More stories

  • in

    Detailed analysis of habitat suitability curves for macroinvertebrates and functional feeding groups

    Poff, N. L. et al. The natural flow regime: A new paradigm for riverine conservation and restoration. Bioscience 47, 769–784 (1997).Article 

    Google Scholar 
    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30(4), 492–507 (2002).PubMed 
    Article 

    Google Scholar 
    Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?. Front. Ecol. Environ. 12, 176–185 (2014).Article 

    Google Scholar 
    Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).Article 

    Google Scholar 
    Acreman, M. Ethical aspects of water and ecosystems. Water Policy 3, 257–265 (2001).Article 

    Google Scholar 
    Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2010).Article 

    Google Scholar 
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flow. Freshw. Biol. 55, 194–205 (2010).Article 

    Google Scholar 
    Richter, B. D. & Thomas, G. A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 12(1), 12 (2007).Article 

    Google Scholar 
    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).Article 

    Google Scholar 
    Vӧrӧsmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 468, 334–334 (2010).Article 

    Google Scholar 
    Acreman, M. C. & Ferguson, A. J. D. Environmental flows and the European water framework directive. Freshw. Biol. 55, 32–48 (2010).Article 

    Google Scholar 
    Poff, N. L. & Matthews, J. H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 5, 667–675 (2003).Article 

    Google Scholar 
    Theodoropoulos, C. & Skoulikidis, N. Environmental flows: The European approach through the Water Framework Directive 2000/60/EC. In Proceedings of the 10th International Congress of the Hellenic Geographical Society 1140–1152 (2015).The Brisbane Declaration. Environmental flows are essential for freshwater ecosystem health and human well-being. In Declaration of the 10th International River Symposium 3–6 (Brisbane, Australia, 2007).Arthington, A. H. et al. The brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 6, 45 (2018).Article 

    Google Scholar 
    European Commission. Ecological flows in the implementation of the Water Framework Directive. WFD CIS Guidance Document No. 31 (2015).Hirzel, A. H. & Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381 (2008).Article 

    Google Scholar 
    Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).PubMed 
    Article 

    Google Scholar 
    Ahmadi-Nedushan, B. et al. A review on statistical methods for the evaluation of the aquatic habitat suitability for instream flow assessment. River Res. Applic. 22, 503–523 (2006).Article 

    Google Scholar 
    Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. Modelling the hydraulic preferences of benthic macroinvertebrates in small European stream. Freshw. Biol. 52, 145–164 (2007).Article 

    Google Scholar 
    Katopodis, C. Case studies of instream flow modelling for fish habitat in Canadian Prairie Rivers. Can. Water Resour. J. 28, 199–216 (2003).Article 

    Google Scholar 
    Parasiewicz, P. Application of MesoHABSIM and target fish community approaches to restoration of the Quinebaug River, Connecticut and Massachusetts, U.S.A. River. Res. Appl. 24, 459–471 (2008).Article 

    Google Scholar 
    Piniweski, M. et al. Estimation of environmental flows in semi-natural lowland rivers – the Narew basin case study. Pol. J. Environ. Stud. 20(5), 1281–1293 (2011).
    Google Scholar 
    Theodoropoulos, C., Vourka, A., Skoulikidis, N., Rutschmann, P. & Stamou, A. Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates. J. Ecohydraul. 3(1), 30–44 (2018).Article 

    Google Scholar 
    Yi, Y. et al. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renew. Sustain. Energy Rev. 68, 748–762 (2017).Article 

    Google Scholar 
    Theodoropoulos, C., Skoulikidis, N., Rutschmann, P. & Stamou, A. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538–547 (2018).Article 

    Google Scholar 
    Huryn, A. D. & Wallace, J. B. Life history and production of stream insects. Annu. Rev. Entomol. 45(1), 83–110 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cummins, K. W. Structure and function of stream ecosystems. Bioscience 24, 631–641 (1974).Article 

    Google Scholar 
    Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrates species in freshwater ecosystems. Bioscience 49(2), 119–127 (1999).Article 

    Google Scholar 
    Dolédec, S., Statzner, B. & Bournaud, M. Species traits for future biomonitoring across ecoregions: Patterns along a human-impacted river. Freshw. Biol. 42, 737–758 (1999).Article 

