavior of Athene noctua (Cambridge University Press, 2008).
    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the Brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).Article 
    ADS 

    Google Scholar 
    Hoag, C. & Svenning, J. C. African environmental change from the Pleistocene to the Anthropocene. Annu. Rev. Env. Resour. 42, 27–54 (2017).Article 

    Google Scholar 
    Hoelzmann, P. et al. Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 219–256 (Springer, 2004).Chapter 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Bech, N., Novoa, C., Allienne, J. F., Boissier, J. & Bro, E. Quantifying genetic distance between wild and captive strains of the grey partridge Perdix perdix in France: conservation implications. Biodivers. Conserv. 29, 609–624 (2020).Article 

    Google Scholar 
    Liukkonen-Anttila, T., Uimaniemi, L., Orell, M. & Lumme, J. Mitochondrial DNA variation and the phylogeography of the grey partridge (Perdix perdix) in Europe: from Pleistocene history to present day populations. J. Evolut. Biol. 15, 971–982 (2002).CAS 
    Article 

    Google Scholar 
    Potapova, O. Snowy owl Nyctea scandiaca (Aves: Strigiformes) in the Pleistocene of the Ural Mountains with notes on its ecology and distribution in the Northern Palearctic. Deinsea 8, 103–126 (2001).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux du Pléistocène moyen et supérieur de France. Doc. Lab. Géol. Fac. Sci. Lyon 64, 1–624 (1975).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux dans les habitats pale´olithiques: gibier des hommes ou proies des rapaces? In Animal and Archaeology: 2. Shell Middens, Fishes and Birds (eds Grigson, C. & Clutton-Brock, J.) 111–124 (British Archaeological Reports International Series 183, 1983).
    Google Scholar 
    Meijer, H. J., Pavia, M., Madurell-Malapeira, J. & Alba, D. M. A revision of fossil eagle owls (Aves: Strigiformes: Bubo) from Europe and the description of a new species, Bubo ibericus, from Cal Guardiola (NE Iberian Peninsula). Hist. Biol. 29, 822–832 (2017).Article 

    Google Scholar 
    Sanchez Marco, A. Aves fósiles de la Península Ibérica, Canarias y Baleares: balance de los estudios realizados. Investig. Rev. PH Inst. Andal. Patrim. Hist. 94, 154–181 (2018).
    Google Scholar 
    Sardella, R. et al. Grotta Romanelli (Southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. S. 124, 247–264 (2018).
    Google Scholar 
    Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea 9, 395–404 (2003).
    Google Scholar 
    Bedetti, C. & Pavia, M. Reinterpretation of the Late Pleistocene Ingarano Cave deposit based on the fossil bird association (Apulia, South-eastern Italy). Riv. Ital. Paleontol. S. 113, 487–507 (2007).
    Google Scholar 
    Tyrberg, T. Arctic, montane and steppe birds as glacial relicts in West Palearctic. Ornithol. Verh. 25, 29–49 (1991).
    Google Scholar 
    Bruderer, B. & Salewski, V. Evolution of bird migration in a biogeographical context. J. Biogeogr. 35, 1951–1959 (2008).Article 

    Google Scholar 
    Finlayson, C. Avian Survivors. The History and Biogeography of Palearctic Birds (T. & A.D. Poyser, 2011).
    Google Scholar 
    Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95, 1109–1119 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).PubMed 
    Article 

    Google Scholar 
    Somveille, M. et al. Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Fiedler, W. Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. In Avian Migration (eds Berthold, P. et al.) 21–38 (Springer, 2003).Chapter 

    Google Scholar 
    Milá, B., Smith, T. B. & Wayne, R. K. Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60, 2403–2409 (2006).PubMed 
    Article 

    Google Scholar 
    Zink, R. M. The evolution of avian migration. Biol. J. Linn. Soc. 104, 237–250 (2011).Article 

    Google Scholar 
    Zink, R. M. & Gardner, A. S. Glaciation as a migratory switch. Sci. Adv. 3, e1603133 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Matthiesen, D. G. Avian medullary bone in the fossil record, an example from the Early Pleistocene of Olduvai Gorge, Tanzania. J. Vertebr. Paleontol. 9, 34A (1990).
    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article 

    Google Scholar 
    Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071 (2005).Article 
    ADS 

    Google Scholar 
    Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database, Version 26. https://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html (2019).d’Errico, F., Banks, W. E., Vanhaeren, M., Laroulandie, V. & Langlais, M. PACEA geo-referenced radiocarbon database. Paleoanthropology https://doi.org/10.4207/PA.2011.ART40 (2011).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1897. https://doi.org/10.2458/azu_js_rc.55.16947 (2013).CAS 
    Article 

    Google Scholar 
    Serjeantson, D. Birds: a seasonal resource. Environ. Archaeol. 3, 23–33 (1998).Article 

    Google Scholar 
    Serjeantson, D. Birds. Cambridge Manuals in Archaeology (Cambridge University Press, 2009).
    Google Scholar 
    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21 (2015).Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S. & Terribile, L. C. A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10, e0129037 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar. Ecol. Prog. Ser. 321, 267–281 (2006).Article 
    ADS 

    Google Scholar 
    Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D. & Hastie, T. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J. Biogeogr. 35, 1481–1497 (2008).Article 

    Google Scholar 
    Therneau, T. & Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart (2019).Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021). More

  • in

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Presence of mucin stabilizes survival of both the bacterium and the phage during 16 weeks of co-cultureAn overview of our main experimental setup is shown in Fig. 1. To avoid population bottlenecks, our sampling was based on the weekly collecting 20% of the cultures and replacing with the same volume of fresh medium. Long term co-existence of both F. columnare B245 and its phage V156 was observed in all treatments. In lake water with (LW + M) or without mucin (LW), the closest approximations of natural conditions for F. columnare, the phage titers remained similar until week 9, after which LW + M showed a significant decline in phage numbers compared to LW (LM, t1,46 = −2.737, P = 0.0088) with roughly a ten-fold difference at week 16 (Fig. 2a, Supplementary Fig. 1a). Bacterial population densities in these treatments were opposite and more dramatic, with an average of 45-fold higher numbers in LW + M than in LM across all time points after an initial spike at week 1 (LM, t1,77 = 4.836, P  More

  • in

    Detailed analysis of habitat suitability curves for macroinvertebrates and functional feeding groups

    Poff, N. L. et al. The natural flow regime: A new paradigm for riverine conservation and restoration. Bioscience 47, 769–784 (1997).Article 

    Google Scholar 
    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30(4), 492–507 (2002).PubMed 
    Article 

    Google Scholar 
    Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?. Front. Ecol. Environ. 12, 176–185 (2014).Article 

    Google Scholar 
    Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).Article 

    Google Scholar 
    Acreman, M. Ethical aspects of water and ecosystems. Water Policy 3, 257–265 (2001).Article 

    Google Scholar 
    Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2010).Article 

    Google Scholar 
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flow. Freshw. Biol. 55, 194–205 (2010).Article 

    Google Scholar 
    Richter, B. D. & Thomas, G. A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 12(1), 12 (2007).Article 

    Google Scholar 
    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).Article 

    Google Scholar 
    Vӧrӧsmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 468, 334–334 (2010).Article 

    Google Scholar 
    Acreman, M. C. & Ferguson, A. J. D. Environmental flows and the European water framework directive. Freshw. Biol. 55, 32–48 (2010).Article 

    Google Scholar 
    Poff, N. L. & Matthews, J. H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 5, 667–675 (2003).Article 

    Google Scholar 
    Theodoropoulos, C. & Skoulikidis, N. Environmental flows: The European approach through the Water Framework Directive 2000/60/EC. In Proceedings of the 10th International Congress of the Hellenic Geographical Society 1140–1152 (2015).The Brisbane Declaration. Environmental flows are essential for freshwater ecosystem health and human well-being. In Declaration of the 10th International River Symposium 3–6 (Brisbane, Australia, 2007).Arthington, A. H. et al. The brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 6, 45 (2018).Article 

