More stories

  • in

    Archiving the genomic and genetic resources of glaciers

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01367-2 (2022). More

  • in

    Long-term evidence for ecological intensification as a pathway to sustainable agriculture

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).Article 

    Google Scholar 
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B 363, 495–515 (2008).Article 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    Article 

    Google Scholar 
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).CAS 
    Article 

    Google Scholar 
    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).Article 

    Google Scholar 
    Ecosystems and Human Well-being: Synthesis (Millenium Ecosystem Assessment, 2005); http://www.millenniumassessment.org/documents/document.356.aspx.pdfBommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2018).Article 

    Google Scholar 
    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).CAS 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. Sustain. Agric. 2, 27–43 (2009).
    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).CAS 
    Article 

    Google Scholar 
    Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).Article 

    Google Scholar 
    Tittonell, P. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).Article 

    Google Scholar 
    Jenkinson, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228, 3–15 (2001).CAS 
    Article 

    Google Scholar 
    Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J. & Smith, C. J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 94, 23–38 (2009).Article 

    Google Scholar 
    Peoples, M. B. et al. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 123–142 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00008-XStorkey, J., Bruce, T., McMillan, V. & Neve, P. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 199–209 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00012-1Schröder, J. Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 96, 253–261 (2005).Article 
    CAS 

    Google Scholar 
    Mhlanga, B., Ercoli, L., Pellegrino, E., Onofri, A. & Thierfelder, C. The crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa. Agron. Sustain. Dev. 41, 29–43 (2021).Article 

    Google Scholar 
    Barrett, C. B. & Bevis, L. E. M. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).CAS 
    Article 

    Google Scholar 
    Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    Sandén, T. et al. European long-term field experiments: knowledge gained about alternative management practices. Soil Use Manage. 34, 167–176 (2018).Article 

    Google Scholar 
    Storkey, J. et al. The unique contribution of Rothamsted to ecological research at large temporal scales. Adv. Ecol. Res. 55, 3–42 (2016).Article 

    Google Scholar 
    Johnston, A. E. & Poulton, P. R. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69, 113–125 (2018).CAS 
    Article 

    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15, 124011 (2020).Article 

    Google Scholar 
    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).Article 

    Google Scholar 
    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935 (2015).Article 

    Google Scholar 
    Storkey, J., Mead, A., Addy, J. & MacDonald, A. J. Agricultural intensification and climate change have increased the threat from weeds. Glob. Change Biol. 27, 2416–2425 (2021).Article 

    Google Scholar 
    Vanlauwe, B. et al. in Integrated Plant Nutrient Management in Sub-Saharan Africa: From Concept to Practice (eds Vanlauwe, B. et al.) 173–184 (CABI, 2002).Hijbeek, R. et al. Do organic inputs matter—a meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 411, 293–303 (2017).CAS 
    Article 

    Google Scholar 
    Thierfelder, C. & Wall, P. C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 105, 217–227 (2009).Article 

    Google Scholar 
    Gentile, R., Vanlauwe, B., Chivenge, P. & Six, J. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol. Biochem. 40, 2375–2384 (2008).CAS 
    Article 

    Google Scholar 
    Mupangwa, W. et al. Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies. Agric. Ecosyst. Environ. 306, 107170 (2021).Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).CAS 
    Article 

    Google Scholar 
    Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).Article 

    Google Scholar 
    Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).Article 

    Google Scholar 
    Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    Kirkegaard, J. A. et al. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 187, 133–145 (2014).Article 

    Google Scholar 
    Thierfelder, C. et al. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev. 38, 16–37 (2018).Article 

    Google Scholar 
    Alignier, A. et al. Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 57, 654–663 (2020).Article 

    Google Scholar 
    Liebman, M. et al. Ecologically sustainable weed management: how do we get from proof-of-concept to adoption? Ecol. Appl. 26, 1352–1369 (2016).Article 

    Google Scholar 
    Giller, K. E. The food security conundrum of sub-Saharan Africa. Glob. Food Sec. 26, 100431 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Addy, J. W. G., Ellis, R. H., Macdonald, A. J., Semenov, M. A. & Mead, A. Changes in agricultural climate in South-Eastern England from 1892 to 2016 and differences in cereal and permanent grassland yield. Agric. For. Meteorol. 308–309, 108560 (2021).Article 

    Google Scholar 
    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. Preprint at https://arXiv.org/abs/1506.04967v2 (2018).MacLaren, C., Glendining, M., Poulton, P., Macdonald, A. & Clark, S. Woburn Ley-Arable Experiment: Yields of Wheat as First Test Crop, 1976–2018 (e-RA Rothamsted, 2022); https://doi.org/10.23637/wrn3-wheat7618-01 .Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means: R package version 1.7.2 https://CRAN.R-project.org/package=emmeans (2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Lajeunesse, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar  More

  • in

    Natural forest growth and human induced ecosystem disturbance influence water yield in forests

    Forest complexity increases hydrological resistance to disturbancesIn general, natural forests, old forests, forests with high coverage, and forests located in low aridity regions (P/PET ≥ 1) are characterized by higher ecosystem complexity than planted forests, young forests, forests with low coverage, and forests located in arid regions (P/PET  More

