Detailed analysis of habitat suitability curves for macroinvertebrates and functional feeding groups
Poff, N. L. et al. The natural flow regime: A new paradigm for riverine conservation and restoration. Bioscience 47, 769–784 (1997).Article
Google Scholar
Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30(4), 492–507 (2002).PubMed
Article
Google Scholar
Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?. Front. Ecol. Environ. 12, 176–185 (2014).Article
Google Scholar
Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).Article
Google Scholar
Acreman, M. Ethical aspects of water and ecosystems. Water Policy 3, 257–265 (2001).Article
Google Scholar
Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2010).Article
Google Scholar
Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flow. Freshw. Biol. 55, 194–205 (2010).Article
Google Scholar
Richter, B. D. & Thomas, G. A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 12(1), 12 (2007).Article
Google Scholar
Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).Article
Google Scholar
Vӧrӧsmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 468, 334–334 (2010).Article
Google Scholar
Acreman, M. C. & Ferguson, A. J. D. Environmental flows and the European water framework directive. Freshw. Biol. 55, 32–48 (2010).Article
Google Scholar
Poff, N. L. & Matthews, J. H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 5, 667–675 (2003).Article
Google Scholar
Theodoropoulos, C. & Skoulikidis, N. Environmental flows: The European approach through the Water Framework Directive 2000/60/EC. In Proceedings of the 10th International Congress of the Hellenic Geographical Society 1140–1152 (2015).The Brisbane Declaration. Environmental flows are essential for freshwater ecosystem health and human well-being. In Declaration of the 10th International River Symposium 3–6 (Brisbane, Australia, 2007).Arthington, A. H. et al. The brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 6, 45 (2018).Article
Google Scholar
European Commission. Ecological flows in the implementation of the Water Framework Directive. WFD CIS Guidance Document No. 31 (2015).Hirzel, A. H. & Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381 (2008).Article
Google Scholar
Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).PubMed
Article
Google Scholar
Ahmadi-Nedushan, B. et al. A review on statistical methods for the evaluation of the aquatic habitat suitability for instream flow assessment. River Res. Applic. 22, 503–523 (2006).Article
Google Scholar
Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. Modelling the hydraulic preferences of benthic macroinvertebrates in small European stream. Freshw. Biol. 52, 145–164 (2007).Article
Google Scholar
Katopodis, C. Case studies of instream flow modelling for fish habitat in Canadian Prairie Rivers. Can. Water Resour. J. 28, 199–216 (2003).Article
Google Scholar
Parasiewicz, P. Application of MesoHABSIM and target fish community approaches to restoration of the Quinebaug River, Connecticut and Massachusetts, U.S.A. River. Res. Appl. 24, 459–471 (2008).Article
Google Scholar
Piniweski, M. et al. Estimation of environmental flows in semi-natural lowland rivers – the Narew basin case study. Pol. J. Environ. Stud. 20(5), 1281–1293 (2011).
Google Scholar
Theodoropoulos, C., Vourka, A., Skoulikidis, N., Rutschmann, P. & Stamou, A. Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates. J. Ecohydraul. 3(1), 30–44 (2018).Article
Google Scholar
Yi, Y. et al. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renew. Sustain. Energy Rev. 68, 748–762 (2017).Article
Google Scholar
Theodoropoulos, C., Skoulikidis, N., Rutschmann, P. & Stamou, A. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538–547 (2018).Article
Google Scholar
Huryn, A. D. & Wallace, J. B. Life history and production of stream insects. Annu. Rev. Entomol. 45(1), 83–110 (2000).CAS
PubMed
Article
Google Scholar
Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).CAS
PubMed
Article
Google Scholar
Cummins, K. W. Structure and function of stream ecosystems. Bioscience 24, 631–641 (1974).Article
Google Scholar
Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrates species in freshwater ecosystems. Bioscience 49(2), 119–127 (1999).Article
Google Scholar
Dolédec, S., Statzner, B. & Bournaud, M. Species traits for future biomonitoring across ecoregions: Patterns along a human-impacted river. Freshw. Biol. 42, 737–758 (1999).Article
Google Scholar
Marzin, N. et al. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures?. Ecol. Ind. 23, 56–65 (2012).CAS
Article
Google Scholar
Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article
Google Scholar
Jowett, I. G. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Res. Appl. 19, 495–507 (2003).Article
Google Scholar
Dewson, Z. S., James, A. B. W. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. North Am. Benthol. Soc. 26, 401–415 (2007).Article
Google Scholar
Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21(2), 203–217 (1997).CAS
PubMed
Article
Google Scholar
Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article
Google Scholar