    Google Scholar 
    European Commission. Ecological flows in the implementation of the Water Framework Directive. WFD CIS Guidance Document No. 31 (2015).Hirzel, A. H. & Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381 (2008).Article 

    Google Scholar 
    Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).PubMed 
    Article 

    Google Scholar 
    Ahmadi-Nedushan, B. et al. A review on statistical methods for the evaluation of the aquatic habitat suitability for instream flow assessment. River Res. Applic. 22, 503–523 (2006).Article 

    Google Scholar 
    Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. Modelling the hydraulic preferences of benthic macroinvertebrates in small European stream. Freshw. Biol. 52, 145–164 (2007).Article 

    Google Scholar 
    Katopodis, C. Case studies of instream flow modelling for fish habitat in Canadian Prairie Rivers. Can. Water Resour. J. 28, 199–216 (2003).Article 

    Google Scholar 
    Parasiewicz, P. Application of MesoHABSIM and target fish community approaches to restoration of the Quinebaug River, Connecticut and Massachusetts, U.S.A. River. Res. Appl. 24, 459–471 (2008).Article 

    Google Scholar 
    Piniweski, M. et al. Estimation of environmental flows in semi-natural lowland rivers – the Narew basin case study. Pol. J. Environ. Stud. 20(5), 1281–1293 (2011).
    Google Scholar 
    Theodoropoulos, C., Vourka, A., Skoulikidis, N., Rutschmann, P. & Stamou, A. Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates. J. Ecohydraul. 3(1), 30–44 (2018).Article 

    Google Scholar 
    Yi, Y. et al. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renew. Sustain. Energy Rev. 68, 748–762 (2017).Article 

    Google Scholar 
    Theodoropoulos, C., Skoulikidis, N., Rutschmann, P. & Stamou, A. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538–547 (2018).Article 

    Google Scholar 
    Huryn, A. D. & Wallace, J. B. Life history and production of stream insects. Annu. Rev. Entomol. 45(1), 83–110 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cummins, K. W. Structure and function of stream ecosystems. Bioscience 24, 631–641 (1974).Article 

    Google Scholar 
    Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrates species in freshwater ecosystems. Bioscience 49(2), 119–127 (1999).Article 

    Google Scholar 
    Dolédec, S., Statzner, B. & Bournaud, M. Species traits for future biomonitoring across ecoregions: Patterns along a human-impacted river. Freshw. Biol. 42, 737–758 (1999).Article 

    Google Scholar 
    Marzin, N. et al. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures?. Ecol. Ind. 23, 56–65 (2012).CAS 
    Article 

    Google Scholar 
    Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article 

    Google Scholar 
    Jowett, I. G. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Res. Appl. 19, 495–507 (2003).Article 

    Google Scholar 
    Dewson, Z. S., James, A. B. W. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. North Am. Benthol. Soc. 26, 401–415 (2007).Article 

    Google Scholar 
    Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21(2), 203–217 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article 

    Google Scholar 
    Graeber, D., Pusch, M. T., Lorenz, S. & Brauns, M. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717, 147–159 (2013).CAS 
    Article 

    Google Scholar 
    González, J. M., Recuerda, M. & Elosegi, A. Crowded waters: short-term response of invertebrate drift to water abstraction. Hydrobiologia 819, 39–51 (2018).Article 

    Google Scholar 
    Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W. & Quinn, J. M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 25(2), 187–199 (1991).Article 

    Google Scholar 
    Lamouroux, N. et al. The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes (2009). River Res. Appl. 26, 915–920 (2010).Article 

    Google Scholar 
    Mérigoux, S. & Dolédec, S. Hydraulic requirements of stream communities: A case study on invertebrates. Freshw. Biol. 49, 600–613 (2004).Article 

    Google Scholar 
    Lancaster, J. & Downes, B. J. Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Res. Appl. 26, 385–403 (2009).Article 

    Google Scholar 
    Lancaster, J. & Hildrew, A. G. Flow refugia and the microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc. 12(4), 385–393 (1993).Article 

    Google Scholar 
    Chen, W. & Olden, J. D. Evaluating transferability of flow–ecology relationships across space, time and taxonomy. Freshw. Biol. 63, 817–830 (2017).Article 

    Google Scholar 
    Li, F., Cai, Q., Fu, X. & Liu, J. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region China. Prog. Nat. Sci. 19, 359–367 (2009).Article 

    Google Scholar 
    Growns, I. O. & Davis, J. A. Longitudinal changes in near-bed flows and macroinvertebrate communities in a western Australian stream. J. North Am. Benthol. Soc. 13, 417–438 (1994).Article 

    Google Scholar 
    Shearer, K. A., Hayes, J. W., Jowett, I. G. & Olsen, D. A. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N. Z. J. Mar. Freshw. Res. 49, 178–191 (2015).Article 

    Google Scholar 
    Bovee, K. D. et al. Stream Habitat Analysis using the Instream Flow Incremental Methodology. USGS Inf. Technol. Rep. 1998–0004, 1–130 (1998).
    Google Scholar 
    Conallin, J., Boegh, E. & Jensen, J. K. Instream physical habitat modelling types: An analysis as stream hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Manag. 8, 93–107 (2010).Article 

    Google Scholar 
    Poff, N. L., Tharme, R. E. & Arthington, A. H. Evolution of environmental flows assessment science, principles, and methodologies. In Water for the Environment: Policy, Science, and Integrated Management (eds Horne, A. et al.) 203–236 (Elsevier Press, Amsterdam, 2017).Chapter 

    Google Scholar 
    Bovee, K.D. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Washington (DC): USDI Fish and Wildlife Service. Instream Flow Information Paper #21 FWS/OBS-86/7.Geological Survey, Biological Resources Division, Mid-Continent Ecological Science Centre, Fort Collins, Colorado (1986).Vismara, R., Azzellino, A., Bosi, R., Crosa, G. & Gentili, G. Preference curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul. River 17, 37–50 (2001).Article 

    Google Scholar 
    Nestler, J. M., Milhous, R. T., Payne, T. R. & Smith, D. L. History and review of the habitat suitability criteria curve in applied aquatic ecology. River Res. Appl. 35, 1155–1180 (2019).Article 

    Google Scholar 
    Theodoropoulos, C., Skoulikidis, N., Stamou, A. & Dimitriou, E. Spatiotemporal variation in benthic-invertebrates-based physical Habitat modelling: Can we use generic instead of local and season-specific habitat suitability criteria?. Water 10, 1508 (2018).Article 

    Google Scholar 
    Gąbka, M., Jakubas, E., Janiak, T. & Golski, J. Rzeki Wełna i Flinta – charakterystyka obiektów badań, ich położenie i granice zlewni. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty(Wielkopolska (eds Batora, J. et al.) 21–30 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
    Google Scholar 
    Bartkowski, T. Rozwój polodowcowej sieci hydrograficznej w Wielkopolsce Środkowej (Zeszyty Naukowe UAM 8, 1957).Paluch, J. Wpływ działalności spółek wodnych istniejących w XIX i na początku wieku XX na terenie zlewni rzeki Wełny na stan jej hydrografii i stosunków wodnych. In Proceedings of the conference “Ecological problems of the Vełna River basin – status and directions of measures 2–26 (Wągrowiec, 2009).Jakubas, E. et al. Ocena stanu ekologicznego i zmian hydromorfologicznych rzek Wełny i Flinty. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty (Wielkopolska) (eds Batora, J. et al.) 141–150 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
    Google Scholar 
    Szoszkiewicz, K. et al. Podręcznik oceny wód płynących w oparciu o Hydromorfologiczny Indeks Rzeczny (Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, 2017).Emery, J. C. et al. Classifying the hydraulic performance of riffle–pool bedforms for habitat assessment and river rehabilitation design. River Res. Appl. 19, 533–549 (2003).Article 