    Google Scholar 
    Marzin, N. et al. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures?. Ecol. Ind. 23, 56–65 (2012).CAS 
    Article 

    Google Scholar 
    Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article 

    Google Scholar 
    Jowett, I. G. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Res. Appl. 19, 495–507 (2003).Article 

    Google Scholar 
    Dewson, Z. S., James, A. B. W. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. North Am. Benthol. Soc. 26, 401–415 (2007).Article 

    Google Scholar 
    Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21(2), 203–217 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article 

    Google Scholar 
    Graeber, D., Pusch, M. T., Lorenz, S. & Brauns, M. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717, 147–159 (2013).CAS 
    Article 

    Google Scholar 
    González, J. M., Recuerda, M. & Elosegi, A. Crowded waters: short-term response of invertebrate drift to water abstraction. Hydrobiologia 819, 39–51 (2018).Article 

    Google Scholar 
    Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W. & Quinn, J. M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 25(2), 187–199 (1991).Article 

    Google Scholar 
    Lamouroux, N. et al. The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes (2009). River Res. Appl. 26, 915–920 (2010).Article 

    Google Scholar 
    Mérigoux, S. & Dolédec, S. Hydraulic requirements of stream communities: A case study on invertebrates. Freshw. Biol. 49, 600–613 (2004).Article 

    Google Scholar 
    Lancaster, J. & Downes, B. J. Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Res. Appl. 26, 385–403 (2009).Article 

    Google Scholar 
    Lancaster, J. & Hildrew, A. G. Flow refugia and the microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc. 12(4), 385–393 (1993).Article 

    Google Scholar 
    Chen, W. & Olden, J. D. Evaluating transferability of flow–ecology relationships across space, time and taxonomy. Freshw. Biol. 63, 817–830 (2017).Article 

    Google Scholar 
    Li, F., Cai, Q., Fu, X. & Liu, J. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region China. Prog. Nat. Sci. 19, 359–367 (2009).Article 

    Google Scholar 
    Growns, I. O. & Davis, J. A. Longitudinal changes in near-bed flows and macroinvertebrate communities in a western Australian stream. J. North Am. Benthol. Soc. 13, 417–438 (1994).Article 

    Google Scholar 
    Shearer, K. A., Hayes, J. W., Jowett, I. G. & Olsen, D. A. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N. Z. J. Mar. Freshw. Res. 49, 178–191 (2015).Article 

    Google Scholar 
    Bovee, K. D. et al. Stream Habitat Analysis using the Instream Flow Incremental Methodology. USGS Inf. Technol. Rep. 1998–0004, 1–130 (1998).
    Google Scholar 
    Conallin, J., Boegh, E. & Jensen, J. K. Instream physical habitat modelling types: An analysis as stream hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Manag. 8, 93–107 (2010).Article 

    Google Scholar 
    Poff, N. L., Tharme, R. E. & Arthington, A. H. Evolution of environmental flows assessment science, principles, and methodologies. In Water for the Environment: Policy, Science, and Integrated Management (eds Horne, A. et al.) 203–236 (Elsevier Press, Amsterdam, 2017).Chapter 

    Google Scholar 
    Bovee, K.D. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Washington (DC): USDI Fish and Wildlife Service. Instream Flow Information Paper #21 FWS/OBS-86/7.Geological Survey, Biological Resources Division, Mid-Continent Ecological Science Centre, Fort Collins, Colorado (1986).Vismara, R., Azzellino, A., Bosi, R., Crosa, G. & Gentili, G. Preference curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul. River 17, 37–50 (2001).Article 

    Google Scholar 
    Nestler, J. M., Milhous, R. T., Payne, T. R. & Smith, D. L. History and review of the habitat suitability criteria curve in applied aquatic ecology. River Res. Appl. 35, 1155–1180 (2019).Article 

    Google Scholar 
    Theodoropoulos, C., Skoulikidis, N., Stamou, A. & Dimitriou, E. Spatiotemporal variation in benthic-invertebrates-based physical Habitat modelling: Can we use generic instead of local and season-specific habitat suitability criteria?. Water 10, 1508 (2018).Article 

