More stories

  • in

    Monitoring of benthic eukaryotic communities in two tropical coastal lagoons through eDNA metabarcoding: a spatial and temporal approximation

    Basset, A., Elliott, M., West, R. J. & Wilson, J. G. Estuarine and lagoon biodiversity and their natural goods and services. Estuar. Coast. Shelf Sci. 132, 1–4 (2013).CAS 

    Google Scholar 
    Newton, A. et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50–65 (2018).
    Google Scholar 
    Heck, K. L., Able, K. W., Roman, C. T. & Fahay, M. P. Composition, abundance, biomass, and production of macrofauna in a New England estuary: Comparisons among eelgrass meadows and other nursery habitats. Estuaries 18, 379–389 (1995).
    Google Scholar 
    Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).
    Google Scholar 
    Barbosa, F. A. R., Scarano, F. R., Sabará, M. & Esteves, F. A. Brazilian LTER: Ecosystem and biodiversity information in support of decision-making. Environ. Monit. Assess. 90, 121–133 (2004).CAS 
    PubMed 

    Google Scholar 
    Esteves, F. et al. Neotropical coastal lagoons: An appraisal of their biodiversity, functioning, threats and conservation management. Braz. J. Biol. 68, 967–981 (2008).CAS 
    PubMed 

    Google Scholar 
    Kjerfve, B. Coastal lagoons. Elsevier Oceanogr. Ser. 60, 1–8 (1994).
    Google Scholar 
    Whitfield, A. K. Coastal lagoons—Critical habitats of environmental change. Mar. Biol. Res. 7, 416–417 (2011).
    Google Scholar 
    Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Schallenberg, M., Hall, C. J. & Burns, C. W. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. Prog. Ser. 251, 181–189 (2003).
    Google Scholar 
    Broman, E. et al. Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Mol. Ecol. 28, 3813–3829 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, E. C. F. Physical setting and geomorphology of coastal lagoons. Elsevier Oceanogr. Ser. 60, 9–39 (1994).
    Google Scholar 
    Barnes, N., Bamber, R. N., Moncrieff, C. B., Sheader, M. & Ferrero, T. J. Estuarine, Coastal and Shelf Science Meiofauna in closed coastal saline lagoons in the United Kingdom: Structure and biodiversity of the nematode assemblage. Estuar. Coast. Shelf Sci. 79, 328–340 (2008).
    Google Scholar 
    Frühe, L. et al. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes. Mol. Ecol. 00, 1–19 (2020).
    Google Scholar 
    Cordier, T. et al. Multi-marker eDNA metabarcoding survey to assess the environmental impact of three offshore gas platforms in the North Adriatic Sea (Italy). Mar. Environ. Res. 146, 24–34 (2019).CAS 
    PubMed 

    Google Scholar 
    Balzano, S., Abs, E. & Leterme, S. C. Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74, 263–277 (2015).
    Google Scholar 
    Polinski, J. M., Bucci, J. P., Gasser, M. & Bodnar, A. G. Metabarcoding assessment of prokaryotic and eukaryotic taxa in sediments from Stellwagen Bank National Marine Sanctuary. Sci. Rep. 9, 14820 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    López-Escardó, D. et al. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    Günther, B., Knebelsberger, T., Neumann, H., Silke, L. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    Park, D. S. & Razafindratsima, O. H. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography (Cop.) 42, 148–161 (2019).
    Google Scholar 
    Pan, Y., Yang, J., McManus, G. B., Lin, S. & Zhang, W. Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnol. Oceanogr. 65, 1103–1115 (2020).
    Google Scholar 
    Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Polanco Fernández, A. et al. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environ. DNA 3, 1–15 (2020).
    Google Scholar 
    Armeli Minicante, S. et al. Habitat heterogeneity and connectivity: Effects on the planktonic protist community structure at two adjacent coastal sites (the lagoon and the Gulf of Venice, Northern Adriatic Sea, Italy) revealed by metabarcoding. Front. Microbiol. 10, 1–16 (2019).
    Google Scholar 
    Alves-De-Souza, C. et al. Does environmental heterogeneity explain temporal β diversity of small eukaryotic phytoplankton? Example from a tropical eutrophic coastal lagoon. J. Plankton Res. 39, 698–714 (2017).
    Google Scholar 
    Grzebyk, D. et al. Insights into the harmful algal flora in northwestern Mediterranean coastal lagoons revealed by pyrosequencing metabarcodes of the 28S rRNA gene. Harmful Algae 68, 1–16 (2017).CAS 
    PubMed 

    Google Scholar 
    Lallias, D. et al. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME J. 9, 1208–1221 (2015).PubMed 

    Google Scholar 
    Avó, A. P. et al. DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Front. Mar. Sci. 4, 1–16 (2017).
    Google Scholar 
    Behera, P. et al. Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. Sci. Total Environ. 595, 472–485 (2017).CAS 
    PubMed 

    Google Scholar 
    Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. 10, 1–17 (2020).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Lara-Lara, J. Los ecosistemas marinos. Cap. Nat. Méx. 1, 135–159 (2008).
    Google Scholar 
    García-Grajales, J. & Buenrostro-Silva, A. E. Parque Nacional Lagunas de Chacahua, Oaxaca: Perspectivas a sus 75 años. Cienc. Ergo Sum. 21, 149–153 (2014).
    Google Scholar 
    Zamorano, P., Barrientos-Luján, N. A. & Ahumada-Sempoal, M. Á. Moluscos bentónicos de dos sistemas lagunares de la costa chica de Oaxaca, México y su relación con parámetros fisicoquímicos. Cienc. y Mar. 14, 13–28 (2012).
    Google Scholar 
    Sanay-González, R., MonrealGómez, M. A. & de León, D. A. S. Simulación de la circulación en el sistema lagunar Chacahua-Pastoría, Oaxaca, México. Cienc. y Mar. 10, 3–16 (2006).
    Google Scholar 
    Comisión Nacional de Acuacultura y Pesca. Obras de dragado y escolleras en Boca de Oro, laguna de Corralero, Oaxaca (2010).Sánchez-Meraz, B. & Martínez-Vega, J. A. Inmigración de Postlarvas de Camarón Litopenaeus sp. y Farfantepenaeus sp. a través la Boca El Oro del Sistema Lagunar Corralero-Alotengo, Oaxaca. Cienc. y Mar. 4, 29–46 (2000).
    Google Scholar 
    Angel-Pérez, C., Serrano-Guzmán, S. J. & Ahumada-Sempoal, M. A. Ciclo reproductivo del molusco Atrina maura (Pterioidea: Pinnidae) en un sistema lagunar costero, al sur del Pacífico tropical mexicano. Rev. Biol. Trop. 55, 839–852 (2007).PubMed 

    Google Scholar 
    Sánchez Méndez, E., Urbano Alonso, B., Sierra Hernández, S. & Garcés Salazar, J. L. Características malacológicas y sociales de la pesquería artesanal de moluscos en la Laguna de Chacahua, Oaxaca, México. Cienc. y Mar. 19, 3–11 (2015).
    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10, 1–26 (2015).
    Google Scholar 
    Holman, L. E. et al. Detection of novel and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. https://doi.org/10.1038/s41598-019-47899-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bojorges-Baños, J. C. Riqueza y diversidad de especies de aves asociadas a manglar en tres sistemas lagunares en la región costera de Oaxaca, México. Rev. Mex. Biodivers. 82, 205–215 (2011).
    Google Scholar 
    Ahumada-Sempoal, M. Á. & Ruiz-García, N. Características fisicoquímicas de la Laguna Pastoría, Oaxaca, México. Cienc. y Mar. 12, 3–17 (2008).
    Google Scholar 
    Aylagas, E., Mendibil, I., Borja, Á. & Rodríguez-ezpeleta, N. Marine sediment sample pre-processing for macroinvertebrates metabarcoding: Mechanical enrichment and homogenization. Front. Mar. Sci. 3, 1–8 (2016).
    Google Scholar 
    Hestetun, J. T., Lanzén, A., Skaar, K. S. & Dahlgren, T. G. The impact of DNA extract homogenization and replication on marine sediment metabarcoding diversity and heterogeneity. Environ. DNA 3, 997–1006 (2021).
    Google Scholar 
    Comeau, M., Li, W. K. W., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, 1–12 (2011).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2018).Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online. https://doi.org/10.1002/9781118445112.stat07841 (2017).Article 

