More stories

  • in

    Value wild animals’ carbon services to fill the biodiversity financing gap

    Pettorelli, N. et al. J. Appl. Ecol. 58, 2384–2393 (2021).Article 

    Google Scholar 
    CBD High-Level Panel Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource Needs for Implementing the Strategic Plan for Biodiversity 2011–2020 (Secretariat of the Convention on Biological Diversity, 2014).Schmitz, O. J. et al. Science 362, eaar3213 (2018).Article 

    Google Scholar 
    Krause, T. & Nielsen, M. R. Forests 10, 344 (2019).Article 

    Google Scholar 
    Jørgensen, D. BioScience 63, 719–720 (2013).Article 

    Google Scholar 
    Berzaghi, F., Chami, R., Cosimano, T. & Fullenkamp, C. Proc. Natl Acad. Sci. USA 119, e2120426119 (2022).Article 

    Google Scholar 
    van Duuren, E., Plantinga, A. & Scholtens, B. J. Bus. Ethics 138, 525–533 (2016).Article 

    Google Scholar 
    Broadstock, D. C., Chan, K., Cheng, L. T. W. & Wang, X. Finance Res. Lett. 38, 101716 (2021).Article 

    Google Scholar 
    Joos, F., Meyer, R., Bruno, M. & Leuenberger, M. Geophys. Res. Lett. 26, 1437–1440 (1999).CAS 
    Article 

    Google Scholar 
    Wang, F. et al. Biol. Conserv. 253, 108913 (2021).Article 

    Google Scholar 
    Sullivan, S. Antipode 45, 198–217 (2013).Article 

    Google Scholar 
    Kamilaris, A., Cole, I. R. & Prenafeta-Boldú, F. X., in Food Technology Disruptions (ed. Galanakis, C. M.) 247–284 (Academic Press, 2021).O’Donnell, E. & Talbot-Jones, J. Ecol. Soc. 23, 7 (2018).Article 

    Google Scholar 
    Anderson, K. & Peters, G. Science 354, 182–183 (2016).CAS 
    Article 

    Google Scholar 
    Berzaghi, F. et al. Nat. Geosci. 12, 725–729 (2019).CAS 
    Article 

    Google Scholar 
    Mariani, G. et al. Sci. Adv. 6, eabb4848 (2020).CAS 
    Article 

    Google Scholar 
    Martin, A. H., Pearson, H. C., Saba, G. K. & Olsen, E. M. One Earth 4, 680–693 (2021).Article 

    Google Scholar 
    Durfort, A., Mariani, G., Troussellier, M., Tulloch, V. & Mouillot, D. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-92037/v1 (2021).Norris, K., Terry, A., Hansford, J. P. & Turvey, S. T. Trends Ecol. Evol. 35, 919–926 (2020).Article 

    Google Scholar 
    Berzaghi, F. et al. Ecography 41, 1934–1954 (2018).Article 

    Google Scholar  More

  • in

    Regenerative living cities and the urban climate–biodiversity–wellbeing nexus

    CIAT Global Rural-Urban Mapping Project, v1 (GRUMPv1): Urban Extents Grid (NASA SEDAC, 2011).Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector (UNEP, 2020).Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-being: Biodiversity Synthesis (Millenium Ecosystem Assessment, World Resources Institute, 2005).Xu, C. et al. Resour. Conserv. Recycl. 151, 104478 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. Nat. Commun. 12, 5050 (2021).CAS 
    Article 

    Google Scholar 
    van den Berg, M. et al. Urban For. Urban Green. 14, 806–816 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Lindenmayer, D. et al. Ecol. Lett. 11, 78–91 (2008).
    Google Scholar 
    Knapp, S., Jaganmohan, M. & Schwarz, N. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M. et al.) 167–172 (Springer, 2019).Kim, H. Y. Geomat. Nat. Hazards Risk 12, 1181–1194 (2021).Article 

    Google Scholar 
    Vargas-Hernández, J. G., Pallagst, K. & Zdunek-Wielgołaska, J. in Handbook of Engaged Sustainability (ed. Marques, J.) 885–916 (Springer, 2018).Manso, M. et al. Renew. Sustain. Energy Rev. 135, 110111 (2021).Article 

    Google Scholar 
    Assimakopoulos, M.-N. et al. Sustainability 12, 3772 (2020).CAS 
    Article 

    Google Scholar 
    Mora-Melià, D. et al. Sustainability 10, 1130 (2018).Article 

    Google Scholar 
    IPBES. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Google Scholar 
    Schröpfer, T. & Menz, S. in Dense and Green Building Typologies: Research, Policy and Practice Perspectives (eds Schröpfer, T. & Menz, S.) 1–4 (Springer, 2019).Pedersen Zari, M. & Hecht, K. Biomimetics 5, 18 (2020).Article 

    Google Scholar  More

  • in

    Accounting for ecosystem service values in climate policy

    IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K. & Reisinger, A.) (IPCC, 2007).Boyd, J. & Banzhaf, S. Ecol. Econ. 63, 616–626 (2007).Article 

    Google Scholar 
    Ruhl, J. B. et al. Front. Ecol. Environ. 19, 519–525 (2021).Article 

    Google Scholar 
    Carleton, T. & Greenstone, M. Updating the United States Government’s Social Cost of Carbon Working Paper 2021-04 (Univ. Chicago, Becker Friedman Institute for Economics, 2021).Mandle, L. et al. Nat. Sustain. 4, 161–169 (2021).Article 

