More stories

  • in

    An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria)

    Korup, O. Landslides in the Fluvial System. Treatise on Geomorphology Vol. 9 (Elsevier Ltd., 2013).
    Google Scholar 
    Kuo, C. W. & Brierley, G. The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surf. Process. Landf. 39, 2038–2055 (2014).ADS 
    Article 

    Google Scholar 
    Tunnicliffe, J. F., Leenman, A. & Reeve, M. The influence of large, chronic landslides on the fluvial system AGU Fall Meeting Abstracts, EP33A-3620 (2014).
    Fox, G. A., Purvis, R. A. & Penn, C. J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 181, 602–614 (2016).CAS 
    Article 

    Google Scholar 
    Biswas, S. P. Restoration of riverine health. Handb. Ecol. Ecosyst. Eng. https://doi.org/10.1002/9781119678595.ch14 (2021).Article 

    Google Scholar 
    Lutgen, A. et al. Nutrients and heavy metals in legacy sediments: Concentrations, comparisons with upland soils, and implications for water quality. J. Am. Water Resour. Assoc. 56, 669–691 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Emenike, P. C. et al. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 265, 114795 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox, G. A. & Wilson, G. V. The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Sci. Soc. Am. J. 74, 717–733 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Duró, G., Crosato, A., Kleinhans, M. G., Roelvink, D. & Uijttewaal, W. S. J. Bank erosion processes in regulated navigable rivers. J. Geophys. Res. Earth Surf. 125, 1–26 (2020).Article 

    Google Scholar 
    Keesstra, S. D. et al. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 69, 191–207 (2005).ADS 
    Article 

    Google Scholar 
    Pizzuto, J. & O’Neal, M. Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology 37, 19–22 (2009).ADS 
    Article 

    Google Scholar 
    Abam, T. K. S. Factors affecting distribution of instability of river banks in the Niger delta. Eng. Geol. 35, 123–133 (1993).Article 

    Google Scholar 
    Jordan, C. et al. Sand mining in the Mekong Delta revisited—current scales of local sediment deficits. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Hackney, C. R. et al. River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217–225 (2020).Article 

    Google Scholar 
    Yang, S. L., Milliman, J. D., Li, P. & Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Change 75, 14–20 (2011).ADS 
    Article 

    Google Scholar 
    Royall, D. Land-use impacts on the hydrogeomorphology of small watersheds. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-818234-5.00010-9 (2021).Article 

    Google Scholar 
    Johnson, P. & Royall, D. Evaluating the effects of urbanization age on the morphology of low-order urban streams in the U.S. southern Piedmont. Phys. Geogr. 40, 1–27 (2019).Article 

    Google Scholar 
    Zaimes, G., Tamparopoulos, A. E., Tufekcioglu, M. & Schultz, R. C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 287, 112352 (2021).Article 

    Google Scholar 
    Zaimes, G. N. & Schultz, R. C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. CATENA 125, 61–73 (2015).Article 

    Google Scholar 
    Simon, A., Curini, A., Darby, S. E. & Langendoen, E. J. Bank and near-bank processes in an incised channel. Geomorphology 35, 193–217 (2000).ADS 
    Article 

    Google Scholar 
    Rinaldi, M. & Casagli, N. Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The Sieve River (Italy). Geomorphology 26, 253–277 (1999).ADS 
    Article 

    Google Scholar 
    Wynn, T. & Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 42, 69–82 (2006).ADS 
    Article 

    Google Scholar 
    Hecker, G. A., Meehan, M. A. & Norland, J. E. Plant community influences on intermittent stream stability in the great plains. Rangel. Ecol. Manag. 72, 112–119 (2019).Article 

    Google Scholar 
    Konsoer, K. M. et al. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252, 80–97 (2016).ADS 
    Article 

    Google Scholar 
    Abernethy, B. & Rutherfurd, I. D. Does the weight of riparian trees destabilize riverbanks?. River Res. Appl. 16, 565–576 (2000).
    Google Scholar 
    Collison, A. J. C. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Process. 15, 63–79 (2001).Article 

    Google Scholar 
    Simon, A. & Collison, A. J. C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 27, 527–546 (2002).ADS 
    Article 

    Google Scholar 
    Krzeminska, D., Kerkhof, T., Skaalsveen, K. & Stolte, J. Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 172, 87–96 (2019).Article 

    Google Scholar 
    Yu, G. A. et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China. Geomorphology 351, 106958 (2020).Article 

    Google Scholar 
    Halder, A. & Mowla Chowdhury, R. Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. Int. J. River Basin Manag. 1–15 (2021).
    Bernier, J. F., Chassiot, L. & Lajeunesse, P. Assessing bank erosion hazards along large rivers in the Anthropocene: A geospatial framework from the St. Lawrence fluvial system. Geomat. Nat. Hazards Risk 12, 1584–1615 (2021).Article 

    Google Scholar 
    Lawler, D. M., Grove, J. R., Couperthwaite, J. S. & Leeks, G. J. L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 13, 977–992 (1999).ADS 
    Article 