    Google Scholar 
    Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).
    Google Scholar 
    Ter Braak, C. J. F. The analysis of vegetation-environment relationships by canonical correspondence analysis*. Vegetatio 69, 69–77 (1987).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statisticssofware package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Coan, E. V. & Valentich-Scott, P. Bivalve Seashells of Tropical West America. Marine Bivalve Mollusks from Baja California to Northern Peru (Santa Barbara Museum of Natural History, 2012).
    Google Scholar 
    MolluscaBase. MolluscaBase. Mytella strigata (Hanley, 1843) (2022).Aylagas, E., Borja, Á., Muxika, I. & Rodríguez-ezpeleta, N. Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecol. Indic. 95, 194–202 (2018).
    Google Scholar 
    Cronin-O’Reilly, S. et al. Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    Forster, D. et al. Benthic protists: The under-charted majority. FEMS Microbiol. Ecol. 92, 1–11 (2016).
    Google Scholar 
    Kim, H., Kim, H., Hwang, H. S. & Kim, W. Metagenomic analysis of the marine coastal invertebrates of South Korea as assessed by Ilumina MiSeq. Anim. Cells Syst. (Seoul) 21, 37–44 (2017).
    Google Scholar 
    Brannock, P. M., Wang, L., Ortmann, A. C., Waits, D. S. & Halanych, K. M. Genetic assessment of meiobenthic community composition and spatial distribution in coastal sediments along northern Gulf of Mexico. Mar. Environ. Res. 119, 166–175 (2016).CAS 
    PubMed 

    Google Scholar 
    Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, e2807 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bastida-Zavala, J. R. et al. Marine and coastal biodiversity of Oaxaca, Mexico. Check List 9, 329–390 (2013).
    Google Scholar 
    Nascimento, F. J. A., Lallias, D., Bik, H. M. & Creer, S. Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Sci. Rep. https://doi.org/10.1038/s41598-018-30179-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    In the Wrong Place: Alien Marine Crustaceans: Distribution, Biology and Impacts, Vol. 6 (2011).Rodríguez-Almaraz, G. A. & García-Madrigal, M. D. S. Crustáceos exóticos invasores. Especies Acuáticas Invasoras en México 347–371 (2014).Gómez, S., Fleeger, J. W., Rocha, A. & Foltz, D. Four new species of Cletocamptus Schmankewitsch, 1875, closely related to Cletocamptus deitersi (Richard) (Copepoda: Harpacticoida). J. Nat. Hist. 38, 2669. https://doi.org/10.1080/0022293031000156240 (2004).Article 

    Google Scholar 
    Ciros Pérez, J., Silva Briano, M. & Elías Gutierrez, M. A new species of Macrothrix (Anomopoda: Macrothricidae) from Central Mexico. Hydrobiologia 319, 159–166 (1996).
    Google Scholar 
    Fuentes-Reines, J. M., De Roa, E. Z., Morón, E., Gámez, D. & López, C. Conocimiento de la fauna de cladocera (Crustacea: Branchiopoda) de la ciénaga grande de Santa Marta, Colombia. Bol. Investig. Mar. y Costeras 41, 121–164 (2012).
    Google Scholar 
    Thakur, R. K., Jindal, R., Singh, U. B. & Ahluwalia, A. S. Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environ. Monit. Assess. 185, 8355–8373 (2013).CAS 
    PubMed 

    Google Scholar 
    Band-Schmidt, C. J., Bustillos-Guzmán, J. J., López-Cortés, D. J., Núñez-Vázquez, E. & Hernández-Sandoval, F. E. The actual state of the study of harmful algal blooms in Mexico. Hidrobiológica 21, 381–413 (2011).
    Google Scholar 
    Maciel-Baltazar, E. Dinoflagelados (Dinoflagellata) tóxicos de la costa de Chiapas, México, Pacífico centro oriental. UNED Res. J. 7, 39–48 (2015).
    Google Scholar 
    Okolodkov, Y. B. & Gárete-Izárraga, I. An annotated checklist od dinoflagellates (Dinophyceae) from the Mexican Pacific. Acta Bot. Mex. 74, 1–154 (2006).
    Google Scholar 
    Murray, S. A. et al. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae 49, 19–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gárate-Lizárraga, I. et al. Seasonality of the dinoflagellate Amphidinium cf. carterae (Dinophyceae: Amphidiniales) in Bahía de la Paz, Gulf of California. Mar. Pollut. Bull. 146, 532–541 (2019).PubMed 

    Google Scholar 
    Varona-Cordero, F. & Gutiérrez, J. Seasonal phytoplankton composition of two coastal lagoons of the tropical Pacific. Hidrobiológica 16, 159–174 (2006).
    Google Scholar 
    Hyeon, S. & Jin, H. Gyrodinium jinhaense n. sp., a new heterotrophic unarmored dinoflagellate from the coastal waters of Korea. J. Eukaryot. Microbiol. 66, 821–835 (2019).
    Google Scholar 
    Onuma, R., Watanabe, K. & Horiguchi, T. Pellucidodinium psammophilum gen. & sp. nov. and Nusuttodinium desymbiontum sp. nov. (Dinophyceae), two novel heterotrophs closely related to kleptochloroplastidic dinoflagellates. Phycologia 54, 192–209 (2015).
    Google Scholar 
    Elliott, M. & Whitfield, A. K. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 94, 306–314 (2011).
    Google Scholar 
    Sreenivasulu, G., Jayaraju, N. & Sundara Raja, R. Physico-chemical parameters of coastal water from Tupilipalem coast, Southeast coast of India. J. Coast. Sci. 2, 34–39 (2015).
    Google Scholar 
    Landa-Jaime, V. Benthic mollusc assemblage of the Agua Dulce / El Ermitaño lagoon estuarine system, Jalisco, Mexico. Ciencias Mar. 29, 169–184 (2003).
    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment: Physiological and Ecological Responses (eds Solan, M. & Whiteley, N.) 384 (Societal Implications. Oxford University Press, 2016).
    Google Scholar 
    Rivera-Velázquez, G., Soto, L. A., Salgado-Ugarte, I. H. & Naranjo, E. J. Growth, mortality and migratory pattern of white shrimp (Litopenaeus vannamei, Crustacea, Penaeidae) in the Carretas-Pereyra coastal lagoon system, Mexico. Rev. Biol. Trop. 56, 523–533 (2008).PubMed 

    Google Scholar 
    Gainey, L. F. & Greenberg, M. J. Physiological basis of the species abundance-salinity relationship in molluscs: A speculation*. Mar. Biol. 40, 41–49 (1977).CAS 

    Google Scholar 
    Baqueiro-Cárdenas, E. R., Borabe, L. & Goldaracena-Islas, C. G. Mollusks and pollution. A review. Rev. Mex. Biodivers. 78, 1–7 (2007).
    Google Scholar 
    Purcell, J. E., Uye, S. & Lo, W. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Mar. Ecol. Prog. Ser. 350, 153–174 (2007).
    Google Scholar 
    Nemcová, Y., Pusztai, M., Skaloudová, M. & Neustupa, J. Silica-scaled chrysophytes (Stramenopiles, Ochrophyta) along a salinity gradient: A case study from the Gulf of Bothnia western shore (northern Europe). Hydrobiologia 764, 187–197 (2016).
    Google Scholar 
    Li, R., Jiao, N., Warren, A. & Xu, D. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea. Eur. J. Protistol. 63, 72–82 (2018).PubMed 

    Google Scholar 
    Kataoka, T. & Kondo, R. Estuarine, coastal and shelf science protistan community composition in anoxic sediments from three salinity-disparate Japanese lakes ☆. Estuar. Coast. Shelf Sci. 224, 34–42 (2019).CAS 

    Google Scholar 
    Sun, P. et al. Marked seasonality and high spatial variation in estuarine ciliates are driven by exchanges between the ‘abundant’ and ‘intermediate’ biospheres. Sci. Rep. https://doi.org/10.1038/s41598-017-10308-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Contreras, E. F. O., Castañeda, L. R., Torres, A. & Pérez, M. A. H. Problemática sobre las lagunas costeras mexicanas V, Pesquerías. ContactoSS 25, 36–46 (1998).
    Google Scholar 
    Reizopoulou, S. & Nicolaidou, A. Benthic diversity of coastal brackish-water lagoons in western Greece. Aquat. Conserv. Mar. Freshw. Ecosyst. 14, 93–102 (2004).
    Google Scholar 
    Zamorano, P., Barrientos-luján, N. A. & Ramírez-luna, S. Malacofauna del infralitoral rocoso de Agua Blanca, Santa Elena Cozoaltepec, Oaxaca. Cienc. y Mar. 12, 19–33 (2008).
    Google Scholar 
    Chávez-lópez, Y. & Cruz-gómez, C. New records of polychaetes (Annelida: Polychaeta) from three locations of Oaxaca. Mexico. 67, 157–168 (2019).
    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).CAS 
    PubMed 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Google Scholar 
    Miller, S. E., Hausmann, A., Hallwachs, W. & Janzen, D. H. Advancing taxonomy and bioinventories with DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150339 (2016).
    Google Scholar  More