Graeber, D., Pusch, M. T., Lorenz, S. & Brauns, M. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717, 147–159 (2013).CAS
Article
Google Scholar
González, J. M., Recuerda, M. & Elosegi, A. Crowded waters: short-term response of invertebrate drift to water abstraction. Hydrobiologia 819, 39–51 (2018).Article
Google Scholar
Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W. & Quinn, J. M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 25(2), 187–199 (1991).Article
Google Scholar
Lamouroux, N. et al. The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes (2009). River Res. Appl. 26, 915–920 (2010).Article
Google Scholar
Mérigoux, S. & Dolédec, S. Hydraulic requirements of stream communities: A case study on invertebrates. Freshw. Biol. 49, 600–613 (2004).Article
Google Scholar
Lancaster, J. & Downes, B. J. Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Res. Appl. 26, 385–403 (2009).Article
Google Scholar
Lancaster, J. & Hildrew, A. G. Flow refugia and the microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc. 12(4), 385–393 (1993).Article
Google Scholar
Chen, W. & Olden, J. D. Evaluating transferability of flow–ecology relationships across space, time and taxonomy. Freshw. Biol. 63, 817–830 (2017).Article
Google Scholar
Li, F., Cai, Q., Fu, X. & Liu, J. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region China. Prog. Nat. Sci. 19, 359–367 (2009).Article
Google Scholar
Growns, I. O. & Davis, J. A. Longitudinal changes in near-bed flows and macroinvertebrate communities in a western Australian stream. J. North Am. Benthol. Soc. 13, 417–438 (1994).Article
Google Scholar
Shearer, K. A., Hayes, J. W., Jowett, I. G. & Olsen, D. A. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N. Z. J. Mar. Freshw. Res. 49, 178–191 (2015).Article
Google Scholar
Bovee, K. D. et al. Stream Habitat Analysis using the Instream Flow Incremental Methodology. USGS Inf. Technol. Rep. 1998–0004, 1–130 (1998).
Google Scholar
Conallin, J., Boegh, E. & Jensen, J. K. Instream physical habitat modelling types: An analysis as stream hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Manag. 8, 93–107 (2010).Article
Google Scholar
Poff, N. L., Tharme, R. E. & Arthington, A. H. Evolution of environmental flows assessment science, principles, and methodologies. In Water for the Environment: Policy, Science, and Integrated Management (eds Horne, A. et al.) 203–236 (Elsevier Press, Amsterdam, 2017).Chapter
Google Scholar
Bovee, K.D. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Washington (DC): USDI Fish and Wildlife Service. Instream Flow Information Paper #21 FWS/OBS-86/7.Geological Survey, Biological Resources Division, Mid-Continent Ecological Science Centre, Fort Collins, Colorado (1986).Vismara, R., Azzellino, A., Bosi, R., Crosa, G. & Gentili, G. Preference curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul. River 17, 37–50 (2001).Article
Google Scholar
Nestler, J. M., Milhous, R. T., Payne, T. R. & Smith, D. L. History and review of the habitat suitability criteria curve in applied aquatic ecology. River Res. Appl. 35, 1155–1180 (2019).Article
Google Scholar
Theodoropoulos, C., Skoulikidis, N., Stamou, A. & Dimitriou, E. Spatiotemporal variation in benthic-invertebrates-based physical Habitat modelling: Can we use generic instead of local and season-specific habitat suitability criteria?. Water 10, 1508 (2018).Article
Google Scholar
Gąbka, M., Jakubas, E., Janiak, T. & Golski, J. Rzeki Wełna i Flinta – charakterystyka obiektów badań, ich położenie i granice zlewni. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty(Wielkopolska (eds Batora, J. et al.) 21–30 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
Google Scholar
Bartkowski, T. Rozwój polodowcowej sieci hydrograficznej w Wielkopolsce Środkowej (Zeszyty Naukowe UAM 8, 1957).Paluch, J. Wpływ działalności spółek wodnych istniejących w XIX i na początku wieku XX na terenie zlewni rzeki Wełny na stan jej hydrografii i stosunków wodnych. In Proceedings of the conference “Ecological problems of the Vełna River basin – status and directions of measures 2–26 (Wągrowiec, 2009).Jakubas, E. et al. Ocena stanu ekologicznego i zmian hydromorfologicznych rzek Wełny i Flinty. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty (Wielkopolska) (eds Batora, J. et al.) 141–150 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
Google Scholar
Szoszkiewicz, K. et al. Podręcznik oceny wód płynących w oparciu o Hydromorfologiczny Indeks Rzeczny (Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, 2017).Emery, J. C. et al. Classifying the hydraulic performance of riffle–pool bedforms for habitat assessment and river rehabilitation design. River Res. Appl. 19, 533–549 (2003).Article
Google Scholar
Mueller, M., Pander, J. & Geist, J. Taxonomic sufficiency in freshwater ecosystems: Effects of taxonomic resolution, functional traits, and data transformation. Freshw. Sci. 32(3), 762–778 (2013).Article
Google Scholar
Schmidt-Kloiber, A., Graf, W., Lorenz, A. & Moog, O. The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566, 325–342 (2006).Article
Google Scholar
Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Plymout, PRIMER-E (Plymouth Marine Laboratory, 2001).