    Google Scholar 
    Gholami, V., Sahour, H. & Hadian Amri, M. A. Soil erosion modeling using erosion pins and artificial neural networks. CATENA 196, 104902 (2021).Article 

    Google Scholar 
    Simon, A., Pollen-Bankhead, N. & Thomas, R. E. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophys. Monogr. Ser. 194, 453–474 (2011).ADS 

    Google Scholar 
    Klavon, K. et al. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Landf. 42, 191–213 (2017).ADS 
    Article 

    Google Scholar 
    Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).Article 

    Google Scholar 
    Fredlund, D. G., Morgenstern, N. R. & Widger, R. A. Shear strength of unsaturated soils. Can. Geotech. J. 15, 313–321 (1978).Article 

    Google Scholar 
    Myers, D. T., Rediske, R. R. & McNair, J. N. Measuring streambank erosion: A comparison of erosion pins, total station, and terrestrial laser scanner. Water (Switzerland) 11, 1846 (2019).
    Google Scholar 
    Casagli, N., Rinaldi, M., Gargini, A. & Curini, A. Pore water pressure and streambank stability: Results from a monitoring site on the Sieve River, Italy. Earth Surf. Process. Landf. 24, 1095–1114 (1999).ADS 
    Article 

    Google Scholar 
    Tufekcioglu, M. et al. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. J. Soil Water Conserv. 67, 545–555 (2012).Article 

    Google Scholar 
    Palmer, J. A., Schilling, K. E., Isenhart, T. M., Schultz, R. C. & Tomer, M. D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 209, 66–78 (2014).ADS 
    Article 

    Google Scholar 
    Pollen, N. & Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41, 1–11 (2005).Article 

    Google Scholar 
    Pollen-Bankhead, N. & Simon, A. Sensitivity of post-hurricane beach. Earth Surf. Process. Landf. 34, 471–480 (2009).ADS 
    Article 

    Google Scholar 
    Wasige, J. E. et al. A land use and land cover classification system for use with remote sensor data. Prof. Pap. 100, 753–764 (1976).
    Google Scholar 
    Al-Doski, J., Mansor, S. B., Ng, H., San, P. & Khuzaimah, Z. Land cover mapping using remote sensing data. Am. J. Geogr. Inf. Syst. 2020, 33–45 (2020).
    Google Scholar 
    Okeke, C. A. U., Ede, A. N. & Kogure, T. Monitoring of riverbank stability and seepage undercutting mechanisms on the Iju (Atuwara) River, Southwest Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 640, 012105 (2019).Article 

    Google Scholar 
    Abam, T. K. S. Aspects of alluvial river bank recession: Some examples from the Niger delta. Environ. Geol. 31, 211–220 (1997).Article 

    Google Scholar 
    Okeke, C. A. U., Azuh, D., Ogbuagu, F. U. & Kogure, T. Assessment of land use impact and seepage erosion contributions to seasonal variations in riverbank stability: The Iju River, SW Nigeria. Groundw. Sustain. Dev. 11, 100448 (2020).Article 

    Google Scholar 
    Voltz, T. et al. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys. J. Geophys. Res. Earth Surf. 118, 953–969 (2013).ADS 
    Article 

    Google Scholar 
    Thomas, J., Kumar, S. & Sudheer, K. P. Channel stability assessment in the lower reaches of the Krishna River (India) using multi-temporal satellite data during 1973–2015. Remote Sens. Appl. Soc. Environ. 17, 100274 (2020).
    Google Scholar 
    Ran, Y. et al. A higher river sinuosity increased riparian soil structural stability on the downstream of a dammed river. Sci. Total Environ. 802, 149886 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Midgley, T. L., Fox, G. A. & Heeren, D. M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 145–146, 107–114 (2012).ADS 
    Article 

    Google Scholar 
    Daly, E. R., Miller, R. B. & Fox, G. A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 81, 114–127 (2015).ADS 
    Article 

    Google Scholar 
    Saleem, A. et al. Spatial and temporal variations of erosion and accretion: A case of a large tropical river. Earth Syst. Environ. 4, 167–181 (2020).ADS 
    Article 

    Google Scholar 
    Biswas, R. N., Islam, M. N., Islam, M. N. & Shawon, S. S. Modeling on approximation of fluvial landform change impact on morphodynamics at Madhumati River Basin in Bangladesh. Model. Earth Syst. Environ. 7, 71–93 (2021).Article 

    Google Scholar 
    Li, J., Tooth, S., Zhang, K. & Zhao, Y. Visualisation of flooding along an unvegetated, ephemeral river using Google Earth Engine: Implications for assessment of channel-floodplain dynamics in a time of rapid environmental change. J. Environ. Manag. 278, 111559 (2021).Article 

    Google Scholar 
    Graziano, M. P., Deguire, A. K. & Surasinghe, T. D. Riparian buffers as a critical landscape feature : Insights for riverscape conservation and policy renovations. Diversity 14, 172 (2022).Article 