    Google Scholar 
    Mueller, M., Pander, J. & Geist, J. Taxonomic sufficiency in freshwater ecosystems: Effects of taxonomic resolution, functional traits, and data transformation. Freshw. Sci. 32(3), 762–778 (2013).Article 

    Google Scholar 
    Schmidt-Kloiber, A., Graf, W., Lorenz, A. & Moog, O. The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566, 325–342 (2006).Article 

    Google Scholar 
    Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Plymout, PRIMER-E (Plymouth Marine Laboratory, 2001).
    Google Scholar 
    Vimos-Lojano, D., Hampel, H., Vázquez, R. F. & Martínez-Capel, F. Community structure and functional feeding groups of macroinvertebrates in pristine Andean streams under different vegetation cover. Ecohydrol. Hydrobiol. 20(3), 357–368 (2020).Article 

    Google Scholar 
    Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (Plymouth Marine Laboratory, Plymouth, 2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (https://www.R-project.org/, 2020)Oksanen, F. J., et al. Vegan: Community Ecology Package. R package Version 2.4–3. (https://CRAN.R-project.org/package=vegan, 2017)Jowett, I.G., Hayes, J.W. & Duncan, M.J. A guide to instream habitat survey methods and analysis. NIWA Science and Technology Series No. 54 (2008).Manly, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals (Chapman and Hall, London, 1993).Book 

    Google Scholar 
    Bis, B. & Mikulec, A. Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych (Biblioteka Monitoringu Środowiska, 2013).Grygoruk, M. et al. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowl. Manag. Aquat. Ecosyst. 442, 37. https://doi.org/10.1051/kmae/2021036 (2021).Article 

    Google Scholar 
    Degani, G. et al. Relationships between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia 263, 163–172 (1993).Article 

    Google Scholar 
    Lamberti, G. A., Entrekin, S. A., Griffiths, N. & Tiegs, S. Coarse Particulate Organic Matter: Storage, Transport, and Retention. In Methods Ecosystem Function Vol. 2 (eds Lamberti, G. A. & Hauer, F. R.) 55–69 (Elsevier Academic Press, Amsterdam, 2017).
    Google Scholar 
    Bell, N., Riis, T., Suren, A. M. & Baattrup-Pedersen, A. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundam. Appl. Limnol. 183(4), 309–321 (2013).Article 

    Google Scholar 
    Wolters, J., Verdonschot, R. C. M., Schoelynck, J., Verdonschot, P. F. M. & Meire, P. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia 806, 157–173 (2018).CAS 
    Article 

    Google Scholar 
    Gore, J. A. & Nestler, J. M. Instream flow studies in perspective. Regul. Rivers Res. Manage. 2, 93–101 (1988).Article 

    Google Scholar 
    Hudson, H. R., Byrom, A. E. & Chadderton, W. L. A Critique of IFIM —Instream Habitat Simulation in the New Zealand Context (Department of Conservation, 2003).Stamou, A. et al. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manage. 209, 273–285 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, J. F., Blackburn, J. H., Clarke, R. T. & Furse, M. T. Macroinvertebrate-habitat associations in lowland rivers and their relevance to conservations. Int. Ver. Theor. Angew. Limnol. Verh. 25, 1515–1518 (1994).
    Google Scholar 
    Leszczyńska, J., Głowacki, Ł & Grzybkowska, M. Factors shaping species richness and biodiversity of riverine macroinvertebrate assemblages at the local and regional scale. Community Ecol. 18(3), 227–236 (2017).Article 

    Google Scholar 
    Gore, J. A., Crawford, D. J. & Addison, D. S. An analysis of artificial riffles and enhancement of benthic community diversity by Physical Habitat Simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manage. 14(1), 69–77 (1998).Article 

    Google Scholar 
    Anderson, N. H. & Sedell, J. R. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24, 351–377 (1979).Article 

    Google Scholar 
    Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshw. Biol. 55, 226–242 (2010).Article 

    Google Scholar 
    Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12(8), 466–473 (2014).Article 

    Google Scholar 
    Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarremejane, R. et al. Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127, 1586–1595 (2018).Article 

    Google Scholar 
    Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C. & Souchon, Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 19, 1085–1099 (2013).Article 

    Google Scholar 
    Domisch, S., Jähnig, S. C. & Haase, P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 56, 2009–2020 (2011).Article 

    Google Scholar  More

  • in

    Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).Article 

    Google Scholar 
    André, H. M., Noti, M. I. & Lebrun, P. The soil fauna: The other last biotic frontier. Biodiv. Conserv. 3, 45–56 (1994).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    IPCC. Global Warming of 1.5 °C. Summary for Policymakers. (World Meteorological Organization, 2018).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).Article 

    Google Scholar 
    Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).Article 

    Google Scholar 
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed 
    Article 

    Google Scholar 
    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112, 2076–2081 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep24965 (2016).CAS 
    Article 

    Google Scholar 
    Zhang, K. et al. Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol. Ecol. 25, 4407–4419 (2016).PubMed 
    Article 

    Google Scholar 
    Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Hebert, P. D. DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103, 968–971 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27, 313–338 (2018).PubMed 
    Article 

    Google Scholar 
    Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arribas, P., Andújar, C., Hopkins, K., Shepherd, M. & Vogler, A. P. Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil. Methods Ecol. Evol. 7, 1071–1081 (2016).Article 

    Google Scholar 
    Arribas, P., Andújar, C., Salces-Castellano, A., Emerson, B. C. & Vogler, A. P. The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Mol. Ecol. 30, 48–61 (2021).PubMed 
    Article 

    Google Scholar 
    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429. https://doi.org/10.1038/s41598-020-75452-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28. https://doi.org/10.1186/1472-6785-12-28 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. PNAS 111, 8007–8012 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).PubMed 
    Article 

    Google Scholar 
    Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 

    Google Scholar 
    Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lach, L., Parr, C., Abbott, K. Ant Ecology (Oxford University Press, 2010).Palacios-Vargas, J. G. & Castaño-Meneses, G. Seasonality and community composition of springtails in Mexican forest. In Arthropods of Tropical Forests. Spatio-Temporal Dynamics and Resource Use in the Canopy (eds. Basset, Y. et al.) 159–169 (Cambridge University Press, 2003).Bignell, D. E. & Eggleton, P. Termites in ecosystems. In Termites: Evolution, Sociality, Symbiosis, Ecology (eds Abe, T., Bignell, D. E. & Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).Anderson-Teixeira, K. J. et al. CTFS-Forest GEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (2020).Article 

    Google Scholar 
    Basset, Y. et al. Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. Eur. J. Soil Biol. 99, 103193. https://doi.org/10.1016/j.ejsobi.2020.103193 (2020).Article 

    Google Scholar 
    Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R. Ants. Standards Methods for Measuring and Monitoring Biodiversity (Smithsonian Institution Press, 2000).Bourguignon, T., Leponce, M. & Roisin, Y. Insights into the termite assemblage of a neotropical rainforest from the spatio-temporal distribution of flying alates. Insect. Conserv. Divers. 2, 153–162 (2009).Article 

    Google Scholar 
    Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623 (2012).Article 

    Google Scholar 
    Gaston, K. J. & Lawton, J. H. Patterns in the distribution and abundance of insect populations. Nature 331, 709–712 (1988).Article 

    Google Scholar 
    Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2019).Article 

    Google Scholar 
    Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Res. 15, 543–556 (2015).CAS 
    Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10. https://doi.org/10.1038/s41598-018-22505-4 (2018).CAS 
    Article 

    Google Scholar 
    Marquina, D., Esparza-Salas, R., Roslin, T. & Ronquist, F. Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol. Ecol. Res. 19, 1516–1530 (2019).CAS 
    Article 

    Google Scholar 
    Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-54532-0 (2019).CAS 
    Article 

    Google Scholar 
    Basset, Y. et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: Implications for biological monitoring. Insect. Conserv. Divers 6, 223–233 (2013).Article 