  • in

    Sex-specific movement ecology of the shortest-lived tetrapod during the mating season

    Dunham, A. E. & Miles, D. B. Patterns of covariation in life history traits of squamate reptiles: The effects of size and phylogeny reconsidered. Am. Nat. 126, 231–257 (1985).Article 

    Google Scholar 
    Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–299 (2007).Article 

    Google Scholar 
    Sæther, B. E. Pattern of covariation between life-history traits of European birds. Nature 1, 616–617 (1988).ADS 
    Article 

    Google Scholar 
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).Article 

    Google Scholar 
    De Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life—history traits. J. Evol. Biol. 22, 1770–1774 (2009).PubMed 
    Article 

    Google Scholar 
    Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 44, 17910–17914 (2013).ADS 
    Article 

    Google Scholar 
    Blanco, M. A. & Sherman, P. W. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech. Ageing Dev. 126, 794–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shine, R. & Charnov, E. L. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 139, 1257–1269 (1992).Article 

    Google Scholar 
    Pedrono, M. et al. Using a surviving lineage of Madagascar’s vanished megafauna for ecological restoration. Biol. Cons. 159, 501–506 (2013).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. A unique life history among tetrapods: An annual chameleon living mostly as an egg. Proc. Natl. Acad. Sci. USA 105, 8980–8984 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uetz, P., Freed, P. & Hošek, J. (eds) The reptile database. http://www.reptile-database.org (2020).Glaw, F. & Vences, M. A Field Guide to the Amphibians and Reptiles of Madagascar (Vences and Glaw, 2007).
    Google Scholar 
    Anderson, C. V. Off like a shot: Scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Sci. Rep. 6, 18625 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Male preference for sexual signalling over crypsis is associated with alternative mating tactics. Anim. Behav. 117, 43–49 (2016).Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Alternative mating tactics in male chameleons (Chamaeleo chamaeleon) are evident in both long-term body color and short-term courtship pattern. PLoS ONE 11, e0159032 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biol. Lett. 9, 20130892 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tolley, K. A. & Herrel, A. (eds) The Biology of Chameleons (University of California Press, 2014).
    Google Scholar 
    Andreone, F., Guarino, F. M. & Randrianirina, J. E. Life history traits, age profile, and conservation of the panther chameleon, Furcifer pardalis (Cuvier 1829), at Nosy Be, NW Madagascar. Trop. Zool. 18, 209–225 (2005).Article 

    Google Scholar 
    Tessa, G., Glaw, F. & Andreone, F. Longevity in Calumma parsonii, the World’s largest chameleon. Exp. Geront. 89, 41–44 (2017).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behav. Ecol. 20, 1079–1088 (2009).Article 

    Google Scholar 
    Eckhardt, F., Kappeler, P. M. & Kraus, C. Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Sci. Rep. 7, 11397 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eckhardt, F., Kraus, C. & Kappeler, P. M. Life histories, demographies and population dynamics of three sympatric chameleon species (Furcifer spp.) from western Madagascar. Amphibia-Reptilia 40, 41–54 (2018).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Social behavior of two species of chameleons in Madagascar: Insights into sexual selection. Herpetologica 65, 54–69 (2009).Article 

    Google Scholar 
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiaverano, L. M., Wright, M. J. & Holland, B. S. Movement behavior is habitat dependent in invasive Jackson’s chameleons in Hawaii. J. Herpetol. 48, 471–479 (2014).Article 

    Google Scholar 
    Smith, D. et al. Observations on nesting and clutch size in Furcifer oustaleti (Oustalet’s chameleon) in South Florida. Southeast Nat. 15, 75–88 (2016).Article 

    Google Scholar 
    Van Kleeck, M. J., Smith, T. A. & Holland, B. S. Paedophagic cannibalism, resource partitioning, and ontogenetic habitat use in an invasive lizard. Ethol. Ecol. Evol. 30, 497–514 (2018).Article 

    Google Scholar 
    Tolley, K. A., Raw, R. N., Altwegg, R. & Measey, J. G. Chameleons on the move: Survival and movement of the Cape dwarf chameleon, Bradypodion pumilum, within a fragmented urban habitat. Afr. Zool. 45, 99–106 (2010).Article 

    Google Scholar 
    Cuadrado, M. The influence of female size on the extent and intensity of mate guarding by males in Chamaeleo chamaeleon. J. Zool. 246, 351–358 (1998).Article 

    Google Scholar 
    Cuadrado, M. Mating asynchrony favors no assortative mating by size and serial-type polygyny in common chameleons, Chamaeleo chamaeleon. Herpetologica 55, 523–530 (1999).
    Google Scholar 
    Cuadrado, M. Influence of female’s sexual stage and number of available males on the intensity of guarding behavior by male common chameleons: A test of different predictions. Herpetologica 56, 387–393 (2000).
    Google Scholar 
    Cuadrado, M. Mate guarding and social mating system in male common chameleons (Chamaeleo chamaeleon). J. Zool. 255, 425–435 (2001).Article 

    Google Scholar 
    Kauffmann, J. L. D., Brady, L. D. & Jenkins, R. K. B. Behavioural observations of the chameleon Calumma oshaughnessyi oshaughnessyi in Madagascar. Herpetol. J. 7, 77–80 (1997).
    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Kappeler, P. M. Intrasexual selection in Mirza coquereli: Evidence for scramble competition polygyny in a solitary primate. Behav. Ecol. Sociobiol. 41, 115–127 (1997).Article 

    Google Scholar 
    Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Glaudas, X. & Rodriguez-Robles, J. A. Vagabond males and sedentary females: Spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biol. J. Linn. Soc. 103, 681–695 (2011).Article 

    Google Scholar 
    Taborsky, M. & Brockmann, H. J. Alternative reproductive tactics and life history phenotypes. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P. M.) 537–586 (Springer, 2010).Chapter 

    Google Scholar 
    Tolley, K. A., Chauke, L. F., Jackson, J. C. & Feldheim, K. A. Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum). Afr. J. Herpetol. 63, 47–56 (2014).Article 

    Google Scholar 
    Rebelo, A. D., Altwegg, R., Katz, E. M. & Tolley, K. A. Out on a limb: Female chameleons (Bradypodion pumilum) position themselves to minimise detection, whereas males maximise mating opportunity. Afr. J. Herpetol https://doi.org/10.1080/21564574.2021.1998233 (2022).Article 

    Google Scholar 
    Dollion, A. Y., Herrel, A., Marquis, O., Leroux-Coyau, M. & Meylan, S. The colour of success: Does female mate choice rely on male colour change in the chameleon Furcifer pardalis?. J. Exp. Biol. 223, jeb224550 (2020).PubMed 
    Article 

    Google Scholar 
    Dollion, A. Y., Meylan, S., Marquis, O., Leroux-Coyau, M. & Herrel, A. Do male panther chameleons use different aspects of color change to settle disputes?. Sci. Nat. 109, 13 (2022).CAS 
    Article 

    Google Scholar 
    Shine, R. Reproductive strategies in snakes. Proc. R. Soc. Lond. B 270, 995–1004 (2003).Article 

    Google Scholar 
    Andrews, R. M. & Karsten, K. B. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol. J. Linn. Soc. 100, 656–668 (2010).Article 

    Google Scholar 
    Sever, D. M. & Hamlett, W. C. Female sperm storage in reptiles. J. Exp. Zool. 292, 187–199 (2002).PubMed 
    Article 

    Google Scholar 
    Friesen, C. R., Kahrl, A. F. & Olsson, M. Sperm competition in squamate reptiles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200079 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: The history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014).PubMed 
    Article 

    Google Scholar 
    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).PubMed 
    Article 

    Google Scholar 
    Holleley, C. E., Dickman, C. R., Crowther, M. S. & Oldroyd, B. P. Size breeds success: Multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Mol. Ecol. 15, 3439–3448 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kappeler, P. M. & Fichtel, C. A 15-year perspective on the social organization and life history of sifaka in Kirindy forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 101–121 (Springer, 2012).Chapter 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2020).RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2020).Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 102. https://cran.r-project.org/package=dplyr (2020).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ggplot2. R package version 100. https://cran.r-project.org/package=cowplot (2019).Revelle, W. psych: Procedures for personality and psychological research, Northwestern University, Evanston, IL. https://cran.r-project.org/package=psych (2020).Wickham, H. modelr: Modelling functions that work with the pipe. R package version 018. https://cran.r-project.org/package=modelr (2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    Ara, T. brunnermunzel: (Permuted) Brunner–Munzel Test R Package Version 133 (2019).Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Signer, J. & Fieberg, J. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laver, P. N. & Kelly, M. J. A critical review of home range studies. J. Wildl. Manag. 72, 290–298 (2008).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2004).Article 