    Google Scholar 
    Rauch, H. P., von der Thannen, M., Raymond, P., Mira, E. & Evette, A. Ecological challenges* for the use of soil and water bioengineering techniques in river and coastal engineering projects. Ecol. Eng. 176, 106539 (2022).Article 

    Google Scholar 
    East, A. E. et al. Channel-planform evolution in four rivers of Olympic National Park, Washington, USA: The roles of physical drivers and trophic cascades. Earth Surf. Process. Landf. 42, 1011–1032 (2017).ADS 
    Article 

    Google Scholar 
    Kumar, P. et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 784, 147058 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laubel, A., Kronvang, B., Hald, A. B. & Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 17, 3443–3463 (2003).ADS 
    Article 

    Google Scholar 
    Veihe, A., Jensen, N. H., Schiøtz, I. G. & Nielsen, S. L. Magnitude and processes of bank erosion at a small stream in Denmark. Hydrol. Process. 25, 1597–1613 (2011).ADS 
    Article 

    Google Scholar 
    Kronvang, B., Andersen, H. E., Larsen, S. E. & Audet, J. Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sediments 13, 230–241 (2013).Article 

    Google Scholar 
    Rajakumari, S., Meenambikai, M., Divya, V., Sarunjith, K. J. & Ramesh, R. Morphological changes in alluvial and coastal plains of Kandaleru river, Andhra Pradesh using RS and GIS, Egypt. J. Remote Sens. Space Sci. 24, 1071–1081 (2021).
    Google Scholar 
    Zegeye, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W. & Tilahun, S. A. Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrol. Hydrobiol. 20, 301–311 (2020).Article 

    Google Scholar 
    Shields, F. D. J., Morin, N. & Cooper, C. M. Design of large woody debris structures for channel rehabilitation. In Seventh Federal Interagency Sedimentation Conference, Vol. 8 (2001).C A U, Okeke A N, Ede (2019) Mechanisms of riverbank failure and channel instability on the Nkisi River Southeast Nigeria. IOP Conference Series: Materials Science and Engineering 640(1), 012104. https://doi.org/10.1088/1757-899X/640/1/012104Article 

    Google Scholar  More

  • in

    Cross-feeding niches among commensal leaf bacteria are shaped by the interaction of strain-level diversity and resource availability

    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature.2020;580:653–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE. Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research. 2017;6:1698.PubMed 
    Article 

    Google Scholar 
    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–83. e14PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, et al. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe. 2018;24:168–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, et al. Host selection shapes crop microbiome assembly and network complexity. N. Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol. 2014;85:473–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nobori T, Cao Y, Entila F, Dahms E, Tsuda Y, Garrido-Oter R, et al. Dissecting the co-transcriptome landscape of plants and microbiota members. bioRxiv; 2022. p. 2021.04.25.440543.Yamada K, Saijo Y, Nakagami H, Takano Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science. 2016;354:1427–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants. Mol Plant. 2012;5:766–8.PubMed 
    Article 

    Google Scholar 
    Tegeder M, Hammes UZ. The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol. 2018;43:16–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant Cell Environ. 2016;39:2172–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact. MPMI. 2008;21:269–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA. 2013;110:E425.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Winter H, Riens B, Heldt HW. Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995;108:270–5.CAS 
    Article 

    Google Scholar 
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xin XF, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature. 2016;539:524–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005;23:873–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLOS Biol. 2016;14:e1002540.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020;14:26–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat Ecol Evol. 2021;5:195–203.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:1–17.Article 

    Google Scholar 
    Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate metabolism in C4 Flaveria species is controlled by the root and connected to serine biosynthesis. Plant Physiol. 2018;178:565–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4? Plant Cell. 2011;23:2087–105.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKown AD, Dengler NG. Vein patterning and evolution in C4 plants. Botany. 2010;88:775–86.CAS 
    Article 

    Google Scholar 
    Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 2019;179:1265–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayer T, Mari A, Almario J, Murillo-Roos M, Syed M, Abdullah H, et al. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Mol Ecol Resour. 2021;21:1952–65.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/.Callahan B, McMurdie PJ, Rosen M, Han A, Johnson A, Holmes S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:61217.Article 
    CAS 

    Google Scholar 
    Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package [Internet]. 2020. Available from: https://CRAN.R-project.org/package=vegan.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Muñoz-Lintz DA, et al. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front Microbiol. 2018;9:3052.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant. 2001;111:457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dal Bello M, Lee H, Goyal A, Gore J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat Ecol Evol. 2021;5:1424–34.PubMed 
    Article 

    Google Scholar 
    Sattelmacher B. The apoplast and its significance for plant mineral nutrition. N. Phytol. 2001;149:167–92.CAS 
    Article 

    Google Scholar 
    Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, et al. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J. 2020;14:2116–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 2020;117:1148–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Herren CM. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc R Soc B Biol Sci. 2020;287:20192945.Article 

    Google Scholar 
    Rahme LG, Mindrinos MN, Panopoulos NJ. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1992;174:3499–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3:177–90.Article 