  • in

    Manure amendment can reduce rice yield loss under extreme temperatures

    Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).
    Google Scholar 
    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO Agricultural Development Economics Division, 2012).Arunrat, N., Pumijumnong, N., Sereenonchai, S., Chareonwong, U. & Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 726, 137864 (2020).CAS 

    Google Scholar 
    Lafferty, D. C. et al. Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on U.S. maize yields. Commun. Earth Environ. 2, 196 (2021).
    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food. 2, 54–65 (2021).
    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).
    Google Scholar 
    Sun, T. et al. Current rice models underestimate yield losses from short-term heat stresses. Glob. Chang. Biol. 27, 402–416 (2020).
    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014).
    Google Scholar 
    Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).
    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
    Google Scholar 
    Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 1–10 (2020).
    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 494, 390 (2013).CAS 

    Google Scholar 
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).CAS 

    Google Scholar 
    Guo, J. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).CAS 

    Google Scholar 
    Galloway, J. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).CAS 

    Google Scholar 
    Xia, L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 51, 7450–7457 (2017).CAS 

    Google Scholar 
    Zhang, T. et al. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resour. Conserv. Recycl. 168, 105301 (2021).
    Google Scholar 
    Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).
    Google Scholar 
    Du, Y. et al. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 193, 104617 (2020).CAS 

    Google Scholar 
    Wang, K., Zhang, X. & Ervin, E. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J. Plant Physiol. 169, 492–500 (2012).CAS 

    Google Scholar 
    Jespersen, D. & Huang, B. Proteins associated with heat‐induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics. 15, 798–812 (2015).CAS 

    Google Scholar 
    Xi, Y. et al. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicol. Environ. Saf. 190, 110048 (2020).CAS 

    Google Scholar 
    Waraich, E. A., Ahmad, R., Halim, A. & Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nut. 12, 221–244 (2012).
    Google Scholar 
    Yamori, W., Noguchi, K., Hikosaka, K. & Terashima, I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 152, 388–399 (2010).CAS 

    Google Scholar 
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7, 405–410 (2002).CAS 

    Google Scholar 
    Wang, Q., Chen, J., He, N. & Guo, F. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19, 849 (2018).
    Google Scholar 
    Cheng, Q. et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol. 17, 419–429 (2015).CAS 

    Google Scholar 
    Miura, K. et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403–1414 (2007).CAS 

    Google Scholar 
    Xie, G., Kato, H., Sasaki, K. & Imai, R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett. 583, 2734–2738 (2009).CAS 

    Google Scholar 
    Hasanuzzaman, M., Hossain, M. A. & Fujita, M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 5, 353 (2011).
    Google Scholar 
    Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T. & Takabe, T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163, 515–523 (2002).CAS 

    Google Scholar 
    Khan, S. et al. Plants mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8, 508 (2019).CAS 

    Google Scholar 
    Li, Y., Gao, Y., Xu, X., Shen, Q. & Guo, S. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Exp. Bot. 60, 2351–2360 (2009).CAS 

    Google Scholar 
    Xiong, D. et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature, and irradiance are affected by N supplements in rice. Plant. Cell Environ. 38, 2541–2550 (2015).CAS 

    Google Scholar 
    Waraich, E. A., Ahmad, R., Ashraf, M. Y., Saifullah & Ahmad, M. Improving agricultural water use effciency by nutrient management in crop plants. Acta Agric. Scand. Sect.-B Soil. Plant Sci. 61, 291–304 (2011).CAS 

    Google Scholar 
    Dias, A. S. & Lidon, F. C. Bread and durum wheat tolerance under heat stress: A synoptical overview. Emir. J. Food Agric. 22, 412–436 (2010).
    Google Scholar 
    Meshah, E. A. E. Effect of irrigation regimes and foliar spraying of potassium on yield, yield components and water use efficiency of wheat in sandy soils. World J. Agric. Sci. 5, 662–669 (2009).
    Google Scholar 
    Huang, G., Zhang, Q., Wei, X., Peng, S. & Li, Y. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Front. Plant Sci. 8, 945 (2017).
    Google Scholar 
    Zhou, Y. et al. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crop. Res. 228, 68–75 (2018).
    Google Scholar 
    Hou, L. et al. Effects of different phosphate fertilizer application on permeability of membrane and antioxidative enzymes in rice under low temperature stress. Acta Agriculturae. Boreali-Sinica 27, 118–123 (2012).
    Google Scholar 
    Dong, W. et al. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7, e44504 (2012).CAS 

    Google Scholar 
    Bertollo, A. M. et al. Precrops alleviate soil physical limitations for soybean root growth in an Oxisol from southern Brazil. Soil Till. Res. 206, 104820 (2021).
    Google Scholar 
    Ren, Y. et al. Functional compensation dominates plant rhizosphere microbiota assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 150, 107968 (2020).CAS 

    Google Scholar 
    Oka, Y. Mechanisms of nematode suppression by organic soil amendments—a review. Appl. Soil Ecol. 44, 101–115 (2010).
    Google Scholar 
    Rose, M. T. et al. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron 124, 37–89 (2014).CAS 