    Google Scholar 
    Worton, B. J. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70, 1641–1668 (1989).Article 

    Google Scholar 
    Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar  More

  • in

    Cat predation of Kangaroo Island dunnarts in aftermath of bushfire

    Kangaroo Island (~ 4400 km2, KI hereafter) is the third largest island in Australia. It underwent substantial land clearing, and consequent fragmentation of the natural bushland habitat, after World War II1,2. Relatively intact western KI was eventually identified as a key biodiversity hotspot3, home to several endangered and endemic native species including the KI dunnart.Dunnarts (Sminthopsis spp.) are small insectivorous dasyurid marsupials. The KI dunnart is distinguished from the other 17 dunnart species found in Australia by morphological features, including manus, pes, and penis shape4. This endangered species is the only dasyurid found on the island, exclusively resident in ~ 342 km2 before 20205, and found nowhere else in the world2. The species is rarely recorded, with only 28 individuals found during  > 33,000 trap-nights pre-20195. With a low number of individuals restricted to a small geographic area, the KI dunnart is exceptionally vulnerable to stochastic events. Predation by feral cats (Felis catus) is likely to be another source of pressure on the KI dunnart. Cats were introduced to KI during European settlement and quickly became apex predators, reaching higher relative abundance than adjacent mainland6 with an estimated density of 0.37 ± 0.15 cat/km25. Cat predation has been the cause for extinction or near-extinction of several native species around the globe7, with the extinction risk becoming increasingly acute in insular islands like KI. Cat predation on islands has contributed to  > 13% of globally recorded extinction events, accounting for  > 8% of instances within these taxa of species being pushed to critically endangered status8. A recent meta-analysis found evidence of cat predation for three critically endangered species and four endangered species in Australia on the IUCN Red List of Threatened Species7.Australian bushfires in 2019–2020 burnt ~ 97,000 km2 of vegetation9,10, with damage overlapping with habitats of  > 100 threatened species. Dry lightning storms in the remote and vegetated northwest of the Island started the bushfire in the KI. The bushfire eventually spread easterly, burning approximately 98% of the known and predicted habitat of the KI dunnart10.In this study, we have analysed the diet of feral cats humanely euthanized in designated areas of local conservation interest immediately after the 2019 KI bushfire. More

  • in

    Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan

    FAO. Global Forest Resource Assessment 2020—Key Findings (FAO, 2020).
    Google Scholar 
    Rasmussen, L. V. et al. A combination of methods needed to assess the actual use of provisioning ecosystem services. Ecosyst. Serv. 17, 75–86 (2016).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the World’s Forests. Science 333, 988 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gao, J., Tang, X. G., Lin, S. Q. & Bian, H. Y. The influence of land use change on key ecosystem services and their relationships in a mountain region from past to future (1995–2050). Forests 12, 616 (2021).Article 

    Google Scholar 
    Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C. & Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 33(3), 439–453 (2018).Article 

    Google Scholar 
    Hoque, M. Z., Islam, I., Ahmed, M., Hasan, S. S. & Prodhan, F. A. Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. Egypt. J. Remote Sens. Space Sci. 25(1), 173–180 (2022).
    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Sil, Â. et al. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 13(2), 82–104 (2017).Article 

    Google Scholar 
    Xu, Y., Tang, H., Wang, B. & Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth. Sci. 75(5), 416 (2016).Article 

    Google Scholar 
    Liang, Y., Liu, L. & Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 12(2), e0172494 (2017).Article 

    Google Scholar 
    Zhao, M. et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38 (2019).Article 

    Google Scholar 
    Leh, M. D., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Zhao, Z. et al. Assessment of carbon storage and its influencing factors in Qinghai-Tibet Plateau. Sustainability 10(6), 1864 (2018).Article 

    Google Scholar 
    Fu, Q. et al. Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: A case study in Altay Prefecture, China. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Li, Z., Cheng, X. & Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 11(5), 584 (2020).CAS 
    Article 

    Google Scholar 
    Liu, H., Xiao, W., Li, Q., Tian, Y. & Zhu, J. Spatio-temporal change of multiple ecosystem services and their driving factors: A case study in Beijing, China. Forests 13(2), 260 (2022).CAS 
    Article 

    Google Scholar 
    Nizami, S. M. The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 23(3), 377–384 (2012).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z., Sharif, F., Khan, A. U., Shahzad, L. & Hayyat, M. U. Assessment of tree biomass carbon stock of subtropical scrub forest, Soan valley Pakistan. App. Ecol. Environ. Res. 18(2), 2231–2245 (2020).Article 

    Google Scholar 
    Siddiq, Z. et al. Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Glob. Ecol. Conserv. 27, e01539 (2021).Article 

    Google Scholar 
    Ali, A., Ashraf, M. I., Gulzar, S. & Akmal, M. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: Implications for REDD+ and climate change mitigation. Environ. Monit. Assess. 192(3), 1–13 (2020).Article 

    Google Scholar 
    Mannan, A. et al. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 17, e00535 (2019).Article 

    Google Scholar 
    Khan, A. U. et al. Piloting restoration initiatives in subtropical scrub forest: Specifying areas asserting adaptive management. Environ. Monit. Assess. 191(11), 675 (2019).Article 

    Google Scholar 
    Mohajane, M. et al. Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5(12), 131 (2018).Article 

    Google Scholar 
    Brown, J. NDVI, the foundation for remote sensing phenology. In USGS Remote Sensing Phenology: Vegetation Indices (2015).Liping, C., Yujun, S. & Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 13(7), e0200493 (2018).Article 

    Google Scholar 
    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8(10), 895–900 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Salehi, M. H., Beni, O. H., Harchegani, H. B., Borujeni, I. E. & Motaghian, H. R. Refining soil organic matter determination by loss-on-ignition. Pedosphere 21(4), 473–482 (2011).Article 

    Google Scholar 
    Tivet, F. et al. Soil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling depth on the linear model of C-equivalent correction factor. Soil Sci. Soc. Am. J. 76(3), 1048–1059 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Government of Punjab. The Punjab Forest (Amendment) Act, 2010 (Government of the Punjab, 2010).
    Google Scholar 
    Kamwi, J. M., Kaetsch, C., Graz, F. P., Chirwa, P. & Manda, S. Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Environ. Monit. Assess. 189(5), 242 (2017).Article 

    Google Scholar 
    Negassa, M. D., Mallie, D. T. & Gemeda, D. O. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environ. Syst. Res. 9(1), 1 (2020).Article 

    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2007. Burreau of Statistics (Government of the Punjab, 2007).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2013. Burreau of Statistics (Government of the Punjab, 2013).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2019. Burreau of Statistics (Government of the Punjab, 2019).
    Google Scholar 
    Dunn, R. J. H., Stanitski, D. M., Gobron, N. & Willett, K. M. State of the climate in 2019: Global climate. Special online supplement to the B. Am. Meteorol. Soc. 101(8), S9. https://doi.org/10.1175/BAMS-D-20-0104.1 (2020).Article 

    Google Scholar 
    Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419(1), 64–77 (2016).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z. et al. Effect of climate warming on seedling growth and biomass accumulation of Acacia modesta and Olea ferruginea in a subtropical scrub forest of Pakistan. Écoscience 29, 1–14 (2021).
    Google Scholar 
    Bibi, S., Sultana, J., Sultana, H. & Malik, R. N. Ethnobotanical uses of medicinal plants in the highlands of Soan valley, salt range, Pakistan. J. Ethnopharmacol. 155(1), 352–361 (2014).Article 

    Google Scholar 
    Chaudhry, Q. U. Z. Climate Change Profile of Pakistan (Asian Development Bank, 2017).
    Google Scholar 
    Shaheen, H. et al. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pak. J. Bot. 48, 2351–2357 (2016).CAS 

    Google Scholar 
    Arunyawat, S. & Shrestha, R. P. Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 8(8), 768 (2016).Article 

    Google Scholar 
    Sing, L., Metzger, M. J., Paterson, J. S. & Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. For. Int. J. For. Res. 91(2), 151–164 (2018).
    Google Scholar  More

  • in

    Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

    Suding, K. Understanding successes and failures in restoration ecology. Annu. Rev. Ecol. Evol. Syst. 42, (2011).Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027 (2017).Article 

    Google Scholar 
    Germino, M. J. et al. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 33, 1177–1194 (2018).Article 

    Google Scholar 
    Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).PubMed 
    Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments. Rangel. Ecol. Manag. 67, 440–454 (2014).Article 

    Google Scholar 
    Pilliod, D. S., Welty, J. L. & Toevs, G. R. Seventy-five years of vegetation treatments on public rangelands in the great basin of North America. Rangelands 39, 1–9 (2017).Article 