    Google Scholar 
    Druckenmiller, H. Estimating an Economic and Social Value of Forests: Evidence from Tree Mortality in the American West (Univ. California Berkeley, 2021).Burkett, V. R. et al. Ecol. Complexity 2, 357–394 (2005).Article 

    Google Scholar 
    Hanley, N. & Czajkowski, M. Rev. Environ. Econ. Policy 13, 248–266 (2019).Article 

    Google Scholar 
    Mendelsohn, R. Rev. Environ. Econ. Policy 13, 267–282 (2019).Article 

    Google Scholar 
    Fenichel, E. P. et al. Proc. Natl Acad. Sci. USA 113, 2382–2387 (2016).CAS 
    Article 

    Google Scholar 
    Martin-Ortega, J. et al. Ecosyst. Serv. 50, 101327 (2021).Article 

    Google Scholar 
    Borrelli, P. et al. Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).CAS 
    Article 

    Google Scholar 
    Tropek, R. et al. Science 344, 981–981 (2014).CAS 
    Article 

    Google Scholar 
    Vardon, M., Burnett, P. & Dovers, S. Ecol. Econ. 124, 145–152 (2016).Article 

    Google Scholar 
    Bastien-Olvera, B. A. & Moore, F. C. Nat. Sustain. 4, 101–108 (2021).Article 

    Google Scholar 
    Beland, M. et al. For. Ecol. Manage. 450, 117484 (2019).Article 

    Google Scholar 
    Vargas, L., Willemen, L. & Hein, L. Environ. Manage. 63, 1–15 (2019).Article 

    Google Scholar 
    Hallgren, W. et al. Environ. Model. Softw. 76, 182–186 (2016).Article 

    Google Scholar 
    Rolf, E. et al. Nat. Commun. 12, 4392 (2021).CAS 
    Article 

    Google Scholar 
    Chernozhukov, V. et al. NBER Working Paper 24678 (National Bureau of Economic Research, 2018). More

  • in

    Network analysis suggests changes in food web stability produced by bottom trawl fishery in Patagonia

    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. (2018).Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 

    Google Scholar 
    Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: Prognosis and solutions. Fish Fish. 3, 114–136 (2002).
    Google Scholar 
    Hiddink, J. G. et al. Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats. J. Appl. Ecol. 57, 1199–1209 (2020).
    Google Scholar 
    Funes, M., Marinao, C. & Galván, D. E. Does trawl fisheries affect the diet of fishes? A stable isotope analysis approach. Isotop. Environ. Health Stud. 10, 1–17 (2019).
    Google Scholar 
    Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Ind. 98, 442–452 (2019).
    Google Scholar 
    Su, L. et al. Decadal-scale variation in mean trophic level in Beibu Gulf based on bottom-trawl survey data. Mar. Coast. Fish. 13, 174–182 (2021).
    Google Scholar 
    Jennings, S., van Hal, R., Hiddink, J. G. & Maxwell, T. A. D. Fishing effects on energy use by North Sea fishes. J. Sea Res. 60, 74–88 (2008).ADS 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality?. Freshw. Biol. 62, 821–832 (2017).
    Google Scholar 
    Borrelli, J. J. & Ginzburg, L. R. Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1, 10–17 (2014).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. USA 108, 3648–52 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Márquez-Velásquez, V., Raimundo, R. L. G., de Souza Rosa, R. & Navia, A. F. The use of ecological networks as tools for understanding and conserving marine biodiversity. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences, pp 179–202 (eds Ortiz, M. & Jordán, F.) (Springer, 2021). https://doi.org/10.1007/978-3-030-58211-1_9.Chapter 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol. Lett. 17, 651–661 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Beyond connectedness: Why pairwise metrics cannot capture community stability. Ecol. Evol. 6, 7199–7206 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 3, 25 (2021).
    Google Scholar 
    Góngora, M. E., GonzalezZevallos, D., Pettovello, A. & Mendia, L. Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Latin Am. J. Aquat. Res. 40, 1–11 (2012).
    Google Scholar 
    Yorio, P. Marine protected areas, spatial scales, and governance: Implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
    Google Scholar 
    Rincón-Díaz, M. P., Bovcon, N. D., Cochia, P. D., Góngora, M. E. & Galván, D. E. Fish functional diversity as an indicator of resilience to industrial fishing in Patagonia Argentina. J. Fish Biol. 99, 1650–1667 (2021).PubMed 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Consumption of discards and interactions between Black-browed Albatrosses (Thalassarche melanophrys) and Kelp Gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J. Ornithol. 152, 827–838 (2011).
    Google Scholar 
    Vinuesa, J. H. & Varisco, M. Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investig. Mar. 35, 25–34 (2007).
    Google Scholar 
    Belleggia, M. et al. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish Biol. 88, 1070–1087 (2016).CAS 
    PubMed 

    Google Scholar 
    Pasti, A. T. et al. The diet of Mustelus schmitti in areas with and without commercial bottom trawling (Central Patagonia, Southwestern Atlantic): Is it evidence of trophic interaction with the Patagonian shrimp fishery?. Food Webs 29, e00214 (2021).
    Google Scholar 
    Yorio, P., Bertellotti, M., Gandini, P. & Frere, E. Kelp gulls Larus dominicanus breeding on the argentine coast: Population status and relationship with coastal management and conservation. Mar. Ornithol. 26, 11–18 (1998).
    Google Scholar 
    Dans, S. et al. El golfo san jorge como área prioritaria de investigación, manejo y conservación en el marco de la iniciativa pampa azul. Rev. Cie. Investig. 71, 21–43 (2021).
    Google Scholar 
    de la Garza, J. M., Ferníndez, M. & Ravalli, C. Langostino patagónico (Pleoticus muelleri). Inf. Campa 20, 20 (2013).
    Google Scholar 
    Varisco, M. & La Vinuesa, J. H. Alimentación de Munida gregaria (Fabricius, 1793) (Crustacea:Anomura:Galatheidae) en fondos de pesca del Golfo San Jorge, Argentina. Rev. Biol. Mar. Oceanogr. 42, 221–229 (2007).
    Google Scholar 
    Tschopp, A., Cristiani, F., García, N. A., Crespo, E. A. & Coscarella, M. A. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina. J. Fish. Biol. 97, 656–667 (2020).PubMed 