    Google Scholar 
    Gąbka, M., Jakubas, E., Janiak, T. & Golski, J. Rzeki Wełna i Flinta – charakterystyka obiektów badań, ich położenie i granice zlewni. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty(Wielkopolska (eds Batora, J. et al.) 21–30 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
    Google Scholar 
    Bartkowski, T. Rozwój polodowcowej sieci hydrograficznej w Wielkopolsce Środkowej (Zeszyty Naukowe UAM 8, 1957).Paluch, J. Wpływ działalności spółek wodnych istniejących w XIX i na początku wieku XX na terenie zlewni rzeki Wełny na stan jej hydrografii i stosunków wodnych. In Proceedings of the conference “Ecological problems of the Vełna River basin – status and directions of measures 2–26 (Wągrowiec, 2009).Jakubas, E. et al. Ocena stanu ekologicznego i zmian hydromorfologicznych rzek Wełny i Flinty. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty (Wielkopolska) (eds Batora, J. et al.) 141–150 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
    Google Scholar 
    Szoszkiewicz, K. et al. Podręcznik oceny wód płynących w oparciu o Hydromorfologiczny Indeks Rzeczny (Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, 2017).Emery, J. C. et al. Classifying the hydraulic performance of riffle–pool bedforms for habitat assessment and river rehabilitation design. River Res. Appl. 19, 533–549 (2003).Article 

    Google Scholar 
    Mueller, M., Pander, J. & Geist, J. Taxonomic sufficiency in freshwater ecosystems: Effects of taxonomic resolution, functional traits, and data transformation. Freshw. Sci. 32(3), 762–778 (2013).Article 

    Google Scholar 
    Schmidt-Kloiber, A., Graf, W., Lorenz, A. & Moog, O. The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566, 325–342 (2006).Article 

    Google Scholar 
    Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Plymout, PRIMER-E (Plymouth Marine Laboratory, 2001).
    Google Scholar 
    Vimos-Lojano, D., Hampel, H., Vázquez, R. F. & Martínez-Capel, F. Community structure and functional feeding groups of macroinvertebrates in pristine Andean streams under different vegetation cover. Ecohydrol. Hydrobiol. 20(3), 357–368 (2020).Article 

    Google Scholar 
    Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (Plymouth Marine Laboratory, Plymouth, 2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (https://www.R-project.org/, 2020)Oksanen, F. J., et al. Vegan: Community Ecology Package. R package Version 2.4–3. (https://CRAN.R-project.org/package=vegan, 2017)Jowett, I.G., Hayes, J.W. & Duncan, M.J. A guide to instream habitat survey methods and analysis. NIWA Science and Technology Series No. 54 (2008).Manly, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals (Chapman and Hall, London, 1993).Book 

    Google Scholar 
    Bis, B. & Mikulec, A. Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych (Biblioteka Monitoringu Środowiska, 2013).Grygoruk, M. et al. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowl. Manag. Aquat. Ecosyst. 442, 37. https://doi.org/10.1051/kmae/2021036 (2021).Article 

    Google Scholar 
    Degani, G. et al. Relationships between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia 263, 163–172 (1993).Article 

    Google Scholar 
    Lamberti, G. A., Entrekin, S. A., Griffiths, N. & Tiegs, S. Coarse Particulate Organic Matter: Storage, Transport, and Retention. In Methods Ecosystem Function Vol. 2 (eds Lamberti, G. A. & Hauer, F. R.) 55–69 (Elsevier Academic Press, Amsterdam, 2017).
    Google Scholar 
    Bell, N., Riis, T., Suren, A. M. & Baattrup-Pedersen, A. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundam. Appl. Limnol. 183(4), 309–321 (2013).Article 

    Google Scholar 
    Wolters, J., Verdonschot, R. C. M., Schoelynck, J., Verdonschot, P. F. M. & Meire, P. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia 806, 157–173 (2018).CAS 
    Article 

    Google Scholar 
    Gore, J. A. & Nestler, J. M. Instream flow studies in perspective. Regul. Rivers Res. Manage. 2, 93–101 (1988).Article 