    Google Scholar 
    Applestein, C., Germino, M. J., Pilliod, D. S., Fisk, M. R. & Arkle, R. S. Appropriate sample sizes for monitoring burned pastures in sagebrush steppe: how many plots are enough, and can one size fit all? Rangel. Ecol. Manag. 71, 721–726 (2018).Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information Landsat-based mapping project. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    Homer, C. G., Aldridge, C. L., Meyer, D. K. & Schell, S. J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 14, 233–244 (2012).ADS 

    Google Scholar 
    Tredennick, A. T. et al. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere 7, 1–16 (2016).Article 

    Google Scholar 
    Rigge, M. et al. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 12, 1–26 (2020).Article 

    Google Scholar 
    Shi, H., Homer, C., Rigge, M., Postma, K. & Xian, G. Analyzing vegetation change in a sagebrush ecosystem using long-term field observations and Landsat imagery in Wyoming. Ecosphere 11, 1–20 (2020).Article 

    Google Scholar 
    Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. Bioscience 68, 885–895 (2018).
    Google Scholar 
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, 1–4 (2018).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2020).Article 

    Google Scholar 
    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jones, K. W. & Lewis, D. J. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS One 10, 1–22 (2015).
    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    Parkhurst, T., Prober, S. M., Hobbs, R. J. & Standish, R. J. Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J. Appl. Ecol. 1–15. https://doi.org/10.1111/1365-2664.13852. (2021)Crouzeilles, R. et al. A global meta-Analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).Article 

    Google Scholar 
    Atkinson, J. & Bonser, S. P. “Active” and “passive” ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032–1035 (2020).Article 

    Google Scholar 
    Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 170–184. https://doi.org/10.1017/CBO9780511810725.016. (1983)Angrist, J. D., & Pischke, J. S. Mostly harmless econometrics. (Princeton University Press, 2009).Bernes, C. et al. How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ. Evid. 6, 1–16 (2017).Article 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Davies, K. W. et al. Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144, 2573–2584 (2011).Article 

    Google Scholar 
    Miller, R. F. et al. Characteristics of Sagebrush Habitats and Limitations to Long-term Conservation. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. USGS Adm. Rep. (2011).Pierson, F. B. et al. Hydrologic and erosion responses of sagebrush steppe following juniper encroachment, wildfire, and tree cutting. Rangel. Ecol. Manag. 66, 274–289 (2013).Article 

    Google Scholar 
    Wijayratne, U. C. & Pyke, D. A. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am. J. Bot. 99, 438–447 (2012).PubMed 
    Article 

    Google Scholar 
    Pyke, D. A., Wirth, T. A. & Beyers, J. L. Does seeding after wildfires in rangelands reduce erosion or invasive species? Restor. Ecol. 21, 415–421 (2013).Article 

    Google Scholar 
    Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    Shriver, R. K. et al. Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 24, 4972–4982 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Eiswerth, M. E., Krauter, K., Swanson, S. R. & Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 90, 1320–1325 (2009).Article 

    Google Scholar 
    Arkle, R. S. et al. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 5, 1–32 (2014).Article 

    Google Scholar 
    Davies, K. W. & Bates, J. D. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects. Restor. Ecol. 25, 33–41 (2017).Article 

    Google Scholar 
    Davies, K. W., Bates, J. D. & Boyd, C. S. Postwildfire seeding to restore native vegetation and limit exotic annuals: an evaluation in juniper-dominated sagebrush steppe. Restor. Ecol. 27, 120–127 (2019).Article 

    Google Scholar 
    Davies, K. W., Boyd, C. S., Madsen, M. D., Kerby, J. & Hulet, A. Evaluating a seed technology for Sagebrush restoration across an elevation gradient: support for Bet Hedging. Rangel. Ecol. Manag. 71, 19–24 (2018).Article 

    Google Scholar 
    Rinella, M. J. et al. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol. Appl. 25, 1044–1053 (2015).Davies, K. W., Boyd, C. S. & Nafus, A. M. Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel. Ecol. Manag. 66, 472–478 (2013).Article 

    Google Scholar 
    United States General Accounting. WILDLAND FIRES: Better Information Needed on Effectiveness of Emergency Stabilization and Rehabilitation Treatments. Report to Congressional Requesters. https://doi.org/10.1089/blr.2006.9996. (2003)Requena-Mullor, J. M., Maguire, K. C., Shinneman, D. J. & Caughlin, T. T. Integrating anthropogenic factors into regional-scale species distribution models—A novel application in the imperiled sagebrush biome. Glob. Chang. Biol. 00, 1–15 (2019).
    Google Scholar 
    Pyke, D. A. et al. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions. U.S. Geological Survey Circular 1426 (2017).Chambers, J. C. et al. Science framework for conservation and restoration of the sagebrush biome: Linking the department of the interior’s integrated rangeland fire management strategy to long-term strategic conservation actions. USDA . Serv. – Gen. Tech. Rep. RMRS-GTR 2017, 1–217 (2017).
    Google Scholar 
    US-BLM. Burned Area Emergency Stabilization and Rehabilitation – BLM Handbook H-1742-1. 2, (2007).Pilliod, D. S. & Welty, J. L. Land Treatment Digital Library. Data Series. https://doi.org/10.3133/ds806. (2013)Bradley, B. A. et al. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506 (2018).Article 

    Google Scholar 
    Fusco, E. J., Finn, J. T., Balch, J. K., Chelsea Nagy, R. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Connor, R. C. et al. Small-scale water deficits after wildfires create long-lasting ecological impacts. Environ. Res. Lett. 15, 044001 (2020).Applestein, C., Caughlin, T. T. & Germino, M. J. Weather affects post‐fire recovery of sagebrush‐steppe communities and model transferability among sites. Ecosphere 12, (2021).Cameron, A. C. & Miller, D. L. A. Practitioner’ s Guide to Cluster-Robust Inference. J. Human Resources. 50, 317–372 (2015).Oshchepkov, A. & Shirokanova, A. Bridging the gap between multilevel modeling and economic methods. Soc. Sci. Res. in press, (2022).Aldridge, C. L. & Boyce, M. S. Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508–526 (2007).PubMed 
    Article 

    Google Scholar 
    Allen-Diaz, B. & Bartolome, J. W. Sagebrush-grass vegetation dynamics: Comparing Classical and State-Transition models. Ecol. Appl. 8, 795–804 (1998).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Natural regeneration processes in big sagebrush (Artemisia tridentata). Rangel. Ecol. Manag. 67, 344–357 (2014).Article 

    Google Scholar 
    Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).PubMed 
    Article 
    ADS 

    Google Scholar 
    Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 22, 663–680 (2020).Article 

    Google Scholar 
    Groves, A. M., Bauer, J. T. & Brudvig, L. A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Groves, A. M. & Brudvig, L. A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 27, 128–137 (2019).Article 

    Google Scholar 
    Werner, C. M., Stuble, K. L., Groves, A. M. & Young, T. P. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 0, 1–8 (2020).
    Google Scholar 
    Stuble, K. L., Fick, S. E. & Young, T. P. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 54, 1051–1057 (2017).Article 

    Google Scholar 
    Stuble, K. L., Zefferman, E. P., Wolf, K. M., Vaughn, K. J. & Young, T. P. Outside the envelope: rare events disrupt the relationshipbetween climate factors and species interactions. Ecology 98, 1623–1630 (2017).PubMed 
    Article 

    Google Scholar 
    Hardegree, S. P. et al. Weather-Centric Rangeland Revegetation Planning. Rangel. Ecol. Manag. 71, 1–11 (2018).Article 

    Google Scholar 
    Allison, B., Cara, S-W. & Applestein, M. J., Germino Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. Conservation Science and Practice https://doi.org/10.1111/csp2.12737.Callaway, B. & Sant’Anna, P. H. C. Difference-in-Differences with multiple time periods. J. Econom. 225, 200–230 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 225, 254–277 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, (2018).Ferraro, P. J. & Miranda, J. J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 4, 281–317 (2017).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecol. Modell. 286, 66–77 (2014).Article 

    Google Scholar 
    Kleinhesselink, A. R. & Adler, P. B. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99, 1139–1149 (2018).PubMed 
    Article 

    Google Scholar 
    Brabec, M. M., Germino, M. J. & Richardson, B. A. Climate adaption and post-fire restoration of a foundational perennial in cold desert: insights from intraspecific variation in response to weather. J. Appl. Ecol. 54, 293–302 (2017).Article 