    Google Scholar 
    Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundberg DS, Jové R de P, Ayutthaya PPN, Karasov TL, Shalev O, Poersch K, et al. Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. bioRxiv. 2021;2021.04.06.438366.Ikawa Y, Tsuge S. The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett. 2016;363:fnw071.Wei ZM, Sneath BJ, Beer SV. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol. 1992;174:1875–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA. 2002;99:3695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett. 2022;25:1410–20.Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9:103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci USA. 2019;116:12558–65.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001;3:139–48.CAS 
    Article 

    Google Scholar 
    Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10:10691.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension

    Siderius, C., Biemans, H., Kashaigili, J. & Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 266, 107548 (2022).
    Google Scholar 
    Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Ind. 131, 108130 (2021).
    Google Scholar 
    Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).
    Google Scholar 
    Fu, A. et al. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 11, 18485 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, D. et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 344, 131137 (2022).
    Google Scholar 
    Basu, H., Dandele, P. S. & Srivastava, S. K. Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Mar. Pet. Geol. 133, 105242 (2021).
    Google Scholar 
    Capella, W. et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sed. Geol. 355, 31–57 (2017).
    Google Scholar 
    Ilevbare, M. & Omodolor, H. E. Ancient deposition environment, mechanism of deposition and textural attributes of Ajali Formation, western flank of the Anambra Basin, Nigeria. Case Stud. Chem. Environ. Eng. 2, 100022 (2020).
    Google Scholar 
    Qiao, J. B., Zhu, Y. J., Jia, X. X. & Shao, M. A. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 205, 104786 (2021).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).CAS 

    Google Scholar 
    Rodríguez-Lado, L. & Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 287, 147–156 (2017).ADS 

    Google Scholar 
    Mozaffari, H., Moosavi, A. A. & Dematte, J. A. M. Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosys. Eng. 216, 198–217 (2022).
    Google Scholar 
    Sudarsan, B., Ji, W., Adamchuk, V. & Biswas, A. Characterizing soil particle sizes using wavelet analysis of microscope images. Comput. Electron. Agric. 148, 217–225 (2018).
    Google Scholar 
    Pollacco, J. A. P., Fernández-Gálvez, J. & Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 584, 124597 (2020).
    Google Scholar 
    Richer-de-Forges, A. C. et al. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA 213, 106155 (2022).CAS 

    Google Scholar 
    Du, W. et al. Insights into vertical differences of particle number size distributions in winter in Beijing, China. Sci. Total Environ. 802, 149695 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M. & Wilson, M. G. Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Appl. Math. Model. 94, 36–48 (2021).
    Google Scholar 
    Ke, Z. M. et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. J. Hydrol. 595, 125988 (2021).
    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 184, 45–51 (2018).
    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle-size distribution: Analysis and imitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 

    Google Scholar 
    Zhang, Y. et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351, 106956 (2020).
    Google Scholar 
    Ahmadi, A., Neyshabouri, M.-R., Rouhipour, H. & Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400, 305–311 (2011).ADS 

    Google Scholar 
    Gao, Z., Niu, F., Lin, Z. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).
    Google Scholar 
    Xu, G. et al. New method for the reconstruction of sedimentary systems including lithofacies, environments, and flow paths: A case study of the Xisha Trough Basin, South China Sea. Mar. Pet. Geol. 133, 105268 (2021).
    Google Scholar 
    Li, Z., Yu, X., Dong, S., Chen, Q. & Zhang, C. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Res. 43, 100573 (2020).
    Google Scholar 
    Chen, T. et al. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA 212, 106060 (2022).
    Google Scholar 
    George, C. F., Macdonald, D. I. M. & Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 160, 103592 (2019).
    Google Scholar 
    Tian, Y. et al. Petrology, lithofacies, and sedimentary environment of Upper Cretaceous Abu Roash “G” in the AESW Block, Abu Gharadig Basin, Western Desert, Egypt. J. Afr. Earth Sci. 145, 178–189 (2018).ADS 

    Google Scholar 
    Cheng, Z., Jalon-Rójas, I., Wang, X. H. & Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 242, 106861 (2020).
    Google Scholar 
    Wei, X., Li, X. G. & Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266, 133–145 (2016).ADS 