    Google Scholar 
    Hudson, H. R., Byrom, A. E. & Chadderton, W. L. A Critique of IFIM —Instream Habitat Simulation in the New Zealand Context (Department of Conservation, 2003).Stamou, A. et al. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manage. 209, 273–285 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, J. F., Blackburn, J. H., Clarke, R. T. & Furse, M. T. Macroinvertebrate-habitat associations in lowland rivers and their relevance to conservations. Int. Ver. Theor. Angew. Limnol. Verh. 25, 1515–1518 (1994).
    Google Scholar 
    Leszczyńska, J., Głowacki, Ł & Grzybkowska, M. Factors shaping species richness and biodiversity of riverine macroinvertebrate assemblages at the local and regional scale. Community Ecol. 18(3), 227–236 (2017).Article 

    Google Scholar 
    Gore, J. A., Crawford, D. J. & Addison, D. S. An analysis of artificial riffles and enhancement of benthic community diversity by Physical Habitat Simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manage. 14(1), 69–77 (1998).Article 

    Google Scholar 
    Anderson, N. H. & Sedell, J. R. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24, 351–377 (1979).Article 

    Google Scholar 
    Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshw. Biol. 55, 226–242 (2010).Article 

    Google Scholar 
    Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12(8), 466–473 (2014).Article 

    Google Scholar 
    Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarremejane, R. et al. Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127, 1586–1595 (2018).Article 

    Google Scholar 
    Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C. & Souchon, Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 19, 1085–1099 (2013).Article 

    Google Scholar 
    Domisch, S., Jähnig, S. C. & Haase, P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 56, 2009–2020 (2011).Article 

    Google Scholar  More

  • in

    Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).Article 

    Google Scholar 
    André, H. M., Noti, M. I. & Lebrun, P. The soil fauna: The other last biotic frontier. Biodiv. Conserv. 3, 45–56 (1994).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    IPCC. Global Warming of 1.5 °C. Summary for Policymakers. (World Meteorological Organization, 2018).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).Article 

    Google Scholar 
    Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).Article 

    Google Scholar 
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed 
    Article 

    Google Scholar 
    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112, 2076–2081 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep24965 (2016).CAS 
    Article 

    Google Scholar 
    Zhang, K. et al. Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol. Ecol. 25, 4407–4419 (2016).PubMed 
    Article 

    Google Scholar 
    Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Hebert, P. D. DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103, 968–971 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27, 313–338 (2018).PubMed 
    Article 

    Google Scholar 
    Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arribas, P., Andújar, C., Hopkins, K., Shepherd, M. & Vogler, A. P. Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil. Methods Ecol. Evol. 7, 1071–1081 (2016).Article 

    Google Scholar 
    Arribas, P., Andújar, C., Salces-Castellano, A., Emerson, B. C. & Vogler, A. P. The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Mol. Ecol. 30, 48–61 (2021).PubMed 
    Article 

    Google Scholar 
    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429. https://doi.org/10.1038/s41598-020-75452-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28. https://doi.org/10.1186/1472-6785-12-28 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. PNAS 111, 8007–8012 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).PubMed 
    Article 

    Google Scholar 
    Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 

    Google Scholar 
    Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lach, L., Parr, C., Abbott, K. Ant Ecology (Oxford University Press, 2010).Palacios-Vargas, J. G. & Castaño-Meneses, G. Seasonality and community composition of springtails in Mexican forest. In Arthropods of Tropical Forests. Spatio-Temporal Dynamics and Resource Use in the Canopy (eds. Basset, Y. et al.) 159–169 (Cambridge University Press, 2003).Bignell, D. E. & Eggleton, P. Termites in ecosystems. In Termites: Evolution, Sociality, Symbiosis, Ecology (eds Abe, T., Bignell, D. E. & Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).Anderson-Teixeira, K. J. et al. CTFS-Forest GEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (2020).Article 

    Google Scholar 
    Basset, Y. et al. Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. Eur. J. Soil Biol. 99, 103193. https://doi.org/10.1016/j.ejsobi.2020.103193 (2020).Article 

    Google Scholar 
    Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R. Ants. Standards Methods for Measuring and Monitoring Biodiversity (Smithsonian Institution Press, 2000).Bourguignon, T., Leponce, M. & Roisin, Y. Insights into the termite assemblage of a neotropical rainforest from the spatio-temporal distribution of flying alates. Insect. Conserv. Divers. 2, 153–162 (2009).Article 