    Google Scholar 
    Eidenshink, J. C. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5. http://cran.r-project.org/doc/Rnews/ (2005).Applestein, C. & Germino, M. J. Detecting shrub recovery in sagebrush steppe: comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 17, (2021).Rigge, M. et al. Rangeland fractional components across the western United States from 1985 to 2018. Remote Sens. 13, 1–26 (2021).Article 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).U.S. Geological, S. 1/3rd arc-second Digital Elevation Models (DEMs)–USGS National Map 3DEP Downloadable Data Collection. (2017).Walkinshaw, Mike, A. T. O’Geen, D. E. B. Soil Properties. California Soil Resource Lab,McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Ferraro, P. J. & Hanauer, M. M. Advances in measuring the environmental and social impacts of environmental programs. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).Article 

    Google Scholar 
    Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28, https://www.jstatsoft.org/v42/i08/ (2011).Article 

    Google Scholar 
    Guo, S. & Fraser, M. Propensity score analysis: statistical methods and applications. (Sage Publications, 2010).Puhani, P. A. The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models. Econ. Lett. 115, 85–87 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography (Cop.). 35, 374–384 (2012).Article 

    Google Scholar 
    Stan Development Team. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org (2020).Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, (2017).Mahr, T. & Gabry, J. bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/ R package version (2021).Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151 R package version 3.0.1. (2021).Simler-Williamson, A. & Germino, M. J. Data associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.25338/B8W63R (2022).Simler‐Williamson, A. B. R code associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.5281/zenodo.6565074 (2022). More