    Google Scholar 
    Wang, S. et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment Res. 37, 457–467 (2022).
    Google Scholar 
    Wided, S., Jalila, S. & Kamel, R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast, N-E of Tunisia. J. Afr. Earth Sc. 184, 104353 (2021).
    Google Scholar 
    Cai, X., Yang, Y. E., Ringler, C., Zhao, J. & You, L. Agricultural water productivity assessment for the Yellow River Basin. Agric. Water Manag. 98, 1297 (2011).
    Google Scholar 
    Fu, J., Zang, C. & Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe river basin in China. J. Clean. Prod. 270, 122271 (2020).
    Google Scholar 
    Zhang, K. et al. Confronting challenges of managing degraded lake ecosystems in the anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene 24, 30–39 (2018).
    Google Scholar 
    Huybrechts, N., Zhang, Y. F. & Verbanck, M. A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics: Application to silt transport in the Lower Yellow River. Int. J. Sedim. Res. 26(1), 36–49 (2011).
    Google Scholar 
    Cheng, D. Z. Strengthen the financial foundation of ecological protection and development of the Yellow River Basin. People Tribune 27, 76–78 (2021).
    Google Scholar 
    Yang, W. N., Zhou, L. & Sun, D. Q. Ecological vulnerability assessment of the Yellow River basin based on partition: Integration concept. Remote Sens. Nat. Resourc. 33(03), 211–218 (2021).
    Google Scholar 
    Sun, H. et al. Exposure of population to droughts in the Haihe river basin under global warming of 1.5 and 2.0 °C Scenarios. Q. Int. 453, 74–84 (2017).ADS 

    Google Scholar 
    Mandelbrott, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1983).
    Google Scholar 
    Samiei-Fard, R., Heidari, A., Konyushkova, M. & Mahmoodi, S. Application of particle size distribution throughout the soil profile as a criterion for recognition of newly developed geoforms in the Southeastern Caspian coast. CATANA 203, 105362 (2021).CAS 

    Google Scholar 
    Guo, J. Y. et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River. J. China Inst. Water Resour. Hydropower Res. 19(01), 15–24 (2021).
    Google Scholar 
    Ge, T. T., Xue, Y. J., Jiang, X. Y., Zou, L. & Wang, X. C. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452 (2020).ADS 

    Google Scholar 
    Hou, C. Y., Yi, Y. J., Song, J. & Zhou, Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River. J. Clean. Prod. 279, 123533 (2021).CAS 

    Google Scholar 
    Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G. & Cai, C. F. Sediment transport capacity in erodible beds with reconstituted soils of different textures. CATANA 183, 104197 (2019).
    Google Scholar 
    Li, J. L. et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. Int. J. Sedim. Res. 36(4), 489–500 (2021).
    Google Scholar 
    Wang, W. F., Liu, R. T., Guo, Z. X., Feng, Y. H. & Jiang, J. Y. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Desert. J. Desert Res. 41(01), 209–218 (2021).
    Google Scholar 
    Wang, K., Pei, Z. Y., Wang, W. M., Hao, S. R. & Pang, G. H. Influence of the flat cycle on the fractal characteristics of soil pore structure in Salix psammophila. Sci. Technol. Eng. 21(07), 2647–2654 (2021).
    Google Scholar 
    Gao, G. L. et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecol. Indic. 43, 236–243 (2014).CAS 

    Google Scholar 
    Liu, X., Zhang, G. C., Heathman, G. C., Wang, Y. Q. & Huang, C. H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154(1), 123–130 (2009).ADS 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 

    Google Scholar 
    Zhao, S. Q., Chi, D. Q., Jia, F. C., Deng, Y. P. & Sun, C. T. Fractal characteristics of saline soil particles in different regions. Jiangsu Agric. Sci. 49(06), 203–207 (2021).
    Google Scholar  More