    Google Scholar 
    García, A. C. et al. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J. Plant Physiol. 192, 56–63 (2016).
    Google Scholar 
    Dieleman, W. I. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 18, 2681–2693 (2012).
    Google Scholar 
    Muhammad, Q. et al. Yield sustainability, soil organic carbon sequestration, and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 198, 104509 (2020).
    Google Scholar 
    Zhang, X. et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta‐analysis. Glob. Chang. Biol. 26, 888–900 (2020).
    Google Scholar 
    Zhang, X. et al. Significant residual effects of wheat fertilization on greenhouse gas emissions in succeeding soybean growing season. Soil Till. Res. 169, 7–15 (2017).
    Google Scholar 
    Latare, A. M., Kumar, O., Singh, S. K. & Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 69, 17–24 (2014).
    Google Scholar 
    Zhang, J. et al. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system. Crop J. 9, 1191–1197 (2021).
    Google Scholar 
    Pachauri, R. K. et al. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).Choi, W. J., Lee, M. S., Choi, J. E., Yoon, S. & Kim, H. Y. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine. Glob. Chang. Biol. 19, 1300–1310 (2013).
    Google Scholar 
    FAO. FAOSTAT Online Statistical Service. https://www.fao.org/faostat/en/#data/RFN, (FAO, 2016).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 

    Google Scholar 
    Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).
    Google Scholar 
    Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R. & Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 465, 72–96 (2013).CAS 

    Google Scholar 
    Aryal, J. P. et al. Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environ. Sci. Pollut. Res. 28, 51480–51496 (2021).CAS 

    Google Scholar 
    Zhang, Q. et al. Targeting hotspots to achieve sustainable nitrogen management in China’s smallholder-dominated cereal production. Agronomy 11, 557 (2021).
    Google Scholar 
    Tyagi, V. K. et al. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable Sustain. Energy Rev. 93, 380–399 (2018).
    Google Scholar 
    Schlesinger, W. H. Carbon sequestration in soils: Some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 

    Google Scholar 
    Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).
    Google Scholar 
    Zhao, F., Yang, L., Chen, L., Li, S. & Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response, and human exposure. Chemosphere 219, 882–895 (2019).CAS 

    Google Scholar 
    Chadwick, D. R. et al. Strategies to reduce nutrient pollution from manure management in China. Front. Agr. Sci. Eng. 7, 45–55 (2020).
    Google Scholar 
    Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain 4, 48–55 (2021).
    Google Scholar 
    Chen, D., Yuan, L., Liu, Y., Ji, J. & Hou, H. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 90, 34–42 (2017).
    Google Scholar 
    Siddik, M. A. et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 106, 30–38 (2019).
    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207 (1973).CAS 

    Google Scholar 
    Page, A. L., Miller, R. H. & Dennis, R. K. Methods of Soil Analysis. Part 2 Chemical Methods (ed Page, A. L.) (Soil Science Society of America, 1982).Black, C. A. Methods of Soil Analysis Part II. Chemical and Microbiological Properties (ed Norman, A. G.) (American Society of Agriculture, 1965).Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).CAS 

    Google Scholar 
    Knudsen, D., Peterson, G. A. & Pratt, P. F. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (ed Page, A. L.) (American Society of Agriculture, 1982).Olsen, S. R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (United States Department of Agriculture Circular, 1954).Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science 331, 554–554 (2011).CAS 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    van Groenigen, K. J., Van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 3, 288–291 (2013).
    Google Scholar 
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).
    Google Scholar 
    Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).
    Google Scholar  More

  • in

    Value wild animals’ carbon services to fill the biodiversity financing gap

    Pettorelli, N. et al. J. Appl. Ecol. 58, 2384–2393 (2021).Article 

    Google Scholar 
    CBD High-Level Panel Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource Needs for Implementing the Strategic Plan for Biodiversity 2011–2020 (Secretariat of the Convention on Biological Diversity, 2014).Schmitz, O. J. et al. Science 362, eaar3213 (2018).Article 

    Google Scholar 
    Krause, T. & Nielsen, M. R. Forests 10, 344 (2019).Article 

    Google Scholar 
    Jørgensen, D. BioScience 63, 719–720 (2013).Article 

    Google Scholar 
    Berzaghi, F., Chami, R., Cosimano, T. & Fullenkamp, C. Proc. Natl Acad. Sci. USA 119, e2120426119 (2022).Article 

    Google Scholar 
    van Duuren, E., Plantinga, A. & Scholtens, B. J. Bus. Ethics 138, 525–533 (2016).Article 

    Google Scholar 
    Broadstock, D. C., Chan, K., Cheng, L. T. W. & Wang, X. Finance Res. Lett. 38, 101716 (2021).Article 

    Google Scholar 
    Joos, F., Meyer, R., Bruno, M. & Leuenberger, M. Geophys. Res. Lett. 26, 1437–1440 (1999).CAS 
    Article 

    Google Scholar 
    Wang, F. et al. Biol. Conserv. 253, 108913 (2021).Article 

    Google Scholar 
    Sullivan, S. Antipode 45, 198–217 (2013).Article 

    Google Scholar 
    Kamilaris, A., Cole, I. R. & Prenafeta-Boldú, F. X., in Food Technology Disruptions (ed. Galanakis, C. M.) 247–284 (Academic Press, 2021).O’Donnell, E. & Talbot-Jones, J. Ecol. Soc. 23, 7 (2018).Article 