    Google Scholar 
    Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623 (2012).Article 

    Google Scholar 
    Gaston, K. J. & Lawton, J. H. Patterns in the distribution and abundance of insect populations. Nature 331, 709–712 (1988).Article 

    Google Scholar 
    Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2019).Article 

    Google Scholar 
    Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Res. 15, 543–556 (2015).CAS 
    Article 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10. https://doi.org/10.1038/s41598-018-22505-4 (2018).CAS 
    Article 

    Google Scholar 
    Marquina, D., Esparza-Salas, R., Roslin, T. & Ronquist, F. Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol. Ecol. Res. 19, 1516–1530 (2019).CAS 
    Article 

    Google Scholar 
    Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-54532-0 (2019).CAS 
    Article 

    Google Scholar 
    Basset, Y. et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: Implications for biological monitoring. Insect. Conserv. Divers 6, 223–233 (2013).Article 

    Google Scholar 
    Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Biodiversity below ground: Probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94, 725–731 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    André, H. M., Ducarme, X. & Lebrun, P. Soil biodiversity: Myth, reality or conning?. Oikos 96, 3–24 (2002).Article 

    Google Scholar 
    Wilson, J. J. DNA barcodes for insects. In DNA Barcodes: Methods and Protocols (eds Kress, W. J. & Erickson, D. L.) 17–46 (Springer, 2012).Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432. https://doi.org/10.1371/journal.pone.0138432 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One 14, e0220953. https://doi.org/10.1371/journal.pone.0220953 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. PNAS 117, 8539–8545 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calderón-Sanou, I. et al. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).Article 

    Google Scholar 
    Schloss, P. D. Reintroducing mothur: 10 years later. Appl. Env. Microbiol. 86, e02343-19. https://doi.org/10.1128/AEM.02343-19 (2020).Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyer, F. et al. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. mBRAVE: The multiplex barcode research and visualization environment. Biodivers. Inf. Sci. Stand. 3, e37986. https://doi.org/10.3897/biss.3.37986 (2019).Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaston, K. J. Rarity (Springer, 1994).Kaspari, M. Litter ant patchiness at the 1–m2 scale: Disturbance dynamics in three Neotropical forests. Oecologia 107, 265–273 (1996).PubMed 
    Article 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404. https://doi.org/10.1371/journal.pcbi.1005404 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-3 (2018).Hyams, D. G. CurveExpert Professional. A Comprehensive Data Analysis Software System for Windows, Mac, and Linux. Version 1.2.2. www.curveexpert.net (2011). Accessed 1 Jan 2022.Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. An In Silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 434. https://doi.org/10.1186/1471-2164-11-434 (2010).CAS 
    Article 

    Google Scholar 
    Auer, L., Mariadassou, M., O’Donohue, M., Klopp, C. & Hernandez-Raquet, G. Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Mol. Ecol. Res. 17, e122–e132. https://doi.org/10.1111/1755-0998.12700 (2017).CAS 
    Article 

    Google Scholar 
    Novotný, V. & Basset, Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564–572 (2000).Article 

    Google Scholar 
    Seifert, B. & Goropashnaya, A. V. Ideal phenotypes and mismatching haplotypes-errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Org. Divers. Evol. 4, 295–305 (2004).Article 

    Google Scholar 
    Gotzek, D., Clarke, J. & Shoemaker, D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol. Biol. 10, 300. https://doi.org/10.1186/1471-2148-10-300 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meza-Lázaro, R. N., Poteaux, C., Bayona-Vásquez, N. J., Branstetter, M. G. & Zaldívar-Riverón, A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mit. DNA Part A 29, 1203–1214 (2018).Article 

    Google Scholar 
    Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59, 705–723 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745. https://doi.org/10.7717/peerj.7745 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schenk, J., Geisen, S., Kleinbölting, N. & Traunspurger, W. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding Metagenom. 3, e46704. https://doi.org/10.3897/mbmg.3.46704 (2019).Article 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS One 10, e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Res. 18, 1020–1034 (2018).CAS 
    Article 

    Google Scholar 
    Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Res. 20, 256–267 (2020).CAS 
    Article 