  • in

    Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy

    High diet overlap is assumed to cause competition between the three dominant pelagic planktivorous mesopredators in the Baltic Sea, sprat, herring, and stickleback11,24,25. Despite this assumption, stickleback populations have increased dramatically over the past decades, which raises the question of whether and how resources are partitioned26. While previous studies of fish diet overlap have mainly relied on microscopic identification of gut content, we implemented a DNA metabarcoding approach targeting two different gene regions, the 18S rRNA gene (18S) and the mitochondrial cytochrome c oxidase I gene (COI) to reveal the taxonomic diversity of prey, and a qPCR step to quantify rotifers that are at times abundant in the Baltic Sea. Our study highlights consistency between methods, with DNA metabarcoding resolving the plankton-fish link at the highest taxonomic resolution. Our results suggest a unique niche of stickleback that may enable high population growth in the open water, despite high competition between mesopredators, although this finding needs to be confirmed at larger scale. More than half of the DNA found in herring and sprat stomach contents was assigned to Pseudocalanus, supporting previous observations of high diet overlap between the two clupeids11,12. On the other hand, the diet of stickleback differed substantially from the two clupeids, with rotifers appearing as main prey DNA in spring. The high rotifer biomass in the environment and lack of competition from other predators indicate that this novel niche utilization may support the drastic increase of pelagic stickleback in the Baltic Sea.We find that copepods dominated the gut content of the two clupeids sprat and herring. Pseudocalanus and Temora occupied most of the sequence reads of the clupeid metabarcoding, two species that are often reported as preferred prey in previous studies11,12. Despite high contributions of these two copepods, Pseudocalanus was more than four times as abundant as Temora in clupeid gut contents. A strong preference for this copepod with marine origin can further confirm the increased competition between the clupeids, as Pseudocalanus has decreased due to decreased salinity12 and shares a similar vertical distribution as clupeid during daytime27. Our study using metabarcoding further reveals a large relative quantity (11%) of the ctenophore Mertensia in the gut samples of both clupeids. Similar, Clarke et al.28 reported an important contribution of gelatinous zooplankton to upper trophic levels in the Southern Ocean. Despite high abundances of ctenophores in the Baltic Sea and their assumed importance in marine food webs19, they are not reported as food for planktivorous fish. A possible explanation is the difficulty observing them microscopically, as their digestion rate is faster than crustaceans29, and no hard parts remain in the digestive system. Further, COI detected the presence of cladocerans, which was confirmed by the microscopic survey, but underrepresented with 18S that strongly amplify copepods20. Interestingly, more than twice annelid COI reads, including the benthic macroinvertebrates Bylgides and Marenzellaria, were associated to stickleback (15%) and herring (8%) than to sprat (4%), highlighting their ability to migrate vertically. These interactions suggest that together stickleback and herring contribute to benthic-pelagic coupling when oxygen is not restricting vertical migration in the southern Baltic Sea30.Sprat and herring share a similar feeding niche, which may explain previously observed declines in body mass and stomach fullness, and supports the theory of competition between the two species31. In contrast, stickleback revealed little diet overlap with the other mesopredators. The low relative abundances of Pseudocalanus (1–8%) in metabarcoding analyses indicates that the density-dependent competition may not limit the population growth of stickleback. The copepods that were shared in the diet of stickleback, sprat, and herring were Temora, Acartia, and Centropages have increased over the last decades, as opposed to Pseudocalanus32. Our results show that stickleback are able to feed on a broader spectrum of prey and highlight that stickleback utilizes the rotifer Synchaeta baltica as prey, which is an important component of the plankton community composition in the Baltic Sea18,20. Due to the difference of prey size, we can expect an overrepresentation of copepod to rotifer sequences compared with microscopic count data. High predation rate on S. baltica is supported by both the qPCR assay as well as microscopic counts, although only the eggshells were visible but not the soft-bodied rotifer. Despite the considerably lower carbon content per S. baltica (ca. 6 µg C ind−1) compared to copepods (ca. 20 µg C ind−1)33, the high number of rotifers likely act as a major food source for stickleback. These results propose that stickleback, due to their opportunistic feeding behaviour34 and smaller size35, have a distinct feeding niche from sprat and herring in the open water, as they feed on a smaller size class of zooplankton compared to the clupeids. Thus, we cannot assume the same process of competition between clupeids and stickleback.Rotifers can at times be very abundant in the Baltic Sea, reaching densities up to 25,000 ind m−3, but their natural predators are poorly studied. An increasing trend in biomass of the two main rotifer genera (Synchaeta and Keratella) was observed since the 1990s36. In a recent study, we showed that rotifers might occupy a unique feeding niche, as direct grazers of dinoflagellate spring bloom, as well as in the recycling of organic matter in summer20. The low level of predation on rotifers by clupeid adults ( More

  • in

    Understanding social–ecological systems using social media data

    Ecosystem services are the contributions of nature to human well-being — for example, the provision of raw materials, carbon sequestration and recreation. Although relatively new, the study of these essential services has developed rapidly and is now included in many global policies and assessments. However, mapping and modelling these services is restricted by the availability of data that can account for the multidimensional traits of ecosystem services and model coupled social–ecological systems. Traditional datasets, including surveys, interviews, and focus groups, are often not viable on the scale necessary for many ecosystem service assessments. More

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Reply to: “Steller’s sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes”

    Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Crerar, L. D., Crerar, A. P., Domning, D. P. & Parsons, E. C. Rewriting the history of an extinction-was a population of Steller’s sea cows (Hydrodamalis gigas) at St Lawrence Island also driven to extinction? Biol. Lett. 10, 20140878 (2014).Article 

    Google Scholar 
    Domning, D. P., Thomason, J. & Corbett, D. G. Steller’s sea cow in the Aleutian Islands. Mar. Mamm. Sci. 23, 976–983 (2007).Article 

    Google Scholar 
    Savinetsky, A. B., Kiseleva, N. K. & Khassanov, B. F. Dynamics of sea mammal and bird populations of the Bering Sea region over the last several millennia. Palaeogeogra. Palaeoclimatol. Palaeoecol. 20, 335–352 (2004).ADS 
    Article 

    Google Scholar 
    Whitmore, F. C. & Gard, L. M. J. Steller’s sea cow (Hydrodamalis gigas) of late Pleistocene age from Amchitka, Aleutian Islands, Alaska. US Geol. Surv. Prof. Pap. 1036, 1–19 (1977).
    Google Scholar 
    Sheppard, J. K. et al. Movement heterogeneity of dugongs, Dugong dugon (Muller), over large spatial scales. J. Exp. Mar. Biol. Ecol. 334, 64–83 (2006).Article 

    Google Scholar 
    Deutsch C. J., et al. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic Coast of the United States. Wildlife Monogr., 151, 1–77 (2003).Reed, R. K. Transport of the Alaskan Stream. Nature 220, 681–682 (1968).ADS 
    Article 

