Social microbiota and social gland gene expression of worker honey bees by age and climate
Evans, J. D. & Spivak, M. Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010).PubMed
Article
Google Scholar
Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).PubMed
Article
Google Scholar
Simone, M., Evans, J. D. & Spivak, M. Resin collection and social immunity in honey bees. Evolution 63, 3016–3022 (2009).CAS
PubMed
Article
Google Scholar
Dalenberg, H., Maes, P., Mott, B., Anderson, K. E. & Spivak, M. Propolis envelope promotes beneficial bacteria in the honey bee (Apis mellifera) mouthpart microbiome. Insects 11, 1–12 (2020).Article
Google Scholar
Poulsen, M., Bot, A. N. M., Nielsen, M. G. & Boomsma, J. J. Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav. Ecol. Sociobiol. 52, 151–157 (2002).Article
Google Scholar
Rosengaus, R. B., Traniello, J. F. A., Lefebvre, M. L. & Maxmen, A. B. Fungistatic activity of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insect. Soc. 51, 259–264 (2004).Article
Google Scholar
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Maes, P. W., Floyd, A. S., Mott, B. M. & Anderson, K. E. Overwintering honey bee colonies: effect of worker age and climate on the hindgut microbiota. Insects 12, 1–16 (2021).Article
Google Scholar
Brown, B. P. & Wernegreen, J. J. Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol. 16, 140 (2016).PubMed
PubMed Central
Article
Google Scholar
Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article
Google Scholar
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).PubMed
Article
Google Scholar
Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, 1–22 (2017).Article
CAS
Google Scholar
Anderson, K. E. & Ricigliano, V. A. Honey bee gut dysbiosis: a novel context of disease ecology. Curr. Opin. Insect Sci. 22, 125–132 (2017).PubMed
Article
Google Scholar
Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).CAS
PubMed
Article
Google Scholar
Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. bioRxiv https://doi.org/10.1101/2020.01.21.914325 (2020).Article
PubMed
PubMed Central
Google Scholar
Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Corby-Harris, V. et al. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov.. Appl. Environ. Microbiol. 80, 7460–7472 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Floyd, A. S. et al. Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): towards a microbiome understanding of disease susceptibility. Insects 11, 1–16 (2020).MathSciNet
Article
Google Scholar
Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610 (2007).CAS
PubMed
Article
Google Scholar
Sabree, Z. L., Hansen, A. K. & Moran, N. A. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS ONE 7, e41250 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Rokop, Z. P., Horton, M. A. & Newton, I. L. G. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81, 7261–7270 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Cox-foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).ADS
CAS
PubMed
Article
Google Scholar
Anderson, K. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).CAS
PubMed
Article
Google Scholar
Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 114, 4775–4780 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
Anderson, K. E. et al. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. https://doi.org/10.1111/mec.12966 (2014).Article
PubMed
PubMed Central
Google Scholar
Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 30, 235–244 (2015).Article
Google Scholar
Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE 9, e95056 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Münch, D., Kreibich, C. D. & Amdam, G. V. Aging and its modulation in a long-lived worker caste of the honey bee. J. Exp. Biol. 216, 1638–1649 (2013).PubMed
PubMed Central
Article
Google Scholar
Amdam, G. V. Social context, stress, and plasticity of aging. Aging Cell 10, 18–27 (2011).CAS
PubMed
Article
Google Scholar
Haddad, L. S., Kelbert, L. & Hulbert, A. J. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp. Gerontol. 42, 601–609 (2007).CAS
PubMed
Article
Google Scholar
Robinson, G. E. Hormonal and genetic control of honeybee division of labour. Behav. Physiol. Bees 14–27 (1991).Anderson, K. E. et al. The queen gut refines with age: longevity phenotypes in a social insect model. bioRxiv https://doi.org/10.1101/297507 (2018).Article
Google Scholar
Amdam, G. V., Norberg, K., Hagen, A. & Omholt, S. W. Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. 100, 1799–1802 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Jones, B., Shipley, E. & Arnold, K. E. Social immunity in honeybees—density dependence, diet, and body mass trade-offs. Ecol. Evol. 8, 4852–4859 (2018).PubMed
PubMed Central
Article
Google Scholar
Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed
PubMed Central
Article
Google Scholar
Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS
PubMed
Article
Google Scholar
Vannette, R. L., Mohamed, A. & Johnson, B. R. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci. Rep. 5, (2015).Ohashi, K., Natori, S. & Kubo, T. Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L.. Eur. J. Biochem. 249, 797–802 (1997).CAS
PubMed
Article
Google Scholar
Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article
Google Scholar
Vojvodic, S. et al. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecol. Evol. 5, 4795–4807 (2015).PubMed
PubMed Central
Article
Google Scholar
Ohashi, K. et al. Functional flexibility of the honey bee hypopharyngeal gland in a dequeened colony. Zool. Sci. 17, 1089–1094 (2000).CAS
Article
Google Scholar
Harwood, G., Salmela, H., Freitak, D. & Amdam, G. Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. J. Exp. Biol. 224 (2021).Santos, K. S. et al. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect. Biochem. Mol. Biol. 35, 85–91 (2005).CAS
PubMed
Article
Google Scholar
Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).Article
CAS
Google Scholar
Mattila, H. R. & Otis, G. W. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 32, 496–505 (2007).Article
Google Scholar
Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie 30, 299–310 (1999).Article
Google Scholar
Ricigliano, V. A. et al. Honey bees overwintering in a southern climate: Longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep. 8, 1–11 (2018).CAS
Article
Google Scholar
Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).CAS
Article
Google Scholar
Fukuda, H. S. K. Seasonal change of the honey bee worker longevity in Sapporo, North Japan with notes on some factors affecting life span. Ecol. Soc. Jpn. 16, 206–212 (1966).