    Google Scholar 
    Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Biodiversity below ground: Probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94, 725–731 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    André, H. M., Ducarme, X. & Lebrun, P. Soil biodiversity: Myth, reality or conning?. Oikos 96, 3–24 (2002).Article 

    Google Scholar 
    Wilson, J. J. DNA barcodes for insects. In DNA Barcodes: Methods and Protocols (eds Kress, W. J. & Erickson, D. L.) 17–46 (Springer, 2012).Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432. https://doi.org/10.1371/journal.pone.0138432 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One 14, e0220953. https://doi.org/10.1371/journal.pone.0220953 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. PNAS 117, 8539–8545 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calderón-Sanou, I. et al. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).Article 

    Google Scholar 
    Schloss, P. D. Reintroducing mothur: 10 years later. Appl. Env. Microbiol. 86, e02343-19. https://doi.org/10.1128/AEM.02343-19 (2020).Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyer, F. et al. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. mBRAVE: The multiplex barcode research and visualization environment. Biodivers. Inf. Sci. Stand. 3, e37986. https://doi.org/10.3897/biss.3.37986 (2019).Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaston, K. J. Rarity (Springer, 1994).Kaspari, M. Litter ant patchiness at the 1–m2 scale: Disturbance dynamics in three Neotropical forests. Oecologia 107, 265–273 (1996).PubMed 
    Article 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404. https://doi.org/10.1371/journal.pcbi.1005404 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-3 (2018).Hyams, D. G. CurveExpert Professional. A Comprehensive Data Analysis Software System for Windows, Mac, and Linux. Version 1.2.2. www.curveexpert.net (2011). Accessed 1 Jan 2022.Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. An In Silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 434. https://doi.org/10.1186/1471-2164-11-434 (2010).CAS 
    Article 

    Google Scholar 
    Auer, L., Mariadassou, M., O’Donohue, M., Klopp, C. & Hernandez-Raquet, G. Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Mol. Ecol. Res. 17, e122–e132. https://doi.org/10.1111/1755-0998.12700 (2017).CAS 
    Article 

    Google Scholar 
    Novotný, V. & Basset, Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564–572 (2000).Article 

    Google Scholar 
    Seifert, B. & Goropashnaya, A. V. Ideal phenotypes and mismatching haplotypes-errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Org. Divers. Evol. 4, 295–305 (2004).Article 

    Google Scholar 
    Gotzek, D., Clarke, J. & Shoemaker, D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol. Biol. 10, 300. https://doi.org/10.1186/1471-2148-10-300 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meza-Lázaro, R. N., Poteaux, C., Bayona-Vásquez, N. J., Branstetter, M. G. & Zaldívar-Riverón, A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mit. DNA Part A 29, 1203–1214 (2018).Article 

    Google Scholar 
    Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59, 705–723 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745. https://doi.org/10.7717/peerj.7745 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schenk, J., Geisen, S., Kleinbölting, N. & Traunspurger, W. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding Metagenom. 3, e46704. https://doi.org/10.3897/mbmg.3.46704 (2019).Article 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS One 10, e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Res. 18, 1020–1034 (2018).CAS 
    Article 

    Google Scholar 
    Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Res. 20, 256–267 (2020).CAS 
    Article 

    Google Scholar 
    Steiner, F. M. et al. Tetramorium tsushimae, a new invasive ant in North America. Biol. Invasions 8, 117–123 (2006).Article 

    Google Scholar 
    Wetterer, J. K. Worldwide spread of the penny ant, Tetramorium bicarinatum (Hymenoptera: Formicidae). Sociobiology 54, 811–830 (2009).
    Google Scholar 
    Roisin, Y. et al. Vertical stratification of the termite assemblage in a neotropical forest. Oecologia 149, 301–311 (2006).PubMed 
    Article 

    Google Scholar 
    Basset, Y. et al. Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites. Metabarcoding Metagenom. 4, 151–163. https://doi.org/10.3897/mbmg.4.58572 (2020).Article 

    Google Scholar  More

  • in

    Alterations in rumen microbiota via oral fiber administration during early life in dairy cows