    Google Scholar 
    Anderson, K. & Peters, G. Science 354, 182–183 (2016).CAS 
    Article 

    Google Scholar 
    Berzaghi, F. et al. Nat. Geosci. 12, 725–729 (2019).CAS 
    Article 

    Google Scholar 
    Mariani, G. et al. Sci. Adv. 6, eabb4848 (2020).CAS 
    Article 

    Google Scholar 
    Martin, A. H., Pearson, H. C., Saba, G. K. & Olsen, E. M. One Earth 4, 680–693 (2021).Article 

    Google Scholar 
    Durfort, A., Mariani, G., Troussellier, M., Tulloch, V. & Mouillot, D. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-92037/v1 (2021).Norris, K., Terry, A., Hansford, J. P. & Turvey, S. T. Trends Ecol. Evol. 35, 919–926 (2020).Article 

    Google Scholar 
    Berzaghi, F. et al. Ecography 41, 1934–1954 (2018).Article 

    Google Scholar  More

  • in

    A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen

    Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712.CAS 
    Article 

    Google Scholar 
    Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995;164:16–23.CAS 
    Article 

    Google Scholar 
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    Article 

    Google Scholar 
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.CAS 
    Article 

    Google Scholar 
    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.CAS 
    Article 

    Google Scholar 
    van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.Article 

    Google Scholar 
    Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA. 2010;107:13479–84.Article 

    Google Scholar 
    Mundinger AB, Lawson CE, Jetten MSM, Koch H, Lücker S. Cultivation and transcriptional analysis of a canonical Nitrospira under stable growth conditions. Front Microbiol. 2019;10:1325.Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.CAS 
    Article 

    Google Scholar 
    Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol. 2021;6:246–56.CAS 
    Article 

    Google Scholar 
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.CAS 
    Article 

    Google Scholar 
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.CAS 
    Article 

    Google Scholar 
    Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801.CAS 
    Article 

    Google Scholar 
    Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    Article 

    Google Scholar 
    Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J. 2020;14:1223–32.CAS 
    Article 

    Google Scholar 
    Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem M, et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci. 2021;118:e2025322118.CAS 
    Article 

    Google Scholar 
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.CAS 
    Article 

    Google Scholar 
    Myers MR, King GMY. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.CAS 
    Article 

    Google Scholar 
    Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem. 2019;294:18980–91.CAS 
    Article 

    Google Scholar 
    Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.CAS 
    Article 

    Google Scholar 
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.CAS 
    Article 

    Google Scholar 
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.CAS 
    Article 

    Google Scholar 
    Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ-Analyst: an easy-to-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. J Proteome Res. 2020;19:204–11.CAS 
    Article 

    Google Scholar 
    Nowka B, Daims H, Spieck E. Comparative oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as key factor for niche differentiation. Appl Environ Microbiol. 2014;81:745–53.Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:809.Article 

    Google Scholar 
    Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE. 2014;9:e103034.Article 

    Google Scholar 
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9.CAS 
    Article 

    Google Scholar 
    Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.Article 

    Google Scholar 
    Yang Y, Daims H, Liu Y, Herbold CW, Pjevac P, Lin J-G, et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. mBio. 2020;11:e03175–19.Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 2018;12:2668–80.CAS 
    Article 

    Google Scholar 
    Alberty RA. Standard apparent reduction potentials of biochemical half reactions and thermodynamic data on the species involved. Biophys Chem. 2004;111:115–22.CAS 
    Article 

    Google Scholar 
    Burns LC, Stevens RJ, Smith RV, Cooper JE. The occurrence and possible sources of nitrite in a grazed, fertilized, grassland soil. Soil Biol Biochem. 1995;27:47–59.CAS 
    Article 

    Google Scholar 
    Zhang M, Yuan D, Chen G, Li Q, Zhang Z, Liang Y. Simultaneous determination of nitrite and nitrate at nanomolar level in seawater using on-line solid phase extraction hyphenated with liquid waveguide capillary cell for spectrophotometric detection. Microchim Acta. 2009;165:427–35.CAS 
    Article 

    Google Scholar 
    Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.CAS 
    Article 

    Google Scholar 
    Lebedeva EV, Alawi M, Maixner F, Jozsa P-G, Daims H, Spieck E. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’. Int J Syst Evol Microbiol. 2008;58:242–50.CAS 
    Article 

    Google Scholar 
    Lebedeva EV, Off S, Zumbrägel S, Kruse M, Shagzhina A, Lücker S, et al. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol. 2011;75:195–204.CAS 
    Article 

    Google Scholar 
    Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7.Article 

    Google Scholar 
    Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol. 2006;8:1487–95.CAS 
    Article 

    Google Scholar 
    Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012;6:2245–56.CAS 
    Article 

    Google Scholar 
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    Article 

    Google Scholar 
    Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, et al. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant. Nitrospira ISME J. 2020;14:2967–79.CAS 
    Article 

    Google Scholar 
    Suarez C, Sedlacek CJ, Gustavsson DJI, Eiler A, Modin O, Hermansson M, et al. Disturbance-based management of ecosystem services and disservices in partial nitritation anammox biofilms. 2021. https://www.biorxiv.org/content/10.1101/2021.07.05.451122v1. More