    Google Scholar 
    Kasinsky, T., Yorio, P., Dell’Arciprete, P., Marinao, C. & Suárez, N. Geographical differences in sex-specific foraging behaviour and diet during the breeding season in the opportunistic Kelp Gull (Larus dominicanus). Mar. Biol. 168, 14 (2021).CAS 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Seabird use of discards and incidental captures at the Argentine hake trawl fishery in the Golfo San Jorge, Argentina. Mar. Ecol. Progress Ser. 316, 175–183 (2006).ADS 

    Google Scholar 
    Crespo, E. A. et al. Direct and indirect effects of the Highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northw. Atl. Fish. Sci. 22, 189–207 (1997).
    Google Scholar 
    Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. Condor 101, 783–789 (1999).
    Google Scholar 
    Fu, C. et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Ind. 105, 16–28 (2019).
    Google Scholar 
    Olivier, P. et al. Exploring the temporal variability of a food web using long-term biomonitoring data. Ecography 42, 2107–2121 (2019).
    Google Scholar 
    Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).MATH 

    Google Scholar 
    Gellner, G. & McCann, K. Reconciling the omnivory-stability debate. Am. Nat. 179, 22–37 (2012).PubMed 

    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 26113 (2004).ADS 
    CAS 

    Google Scholar 
    Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 16110 (2006).ADS 
    MathSciNet 

    Google Scholar 
    Allesina, S. & Pascual, M. Network structure, predator-prey modules, and stability in large food webs. Theor. Ecol. 1, 55–64 (2008).
    Google Scholar 
    Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scholz, F. W. & Stephens, M. A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82, 918–924 (1987).MathSciNet 

    Google Scholar 
    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A. Multiweb: An R Package for Multiple Interaction Ecological Networks (Zenodo, 2019). https://doi.org/10.5281/zenodo.3370397.Book 

    Google Scholar 
    Kortsch, S. et al. Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. J. Anim. Ecol. 20, 20 (2021).
    Google Scholar 
    Marina, T. I. et al. Architecture of marine food webs: To be or not be a “small-world’’. PLoS One 13, 1–13 (2018).
    Google Scholar 
    Panel, E. P. A. Ecosystem-based Fishery Management: A Report to Congress by the Ecosystem Principles Advisory Panel. https://repository.library.noaa.gov/view/noaa/23730 (1998)Armoškaitė, A. et al. Establishing the links between marine ecosystem components, functions and services: An ecosystem service assessment tool. Ocean Coast. Manage. 193, 105229 (2020).
    Google Scholar 
    Navia, A. F., Cruz-Escalona, V. H., Giraldo, A. & Barausse, A. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecol. Model. 328, 23–33 (2016).
    Google Scholar 
    Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: An ecosystem modeling approach. PLoS One 14, e0210659 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Sciencehttps://doi.org/10.1126/science.1079777 (2003).Article 
    PubMed 

    Google Scholar 
    Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endang. Species Res. 5, 1–12 (2008).
    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 

    Google Scholar 
    Reyes, L. M. Cetaceans of Central Patagonia, Argentina. Aquat. Mammals 32, 20–30 (2006).
    Google Scholar 
    Lisnizer, N., Garcia-Borboroglu, P. & Yorio, P. Spatial and temporal variation in population trends of Kelp Gulls in northern Patagonia, Argentina. Emu Austral Ornithol. 111, 259–267 (2011).
    Google Scholar 
    Yorio, P. et al. Population trends of Imperial Cormorants (Leucocarbo atriceps) in northern coastal Argentine Patagonia over 26 years. Emu Austral Ornithol. 120, 114–122 (2020).
    Google Scholar 
    Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: Insights from fishers’ knowledge. Neotrop. Ichthyol. 14, 20 (2016).
    Google Scholar 
    Vasas, V., Lancelot, C., Rousseau, V. & Jordán, F. Eutrophication and overfishing in temperate nearshore pelagic food webs: A network perspective. Mar. Ecol. Prog. Ser. 336, 1–14 (2007).ADS 
    CAS 

    Google Scholar 
    Gilarranz, L. J., Mora, C. & Bascompte, J. Anthropogenic effects are associated with a lower persistence of marine food webs. Nat. Commun. 7, 10737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 

    Google Scholar 
    May, R. M. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton University Press, 1974).
    Google Scholar 
    McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 

    Google Scholar 
    van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: The complexity-stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
    Google Scholar 
    Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F. & Mazza, C. The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate. PLoS Comput. Biol. 14, e1005988 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McCann, K. & Hastings, A. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264, 1249–1254 (1997).ADS 

    Google Scholar 
    Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542–544 (1978).ADS 

    Google Scholar 
    Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser. 230, 1–9 (2002).ADS 