    Animals and dietsThe animal experiments were conducted in accordance with the Guidelines for Animal Experiments and Act on Welfare and Management of Animals, Hokkaido University, and all experimental procedures were approved by the Animal Care and Use Committee of Hokkaido University. All animal experiments were carried out in accordance with ARRIVE guidelines. Twenty newborn female Holstein calves with an average birth weight of 37.1 ± 1.0 kg (mean ± standard error) were randomly allocated to either the control or treatment group at birth. All calves were housed individually in separate calf hutches containing sawdust bedding. Feeding and managing of animals until weaning at 50 d of age was performed as described previously17. After supplementing colostrum at birth, calves in both groups were fed 4 L of pasteurized whole milk (44.2% crude protein [CP] and 29.3% fat on a dry matter [DM] basis) as a transition milk during the first week since birth. From 8 days until weaning at 50 days of age, milk replacer (28.0% CP and 18.0% fat on a DM basis) was fed twice daily at 0830 and 1600 h. Water, calf starter (22.9% CP, 11.0% neutral detergent fiber [NDF], 5.6% acid detergent fiber [ADF], 6.2% crude ash, and 3.0% ether extract on a DM basis), and chopped Timothy hay (3.4% CP, 53.1% NDF, 34.2% ADF, 4.3% crude ash, and 1.7% ether extract on a DM basis) were provided for ad libitum intake from 3 days of age. In addition to voluntary intake of solid diets, the calves in the treatment group were orally administered with a mixture of ground Timothy hay and psyllium (4.4% CP, 78.6% NDF, 5.8% ADF, 3.9% crude ash, and 0.3% ether extract on a DM basis) from 3 days until weaning at 50 days of age. Timothy hay was ground for oral administration using a Wiley grinder (WM-3, Irie Shokai) with a 2-mm screen. To improve the handling of the treatment diet for oral administration, we incorporated psyllium, which is a dietary fiber that primarily improves gastrointestinal conditions in humans and can be incorporated in oral electrolyte solution supplemented to neonatal calves38. As a treatment diet, ground Timothy hay (50 g) and psyllium (6 g) were mixed with 200 mL of water. Owing to the adhesiveness of psyllium, the treatment diet formed a “hay ball” and showed slight stickiness, which facilitates swallowing by calves. At 3–7 days of age, one hay ball (50 g of fibrous diet) was orally administered after morning milk feeding. From 8 days of age to weaning, an additional hay ball was fed immediately after evening milk feeding (100 g fibrous diet per day).After weaning, animals in both dietary groups were merged into the same herd and managed on the same farm under identical conditions. From 9 months of age until calving, heifers were fed a ration containing Timothy hay, alfalfa hay, fescue hay, and concentrate. After calving, the cows were fed a diet for lactating cows, as described in Supplementary Table S8. Diets comprised a total mixed ration and were fed twice daily at 0900 and 1600 h. All animals had ad libitum access to water and mineral blocks throughout the experiment. Daily milk production for each cow was measured for the first 30 days of the lactation period and the average values for each dietary group on a weekly and monthly basis were calculated. Milk yield for four animals in each dietary group were not recorded due to health problems including mastitis and displaced abomasum symptoms after calving.In this study, all animals (n = 20) were maintained until 9 months of age, without severe problems. Owing to health problems, several animals were excluded from the experiment before parturition as follows: three animals (one in the control group and two in the treatment group) at 60 days before the expected calving date and one animal in the control group at 21 days before the expected calving date. One animal in the control group (15 days after calving) and two animals in the treatment group (calving day) were diagnosed with displaced abomasum symptoms and were excluded from further sampling. Owing to technical problems, samples were not collected from three animals aged 7 days in the treatment group and one animal aged 21 days in the control group. All other samples (n = 176) were obtained at the target sampling points.Sampling of rumen contentsRumen contents were collected orally using a stomach tube. The stomach tube and the sample collection flask were thoroughly cleaned using water between sample collections from individual animals; the first fraction of the sample was discarded to avoid contamination from the previous sample and saliva. All samples were collected at 4 h after morning feeding. Rumen contents were collected at 7, 21, 35, 49, and 56 days, and at 9 months of age, 60 and 21 days before the expected calving date, at calving day, and 21 days after calving. The pH was measured using a pH meter (pH meter F-51; Horiba, Kyoto, Japan) immediately after sampling. Samples were collected in a sterile 50 mL tube and immediately placed on ice, followed by storage at − 30 °C until use.Chemical analysisRumen contents (1.0 g) were centrifuged at 16,000×g at 4 °C for 5 min, and the supernatant was collected. The SCFA content was analyzed using a gas chromatograph (GC-14B; Shimadzu, Kyoto, Japan) as described previously39. In brief, the supernatant of the rumen contents was mixed with 25% meta-phosphoric acid at a 5:1 ratio, incubated overnight at 4 °C, and centrifuged at 10,000×g at 4 °C. The supernatant was then mixed with crotonic acid as an internal standard and injected into a gas chromatograph equipped with an ULBON HR-20 M fused silica capillary column (0.53 mm i.d. × 30 m length, 3.0 µm film; Shinwa, Kyoto, Japan) and a flame-ionization detector. d/l-lactic acid levels were measured using a commercial assay kit (Megazyme International Ireland, Wicklow, Ireland) according to the manufacturer’s instructions. NH3-N levels were measured via the phenol-hypochloride reaction method40 using a microplate reader at 660 nm (ARVO MX; Perkin Elmer, Yokohama, Japan).DNA extraction and rumen microbiota profiling via amplicon sequencingTotal DNA was extracted and purified using the repeated bead-beating plus column method41. Rumen contents (0.25 g) were homogenized using sterile glass beads (0.4 g; 0.3 g of 0.1 mm and 0.1 g of 0.5 mm) and cell lysis buffer (1 mL; 500 mM NaCl, 50 mM Tris–HCl [pH 8.0], 50 mM ethylenediaminetetraacetic acid (EDTA), and 4% sodium dodecyl sulfate). The lysates were then incubated at 70 °C for 15 min, and the supernatant was collected for further processing. Bead-beating and incubation steps were repeated once, and all supernatants were combined. Total DNA was precipitated using 10 M ammonium acetate and isopropanol, followed by purification using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany). The DNA concentration was quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and adjusted with Tris–EDTA buffer to the appropriate concentration.For a comprehensive analysis of rumen bacterial communities, the MiSeq sequencing platform (Illumina, San Diego, CA, USA) was used. Total DNA obtained from the rumen contents was diluted to a final concentration of 5 ng/μL and subjected to PCR amplification of the V3-V4 regions of the 16S rRNA gene using the primer sets S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and S-D-Bact-0785-a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′)42. The PCR mixture consisted of 12.5 μL of 2× KAPA HiFi HotStart Ready Mix (Roche Sequencing, Basel, Switzerland), 0.1 μM of each primer, and 2.5 μL of DNA (5 ng/μL). PCR amplification was performed according to the following program described previously9: initial denaturation at 95 °C for 3 min; 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s; and a final extension step at 72 °C for 5 min. Amplicons were purified using AMPure XP beads (Beckman-Coulter, Brea, CA, USA) and subjected to sequencing on the Illumina MiSeq platform (Illumina) using the MiSeq Reagent Kit v3 (2 × 300 paired-end). Data obtained from amplicon sequencing using the MiSeq platform were analyzed using QIIME2 version 2019.443. Paired reads were filtered, dereplicated, merged, and chimera-filtered using the q2-dada2 plugin44 to generate ASVs. Taxonomic classification of the ASVs was performed at the phylum, class, order, family, and genus levels using the SILVA 132 99% operational taxonomic units, full length, seven level taxonomy classifier (silva-132-99-nb-classifier.qza). Sequenced data were processed further and analyzed using R software version 3.6.245. ASV and taxonomy tables generated using QIIME2 were imported into R and merged with the sample metadata using the Phyloseq Bioconductor packages46. ASVs identified as Archaea, chloroplasts, and mitochondria were excluded. All samples were rarefied to a sampling depth of 16,805 reads, which was the smallest number of reads observed per sample in the filtered ASV table. Alpha diversity indices including Chao1, ACE, Shannon, and Simpson indices were calculated using the phyloseq function “estimate_richness”. PCoA was performed to determine differences in the microbial community structure based on the Bray–Curtis dissimilarity matrices at the genus level using the Phyloseq package. Venn diagrams were generated using ASVs showing mean relative sequence abundances of  > 0.1% in either the control or the treatment groups at each sampling point. The relative abundance of each bacterial taxon was calculated by dividing the number of reads assigned to each taxon by the total number of reads. Taxa with an average relative abundance  > 0.1% in  > 50% of samples in either the control or treatment group during at least one sampling point were used for the analysis. Hierarchical cluster analysis of bacterial genera determined via amplicon sequencing at 21 days after calving and the weekly and monthly average milk yield for the first 30 days of lactation period was performed using the distances calculated from Spearman’s correlation and average linkage clustering.Quantification of target bacterial species/groups using real-time PCRThe relative abundance of known ruminal bacterial species and groups, including the total bacteria, F. succinogenes, R. flavefaciens, Ruminococcus albus, Butyrivibrio spp., Prevotella spp., Selenomonas ruminantium, Megasphaera elsdenii, Treponema spp., Streptococcus bovis, Anaerovibrio lipolytica, and Ruminobacter amylophilus, was quantified using real-time PCR. Amplification was performed using a Light Cycler 480 system (Roche Applied Science, Mannheim, Germany) with a KAPA SYBR Fast qPCR Kit (Roche Sequencing, Basel, Switzerland) and the respective primer sets (Supplementary Table S9). The standards used for the real-time PCR were prepared as described previously47. Briefly, plasmid DNA containing the respective target bacterial 16S rRNA gene sequence was obtained by PCR cloning using the species/genus-specific or bacterial universal primer sets. The concentration of the plasmid was determined with a spectrometer. Copy number of each standard plasmid was calculated using the molecular weight of nucleic acid and the length (base pair) of the cloned standard plasmid. Ten-fold dilution series ranging from 1 to 108 copies were prepared for each target and run along with the samples. The respective genes were quantified using standard curves obtained from the amplification profile of the dilution series of the plasmid DNA standard (Supplementary Table S9). The PCR cycling conditions and reaction mixture were the same as those reported previously48. The relative abundance of each bacterial target was expressed as the proportion (%) of the abundance of the 16S rRNA genes of each bacterial target relative to that of the total bacteria.Statistical analysisAll data were sorted based on animal age into two sets, from 7 to 56 days of age and from 9 months of age to 21 days after calving, and analyzed separately. Data on fermentation parameters and bacterial abundance quantified via real-time PCR were analyzed using a repeated measures model using GraphPad Prism software version 9.1 (GraphPad Software, San Diego, CA, USA) with the fixed effects of dietary group, age, and diet × age interaction, and the random effect of animals within the groups. The Greenhouse–Geisser correction was used where sphericity was violated. If the P-value for the treatment effect was  More