  • in

    Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2

    The biotic induction of OAE-2The rapid proliferation of select microbial communities at 427.54 mcd likely represents a pre-OAE biotic perturbation (pre-OAE BP) presaging the protracted period of widespread marine deoxygenation during OAE-2, and progressive deoxygenation predating the +CIE7 (Fig. 4). At the beginning of the pre-OAE BP (427.54 mcd), abruptly elevated tetrapyrroles and crenarchaeol concentrations signify an abrupt increase in primary production by photoautotrophs and chemoautotrophs residing above the chemocline. Increased volumes of precipitating biogenic snow concordantly consumed oxygen, expanding the preexisting OMZ as anaerobic bacteria thrived based on accelerated obGDGTs synthesis. Euxinia did not penetrate the photic zone at the outset of the productivity bloom as isorenieratane was not detected and heightened rates of microbial sulfate reduction were seemingly transient, inferred from the DAGEs profile, and limited to pre-OAE BP initiation. The lack of a well-stratified water column, evinced by absent to low concentrations of halophilic archaeal lipids (i.e., extended archaeols), relatively low rates of microbial sulfate reduction, and a dense oxygenic microbial plate likely precluded the development of PZE initially.Establishing a definitive causal mechanism for the pre-OAE BP is difficult, but the concomitance of LIP activity with the productivity spike is intriguing. Application of a linear sedimentation rate from OAE-2 to the pre-OAE BP interval following previous works6,7 approximated the pre-OAE BP occurring 220 ± 4 kyr before OAE-2, lasting for ~100 kyr (427.54–426.88 mcd; see Estimating the duration of the pre-OAE BP in Supplementary Information for rationale and calculation). Significantly, this was roughly coincident with the onset of LIP activity (~200–300 kyr before OAE-2) inferred from marine osmium isotope stratigraphy27. Similarities in the modern planktonic community response, such as elevated productivity and compositional changes, between the 2018 Kilauea eruption28 and the pre-OAE BP reinforce inference of a potential magmatic trigger for this event (see Evidence for LIP trigger of the pre-OAE biotic perturbation in Supplementary Information for additional details).A constant, yet overall lower, nutrient and trace metal inventory6 (Fig. S4) combined with a redox-driven shift in fixed N species (from NO3− to NH4+)15, potentially leading to a fixed N shortage29 via intensified denitrification and annamox reactions30, were probable culprits in the failure to sustain prolific rates of primary production beyond 100 kyr at the Demerara Rise. The gradual decline in biomass production, indicated by decreasing tetrapyrrole and crenarchaeol profiles (Fig. 4), was accompanied by a notable shift in deep water communities. Sulfate-reducing bacteria exerted increasing predominance over methanogenic archaea, a trend coeval with the primary productivity spike and extending well into the OAE (Fig. 3). A collapse of autotrophic communities to pre-perturbation levels was concordant with the progressive shoaling of H2S-laden waters. Continued vertical migration of the chemocline intruded the photic zone, producing PZE that enabled anoxygenic photosynthesis by Chlorobiaceae (Fig. 4). Unlike the overall oscillatory character of PZE throughout the studied section, this protracted phase of PZE was sustained until the onset of OAE-2 (426.43–426.00 mcd, Figs. 3 and 4) and is approximately contemporaneous with a thallium (Tl) isotope excursion7 (426.40–426.30 mcd).The positive Tl isotope excursion represents the progressive expansion of bottom water anoxia predating OAE-2 by 43 ± 11 kyr6,7. However, evidence for a causal mechanism of pre-OAE deoxygenation remains indeterminate. Our comprehensive biomarker inventory provides an interpreted sequence of events culminating in the regional to global expansion of anoxia predating OAE-2. A protracted phase of enhanced primary productivity began ~220 ± 4 kyr prior to OAE-2, increasing localized production and export of organic carbon at Demerara Rise. Similar productivity spikes likely occurred in settings of comparable paleogeographic configuration (e.g., equatorial, continental margins/shelves), seeding the oceans with fixed carbon. Continued scavenging of marine oxygen via organic carbon remineralization resulted in OMZ expansion locally, and likely initiated oxygen drawdown in much of the proto-North Atlantic Ocean. Stratigraphic records of sulfur isotopes of pyrite (δ34Spyrite) from the proto-North Atlantic and Tethys Oceans11 validate the areal extrapolation of our interpretations. A gradual decline in δ34Spyrite values at Demerara Rise begins at 427.50 mcd, nearly identical to the onset of the pre-OAE BP (427.54 mcd, Fig. 4). Correlation of δ34Spyrite in a global transect (Western Interior Seaway, proto-North Atlantic, Tethys) revealed consistent behavior in δ34Spyrite prior to the +CIE, indicating increasingly expansive marine deoxygenation on a global scale11. Over ~100 kyr, increased regional biomass production induced pervasive marine anoxia, inhibiting Mn-oxide formation, producing the observed positive Tl isotope excursion, and ultimately, the globally observed +CIE reflecting enhanced organic carbon burial signaling the onset of OAE-2. Thus, the local biotic signal recorded at ODP Site 1258 underlines the crucial role the Demerara Rise, and similar undocumented settings, served in initiating deoxygenation of the global ocean.Microbial ecological dynamics during and after OAE-2Changes in microbial community compositions during OAE-2 were apparent, signified by a shift in the normalized total biomarker pool (Fig. 3) and variations in the absolute concentrations of individual biomarkers (Fig. 4). In general, OAE-2 was defined by an expansion and diversification of intermediate and deep water communities (426.00–423.07 mcd), followed by a period of instability leading to the termination of the OAE (423.07–422.00 mcd). Photo- and chemoautotrophs residing above the chemocline were adversely affected, evinced by relatively low, invariant tetrapyrrole and crenarchaeol profiles (Fig. 4). Based on these observations, we divided OAE-2 into two periods defined by contrasting paleoenvironmental conditions modulating the microbial inhabitants of Demerara Rise.The first period of OAE-2 (426.00–423.07 mcd, Fig. 4) was marked by the intrusion of a euxinic OMZ into the photic zone. Elevated, yet fluctuating isorenieratane concentrations suggest relatively persistent PZE of varying vertical extent, in agreement with previous investigations using biomarkers and nitrogen isotopes at nearby sites12,13,31. During this interval, microbial sulfate reduction was likely active as DAGEs continually increased, aligning with estimates of expanded seafloor euxinia32. The co-occurrence of abundant extended archaeols and isorenieratane intimates the role that density stratification served in maintaining the protracted PZE of OAE-2, substantiating concurrent findings based on neodymium33 and oxygen isotopes34. Vertical nutrient advection via upwelling35 led to preferential exposure to expanding intermediate water communities tolerant to sulfidic conditions in the OMZ. Scavenging of a potentially limited fixed N inventory30, depleted in NO3− and predominated by NH4+[ 15,29, and inhibition of efficient nutrient transfer by pronounced density stratification likely induced severe N deficiency in surface water communities, explaining the relatively muted productivity of oxygenic photoautotrophs (i.e., tetrapyrroles) and chemoautotrophs (i.e., crenarchaeol) observed (Fig. 4). The concentration and predominant utilization of fixed N in the OMZ led to the proliferation and diversification of intermediate and deep water microbial taxa, while a shoaling chemocline led to increased nutrient (i.e., fixed N) competition between photoautotrophs and retreating Thaumarchaeota as highlighted by our biomarker inventory and the nitrogen isotopic record31. These findings challenge previous interpretations of highly productive, predominantly eukaryotic primary producers reliant on the upwelling of isotopically depleted NH4+ during OAE-215. Instead, the decline of C30-17-nor-DPEP (Fig. S5; Supplementary Data 3), a source-specific tetrapyrrole diagenetically derived from algal chlorophyll-c36, and reconstructed water column conditions during OAE-2 indirectly support a rise in cyanobacteria, diazotrophs able to fix N2, in oxygenated, nutrient-depleted shallow waters. Increased cyanobacterial contribution is further supported by C and N stable isotopes16,37, as well as the prominence of potentially phylum-specific biomarkers across OAE-2 (e.g., 2-methylhopanoids6,14).Fig. 5: Contrasting biogeochemical conditions between the pre-OAE BP and OAE-2.a, b Microbial ecology and water column conditions during the pre-OAE BP, reflecting high primary production of organic carbon (a) and OAE-2, characterized by relatively lower organic carbon production, but substantially enhanced biomass preservation (b). c, d Averaged fractional abundances of individual biomarkers throughout the pre-OAE BP (c) and OAE-2 (d). Biomarker source organisms are abbreviated as follows: phytoplankton (P), ammonia oxidizing archaea (AOA), sulfur oxidizing bacteria (SOB), unknown anaerobic bacteria (UAB), sulfate reducing bacteria (SRB), halophilic archaea (HA), methanogenic archaea (MA).Full size imageA reversal from the formerly outlined conditions typified the second period of OAE-2 (423.07–421.99 mcd, Fig. 4). Destabilization of the stratified water column and reduced production of H2S led to deepening and contraction of the euxinic OMZ. The observed decline in halophilic archaea, coincident with an overall decline in Chlorobiaceae populations, is roughly coeval with positive neodymium isotopic excursions observed across the proto-North Atlantic33 attributed to the enhanced latitudinal commingling of proto-North Atlantic water masses38. Although detrimental to sustained PZE, the persistence of a well-developed anaerobic bacterial community (i.e., obGDGTs) suggests the lasting presence of a non-euxinic OMZ despite improved bottom water circulation. A premature recovery of the chemoautotrophic Thaumarchaeota, inhabiting the base of the photic zone, relative to the shallower dwelling obligately oxygenic phototrophs (Fig. 3) likely reflects reduced toxicity associated with retreating euxinic waters, lessened resource competition with [primarily] Chlorobiaceae, and a competitive advantage tied to preferential exposure to upwelled nutrients and tolerance to low O2 conditions.The termination of OAE-2 was marked by the temporary re-establishment of microbial community compositions mirroring those observed prior to the pre-OAE BP (Figs. 3 and 4). Contraction of the OMZ led to a deep chemocline, with PZE restricted to the basal photic zone as the production of reduced sulfide species diminished. The Thaumarchaeota continued the recovery initiated towards the latter half of OAE-2, accompanied by the rebounding oxygenic photoautotrophs. However, the recovery of shallow autotrophic communities was halted by an episode of PZE (421.19–421.04 mcd) based on abrupt increases in isorenieratane concentrations (Fig. 4). Temporary development of pronounced density stratification likely facilitated the accumulation of H2S in the lower to intermediate photic zone, producing the short-lived PZE episode. Interestingly, covariant responses observed in additional biomarker profiles (e.g., obGDGTs) to PZE during OAE-2 were not evident across this post-OAE interval, possibly due to the transient nature of PZE at this time. For example, the initial increase in isorenieratane concentrations at the onset of OAE-2 was not immediately accompanied by shifts in other biomarker classes (e.g., obGDGTs; Fig. 4), suggesting frequent recurrences of PZE may be required to illicit a major microbial ecological response as observed later during the OAE. Still, this brief episode of post-OAE PZE (421.19–421.04 mcd) coincides with a positive organic carbon isotope excursion9 (Fig. S5), trace metal drawdown6 (Fig. S4), and minor positive Tl isotope excursion7 at the Demerara Rise. Prior study7 tentatively attributed this interval to enhanced carbon burial during a post-OAE deoxygenation event of smaller magnitude, with subsequent work revealing continued pyrite burial post-OAE 211. Our biomarker inventory revealed some environmental consistencies (e.g., PZE) between this interval and OAE-2, but the overall biotic response to this post-OAE geochemical perturbation was relatively subdued and requires additional sampling and investigation to properly constrain.Broader implicationsThe recognition of the pre-OAE BP and evolving water column conditions at Demerara Rise highlights additional complexities of a dynamic ocean relevant to interpretations of OAE-2 and the +CIE. Enhanced, sustained, and widespread carbon burial is required to produce the +CIE used to define OAE-28,10. Still, the principal forcing, productivity or preservation, remains enigmatic as evidence for the former mounts12,39.Based on the tetrapyrrole profiles (Fig. 4) primary production was greatest during the pre-OAE BP and relatively muted throughout OAE-2 at Demerara Rise, assuming minimal alteration to the genetic tetrapyrrole stratigraphic signal. Biomass preservation was presumedly enhanced during OAE-2 through sulfurization11, as the OMZ transitioned from anoxic to euxinic and penetrated the photic zone, yet low tetrapyrrole concentrations persist. Previous work noted a similar discrepancy between preservation potential and porphyrin abundance, postulating a paucity of trace metals to chelate with the free-base porphyrins induced poor preservation as desulfurization did not reveal additional porphyrin content16. However, both the pre-OAE BP and OAE-2 were characterized by relatively depleted trace metal inventories6 (Fig. S4), yet exhibit contrasting tetrapyrrole profiles, suggesting relative changes in primary production were the predominate control on the stratigraphic distribution of tetrapyrroles across the studied interval at the Demerara Rise. The strong covariance between tetrapyrrole and crenarchaeol concentrations reinforces the interpretation tetrapyrroles faithfully reflect primary production (Fig. S6). Crenarchaeol, a biosynthetic product of chemoautotrophic archaea (Thaumarchaeota) comprising up to 20% of all archaea and bacteria in the modern ocean40, is structurally distinct from the tetrapyrroles making it likely that diagenetic alteration of the two biomarkers is not consistent in rate or form. Thus, the positive correlation between key proxies for major contributors to primary production, the photoautotrophs and chemoautotrophs, minimizes concern for the integrity of the biotic signal at Demerara Rise (see Tetrapyrroles as a record of primary production in Supplementary Information for additional details).These findings provide direct evidence for a causal mechanism resulting in both the Tl isotope excursion and +CIE as previously described. It is highly probable the pre-OAE BP was not exclusive to the Demerara Rise based on the immense and presently unconstrained organic carbon burial required to produce the +CIE10. Further characterization of comparable localities to Demerara Rise may reveal similar high productivity events, as primed, highly productive settings likely capitalized on exogenous nutrient delivery via efficient upwelling to the photic zone prior to stratification during OAE-2. Hence, OAE-2 and the +CIE were not coincident with heightened surface water productivity relative to the pre-OAE BP at the Demerara Rise. Rather, antecedent increases in primary production locally facilitated the initiation of the OAE as a mechanism to consume marine oxygen and subsequently enhance organic carbon preservation globally. This highlights how OAE-2, and perhaps other OAEs in the geologic record, were not instantaneously induced but rather a gradual transition stemming from sustained forcing(s). In addition, the occurrence of the pre-OAE BP well before the established onset of OAE-2 reveals how fluctuations in primary production can be linked to marine deoxygenation but may not necessarily be concurrent. As shown here, OAE-2 at the Demerara Rise was preceded by elevated primary production that progressively attenuated towards event onset. While the hallmark features of an OAE are well-established, further identification and refinement of trends preceding widespread anoxia in the past will improve our understanding of how marine deoxygenation develops, as well as our ability to assess planetary health today.A shift from a productivity- to preservation-dominant system during OAE-2 at Demerara Rise, and possibly similar paleogeographic settings experiencing the pre-OAE BP, facilitated substantial organic carbon burial producing the +CIE. Distinct shifts in water column chemistry and structure from the pre-OAE BP to OAE-2 imparted considerable changes on microbial life, which altered the primary driver governing biomass sequestration (Fig. 5). Yet, both intervals reveal relatively comparable carbonate-corrected total organic carbon values6 (Fig. S5), signifying enhanced preservation as a critical component of organic carbon burial during OAE-2 at Demerara Rise. Consequently, this work suggests that sustained increases in primary production prior to OAE-2 initiated and regulated pre-OAE deoxygenation, resulting in a progressive shift to preservation as the primary control on organic carbon accumulation in sediments. Expanding euxinia and attendant changes to biogeochemical cycling adversely affected primary producers while simultaneously enhancing organic matter preservation via sulfurization11. Flourishment of Thaumarchaeota in oligotrophic settings in the modern open ocean41, and lack thereof during OAE-2 based on diminished crenarchaeol concentrations, underscores the scarcity of bioessential elements (e.g., fixed N) caused by microbial utilization of electron acceptors further down the redox ladder due to intensified marine anoxia, ultimately limiting primary production. The switch from a productivity to preservation model, reconstructed using biomarkers (Fig. 5) and initially suggested based on drawdown of the trace metal inventory6, was also concomitant with relative warming4. Simulated projections of the marine microbial response to continued global warming in the future revealed similar biotic trends (e.g., decreased primary productivity) to warming-induced oceanographic changes42 (e.g., intensified stratification) observed during OAE-2. Thus, an abundance of proxy- and model-based results paired with conceptual evidence suggest relatively low production and enhanced preservation of organic carbon throughout OAE-2 at the equatorial Demerara Rise.The pre-OAE BP may foreshadow greater regional trends observed during OAE-2. Equatorial upwelling centers, like Demerara Rise, are spatially restricted and represent regions of already high primary production before OAE-2. Climatic shifts concurrent with OAE-2 may have produced favorable conditions for elevated primary productivity in regions unable to capitalize on or exposed to allochthonous nutrient delivery prior to the +CIE. While the pre-OAE BP offers a causal mechanism for the Tl isotope excursion and +CIE initiation, areal expansion of organic carbon preservation and production is necessary to sustain enhanced organic carbon burial for the duration of the +CIE.Continued development of preexisting proxies is critical to extract and clarify current understandings of major climatic events in Earth history. Although reliant on excellent preservation of the microbial signal, the analytical and interpretative approach used here enables simultaneous examination of a wide array of biomarkers, producing a more holistic reconstruction of oceanographic changes inferred from microbial ecological variations spanning the surface to the sediment. This is timely, as investigations of the sedimentary archives become increasingly valuable analogs to understand the response of modern oceans to natural and anthropogenic forcings. Similarities between the pre-OAE BP and modern, climate-driven marine deoxygenation are concerning, while particular attention to preexisting highly productive settings may hold the key to forecasting the geologically rapid transition to a global OAE. Even though natural processes are currently beyond our control, stifling anthropogenic catalysts of climate change may decelerate the unfortunate, progressive suitability of OAEs as climate analogs in the future. More