    Google Scholar 
    Bieg, C. et al. Linking humans to food webs: A framework for the classification of global fisheries. Front. Ecol. Environ. 16, 412–420 (2018).
    Google Scholar 
    Shephard, S. et al. Scavenging on trawled seabeds can modify trophic size structure of bottom-dwelling fish. ICES J. Mar. Sci. 71, 398–405 (2014).
    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Danet, A., Mouchet, M., Bonnaffé, W., Thébault, E. & Fontaine, C. Species richness and food-web structure jointly drive community biomass and its temporal stability in fish communities. Ecol. Lett. 24, 2364–2377 (2021).PubMed 

    Google Scholar 
    Shanafelt, D. W. & Loreau, M. Stability trophic cascades in food chains. R. Soc. Open Sci. 5, 180995 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 

    Google Scholar 
    Sánchez, M. F. et al. Caracterización ecológica del Golfo San Jorge (Argentina) mediante modelación ecotrófica multiespecífica. 30 https://www.inidep.edu.ar/wordpress/?page_id=1959 (2009)Gaitán, E. N. Tramas Tróficas en Sistemas Frontales del Mar Argentino: Estructura, Dinámica y Complejidad Analizada Mediante Isótopos Estables (Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, 2012).
    Google Scholar 
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).
    Google Scholar 
    Philippsen, J. S. & Benedito, E. Discrimination factor in the trophic ecology of fishes: A review about sources of variation and methods to obtain it. Oecol. Aust. 17, 205–2016 (2013).
    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    Lefebvre, S. & Dubois, S. The stony road to understand isotopic enrichment and turnover rates: Insight into the metabolic part. Vie Milieu-life Environ. 66, 305–314 (2016).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, e00101 (2018).
    Google Scholar 
    Santos, B. & Villarino, M. F. Evaluación del Estado de Explotación del Efectivo sur de 41 S de la Merluza (Merluccius hubbsi) y Estimación de la Captura Biológicamente Aceptable Para 2014. Informe Técnico Oficial INIDEP. 1–30 (2013).Belleggia, M., Giberto, D. & Bremec, C. Adaptation of diet in a changed environment: Increased consumption of lobster krill Munida gregaria (Fabricius, 1793) by Argentine hake. Mar. Ecol. 38, e12445 (2017).ADS 

    Google Scholar 
    Diez, M. J., Cabreira, A. G., Madirolas, A. & Lovrich, G. A. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. J. Sea Res. 114, 1–12 (2016).ADS 

    Google Scholar 
    Ravalli, C., De La Garza, J. & Greco, L. L. Distribución de los morfotipos gregaria y subrugosa de la langostilla Munida gregaria (Decapoda, Galatheidae) en el Golfo San Jorge en la campaña de verano AE-01/2011. Integración de resultados con las campañas 2009 y 2010. Rev. Invest. Desarr. Pesq. 22, 29–41 (2013).
    Google Scholar 
    Belleggia, M. et al. Are hakes truly opportunistic feeders? A case of prey selection by the Argentine hake Merluccius hubbsi off southwestern Atlantic. Fish. Res. 214, 166–174 (2019).
    Google Scholar 
    Roux, A., Piñero, R., Moriondo, P. & Fernández, M. Diet of the red shrimp Pleoticus muelleri (Bate, 1888) in Patagonian fishing grounds, Argentine. Rev. Biol. Mar. Oceanogr. 44, 25 (2009).
    Google Scholar 
    de la Garza, J. et al. An Overview of the Argentine Red Shrimp (Pleoticus muelleri, Decapoda, Solenoceridae) Fishery in Argentina: Biology, Fishing, Management and Ecological Interactions (Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 2017).
    Google Scholar 
    Sánchez, M. F. & Prenski, L. B. Ecología trófica de peces demersales en el Golfo San Jorge. Trophic Ecol. Demersal Fish San Jorge Gulf 10, 57–71 (1996).
    Google Scholar 
    Copello, S., Quintana, F. & Pérez, F. Diet of the southern giant petrel in Patagonia: Fishery-related items and natural prey. Endang. Species Res. 6, 15–23 (2008).
    Google Scholar 
    Alonso, R. B. et al. The opportunistic sense: The diet of Argentine hake Merluccius hubbsi reflects changes in prey availability. Region. Stud. Mar. Sci. 27, 100540 (2019).
    Google Scholar 
    Marón, C. F. et al. Increased wounding of southern right whale (Eubalaena australis) calves by kelp gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS One 10, e0139291 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fazio, A., Argüelles, M. B. & Bertellotti, M. Change in southern right whale breathing behavior in response to gull attacks. Mar. Biol. 162, 267–273 (2015).
    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).
    Google Scholar 
    Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 29929 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Chaos is not rare in natural ecosystems

    May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beddington, J. R., Free, C. A. & Lawton, J. H. Dynamic complexity in predator–prey models framed in difference equations. Nature 255, 58–60 (1975).Article 

    Google Scholar 
    Hastings, A., Hom, C. L., Ellner, S., Turchin, P. & Godfray, H. C. J. Chaos in ecology: is Mother Nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33 (1993).Article 

    Google Scholar 
    Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (John Wiley & Sons, 2011).The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Hastings, A. & Powell, T. Chaos in a three-species food chain. Ecology 72, 896–903 (1991).Article 

    Google Scholar 
    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).Article 

    Google Scholar 
    Doebeli, M. & Ispolatov, I. Chaos and unpredictability in evolution. Evolution 68, 1365–1373 (2014).PubMed 
    Article 