  • in

    The network nature of language endangerment hotspots

    Database utilizedThe database comprises information obtained with permission from the Catalogue of Endangered Languages that is hosted on the Endangered Languages Project platform (https://www.endangeredlanguages.com/). The Endangered Languages Project was first developed and launched by Google, and is currently overseen by First People’s Cultural Council and the Institute for Language Information and Technology at Eastern Michigan University. Information about the languages in this project is provided by the Catalogue, which is produced by the University of Hawai’i at Mānoa and Eastern Michigan University, with funding provided by the U.S. National Science Foundation (Grants #1058096 and #1057725) and the Luce Foundation. The project is supported by a team of global experts comprising its Governance Council and Advisory Committee.In general, the Catalogue aims to present all languages that communities and scholars have pointed out to be at some level of risk as well as languages that have become dormant. In addition to being the largest database of endangered languages globally, the Catalogue is updated periodically based on feedback gathered from language communities and scholars worldwide. The data therefore represents what was most accurately known about the state of each language’s vitality at its point of utilization. At the time of usage, there were 3423 languages represented in the Catalogue that were determined to be at various levels of risk. Assessment of each language’s risk level is carried out using the Language Endangerment Index, which was developed for the Catalogue’s purposes. The Index is used to assess the level of endangerment of any given language based on whether there is intergenerational transmission of the language (whether the language is being passed on to younger generations), its absolute number of speakers, speaker number trends (whether numbers are stable, increasing, or decreasing), and domains of language use (whether the language is used in a wide number of domains or limited ones). The levels of endangerment that the Index generates include ‘safe’, ‘vulnerable’, ‘threatened’, ‘endangered’, ‘severely endangered’, and ‘critically endangered’. Languages for which it remains unclear if the language has gone extinct or whose last fluent speaker is reported to have died in recent times are referred to as ‘dormant’. Given that the focus of the Catalogue is languages that are at some level of threat, safe languages are excluded in general. Where locality information is available, each language is also accompanied with its latitudinal and longitudinal coordinates.Steps taken to prepare the data for network analysisThe data obtained from the Catalogue was further organized and cleaned up for analysis.

    1.

    Identifier code
    Where available, the ISO 639-3 code for each language was utilized as its unique identifier. Otherwise, its LINGUIST List local use code was utilized. These are temporary codes that are not in the current version of the ISO 639-3 Standard for languages. For languages with neither, unique 3-letter codes were constructed.

    2.

    Endangerment level
    Each language’s endangerment level appeared together with a level of certainty score in the same cell in the original data file. Both pieces of information were split into separate columns and only endangerment levels were utilized.
    For languages where different data were available in the Catalogue depending on resource utilized, the data was listed in additional columns. The endangerment level data points utilized in these cases were the ones with the most complete and updated information. If there was no data available regarding endangerment level, this information was also reflected.

    3.

    Coordinates
    Where exact coordinates were not available, coordinates were approximated using Google maps based on the location description provided in the Catalogue source (e.g., the Tel Aviv district), attained from other sources such as Glottolog, UNESCO Atlas of the World’s Languages in Danger, or approximated from maps provided in other sources. ‘NA’ was indicated in the field for coordinates if none could be found.
    Coordinates found to be inaccurate were rejected, for example in the instance that coordinates provided indicate a different location than the country the language is supposedly found in. The above steps were then taken to populate the coordinates field.
    In instances where a language appears in more than one country, these are listed in separate rows as separate entries. Where there are two sets of coordinates for a country, the set that best corresponds with the written description in the Catalogue source, has greater detail, or is more recent is chosen. Where there are more than two sets of coordinates, a middle point is chosen as being representative of the language’s location, by plotting all coordinates on MapCustomizer (www.mapcustomizer.com).

    4.

    Language family
    On the Catalogue, the information regarding language family may be multi-tiered. For example, Laghuu falls under the Lolo-Burmese branch of the Sino-Tibetan family. For this study, the broader family is utilized—in the case of Laghuu the label ‘Sino-Tibetan’ is used.
    Mixed languages, pidgins, and creoles have all been categorized as ‘contact languages’.
    Language isolates are listed as ‘isolates’.

    5.

    Region

    The Catalogue groups ‘Mexico, Central America, Caribbean’ together under region. Central America and Caribbean are listed as separate regions in this study, with Mexico falling under Central America.Network constructionA spatial network of endangered languages was constructed from the database. Each node represented an endangered language, and edges or links depicted the distance between the locations of the languages as specified in the database. A distance matrix containing the distances between all endangered languages was computed by using functions from the ‘geosphere’ R package. Specifically, Haversine distances were computed for each pair of longitude and latitude points in the dataset. The radius of the earth used in the Haversine distance calculation is 6,378,137 m (for more details see: https://www.rdocumentation.org/packages/geosphere/versions/1.5-14/topics/distHaversine). Haversine distance refers to the shortest distance between two points on a spherical earth, also referred to as the “great-circle-distance”29.Sensitivity analyses of edge thresholdsThe distance matrix is a fully connected network with weighted, undirected links. We set out to capture the strongest or “closest” spatial relationships among the endangered languages, therefore an edge threshold was applied to the distance matrix such that only the edges in the xth lowest percentile were retained in the spatial network. Such an approach allows for the analysis of the most meaningful (i.e., the physically closest) spatial relations in the dataset and how they relate to language endangerment status. The edges were then transformed into unweighted connections to create a simple unweighted, undirected graph for analysis. In order to determine the value of x (i.e., the percentile at which the edge threshold is to be applied), we constructed 10 spatial networks that retained edges with distances below the 1st, 2nd, 3rd… 10th percentile (in increments of 1%) of all distances in the matrix. Additional information of the distances depicted by the edges in each of the 10 networks is provided in Supplementary Information.These 10 networks were then analyzed for their macro- and meso-scale network properties. A summary of macro and meso-scale network measures used in this analysis and their definitions is provided in Table 1, which depicts the 10 networks showing similar patterns in their network structures.Table 1 An overview of macro- and meso-level network measures of spatial networks with different thresholds.Full size tableResultsAs expected, network density and average degree of the networks, which serve as indicators of the number of edges relative to the number of nodes in the network, increased as the edge threshold used to connect nodes became more liberal. The relatively high values of C (i.e., high levels of local clustering among nodes) and low values of ASPL (i.e., relatively short paths despite large size of network) suggested the presence of small world structure30. The community detection analysis using the Louvain method31 indicated strong evidence of community structure in the networks—suggesting the presence of clusters of endangered languages.The point at which the vast majority of nodes was located within the largest connected component of the network occurred at the 5% edge threshold. Because the 5% network was not too fragmented, we report the analyses conducted on the largest connected component of the 5% network in the following subsections. Please see Supplementary Information for additional details behind the rationale for selecting the 5% network for further analyses. The smaller connected components were excluded. Note however that our results are robust across spatial networks of various edge thresholds (due to lack of space, please see Supplementary Information for a complete summary of all reported analyses conducted on all 10 spatial networks).Macro-level analysis: assortative mixing of endangerment statusesMethodTo investigate the macro-level structure of the spatial network of endangered languages, we computed the assortativity coefficient of the spatial network. Specifically, we wanted to know if the endangerment statuses of the languages tended to cluster at the global level of the entire network. If the assortativity coefficient is positive, the languages in the network would tend to be connected to languages of similar levels of endangerment. If the assortativity coefficient is negative, the languages in the network would tend to be connected to languages of dissimilar levels of endangerment.ResultsThere is a significant positive correlation (Spearman’s rank correlation) between the endangerment status of connected pairs of endangered languages in the network, r = 0.20, p  More

  • in

    Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea

    Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).Unwin, D. M. The pterosaurs from deep time (Pi Press, 2005).Witton, M. P. Pterosaurs: Natural History (Anatomy (Princeton University Press, 2013).Book 

    Google Scholar 
    Williams, C. J. et al. Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications. iScience 24, 102338 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nat. Commun. 11, 5293 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryang, W. H. Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geo. Soc. Korea 49, 31–45 (2013).CAS 

    Google Scholar 
    Kim, B. G. & Park, B. G. Geological report of the Dongbok sheet (1:50,000) (Geological Survey of Korea, Seoul, 1966).Lee, H., Sim, M. S. & Choi, T. Stratigraphic evolution of the northern part of the Cretaceous Neungju basin South Korea. Geosci. J. 23, 849–865 (2019).CAS 
    Article 

    Google Scholar 
    Paik, I. S., Huh, M., So, Y. H., Lee, J. E. & Kim, H. J. Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci. 30, 93–107 (2007).Article 