  • in

    ORMEF: a Mediterranean database of exotic fish records

    Edelist, D., Rilov, G., Golani, D., Carlton, J. T. & Spanier, E. Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 19, 69–77, https://doi.org/10.1111/ddi.12002 (2013).Article 

    Google Scholar 
    Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253, https://doi.org/10.1111/ele.12401 (2015).Article 
    PubMed 

    Google Scholar 
    Galil, B. S. et al. International arrivals: widespread bioinvasions in European Seas. Ethol. Ecol. Evol. 26, 152–171, https://doi.org/10.1080/03949370.2014.897651 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golani, D. & Fricke, R. Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa 4509, 1–215, https://doi.org/10.11646/zootaxa.4509.1.1 (2018).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 191, 171–187, https://doi.org/10.1016/j.ecss.2017.03.031 (2017).Article 

    Google Scholar 
    Katsanevakis, S. et al. Advancing marine conservation in European and contiguous seas with the MarCons Action. Res. Ideas Outcomes 3, e11884, https://doi.org/10.3897/rio.3.e11884 (2017).Article 

    Google Scholar 
    Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M. & Ben Ismail, S. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 6, 23009, https://doi.org/10.1038/srep23009 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vargas-Yáñez, M. et al. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Change 63, 177–184, https://doi.org/10.1016/j.gloplacha.2007.09.001 (2008).Article 

    Google Scholar 
    D’Amen, M. & Azzurro, E. Lessepsian fish invasion in Mediterranean marine protected areas: a risk assessment under climate change scenarios. ICES J. Mar. Sci. 77, 388–397, https://doi.org/10.1093/icesjms/fsz207 (2020).Article 

    Google Scholar 
    Golani, D., Azzurro, E., Dulčić, J., Massutí, E. & Orsi-Relini, L. Atlas of Exotic Species in the Mediterranean Sea. F. Briand, Ed. 365 pages. CIESM Publishers, Paris, Monaco (2021).Editorial Board. AquaNIS. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. Version 2.36+ (2015).Roy, D. et al. DAISIE – Inventory of alien invasive species in Europe. https://doi.org/10.15468/ybwd3x (2020).European Commission – Joint Research Centre – European Alien Species Information Network (EASIN).Uludag, A, Scalera, R., Trichkova, T., Tomov, R. & Rat, M. East and South European Network for Invasive Alien Species (ESENIAS): Development, networking and role in the invasive alien species research and policy-making in Europe. (2016).Zenetos, A. et al. ELNAIS: A collaborative network on Aquatic Alien Species in Hellas (Greece). REABIC 6, 185–196, https://doi.org/10.3391/mbi.2015.6.2.09 (2015).Article 

    Google Scholar 
    European Network on Invasive Alien Species. NOBANIS (Gateway to information on Invasive Alien species in North and Central Europe) (2013).MAMIAS – Marine Mediterranean Invasive Alien Species. (2014).MedMIS – Mediterranean Marine Invasive SpeciesKatsanevakis, S. et al. Identifying where vulnerable species occur in a data-poor context: combining satellite imaging and underwater occupancy surveys. Mar. Ecol. Prog. Ser. 577, 17–32, https://doi.org/10.3354/meps12232 (2017).Article 

    Google Scholar 
    Galil, B. S. Alien species in the Mediterranean Sea—which, when, where, why? In Challenges to Marine Ecosystems (eds. Davenport, J. et al.) 105–116, https://doi.org/10.1007/978-1-4020-8808-7_10 (Springer Netherlands (2008).Galil, B. S. Taking stock: inventory of alien species in the Mediterranean sea. Biol. Invasions 11, 359–372, https://doi.org/10.1007/s10530-008-9253-y (2009).Article 

    Google Scholar 
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530, https://doi.org/10.1890/13-1380.1 (2014).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118, https://doi.org/10.12681/mms.186 (2005).Article 

    Google Scholar 
    Zenetos, A. et al. Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on Foraminifera and Parasites. Mediterr. Mar. Sci. 9, 119–166, https://doi.org/10.12681/mms.146 (2008).Article 

    Google Scholar 
    Zenetos, A. et al. Alien species in the Mediterranean sea by 2010. A contribution to the application of european union’s marine strategy framework directive (MSFD). Part I. Spatial distribution. https://doi.org/10.12681/mms.87 (2010)Zenetos, Α et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13, 328–352, https://doi.org/10.12681/mms.327 (2012).Article 

    Google Scholar 
    Dimitriadis, C. et al. Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 21, 62–69, https://doi.org/10.12681/mms.21845 (2020).Article 

    Google Scholar 
    Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106, https://doi.org/10.1016/0006-3207(96)00020-1 (1996).Article 

    Google Scholar 
    Olenin, S., Minchin, D., Daunys, D. & Zaiko, A. Pathways of aquatic invasions in Europe. Atlas of biodiversity risk 138–139 (2010).Essl, F. et al. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience 69, 908–919 (2019).Article 

    Google Scholar 
    Golani, D., Orsi-Relini, L., Massuti, E. & Quignard, J. P. CIESM Atlas of Exotic Species in the Mediterranean. vol. 1 (2002).D’Amen, M. & Azzurro, E. Integrating univariate niche dynamics in species distribution models: A step forward for marine research on biological invasions. J. Biogeogr. 47, 686–697, https://doi.org/10.1111/jbi.13761 (2020).Article 