    Google Scholar 
    Pearce, M. T., Agarwala, A. & Fisher, D. S. Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos. Proc. Natl Acad. Sci. USA 117, 14572–14583 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costantino, R. F., Desharnais, R. A., Cushing, J. M. & Dennis, B. Chaotic dynamics in an insect population. Science 275, 389–391 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becks, L., Hilker, F. M., Malchow, H., Jürgens, K. & Arndt, H. Experimental demonstration of chaos in a microbial food web. Nature 435, 1226–1229 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tilman, D. & Wedin, D. Oscillations and chaos in the dynamics of a perennial grass. Nature 353, 653–655 (1991).Article 

    Google Scholar 
    Turchin, P. & Ellner, S. P. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 81, 3099–3116 (2000).Article 

    Google Scholar 
    Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benincà, E., Ballantine, B., Ellner, S. P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl Acad. Sci. USA 112, 6389–6394 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hassell, M. P., Lawton, J. H. & May, R. M. Patterns of dynamical behaviour in single-species populations. J. Anim. Ecol. 45, 471–486 (1976).Article 

    Google Scholar 
    Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).PubMed 
    Article 

    Google Scholar 
    Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effects of fishing. Proc. Natl Acad. Sci USA. 108, 7075–7080 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salvidio, S. Stability and annual return rates in amphibian populations. Amphib. Reptil. 32, 119–124 (2011).Article 

    Google Scholar 
    Snell, T. W. & Serra, M. Dynamics of natural rotifer populations. Hydrobiologia 368, 29–35 (1998).Article 

    Google Scholar 
    Gross, T., Ebenhöh, W. & Feudel, U. Long food chains are in general chaotic. Oikos 109, 135–144 (2005).Article 

    Google Scholar 
    Ispolatov, I., Madhok, V., Allende, S. & Doebeli, M. Chaos in high-dimensional dissipative dynamical systems. Sci. Rep. 5, 12506 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sivakumar, B., Berndtsson, R., Olsson, J. & Jinno, K. Evidence of chaos in the rainfall-runoff process. Hydrol. Sci. J. 46, 131–145 (2001).CAS 
    Article 

    Google Scholar 
    Hanski, I., Turchin, P., Korpimäki, E. & Henttonen, H. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232–235 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turchin, P. & Taylor, A. D. Complex dynamics in ecological time series. Ecology 73, 289–305 (1992).Article 

    Google Scholar 
    Munch, S. B., Brias, A., Sugihara, G. & Rogers, T. L. Frequently asked questions about nonlinear dynamics and empirical dynamic modelling. ICES J. Mar. Sci. 77, 1463–1479 (2020).Article 

    Google Scholar 
    Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellner, S. P. & Turchin, P. Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Nat. 145, 343–375 (1995).Article 

    Google Scholar 
    Nychka, D., Ellner, S., Gallant, A. R. & McCaffrey, D. Finding chaos in noisy systems. J. R. Stat. Soc. B 54, 399–426 (1992).
    Google Scholar 
    Webber, C. L. & Zbilut, J. P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994).PubMed 
    Article 

    Google Scholar 
    Bandt, C. & Pompe, B. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    Luque, B., Lacasa, L., Ballesteros, F. & Luque, J. Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 46103 (2009).CAS 
    Article 

    Google Scholar 
    Toker, D., Sommer, F. T. & D’Esposito, M. A simple method for detecting chaos in nature. Commun. Biol. 3, 11 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pikovsky, A. & Politi, A. Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge Univ. Press, 2016).Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).Article 

    Google Scholar 
    Dämmig, M. & Mitschke, F. Estimation of Lyapunov exponents from time series: the stochastic case. Phys. Lett. A 178, 385–394 (1993).Article 

    Google Scholar 
    Prendergast, J., Bazeley-White, E., Smith, O., Lawton, J. & Inchausti, P. The Global Population Dynamics Database (KNB, 2010); https://doi.org/10.5063/F1BZ63Z8Thibaut, L. M. & Connolly, S. R. Hierarchical modeling strengthens evidence for density dependence in observational time series of population dynamics. Ecology 101, e02893 (2020).PubMed 
    Article 

    Google Scholar 
    Knape, J. & de Valpine, P. Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance? Ecol. Lett. 15, 17–23 (2012).PubMed 
    Article 

    Google Scholar 
    Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L. S.) 366–381 (Springer, 1981).Sugihara, G. Nonlinear forecasting for the classification of natural time series. Philos. Trans. R. Soc. A 348, 477–495 (1994).
    Google Scholar 
    Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).Article 

    Google Scholar 
    Kendall, B. E. Cycles chaos, and noise in predator–prey dynamics. Chaos Solitons Fractals 12, 321–332 (2001).Article 

    Google Scholar 
    Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, D. M. & Gillooly, J. F. Allometric scaling of Lyapunov exponents in chaotic populations. Popul. Ecol. 62, 364–369 (2020).Article 

    Google Scholar 
    Graham, D. W. et al. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1, 385–393 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turchin, P. Nonlinear time-series modeling of vole population fluctuations. Res. Popul. Ecol. 38, 121–132 (1996).Article 

    Google Scholar 
    Becks, L. & Arndt, H. Different types of synchrony in chaotic and cyclic communities. Nat. Commun. 4, 1359 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Becks, L. & Arndt, H. Transitions from stable equilibria to chaos, and back, in an experimental food web. Ecology 89, 3222–3226 (2008).PubMed 
    Article 

    Google Scholar 
    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).PubMed 
    Article 

    Google Scholar 
    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2020-2 (IUCN, 2020); https://www.iucnredlist.orgFreckleton, R. P. & Watkinson, A. R. Are weed population dynamics chaotic? J. Appl. Ecol. 39, 699–707 (2002).Article 

    Google Scholar 
    May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: a global meta-analysis. Fish Fish. 19, 964–973 (2018).Article 