    Google Scholar 
    Cohen, K. M., Finney, S. M., Gibbard, P. L. & Fan, J.-X. The ICS international Chronostratigraphic chart. Episodes 36, 199–204 (2013).Article 

    Google Scholar 
    Calvo, J. O. & Lockley, M. G. The first pterosaur tracks from Gondwana. Cretac. Res. 22, 585–590 (2001).Article 

    Google Scholar 
    Kukihara, R. & Lockley, M. G. Fossil footprints from the dakota group (Cretaceous) john martin reservoir, bent county, Colorado: New insights into the paleoecology of the Dinosaur freeway. Cretac. Res. 33, 165–182 (2012).Article 

    Google Scholar 
    Lockley, M. & Schumacher, B. A new pterosaur swim tracks locality from the Cretaceous Dakota Group of eastern Colorado: implications for pterosaur swim track behavior. Fossil Footprints of Western North America. Bull. NM Mus. Nat. Hist. Sci, 365–371 (2014).Smith, R. E., Martill, D. M., Unwin, D. M. & Steel, L. Edentulous pterosaurs from the Cambridge Greensand (Cretaceous) of eastern England with a review of Ornithostoma Seeley, 1871. Proc. Geol. Assoc. (2020).Ibrahim, N., Unwin, D. M., Martill, D. M., Baidder, L. & Zouhri, S. A new pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco. PLoS ONE 5, e10875 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martill, D. M. & Ibrahim, N. An unusual modification of the jaws in cf. Alanqa, a mid-Cretaceous azhdarchid pterosaur from the Kem Kem beds of Morocco. Cretac. Res. 53, 59–67 (2015).Article 

    Google Scholar 
    Jacobs, M. L., Martill, D. M., Ibrahim, N. & Longrich, N. A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa. Cretac. Res. 95, 77–88 (2019).Article 

    Google Scholar 
    Jacobs, M. L. et al. New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity. Cretac. Res. 110, 104413 (2020).Article 

    Google Scholar 
    McPhee, J. et al. A new ? Chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of southern Morocco. Cretac. Res. 110, 104410 (2020).Article 

    Google Scholar 
    Martill, D. M. et al. A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco. Cretac. Res. 112, 104424 (2020).Article 

    Google Scholar 
    Martill, D. M., Unwin, D. M., Ibrahim, N. & Longrich, N. A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco. Cretac. Res. 84, 1–12 (2018).Article 

    Google Scholar 
    Smith, R. E. et al. Small, immature pterosaurs from the Cretaceous of Africa: implications for taphonomic bias and palaeocommunity structure in flying reptiles. Cretac. Res. 130, 105061 (2022).Article 

    Google Scholar 
    Smith, R. E., Martill, D. M., Kao, A., Zouhri, S. & Longrich, N. A long-billed, possible probe-feeding pterosaur (Pterodactyloidea: ?Azhdarchoidea) from the mid-Cretaceous of Morocco North Africa. Cretac. Res. 118, 104643 (2021).Article 

    Google Scholar 
    Kellner, A. W. A. et al. First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity. Sci. Rep. 9, 17875 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgin, R. A. & Frey, E. A new azhdarchoid pterosaur from the Cenomanian (Late Cretaceous) of Lebanon. Swiss J. Geosci. 104, 21–33 (2011).Article 

    Google Scholar 
    Averianov, A. O., Kurochkin, E. N., Pervushov, E. M. & Ivanov, A. V. Two bone fragments of ornithocheiroid pterosaurs from the Cenomanian of Volgograd Region, southern Russia. Acta Palaeontol. Pol. 50 (2005).Averianov, A. & Kurochkin, E. A new pterosaurian record from the Cenomanian of the Volga region. Paleontol. J. 44, 695–697 (2010).Article 

    Google Scholar 
    Nessov, L. Flying reptiles from the Jurassic and cretaceous of the USSR and significance of their remains for the reconstruction of paleogeographical conditions. Vestn. Leningr. Gos. Univ. Ser. 7, 28 (1990).
    Google Scholar 
    Bakhurina, N. N. & Unwin, D. M. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. (1995).Averianov, A. O. New records of azhdarchids (Pterosauria, Azhdarchidae) from the Late Cretaceous of Russia, Kazakhstan, and Central Asia. Paleontol. J. 41, 189–197 (2007).Article 

    Google Scholar 
    Averianov, A. Mid-Cretaceous ornithocheirids (Pterosauria, Ornithocheiridae) from Russia and Uzbekistan. Paleontol. J. 41, 79–86 (2007).Article 

    Google Scholar 
    Huh, M., Paik, I. S., Chung, C. H., Hwang, K. G. & Kim, B. S. Theropod tracks from Seoyuri in Hwasun, Jeollanamdo, Korea: occurrence and paleontological significance. J. Geo. Soc. Korea 39, 461–478 (2003).CAS 

    Google Scholar 
    Huh, M. et al. Well-preserved theropod tracks from the Upper Cretaceous of Hwasun County, southwestern South Korea, and their paleobiological implications. Cretac. Res. 27, 123–138 (2006).Article 

    Google Scholar 
    Lockley, M. G., Huh, M. & Kim, B. S. Ornithopodichnus and pes-only sauropod Trackways from the Hwasun tracksite Cretaceous of Korea. Ichnos 19, 93–100 (2012).Article 

    Google Scholar 
    Hwang, K. G., Huh, M. & Paik, I. S. A unique trackway of small theropod from Seoyu-ri, Hwasun-gun Jeollanam province. J. Geo. Soc. Korea 42, 69–78 (2006).CAS 

    Google Scholar 
    Kim, B. S. & Huh, M. Analysis of the acceleration phase of a theropod dinosaur based on a Cretaceous trackway from Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 1–8 (2010).Article 

    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Sci. Rev. 193, 109–145 (2019).Article 

    Google Scholar 
    Rodríguez-de La Rosa, R. A. Pterosaur tracks from the latest Campanian Cerro del Pueblo formation of southeastern Coahuila. Mexico. Geol. Soc. Spec. Publ. 271, 275–282 (2003).Article 

    Google Scholar 
    Lockley, M. G. & Meyer, C. Crocodylomorph trackways from the Jurassic to early cretaceous of North America and Europe: Implications for Ichnotaxonomy. Ichnos 11, 167–178 (2004).Article 

    Google Scholar 
    Ambroggi, R. & De Lapparent, A. Les empreintes de pas fossiles du Maestrichtien d’Agadir. Notes du Service Géologique du Maroc 10, 43–57 (1954).
    Google Scholar 
    Stokes, W. L. Pterodactyl tracks from the Morrison Formation. J. Paleontol. 31, 952–954 (1957).
    Google Scholar 
    Delair, J. Note on Purbeck fossil footprints, with descriptions of two hitherto unknown forms from Dorset. Proceedings of the Dorset Natural History and Archaeological Society. 92–100 (1963).Hwang, K.-G., Huh, M. I. N., Lockley, M. G., Unwin, D. M. & Wright, J. L. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geol. Mag. 139, 421–435 (2002).Article 

    Google Scholar 
    Mazin, J.-M. & Pouech, J. The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58, 39–53 (2020).Article 

    Google Scholar 
    Masrour, M., de Ducla, M., Billon-Bruyat, J.-P. & Mazin, J.-M. Rediscovery of the Tagragra tracksite (Maastrichtian, Agadir, Morocco): Agadirichnus elegans Ambroggi and Lapparent 1954 is Pterosaurian Ichnotaxon. Ichnos 25, 285–294 (2018).Article 

    Google Scholar 
    Wright, J. L., Unwin, D. M., Lockley, M. G. & Rainforth, E. C. Pterosaur tracks from the Purbeck limestone formation of Dorset England. Proc. Geol. Assoc. 108, 39–48 (1997).Article 