Google Scholar
Vimos-Lojano, D., Hampel, H., Vázquez, R. F. & Martínez-Capel, F. Community structure and functional feeding groups of macroinvertebrates in pristine Andean streams under different vegetation cover. Ecohydrol. Hydrobiol. 20(3), 357–368 (2020).Article
Google Scholar
Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (Plymouth Marine Laboratory, Plymouth, 2006).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (https://www.R-project.org/, 2020)Oksanen, F. J., et al. Vegan: Community Ecology Package. R package Version 2.4–3. (https://CRAN.R-project.org/package=vegan, 2017)Jowett, I.G., Hayes, J.W. & Duncan, M.J. A guide to instream habitat survey methods and analysis. NIWA Science and Technology Series No. 54 (2008).Manly, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals (Chapman and Hall, London, 1993).Book
Google Scholar
Bis, B. & Mikulec, A. Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych (Biblioteka Monitoringu Środowiska, 2013).Grygoruk, M. et al. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowl. Manag. Aquat. Ecosyst. 442, 37. https://doi.org/10.1051/kmae/2021036 (2021).Article
Google Scholar
Degani, G. et al. Relationships between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia 263, 163–172 (1993).Article
Google Scholar
Lamberti, G. A., Entrekin, S. A., Griffiths, N. & Tiegs, S. Coarse Particulate Organic Matter: Storage, Transport, and Retention. In Methods Ecosystem Function Vol. 2 (eds Lamberti, G. A. & Hauer, F. R.) 55–69 (Elsevier Academic Press, Amsterdam, 2017).
Google Scholar
Bell, N., Riis, T., Suren, A. M. & Baattrup-Pedersen, A. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundam. Appl. Limnol. 183(4), 309–321 (2013).Article
Google Scholar
Wolters, J., Verdonschot, R. C. M., Schoelynck, J., Verdonschot, P. F. M. & Meire, P. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia 806, 157–173 (2018).CAS
Article
Google Scholar
Gore, J. A. & Nestler, J. M. Instream flow studies in perspective. Regul. Rivers Res. Manage. 2, 93–101 (1988).Article
Google Scholar
Hudson, H. R., Byrom, A. E. & Chadderton, W. L. A Critique of IFIM —Instream Habitat Simulation in the New Zealand Context (Department of Conservation, 2003).Stamou, A. et al. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manage. 209, 273–285 (2018).CAS
PubMed
Article
Google Scholar
Wright, J. F., Blackburn, J. H., Clarke, R. T. & Furse, M. T. Macroinvertebrate-habitat associations in lowland rivers and their relevance to conservations. Int. Ver. Theor. Angew. Limnol. Verh. 25, 1515–1518 (1994).
Google Scholar
Leszczyńska, J., Głowacki, Ł & Grzybkowska, M. Factors shaping species richness and biodiversity of riverine macroinvertebrate assemblages at the local and regional scale. Community Ecol. 18(3), 227–236 (2017).Article
Google Scholar
Gore, J. A., Crawford, D. J. & Addison, D. S. An analysis of artificial riffles and enhancement of benthic community diversity by Physical Habitat Simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manage. 14(1), 69–77 (1998).Article
Google Scholar
Anderson, N. H. & Sedell, J. R. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24, 351–377 (1979).Article
Google Scholar
Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshw. Biol. 55, 226–242 (2010).Article
Google Scholar
Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12(8), 466–473 (2014).Article
Google Scholar
Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).CAS
PubMed
Article
Google Scholar
Sarremejane, R. et al. Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127, 1586–1595 (2018).Article
Google Scholar
Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C. & Souchon, Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 19, 1085–1099 (2013).Article
Google Scholar
Domisch, S., Jähnig, S. C. & Haase, P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 56, 2009–2020 (2011).Article
Google Scholar More