    Google Scholar 
    Azzurro, E., Smeraldo, S. & D’Amen, M. ORMEF: Occurrence Records of Mediterranean Exotic Fishes database. SEANOE. https://doi.org/10.17882/84182 (2021).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van Der Laan, R. Eschmeyer’s Catalog of Fishes: genera, species, references. California Academy of Sciences (2022).Azzurro, E., Goren, M., Diamant, A., Galil, B. & Bernardi, G. Establishing the identity and assessing the dynamics of invasion in the Mediterranean Sea by the dusky sweeper, Pempheris homboidei Kossmann & Räuber, 1877 (Pempheridae, Perciformes). Biol. Invasions 17, 815–826, https://doi.org/10.1007/s10530-014-0836-5 (2015).Article 

    Google Scholar 
    Evans, J. & Schembri, P. On the occurrence of Cephalopholis hemistiktos and C. taeniops (Actinopterygii, Perciformes, Serranidae) in Malta, with corrections of previous misidentifications. Acta Ichthyol. Piscat. 47, 197–200, https://doi.org/10.3750/AIEP/02064 (2017).Article 

    Google Scholar 
    Dragicevic, B. et al. New Mediterranean Biodiversity Records (December 2019). https://doi.org/10.12681/mms.20913 (2019).UNEP/MAP – United Nation Environment Programme – Mediterranean Action Plan. Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria (IMAP). (2016). More

  • in

    Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds

    Hewitt, G. M. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Drovetski, S. V. et al. A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proc. R. Soc. B 285, 20181606 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).PubMed 
    Article 

    Google Scholar 
    Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, I. Speciation and Biogeography of Birds (Academic Press, 2003).
    Google Scholar 
    Pellegrino, I. et al. Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156, 639–657 (2014).Article 

    Google Scholar 
    Tietze, D. T. Bird Species: How they Arise, Modify and Vanish (Springer Nature, 2018).Book 

    Google Scholar 
    Carrera, L., Pavia, M., Peresani, M. & Romandini, M. Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate. Boll. Soc. Paleontol. I(57), 145–174 (2018).
    Google Scholar 
    Carrera, L., Pavia, M., Romandini, M. & Peresani, M. Avian fossil assemblages at the onset of the LGM in the eastern Alps: a palaecological contribution from the Rio Secco Cave (Italy). C. R. Palevol 17, 166–177 (2018).Article 

    Google Scholar 
    Carrera, L., Scarponi, D., Martini, F., Sarti, L. & Pavia, M. Mid-Late Pleistocene Neanderthal landscapes in southern Italy: paleoecological contributions of the avian assemblage from Grotta del Cavallo, Apulia, southern Italy. Palaeogeogr. Palaeocl. 567, 110256 (2021).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hampe, A. & Jump, A. S. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. S. 42, 313–333 (2011).Article 

    Google Scholar 
    Holm, S. R. & Svenning, J. C. 180,000 years of climate change in Europe: avifaunal responses and vegetation implications. PLoS ONE 9, e94021 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Sanchez Marco, A. Avian zoogeographical patterns during the Quaternary in the Mediterranean region and paleoclimatic interpretation. Ardeola 51, 91–132 (2004).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677–697 (2009).Article 

    Google Scholar 
    Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54 (2014).PubMed 
    Article 

    Google Scholar 
    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).Article 

    Google Scholar 
    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nogues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).Article 
    ADS 

    Google Scholar 
    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeocl. 310, 451–463 (2011).Article 

    Google Scholar 
    Arcones, A., Ponti, R., Ferrer, X. & Vieites, D. R. Pleistocene glacial cycles as drivers of allopatric differentiation in Arctic shorebirds. J. Biogeogr. 48, 747–759 (2021).Article 

    Google Scholar 
    Kozma, R., Melsted, P., Magnússon, K. P. & Höglund, J. Looking into the past–the reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol. Ecol. 25, 570–580 (2016).PubMed 
    Article 

    Google Scholar 
    Lagerholm, V. K. et al. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds. Glob. Change Biol. 23, 1425–1435 (2017).Article 
    ADS 

    Google Scholar 
    Metcalf, J. L. et al. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proc. R. Soc. B 281, 20132782. https://doi.org/10.1098/rspb.2013.2782 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perktaş, U., Peterson, A. T. & Dyer, D. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J. Ornithol. 158, 1–13 (2017).Article 

    Google Scholar 
    Perktaş, U., De Silva, T. N., Quintero, E. & Tavşanoğlu, Ç. Adding ecology into phylogeography: ecological niche models and phylogeography in tandem reveals the demographic history of the subalpine warbler complex. Bird Study 66, 234–242 (2019).Article 

    Google Scholar 
    Fløjgaard, C., Normand, S., Skov, F. & Svenning, J. C. Ice age distributions of European small mammals: insights from species distribution modelling. J. Biogeogr. 36, 1152–1163 (2009).Article 

    Google Scholar 
    Lima-Ribeiro, M. S., Varela, S., Nogués-Bravo, D. & Diniz-Filho, J. A. F. Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Nat. Conserv. 10, 145–151 (2012).Article 