    Google Scholar 
    Detlef, H. et al. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea. Nat. Commun. 9, 941 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ragen, T. J., Antonelis, G. A. & Kiyota, M. Early migration of northern fur-seal pups from St-Paul Island, Alaska. J. Mammal. 76, 1137–1148 (1995).Article 

    Google Scholar 
    Estes, J. A., Burdin, A. & Doak, D. F. Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc. Natl Acad. Sci. USA 113, 880–885 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Larson, S., Jameson, R., Etnier, M., Jones, T. & Hall, R. Genetic diversity and population parameters of sea otters, Enhydra lutris, before fur trade extirpation from 1741–1911. PLoS ONE 7, e32205 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bullen, C. D., Campos, A. A., Gregr, E. J., McKechnie, I. & Chan, K. M. A. The ghost of a giant – Six hypotheses for how an extinct megaherbivore structured kelp forests across the North Pacific Rim. Glob. Ecol. Biogeogr. 30, 2101–2118 (2021).Article 

    Google Scholar 
    Plon, S., Thakur, V., Parr, L. & Lavery, S. D. Phylogeography of the dugong (Dugong dugon) based on historical samples identifies vulnerable Indian Ocean populations. PLoS ONE 14, e0219350 (2019).CAS 
    Article 

    Google Scholar 
    Seddon, J. M. et al. Fine scale population structure of dugongs (Dugong dugon) implies low gene flow along the southern Queensland coastline. Conserv. Genet. 15, 1381–1392 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners

    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.CAS 
    PubMed 

    Google Scholar 
    Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    PubMed 

    Google Scholar 
    Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea. 2017;2017:1–22.
    Google Scholar 
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science. 2004;305:1457–62.CAS 
    PubMed 

    Google Scholar 
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 

    Google Scholar 
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.CAS 
    PubMed 

    Google Scholar 
    McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol. 2019;4:614–22.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019;4:595–602.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl‐coenzyme M reductase‐based anaerobic alkane oxidation in archaea. Environ Microbiol. 2021;23:530–41.CAS 
    PubMed 

    Google Scholar 
    Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R. Methanogenic capabilities of ANME‐archaea deduced from 13C‐labelling approaches. Environ Microbiol. 2013;15:2384–93.CAS 
    PubMed 

    Google Scholar 
    Sousa DZ, Smidt H, Alves MM, Stams AJM. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Micr. 2007;57:609–15.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Micr. 2006;56:1331–40.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microb. 2005;71:7493–503.CAS 

    Google Scholar 
    Manzoor S, Schnürer A, Bongcam-Rudloff E, Müller B. Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Stand Genomic Sci. 2016;11:80.PubMed 
    PubMed Central 

    Google Scholar 
    Engelhardt T, Sahlberg M, Cypionka H, Engelen B. Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J. 2013;7:199–209.CAS 
    PubMed 

    Google Scholar 
    Nölling J, Groffen A, de Vos WM. φ F1 and φF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus. Methanobacterium Microbiol. 1993;139:2511–6.
    Google Scholar 
    Meile L, Jenal U, Studer D, Jordan M, Leisinger T. Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol. 1989;152:105–10.CAS 

    Google Scholar 
    Weidenbach K, Nickel L, Neve H, Alkhnbashi OS, Künzel S, Kupczok A, et al. Methanosarcina spherical virus, a novel archaeal lytic virus targeting Methanosarcina strains. J Virol. 2017;91:e00955–17.PubMed 
    PubMed Central 

    Google Scholar 
    Molnár J, Magyar B, Schneider G, Laczi K, Valappil SK, Kovács ÁL, et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLOS ONE. 2020;15:e0231864.PubMed 
    PubMed Central 

    Google Scholar 
    Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun. 2015;6:6585.CAS 
    PubMed 

    Google Scholar 
    Pourcel C, Touchon M, Villeriot N, Vernadet J-P, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2019;48:D535–D544.PubMed Central 

    Google Scholar 
    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife. 2015;4:e08490.PubMed Central 

    Google Scholar 
    Lever MA, Teske AP. Diversity of methane-cycling Archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microb. 2015;81:1426–41.
    Google Scholar 
    Jian H, Yi Y, Wang J, Hao Y, Zhang M, Wang S, et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 2021;15:3094–110.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nature Protoc. 2017;12:1673–82.CAS 

    Google Scholar 
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Páez-Espino D, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2020;49:D764–D775.PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Sandaa R, Gómez‐Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG, et al. Viral control of bacterial biodiversity – evidence from a nutrient‐enriched marine mesocosm experiment. Environ Microbiol. 2009;11:2585–97.CAS 
    PubMed 

    Google Scholar 
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang J-H, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krupovič M, Forterre P, Bamford DH. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol. 2010;397:144–60.PubMed 

    Google Scholar 
    Thiroux S, Dupont S, Nesbø CL, Bienvenu N, Krupovic M, L’Haridon S, et al. The first head‐tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep‐sea archaea. Environ Microbiol. 2021;23:3614–26.CAS 
    PubMed 