    Google Scholar 
    Boettiger, C., Harte, T., Chamberlain, S. & Ram, K. rgpdd: R Interface to the Global Population Dynamics Database. https://docs.ropensci.org/rgpdd, https://github.com/ropensci/rgpdd (2019).Brook, B. W., Traill, L. W. & Bradshaw, C. J. A. Minimum viable population sizes and global extinction risk are unrelated. Ecol. Lett. 9, 375–382 (2006).PubMed 
    Article 

    Google Scholar 
    Baars, J. W. M. Autecological investigations of marine diatoms, 2. Generation times of 50 species. Hydrobiol. Bull. 15, 137–151 (1981).Article 

    Google Scholar 
    Lavigne, A. S., Sunesen, I. & Sar, E. A. Morphological, taxonomic and nomenclatural analysis of species of Odontella, Trieres and Zygoceros (Triceratiaceae, Bacillariophyta) from Anegada Bay (Province of Buenos Aires, Argentina). Diatom Res. 30, 307–331 (2015).Article 

    Google Scholar 
    Anderson, D. M. & Gillooly, J. F. Physiological constraints on long-term population cycles: a broad-scale view. Evol. Ecol. Res. 18, 693–707 (2017).
    Google Scholar 
    Janes, M. J. Oviposition studies on the chinch bug, Blissus leucopterus (Say). Ann. Entomol. Soc. Am. 28, 109–120 (1935).Article 

    Google Scholar 
    Cook, L. M. Food-plant specialization in the moth Panaxia dominula L. Evolution 15, 478–485 (1961).Article 

    Google Scholar 
    Casey, T. M. Flight energetics of sphinx moths: power input during hovering flight. J. Exp. Biol. 64, 529–543 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobayashi, A., Tanaka, Y. & Shimada, M. Genetic variation of sex allocation in the parasitoid wasp Heterospilus prosopidis. Evolution 57, 2659–2664 (2003).PubMed 
    Article 

    Google Scholar 
    Hozumi, N. & Miyatake, T. Body-size dependent difference in death-feigning behavior of adult Callosobruchus chinensis. J. Insect Behav. 18, 557–566 (2005).Article 

    Google Scholar 
    Huntley, M. E. & Lopez, M. D. G. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140, 201–242 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, R. E. & Lough, R. G. Length–weight relationships for several copepods dominant in the Georges Bank–Gulf of Maine area. J. Northwest Atl. Fish. Sci. 2, 47–52 (1981).Article 

    Google Scholar 
    World Register of Marine Species (WoRMS, accessed 1 November 2020); https://doi.org/10.14284/170Nakamura, Y. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20, 1711–1720 (1998).Article 

    Google Scholar 
    Boulding, E. G. & Platt, T. Variation in photosynthetic rates among individual cells of a marine dinoflagellate. Mar. Ecol. Prog. Ser. 29, 199–203 (1986).CAS 
    Article 

    Google Scholar 
    Rimet, F. et al. The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J. Limnol. https://doi.org/10.4081/jlimnol.2020.1944 (2020).Rudstam, L. Zooplankton Survey of Oneida Lake, New York, 1964 to Present (KNB, 2020); https://knb.ecoinformatics.org/view/kgordon.17.99https://knb.ecoinformatics.org/knb/metacat/kgordon.17.67/defaultDumont, H. J., Van de Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).PubMed 
    Article 

    Google Scholar 
    Geller, W. & Müller, H. Seasonal variability in the relationship between body length and individual dry weight as related to food abundance and clutch size in two coexisting Daphnia species. J. Plankton Res. 7, 1–18 (1985).Article 

    Google Scholar 
    Branstrator, D. K. Contrasting life histories of the predatory cladocerans Leptodora kindtii and Bythotrephes longimanus. J. Plankton Res. 27, 569–585 (2005).Article 

    Google Scholar 
    Rosen, R. A. Length–dry weight relationships of some freshwater zooplankton. J. Freshw. Ecol. 1, 225–229 (1981).Article 

    Google Scholar 
    Peters, R. H. & Downing, J. A. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29, 763–784 (1984).Article 

    Google Scholar 
    Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987).Article 

    Google Scholar 
    Luque, B., Lacasa, L., Ballesteros, F. J. & Robledo, A. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos 22, 013109 (2012).PubMed 
    Article 

    Google Scholar 
    McCaffrey, D. F., Ellner, S., Gallant, A. R. & Nychka, D. W. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. J. Am. Stat. Assoc. 87, 682–695 (1992).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Ricker, W. E. Stock and recruitment. J. Fish. Board Can. 11, 559–623 (1954).Article 

    Google Scholar  More

  • in

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Presence of mucin stabilizes survival of both the bacterium and the phage during 16 weeks of co-cultureAn overview of our main experimental setup is shown in Fig. 1. To avoid population bottlenecks, our sampling was based on the weekly collecting 20% of the cultures and replacing with the same volume of fresh medium. Long term co-existence of both F. columnare B245 and its phage V156 was observed in all treatments. In lake water with (LW + M) or without mucin (LW), the closest approximations of natural conditions for F. columnare, the phage titers remained similar until week 9, after which LW + M showed a significant decline in phage numbers compared to LW (LM, t1,46 = −2.737, P = 0.0088) with roughly a ten-fold difference at week 16 (Fig. 2a, Supplementary Fig. 1a). Bacterial population densities in these treatments were opposite and more dramatic, with an average of 45-fold higher numbers in LW + M than in LM across all time points after an initial spike at week 1 (LM, t1,77 = 4.836, P  More