    Google Scholar 
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waltari, E. et al. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2, e563 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barrientos, R. et al. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Mol. Ecol. 23, 390–407 (2014).PubMed 
    Article 

    Google Scholar 
    Huntley, B. & Green, R. E. Bioclimatic models of the distributions of Gyrfalcons and ptarmigan. In Gyrfalcons and Ptarmigan in a Changing World Vol. II (eds Watson, R. T. et al.) 329–338 (The Peregrine Fund, 2011).
    Google Scholar 
    Huntley, B., Allen, J. R. M., Barnard, P., Collingham, Y. C. & Holliday, P. R. Species distribution models indicate contrasting late-Quaternary histories for Southern and Northern Hemisphere bird species. Glob. Ecol. Biogeogr. 22, 277–288 (2013).Article 

    Google Scholar 
    Kiss, O. et al. Past and future climate-driven shifts in the distribution of a warm-adapted bird species, the European Roller Coracias garrulus. Bird Study 67, 143–159 (2020).Article 

    Google Scholar 
    Koparde, P., Mehta, P., Mukherjee, S. & Robin, V. V. Quaternary climatic fluctuations and resulting climatically suitable areas for Eurasian owlets. Ecol. Evol. 9, 4864–4874 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peterson, A. T. & Ammann, C. M. Global patterns of connectivity and isolation of populations of forest bird species in the late Pleistocene. Glob. Ecol. Biogeogr. 22, 596–606 (2013).Article 

    Google Scholar 
    Peterson, A. T., Martínez-Meyer, E. & González-Salazar, C. Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Divers. Distrib. 10, 237–246 (2004).Article 

    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Lack of evidence of a Pleistocene migratory switch in current bird long-distance migrants between Eurasia and Africa. J. Biogeogr. 47, 1564–1573 (2020).Article 

    Google Scholar 
    Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).Article 

    Google Scholar 
    Smith, S. E., Gregory, R. D., Anderson, B. J. & Thomas, C. D. The past, present and potential future distributions of cold-adapted bird species. Divers. Distrib. 19, 352–362 (2013).Article 

    Google Scholar 
    Sutton, L. J. et al. Geographic range estimates and environmental requirements for the harpy eagle derived from spatial models of current and past distribution. Ecol. Evol. 11, 481–497 (2021).PubMed 
    Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Storch, D. Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions. Glob. Change Biol. 21, 1475–1481 (2015).Article 
    ADS 

    Google Scholar 
    Scridel, D. et al. Thermal niche predicts recent changes in range size for bird species. Clim. Res. 73, 207–216 (2017).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Relating Habitat and Climatic Niches in Birds. PLoS Biol. 7, e32819 (2012).CAS 
    ADS 

    Google Scholar 
    Devictor, V., Julliard, R., Jiguet, F. & Couvet, D. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. Lond. [Biol.] 275, 2743–2748 (2008).
    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Glob. Change Biol. 21, 3367–3378 (2015).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A., Julliard, R., Newson, S. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1673–1685 (2007).Article 
    ADS 

    Google Scholar 
    Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. Lond. [Biol.] 277, 3601–3608 (2010).
    Google Scholar 
    Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Glob. Change Biol. 16, 497–505 (2010).Article 
    ADS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).PubMed 
    Article 

    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    BirdLife International. Crex crex. The IUCN Red List of Threatened Species 2016: e.T22692543A86147127. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692543A86147127.en (2016).BirdLife International. Perdix perdix. The IUCN Red List of Threatened Species 2016: e.T22678911A85929015. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678911A85929015.en (2016).BirdLife International. Pyrrhocorax graculus. The IUCN Red List of Threatened Species 2016: e.T22705921A87386602. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22705921A87386602.en (2016).BirdLife International. Coturnix coturnix. The IUCN Red List of Threatened Species 2018: e.T22678944A131904485. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22678944A131904485.en (2018).BirdLife International. Athene noctua. The IUCN Red List of Threatened Species 2019: e.T22689328A155470112. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22689328A155470112.en (2019).BirdLife International. Bubo scandiacus. The IUCN Red List of Threatened Species 2020: e.T22689055A181375387. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22689055A181375387.en (2020).Cramp, S. The Complete Birds of the Western Palearctic on CD-ROM (Oxford University Press, 1998).
    Google Scholar 
    Tyrberg, T. Pleistocene Birds of the Palearctic: A Catalogue. (Publications of the Nuttall Ornithological Club No. 27, 1998).Tyrberg, T. Pleistocene Birds of the Palaearctic. http://web.telia.com/~u11502098/pleistocene.pdf (2008).Pellegrino, I. et al. Evidence for strong genetic structure in European populations of the little owl Athene noctua. J. Avian Biol. 46, 462–475 (2015).Article 

    Google Scholar 
    van Nieuwenhuyse, D., Génot, J. C. & Johnson, D. H. The Little Owl: Conservation, Ecology and Behavior of Athene noctua (Cambridge University Press, 2008).
    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the Brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).Article 
    ADS 

    Google Scholar 
    Hoag, C. & Svenning, J. C. African environmental change from the Pleistocene to the Anthropocene. Annu. Rev. Env. Resour. 42, 27–54 (2017).Article 