    Google Scholar 
    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
    Google Scholar 
    Hao L, Bize A, Conteau D, Chapleur O, Courtois S, Kroff P, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions. Water Res. 2016;102:158–69.CAS 
    PubMed 

    Google Scholar 
    Bedoya K, Hoyos O, Zurek E, Cabarcas F, Alzate JF. Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia. Sci Total Environ. 2020;726:138479.CAS 
    PubMed 

    Google Scholar 
    Murphy KC, Fenton AC, Poteete AR. Sequence of the bacteriophage P22 Anti-RecBCD (abc) genes and properties of P22 abc region deletion mutants. Virology. 1987;160:456–64.CAS 
    PubMed 

    Google Scholar 
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, et al. Bacterial retrons function in anti-phage defense. Cell. 2020;183:1551–61.CAS 
    PubMed 

    Google Scholar 
    Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol. 2018;16:12–7.CAS 
    PubMed 

    Google Scholar 
    Jonge PA, de, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2018;27:51–63.PubMed 

    Google Scholar 
    Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE, et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol. 2019;4:352–61.CAS 
    PubMed 

    Google Scholar 
    Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13:777–86.CAS 
    PubMed 

    Google Scholar 
    Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol. 2005;5:28.PubMed 
    PubMed Central 

    Google Scholar 
    Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme deviations from expected evolutionary rates in archaeal protein families. Genome Biol Evol. 2017;9:2791–811.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155.PubMed 
    PubMed Central 

    Google Scholar 
    Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.PubMed 
    PubMed Central 

    Google Scholar 
    Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfennig N, Widdel F, Trüper HG. The prokaryotes, A handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, Berlin, Germany. 1981.Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.CAS 
    PubMed 

    Google Scholar 
    Kumar S, Cheng X, Klimasauskas S, Sha M, Posfai J, Roberts RJ, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashcroft AE, Lago H, Macedo JMB, Horn WT, Stonehouse NJ, Stockley PG. Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechno. 2005;5:2034–41.CAS 

    Google Scholar 
    Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, et al. Structure of the receptor-binding protein of bacteriophage Det7: a podoviral tail spike in a Myovirus. J Virol. 2008;82:2265–73.CAS 
    PubMed 

    Google Scholar 
    Shai Y. Mode of action of membrane active antimicrobial peptides. Peptide Sci. 2002;66:236–48.CAS 

    Google Scholar 
    Thevissen K, Ferket KKA, François IEJA, Cammue BPA. Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003;24:1705–12.CAS 
    PubMed 

    Google Scholar 
    Broderick JB, Duffus BR, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev. 2014;114:4229–317.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wildschutte H, Preheim SP, Hernandez Y, Polz MF. O‐antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol. 2010;12:2977–87.CAS 
    PubMed 

    Google Scholar 
    Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohyd Res. 2003;338:2503–19.CAS 

    Google Scholar 
    Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Markine-Goriaynoff N, Gillet L, Etten JLV, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol. 2004;85:2741–54.CAS 
    PubMed 

    Google Scholar 
    Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant-microbe Interac. 2013;26:676–85.CAS 

    Google Scholar 
    Trueba G, Zapata S, Madrid K, Cullen P, Haake D. Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol Official J Span Soc Microbiol. 2004;7:35–40.
    Google Scholar 
    Trunk T, Khalil HS, Leo JC. Norway BCSG Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslb,. Bacterial autoaggregation. Aims Microbiol. 2018;4:140–164.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guan S, Bastin DA, Verma NK. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology. 1999;145:1263–73.CAS 
    PubMed 

    Google Scholar 
    Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59:145–55.CAS 
    PubMed 

    Google Scholar 
    Silva JB, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363:fnw002.
    Google Scholar 
    Tsuzuki K, Kimura K, Fujii N, Yokosawa N, Oguma K. The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin. Biochem Bioph Res Co. 1992;183:1273–9.CAS 

    Google Scholar 
    Enav H, Mandel-Gutfreund Y, Béjà O. Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome. 2014;2:9.PubMed 
    PubMed Central 

    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome. 2019;7:58.PubMed 
    PubMed Central 

    Google Scholar 
    Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun. 2017;8:1114.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome. 2020;8:124.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. Peerj Comput Sci. 2017;3:e104.
    Google Scholar 
    Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peerj. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;3:1043–55.
    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;6:1925–7.
    Google Scholar 
    Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–52.PubMed Central 

    Google Scholar 
    Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in the Pfam database. BMC Bioinform. 2007;8:298.
    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pratama AA, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. Peerj. 2021;9:e11447.PubMed 
    PubMed Central 

    Google Scholar 
    Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–43.CAS 
    PubMed 

    Google Scholar 
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinform Oxf Engl. 2011;27:1009–10.CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler Avon, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:gkab301-.
    Google Scholar 
    Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009;10:R85–R85.PubMed 
    PubMed Central 

    Google Scholar  More