  • in

    A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen

    Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712.CAS 
    Article 

    Google Scholar 
    Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995;164:16–23.CAS 
    Article 

    Google Scholar 
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    Article 

    Google Scholar 
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.CAS 
    Article 

    Google Scholar 
    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.CAS 
    Article 

    Google Scholar 
    van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.Article 

    Google Scholar 
    Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA. 2010;107:13479–84.Article 

    Google Scholar 
    Mundinger AB, Lawson CE, Jetten MSM, Koch H, Lücker S. Cultivation and transcriptional analysis of a canonical Nitrospira under stable growth conditions. Front Microbiol. 2019;10:1325.Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.CAS 
    Article 

    Google Scholar 
    Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol. 2021;6:246–56.CAS 
    Article 

    Google Scholar 
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.CAS 
    Article 

    Google Scholar 
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.CAS 
    Article 

    Google Scholar 
    Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801.CAS 
    Article 

    Google Scholar 
    Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    Article 

    Google Scholar 
    Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J. 2020;14:1223–32.CAS 
    Article 

    Google Scholar 
    Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem M, et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci. 2021;118:e2025322118.CAS 
    Article 

    Google Scholar 
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.CAS 
    Article 

    Google Scholar 
    Myers MR, King GMY. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.CAS 
    Article 

    Google Scholar 
    Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem. 2019;294:18980–91.CAS 
    Article 

    Google Scholar 
    Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.CAS 
    Article 

    Google Scholar 
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.CAS 
    Article 

    Google Scholar 
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.CAS 
    Article 

    Google Scholar 
    Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ-Analyst: an easy-to-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. J Proteome Res. 2020;19:204–11.CAS 
    Article 

    Google Scholar 
    Nowka B, Daims H, Spieck E. Comparative oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as key factor for niche differentiation. Appl Environ Microbiol. 2014;81:745–53.Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:809.Article 

    Google Scholar 
    Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE. 2014;9:e103034.Article 

    Google Scholar 
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9.CAS 
    Article 

    Google Scholar 
    Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.Article 

    Google Scholar 
    Yang Y, Daims H, Liu Y, Herbold CW, Pjevac P, Lin J-G, et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. mBio. 2020;11:e03175–19.Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 2018;12:2668–80.CAS 
    Article 

    Google Scholar 
    Alberty RA. Standard apparent reduction potentials of biochemical half reactions and thermodynamic data on the species involved. Biophys Chem. 2004;111:115–22.CAS 
    Article 

    Google Scholar 
    Burns LC, Stevens RJ, Smith RV, Cooper JE. The occurrence and possible sources of nitrite in a grazed, fertilized, grassland soil. Soil Biol Biochem. 1995;27:47–59.CAS 
    Article 

    Google Scholar 
    Zhang M, Yuan D, Chen G, Li Q, Zhang Z, Liang Y. Simultaneous determination of nitrite and nitrate at nanomolar level in seawater using on-line solid phase extraction hyphenated with liquid waveguide capillary cell for spectrophotometric detection. Microchim Acta. 2009;165:427–35.CAS 
    Article 

    Google Scholar 
    Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.CAS 
    Article 

    Google Scholar 
    Lebedeva EV, Alawi M, Maixner F, Jozsa P-G, Daims H, Spieck E. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’. Int J Syst Evol Microbiol. 2008;58:242–50.CAS 
    Article 

    Google Scholar 
    Lebedeva EV, Off S, Zumbrägel S, Kruse M, Shagzhina A, Lücker S, et al. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol. 2011;75:195–204.CAS 
    Article 

    Google Scholar 
    Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7.Article 

    Google Scholar 
    Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol. 2006;8:1487–95.CAS 
    Article 

    Google Scholar 
    Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012;6:2245–56.CAS 
    Article 

    Google Scholar 
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    Article 

    Google Scholar 
    Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, et al. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant. Nitrospira ISME J. 2020;14:2967–79.CAS 
    Article 

    Google Scholar 
    Suarez C, Sedlacek CJ, Gustavsson DJI, Eiler A, Modin O, Hermansson M, et al. Disturbance-based management of ecosystem services and disservices in partial nitritation anammox biofilms. 2021. https://www.biorxiv.org/content/10.1101/2021.07.05.451122v1. More

  • in

    ORMEF: a Mediterranean database of exotic fish records

    Edelist, D., Rilov, G., Golani, D., Carlton, J. T. & Spanier, E. Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 19, 69–77, https://doi.org/10.1111/ddi.12002 (2013).Article 

    Google Scholar 
    Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253, https://doi.org/10.1111/ele.12401 (2015).Article 
    PubMed 

    Google Scholar 
    Galil, B. S. et al. International arrivals: widespread bioinvasions in European Seas. Ethol. Ecol. Evol. 26, 152–171, https://doi.org/10.1080/03949370.2014.897651 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golani, D. & Fricke, R. Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa 4509, 1–215, https://doi.org/10.11646/zootaxa.4509.1.1 (2018).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 191, 171–187, https://doi.org/10.1016/j.ecss.2017.03.031 (2017).Article 

    Google Scholar 
    Katsanevakis, S. et al. Advancing marine conservation in European and contiguous seas with the MarCons Action. Res. Ideas Outcomes 3, e11884, https://doi.org/10.3897/rio.3.e11884 (2017).Article 

    Google Scholar 
    Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M. & Ben Ismail, S. Abrupt climate shift in the Western Mediterranean Sea. Sci. Rep. 6, 23009, https://doi.org/10.1038/srep23009 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vargas-Yáñez, M. et al. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Planet. Change 63, 177–184, https://doi.org/10.1016/j.gloplacha.2007.09.001 (2008).Article 