Google Scholar
Mattila, H. R., Harris, J. L. & Otis, G. W. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insect. Soc. 48, 88–93 (2001).Article
Google Scholar
Feliciano-Cardona, S. et al. Honey bees in the tropics show winter bee-like longevity in response to seasonal dearth and brood reduction. Front. Ecol. Evol. 8, 1–8 (2020).Article
Google Scholar
Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect. Sci. 10, 185–193 (2015).PubMed
Article
Google Scholar
Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1 (2012).CAS
Article
Google Scholar
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Evans, J. D. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invertebr. Pathol. 93, 135–139 (2006).CAS
PubMed
Article
Google Scholar
Bourgeois, A. L., Rinderer, T. E., Beaman, L. D. & Danka, R. G. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J. Invertebr. Pathol. 103, 53–58 (2010).CAS
PubMed
Article
Google Scholar
Pearson, K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1986).Gloor, G. B. & Reid, G. Compositional analysis: a valid approach to analyze microbiome high throughput sequencing data. Can. J. Microbiol. 703, 0821 (2016).
Google Scholar
Comas, M. CoDaPack 2.0: a stand-alone, multi-platform compositional software. Options 1–10 (2011).Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, 1–10 (2013).Article
CAS
Google Scholar
Yek, S. H., Nash, D. R., Jensen, A. B. & Boomsma, J. J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. Biol. Sci. 279, 4215–4222 (2012).PubMed
PubMed Central
Google Scholar
Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 15, 645–656 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
Steinmann, N., Corona, M., Neumann, P. & Dainat, B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE 10, 1–18 (2015).Article
CAS
Google Scholar
Seehuus, S.-C.C., Norberg, K., Gimsa, U., Krekling, T. & Amdam, G. V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, J. R., Yang, Y. C., Shi, L. S. & Peng, C. C. Antioxidant properties of royal jelly associated with larval age and time of harvest. J. Agric. Food Chem. 56, 11447–11452 (2008).CAS
PubMed
Article
Google Scholar
Li-E, M., Jia, L., Yan, J., Xiao-Wen, L. & Xin, L. Isolation, purification and characterization of superoxide dismutase from royal jelly of the Italian worker bee, Apis mellifera. Acta Entomol. Sin. 47, 171–177 (2004).
Google Scholar
Bottacini, F. et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. 7, 1–14 (2012).Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157 (2014).Casteels, P. et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381–386 (1990).CAS
PubMed
Article
Google Scholar
Casteels, P., Ampe, C., Jacobs, F. & Tempst, P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268, 7044–7054 (1993).CAS
PubMed
Article
Google Scholar
Barke, J. et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8, 109 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
Lyapunov, Y. E., Kuzyaev, R. Z., Khismatullin, R. G. & Bezgodova, O. A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 373–379 (2008).Paiva, C. N. & Bozza, M. T. Are reactive oxygen species always detrimental to pathogens?. Antioxid. Redox Signal. 20, 1000–1034 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) Infected with Serratia marcescens strain sicaria. PLoS ONE 11, 1–26 (2016).Article
CAS
Google Scholar
Bae, Y. S., Choi, M. K. & Lee, W. J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 31, 278–287 (2010).CAS
PubMed
Article
Google Scholar
Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 80(310), 847–850 (2005).ADS
Article
CAS
Google Scholar
Crailsheim, K., Hrassnigg, N., Gmeinbauer, R., Szolderits, M. J. & Schneider, L. H. W. Pollen utilization in non-breeding honeybees in Winter. J. Insect. Phys. 39, 369–373 (1993).Article
Google Scholar
Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. 15, 687–701 (2006).Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect. Sci. 10, 1–7 (2015).PubMed
Article
Google Scholar
Corona, M., Hughes, K. A., Weaver, D. B. & Robinson, G. E. Gene expression patterns associated with queen honey bee longevity. Mech. Age. Dev. 126, 1230–1238 (2005).CAS
Article
Google Scholar
Santos, D. E., Souza, A. D. O., Tibério, G. J., Alberici, L. C. & Hartfelder, K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. 20200173, (2020). More