    Google Scholar 
    Lockley, M. G. et al. The fossil trackway Pteraichnusis pterosaurian, not crocodilian: Implications for the global distribution of pterosaur tracks. Ichnos 4, 7–20 (1995).Article 

    Google Scholar 
    Billon-Bruyat, J.-P. & Mazin, J.-M. The systematic problem of tetrapod ichnotaxa: the case study of Pteraichnus Stokes, 1957 (Pterosauria, Pterodactyloidae). Geol. Soc. Spec. Publ. 217, 315–324 (2003).Article 

    Google Scholar 
    Pascual Arribas, C. & Sanz Pérez, E. Huellas de Pterosaurios en el grupo Oncala (Soria, España). Pteraichnus palaciei-saenzi, nov. icnosp. Estudios Geol. 56, 73–100 (2000).
    Google Scholar 
    Calvo, M. M., Vidarte, C. F., Fuentes, F. M. & Fuentes, M. M. Huellas de Pterosaurios en la Sierra de Oncala (Soria, España). Nuevas icnoespecies: pteraichnus vetustior, Pteraichnus parvus. Pteraichnus manueli. Celtiberia 54, 471–490 (2004).
    Google Scholar 
    Fuentes Vidarte, C., Meijide Calvo, M., Meijide Fuentes, F. & Meijide Fuentes, M. Pteraichnus longipodus nov. icnosp. en la Sierra de Oncala (Soria, España). Studia Geologica Salmanticensia, 103–114 (2004).Peng, B.-X., Du, Y.-S., Li, D.-Q. & Bai, Z.-C. The first discovery of the early Cretaceous Pterosaur track and its significance in Yanguoxia, Yongjing County, Gansu Province. Earth Sci.-J. China Univ. Geosci. 29, 21–24 (2004).
    Google Scholar 
    Lee, Y.-N., Lee, H.-J., Lü, J. & Kobayashi, Y. New pterosaur tracks from the Hasandong formation (Lower Cretaceous) of Hadong County South Korea. Cretac. Res. 29, 345–353 (2008).Article 

    Google Scholar 
    Lee, Y.-N., Azuma, Y., Lee, H.-J., Shibata, M. & Lü, J. The first pterosaur trackways from Japan. Cretac. Res. 31, 263–273 (2010).Article 

    Google Scholar 
    Chen, R. et al. Pterosaur tracks from the early late cretaceous of Dongyang City, Zhejiang Province China. Geol. Bull. China. 32, 693–698 (2013).CAS 

    Google Scholar 
    Li, Y., Wang, X. & Jiang, S. A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker. PeerJ 9, e11361 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ha, S. et al. Diminutive pterosaur tracks and trackways (Pteraichnus gracilis ichnosp. Nov.) from the lower Cretaceous Jinju formation, Gyeongsang basin. Korea. Cretac. Res. 131, 105080 (2021).Article 

    Google Scholar 
    Sánchez-Hernández, B., Przewieslik, A. G. & Benton, M. J. A reassessment of the Pteraichnus ichnospecies from the early Cretaceous of Soria Province Spain. J. Vertebr. Paleontol. 29, 487–497 (2009).Article 

    Google Scholar 
    Zhou, X. et al. A new darwinopteran pterosaur reveals arborealism and an opposed thumb. Curr. Biol. 31, 2429-2436.e2427 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lü, J. et al. Dragons of the Skies (recent advances on the study of pterosaurs from China) (Zhejiang Science and Technology Press, 2013).
    Google Scholar 
    Beccari, V. et al. Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLoS ONE 16, e0254789 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Acta Geologica Sinica-English Edition 84, 241–246 (2010).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: A reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (2010).Article 

    Google Scholar 
    Wang, X. & Lü, J. Discovery of a pterodactylid pterosaur from the Yixian Formation of western Liaoning China. Chin. Sci. Bull. 46, A3–A8 (2001).Article 

    Google Scholar 
    Frey, E. et al. A new specimen of nyctosaurid pterosaur, cf. Muzquizopteryx sp. from the Late Cretaceous of northeast Mexico. Revista mexicana de ciencias geológicas 29, 131–139 (2012).
    Google Scholar 
    Wu, W.-H., Zhou, C.-F. & Andres, B. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications. PLoS ONE 12, e0185486 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. et al. The toothless pterosaurs from China. Acta Geol. Sin. 90, 2513–2525 (2016).
    Google Scholar 
    Zhang, X., Jiang, S., Cheng, X. & Wang, X. New Material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China. An. Acad. Bras. Cienc. 91 (2019).Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: A review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, H. et al. New anatomical information on Dsungaripterus weii Young, 1964 with focus on the palatal region. PeerJ 8, e8741 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D. et al. A manus dominated pterosaur track assemblage from Gansu, China: Implications for behavior. Sci. Bull. 60, 264–272 (2015).Article 

    Google Scholar 
    Masrour, M., Pascual-Arribas, C., de Ducla, M., Hernández-Medrano, N. & Pérez-Lorente, F. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only). J. African Earth Sci. 134, 766–775 (2017).Article 

    Google Scholar 
    Bramwell, C. D. & Whitfield, G. R. Biomechanics of Pteranodon. Phil. Trans. R. Soc. Lond. B. 267, 503–581 (1974).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: a reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (1997).Article 

    Google Scholar 
    Mazin, J.-M., Billon-Bruyat, J.-P., Hantzpergue, P. & Lafaurie, G. Ichnological evidence for quadrupedal locomotion in pterodactyloid pterosaurs: Trackways from the Late Jurassic of Crayssac (southwestern France). Geol. Soc. Spec. Publ. 217, 283–296 (2003).Article 

    Google Scholar 
    Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    Lockley, M. G. & Wright, J. L. Pterosaur swim tracks and other ichnological evidnce of behaviour and ecology. Geol. Soc. Spec. Publ. 217, 297–313 (2003).Article 

    Google Scholar 
    Lockley, M., Mitchell, L. & Odier, G. P. Small Theropod track assemblages from middle Jurassic Eolianites of eastern Utah: Paleoecological insights from dune Ichnofacies in a transgressive sequence. Ichnos 14, 131–142 (2007).Article 

    Google Scholar 
    Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y. & Tomsich, C. S. A pterosaur manus track from Denali National park, Alaska Range, Alaska United States. Palaios 24, 466–472 (2009).Article 

    Google Scholar 
    Bell, P. R., Fanti, F. & Sissons, R. A possible pterosaur manus track from the late Cretaceous of Alberta. Lethaia 46, 274–279 (2013).Article 

    Google Scholar 
    Stinnesbeck, W. et al. Theropod, avian, pterosaur, and arthropod tracks from the uppermost Cretaceous Las Encinas Formation, Coahuila, northeastern Mexico, and their significance for the end-Cretaceous mass extinction. Geol. Soc. Am. Bull. 129, 331–348 (2017).Article 

    Google Scholar 
    Xing, L. et al. Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 303–313 (2017).Article 

    Google Scholar 
    Lockley, M. G., Gierlinski, G. D., Adach, L., Schumacher, B. & Cart, K. Newly discovered tetrapod ichnotaxa from the Upper Blackhawk Formation Utah. Bull. N. M. M. Nat. Hist. Sci. 79, 469–480 (2018).
    Google Scholar 
    Lockley, M. G. & Gillette, D. Pterosaur and bird tracks from a new Late Cretaceous locality in Utah. Verteb. Paleontol. Utah 99, 355–359 (1999).
    Google Scholar 
    Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a Ctenochasmatid embryo from the Early Cretaceous of Argentina. Geol. Soc. Spec. Publ. 455, 83–94 (2018).Article 

    Google Scholar 
    Mickelson, D. L., Lockley, M. G., Bishop, J. & Kirkland, J. A New Pterosaur Tracksite from the Jurassic Summerville Formation, near Ferron Utah. Ichnos 11, 125–142 (2004).Article 

    Google Scholar  More