    Google Scholar 
    D’Amen, M. & Azzurro, E. Lessepsian fish invasion in Mediterranean marine protected areas: a risk assessment under climate change scenarios. ICES J. Mar. Sci. 77, 388–397, https://doi.org/10.1093/icesjms/fsz207 (2020).Article 

    Google Scholar 
    Golani, D., Azzurro, E., Dulčić, J., Massutí, E. & Orsi-Relini, L. Atlas of Exotic Species in the Mediterranean Sea. F. Briand, Ed. 365 pages. CIESM Publishers, Paris, Monaco (2021).Editorial Board. AquaNIS. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. Version 2.36+ (2015).Roy, D. et al. DAISIE – Inventory of alien invasive species in Europe. https://doi.org/10.15468/ybwd3x (2020).European Commission – Joint Research Centre – European Alien Species Information Network (EASIN).Uludag, A, Scalera, R., Trichkova, T., Tomov, R. & Rat, M. East and South European Network for Invasive Alien Species (ESENIAS): Development, networking and role in the invasive alien species research and policy-making in Europe. (2016).Zenetos, A. et al. ELNAIS: A collaborative network on Aquatic Alien Species in Hellas (Greece). REABIC 6, 185–196, https://doi.org/10.3391/mbi.2015.6.2.09 (2015).Article 

    Google Scholar 
    European Network on Invasive Alien Species. NOBANIS (Gateway to information on Invasive Alien species in North and Central Europe) (2013).MAMIAS – Marine Mediterranean Invasive Alien Species. (2014).MedMIS – Mediterranean Marine Invasive SpeciesKatsanevakis, S. et al. Identifying where vulnerable species occur in a data-poor context: combining satellite imaging and underwater occupancy surveys. Mar. Ecol. Prog. Ser. 577, 17–32, https://doi.org/10.3354/meps12232 (2017).Article 

    Google Scholar 
    Galil, B. S. Alien species in the Mediterranean Sea—which, when, where, why? In Challenges to Marine Ecosystems (eds. Davenport, J. et al.) 105–116, https://doi.org/10.1007/978-1-4020-8808-7_10 (Springer Netherlands (2008).Galil, B. S. Taking stock: inventory of alien species in the Mediterranean sea. Biol. Invasions 11, 359–372, https://doi.org/10.1007/s10530-008-9253-y (2009).Article 

    Google Scholar 
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530, https://doi.org/10.1890/13-1380.1 (2014).Article 
    PubMed 

    Google Scholar 
    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118, https://doi.org/10.12681/mms.186 (2005).Article 

    Google Scholar 
    Zenetos, A. et al. Additions to the annotated list of marine alien biota in the Mediterranean with special emphasis on Foraminifera and Parasites. Mediterr. Mar. Sci. 9, 119–166, https://doi.org/10.12681/mms.146 (2008).Article 

    Google Scholar 
    Zenetos, A. et al. Alien species in the Mediterranean sea by 2010. A contribution to the application of european union’s marine strategy framework directive (MSFD). Part I. Spatial distribution. https://doi.org/10.12681/mms.87 (2010)Zenetos, Α et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13, 328–352, https://doi.org/10.12681/mms.327 (2012).Article 

    Google Scholar 
    Dimitriadis, C. et al. Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 21, 62–69, https://doi.org/10.12681/mms.21845 (2020).Article 

    Google Scholar 
    Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106, https://doi.org/10.1016/0006-3207(96)00020-1 (1996).Article 

    Google Scholar 
    Olenin, S., Minchin, D., Daunys, D. & Zaiko, A. Pathways of aquatic invasions in Europe. Atlas of biodiversity risk 138–139 (2010).Essl, F. et al. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience 69, 908–919 (2019).Article 

    Google Scholar 
    Golani, D., Orsi-Relini, L., Massuti, E. & Quignard, J. P. CIESM Atlas of Exotic Species in the Mediterranean. vol. 1 (2002).D’Amen, M. & Azzurro, E. Integrating univariate niche dynamics in species distribution models: A step forward for marine research on biological invasions. J. Biogeogr. 47, 686–697, https://doi.org/10.1111/jbi.13761 (2020).Article 

    Google Scholar 
    Azzurro, E., Smeraldo, S. & D’Amen, M. ORMEF: Occurrence Records of Mediterranean Exotic Fishes database. SEANOE. https://doi.org/10.17882/84182 (2021).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van Der Laan, R. Eschmeyer’s Catalog of Fishes: genera, species, references. California Academy of Sciences (2022).Azzurro, E., Goren, M., Diamant, A., Galil, B. & Bernardi, G. Establishing the identity and assessing the dynamics of invasion in the Mediterranean Sea by the dusky sweeper, Pempheris homboidei Kossmann & Räuber, 1877 (Pempheridae, Perciformes). Biol. Invasions 17, 815–826, https://doi.org/10.1007/s10530-014-0836-5 (2015).Article 

    Google Scholar 
    Evans, J. & Schembri, P. On the occurrence of Cephalopholis hemistiktos and C. taeniops (Actinopterygii, Perciformes, Serranidae) in Malta, with corrections of previous misidentifications. Acta Ichthyol. Piscat. 47, 197–200, https://doi.org/10.3750/AIEP/02064 (2017).Article 

    Google Scholar 
    Dragicevic, B. et al. New Mediterranean Biodiversity Records (December 2019). https://doi.org/10.12681/mms.20913 (2019).UNEP/MAP – United Nation Environment Programme – Mediterranean Action Plan. Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria (IMAP). (2016). More