    Google Scholar 
    Hoelzmann, P. et al. Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 219–256 (Springer, 2004).Chapter 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Bech, N., Novoa, C., Allienne, J. F., Boissier, J. & Bro, E. Quantifying genetic distance between wild and captive strains of the grey partridge Perdix perdix in France: conservation implications. Biodivers. Conserv. 29, 609–624 (2020).Article 

    Google Scholar 
    Liukkonen-Anttila, T., Uimaniemi, L., Orell, M. & Lumme, J. Mitochondrial DNA variation and the phylogeography of the grey partridge (Perdix perdix) in Europe: from Pleistocene history to present day populations. J. Evolut. Biol. 15, 971–982 (2002).CAS 
    Article 

    Google Scholar 
    Potapova, O. Snowy owl Nyctea scandiaca (Aves: Strigiformes) in the Pleistocene of the Ural Mountains with notes on its ecology and distribution in the Northern Palearctic. Deinsea 8, 103–126 (2001).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux du Pléistocène moyen et supérieur de France. Doc. Lab. Géol. Fac. Sci. Lyon 64, 1–624 (1975).
    Google Scholar 
    Mourer-Chauviré, C. Les oiseaux dans les habitats pale´olithiques: gibier des hommes ou proies des rapaces? In Animal and Archaeology: 2. Shell Middens, Fishes and Birds (eds Grigson, C. & Clutton-Brock, J.) 111–124 (British Archaeological Reports International Series 183, 1983).
    Google Scholar 
    Meijer, H. J., Pavia, M., Madurell-Malapeira, J. & Alba, D. M. A revision of fossil eagle owls (Aves: Strigiformes: Bubo) from Europe and the description of a new species, Bubo ibericus, from Cal Guardiola (NE Iberian Peninsula). Hist. Biol. 29, 822–832 (2017).Article 

    Google Scholar 
    Sanchez Marco, A. Aves fósiles de la Península Ibérica, Canarias y Baleares: balance de los estudios realizados. Investig. Rev. PH Inst. Andal. Patrim. Hist. 94, 154–181 (2018).
    Google Scholar 
    Sardella, R. et al. Grotta Romanelli (Southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. S. 124, 247–264 (2018).
    Google Scholar 
    Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea 9, 395–404 (2003).
    Google Scholar 
    Bedetti, C. & Pavia, M. Reinterpretation of the Late Pleistocene Ingarano Cave deposit based on the fossil bird association (Apulia, South-eastern Italy). Riv. Ital. Paleontol. S. 113, 487–507 (2007).
    Google Scholar 
    Tyrberg, T. Arctic, montane and steppe birds as glacial relicts in West Palearctic. Ornithol. Verh. 25, 29–49 (1991).
    Google Scholar 
    Bruderer, B. & Salewski, V. Evolution of bird migration in a biogeographical context. J. Biogeogr. 35, 1951–1959 (2008).Article 

    Google Scholar 
    Finlayson, C. Avian Survivors. The History and Biogeography of Palearctic Birds (T. & A.D. Poyser, 2011).
    Google Scholar 
    Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95, 1109–1119 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).PubMed 
    Article 

    Google Scholar 
    Somveille, M. et al. Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Fiedler, W. Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. In Avian Migration (eds Berthold, P. et al.) 21–38 (Springer, 2003).Chapter 

    Google Scholar 
    Milá, B., Smith, T. B. & Wayne, R. K. Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60, 2403–2409 (2006).PubMed 
    Article 

    Google Scholar 
    Zink, R. M. The evolution of avian migration. Biol. J. Linn. Soc. 104, 237–250 (2011).Article 

    Google Scholar 
    Zink, R. M. & Gardner, A. S. Glaciation as a migratory switch. Sci. Adv. 3, e1603133 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Matthiesen, D. G. Avian medullary bone in the fossil record, an example from the Early Pleistocene of Olduvai Gorge, Tanzania. J. Vertebr. Paleontol. 9, 34A (1990).
    Google Scholar 
    Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article 

    Google Scholar 
    Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071 (2005).Article 
    ADS 

    Google Scholar 
    Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database, Version 26. https://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html (2019).d’Errico, F., Banks, W. E., Vanhaeren, M., Laroulandie, V. & Langlais, M. PACEA geo-referenced radiocarbon database. Paleoanthropology https://doi.org/10.4207/PA.2011.ART40 (2011).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1897. https://doi.org/10.2458/azu_js_rc.55.16947 (2013).CAS 
    Article 

    Google Scholar 
    Serjeantson, D. Birds: a seasonal resource. Environ. Archaeol. 3, 23–33 (1998).Article 

    Google Scholar 
    Serjeantson, D. Birds. Cambridge Manuals in Archaeology (Cambridge University Press, 2009).
    Google Scholar 
    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21 (2015).Article 

    Google Scholar 
    Varela, S., Lima-Ribeiro, M. S. & Terribile, L. C. A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10, e0129037 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar. Ecol. Prog. Ser. 321, 267–281 (2006).Article 
    ADS 

    Google Scholar 
    Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D. & Hastie, T. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J. Biogeogr. 35, 1481–1497 (2008).Article 

    Google Scholar 
    Therneau, T. & Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart (2019).Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021). More