  • in

    Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Rayner, P. J. et al. Interannual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Glob. Biogeochem. Cycles 22, 1–12 (2008).Article 
    CAS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Betts, R. A. et al. A successful prediction of the record CO2 rise associated with the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170301 (2018).Article 
    CAS 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang, Y. et al. Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environ. Res. Lett. 12, 064007 (2017).ADS 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcolla, B., Rödenbeck, C. & Cescatti, A. Patterns and controls of inter-annual variability in the terrestrial carbon budget. Biogeosciences 14, 3815–3829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Yin, Y. et al. Changes in the response of the northern hemisphere carbon uptake to temperature over the last three decades. Geophys. Res. Lett. 45, 4371–4380 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu, L. et al. Enhanced North American carbon uptake associated with El Niño. Sci. Adv. 5, 1–11 (2019).ADS 

    Google Scholar 
    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 26, 682–696 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    Shiga, Y. P. et al. Forests dominate the interannual variability of the North American carbon sink. Environ. Res. Lett. 13, 084015 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Chang. Biol. 24, 4709–4717 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. et al. Detecting drought impact on terrestrial biosphere carbon fluxes over contiguous US with satellite observations. Environ. Res. Lett. 13, 095003 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallier, F. et al. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. 110, D24309 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).ADS 
    Article 

    Google Scholar 
    Chevallier, F. et al. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 14233–14251 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999–2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190506 (2020).Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, 1–9 (2019).CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, Z. L. et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Chang. Res. 12, 475–481 (2021).Article 

    Google Scholar 
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Virkkala, A. M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Chang. Biol. 27, 4040–4059 (2021).PubMed 
    Article 

    Google Scholar 
    Randazzo, N. A. et al. Higher autumn temperatures lead to contrasting CO2 flux responses in boreal forests versus tundra and shrubland. Geophys. Res. Lett. 48, e2021GL093843 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Randerson, J. T., Field, C. B., Fung, I. Y. & Tans, P. P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Black, T. A. et al. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett. 27, 1271–1274 (2000).ADS 
    Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 1–7 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).ADS 
    Article 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. et al. Identifying critical climate periods for vegetation growth in the northern hemisphere. J. Geophys. Res. Biogeosci. 123, 2541–2552 (2018).Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4, 988–1003 (2021).ADS 
    Article 

    Google Scholar 
    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data 13, 299–330 (2021).ADS 
    Article 

    Google Scholar 
    Quetin, G. R., Bloom, A. A., Bowman, K. W. & Konings, A. G. Carbon flux variability from a relatively simple ecosystem model with assimilated data is consistent with terrestrial biosphere model estimates. J. Adv. Model. Earth Syst. 12, e2019MS001889 (2020).ADS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gentine, P. et al. Coupling between the terrestrial carbon and water cycles – A review. Environ. Res. Lett. 14, 83003 (2019).CAS 
    Article 

    Google Scholar 
    Bastos, A. et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 
    Article 

    Google Scholar 
    Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth system model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B., Frank, D. C., Hodson, E. L. & Zimmermann, N. E. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8, 2027–2036 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lienert, S. & Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 15, 2909–2930 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, 1–13 (2010).
    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait‐scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. N. Phytol. 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Joetzjer, E. et al. Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest. Geosci. Model Dev. 8, 1709–1727 (2015).ADS 
    Article 

    Google Scholar 
    Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).Article 

    Google Scholar 
    Wei, Y. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – Part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).ADS 
    Article 

    Google Scholar 
    Dlugokencky, E. J., Thoning, K. W., Lang, P. M. & Tans, P. P. NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network. ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (2017). More

  • in

    500 metagenome-assembled microbial genomes from 30 subtropical estuaries in South China

    Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270, https://doi.org/10.1038/nmicrobiol.2016.270 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058, https://doi.org/10.1038/nmicrobiol.2017.58 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522, https://doi.org/10.1038/nrmicro.2016.83 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kan, J., Suzuki, M. T., Wang, K., Evans, S. E. & Chen, F. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake bay. Appl. Environ. Microbiol. 73, 6776–6789, https://doi.org/10.1128/Aem.00541-07 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouvier, T. C. & del Giorgio, P. A. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr. 47, 453–470, https://doi.org/10.4319/lo.2002.47.2.0453 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220, https://doi.org/10.1038/ismej.2012.93 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fortunato, C. S., Herfort, L., Zuber, P., Baptista, A. M. & Crump, B. C. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 6, 554–563, https://doi.org/10.1038/ismej.2011.135 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ghosh, A. & Bhadury, P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. MicrobiologyOpen 8, https://doi.org/10.1002/mbo3.741 (2019).Zhang, C. J., Chen, Y. L., Pan, J., Wang, Y. M. & Li, M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603, https://doi.org/10.1007/s00253-020-10613-z (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, T. et al. Characteristics of Microbial Communities and Their Correlation With Environmental Substrates and Sediment Type in the Gas-Bearing Formation of Hangzhou Bay, China. Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.02421 (2019).Zhou, L. et al. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. Environ. Pollut. 264, 114683, https://doi.org/10.1016/j.envpol.2020.114683 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, L. et al. Environmental filtering dominates bacterioplankton community assembly in a highly urbanized estuarine ecosystem. Environ. Res. 196, 110934, https://doi.org/10.1016/j.envres.2021.110934 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676, https://doi.org/10.1093/bioinformatics/btv033 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090, https://doi.org/10.1093/bioinformatics/btv697 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, https://doi.org/10.1186/s40168-018-0541-1 (2018).Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinf. 70, e102, https://doi.org/10.1002/cpbi.102 (2020).CAS 
    Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication[J]. ISME J. 11, 2864–2868, https://doi.org/10.1038/ismej.2017.126 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uritskiy, G. et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 13, 2737–2749, https://doi.org/10.1038/s41396-019-0468-y (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419, https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927, https://doi.org/10.1093/bioinformatics/btz848 (2020).CAS 
    Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086, https://doi.org/10.1038/s41587-020-0501-8 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 5, e9490, https://doi.org/10.1371/journal.pone.0009490 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274, https://doi.org/10.1093/molbev/msu300 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296, https://doi.org/10.1093/nar/gkab301 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP320016 (2021).Zhou, L., Huang, S., Gong, J., Xu, P. & Huang, X. 500 metagenome-assembled microbial genomes from 30 subtropical estuaries in South China. Figshare https://doi.org/10.6084/m9.figshare.14717061.v4 (2021).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055, https://doi.org/10.1101/gr.186072.114 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More