    Google Scholar 
    Steiner, F. M. et al. Tetramorium tsushimae, a new invasive ant in North America. Biol. Invasions 8, 117–123 (2006).Article 

    Google Scholar 
    Wetterer, J. K. Worldwide spread of the penny ant, Tetramorium bicarinatum (Hymenoptera: Formicidae). Sociobiology 54, 811–830 (2009).
    Google Scholar 
    Roisin, Y. et al. Vertical stratification of the termite assemblage in a neotropical forest. Oecologia 149, 301–311 (2006).PubMed 
    Article 

    Google Scholar 
    Basset, Y. et al. Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites. Metabarcoding Metagenom. 4, 151–163. https://doi.org/10.3897/mbmg.4.58572 (2020).Article 

    Google Scholar  More

  • in

    Alterations in rumen microbiota via oral fiber administration during early life in dairy cows

    Animals and dietsThe animal experiments were conducted in accordance with the Guidelines for Animal Experiments and Act on Welfare and Management of Animals, Hokkaido University, and all experimental procedures were approved by the Animal Care and Use Committee of Hokkaido University. All animal experiments were carried out in accordance with ARRIVE guidelines. Twenty newborn female Holstein calves with an average birth weight of 37.1 ± 1.0 kg (mean ± standard error) were randomly allocated to either the control or treatment group at birth. All calves were housed individually in separate calf hutches containing sawdust bedding. Feeding and managing of animals until weaning at 50 d of age was performed as described previously17. After supplementing colostrum at birth, calves in both groups were fed 4 L of pasteurized whole milk (44.2% crude protein [CP] and 29.3% fat on a dry matter [DM] basis) as a transition milk during the first week since birth. From 8 days until weaning at 50 days of age, milk replacer (28.0% CP and 18.0% fat on a DM basis) was fed twice daily at 0830 and 1600 h. Water, calf starter (22.9% CP, 11.0% neutral detergent fiber [NDF], 5.6% acid detergent fiber [ADF], 6.2% crude ash, and 3.0% ether extract on a DM basis), and chopped Timothy hay (3.4% CP, 53.1% NDF, 34.2% ADF, 4.3% crude ash, and 1.7% ether extract on a DM basis) were provided for ad libitum intake from 3 days of age. In addition to voluntary intake of solid diets, the calves in the treatment group were orally administered with a mixture of ground Timothy hay and psyllium (4.4% CP, 78.6% NDF, 5.8% ADF, 3.9% crude ash, and 0.3% ether extract on a DM basis) from 3 days until weaning at 50 days of age. Timothy hay was ground for oral administration using a Wiley grinder (WM-3, Irie Shokai) with a 2-mm screen. To improve the handling of the treatment diet for oral administration, we incorporated psyllium, which is a dietary fiber that primarily improves gastrointestinal conditions in humans and can be incorporated in oral electrolyte solution supplemented to neonatal calves38. As a treatment diet, ground Timothy hay (50 g) and psyllium (6 g) were mixed with 200 mL of water. Owing to the adhesiveness of psyllium, the treatment diet formed a “hay ball” and showed slight stickiness, which facilitates swallowing by calves. At 3–7 days of age, one hay ball (50 g of fibrous diet) was orally administered after morning milk feeding. From 8 days of age to weaning, an additional hay ball was fed immediately after evening milk feeding (100 g fibrous diet per day).After weaning, animals in both dietary groups were merged into the same herd and managed on the same farm under identical conditions. From 9 months of age until calving, heifers were fed a ration containing Timothy hay, alfalfa hay, fescue hay, and concentrate. After calving, the cows were fed a diet for lactating cows, as described in Supplementary Table S8. Diets comprised a total mixed ration and were fed twice daily at 0900 and 1600 h. All animals had ad libitum access to water and mineral blocks throughout the experiment. Daily milk production for each cow was measured for the first 30 days of the lactation period and the average values for each dietary group on a weekly and monthly basis were calculated. Milk yield for four animals in each dietary group were not recorded due to health problems including mastitis and displaced abomasum symptoms after calving.In this study, all animals (n = 20) were maintained until 9 months of age, without severe problems. Owing to health problems, several animals were excluded from the experiment before parturition as follows: three animals (one in the control group and two in the treatment group) at 60 days before the expected calving date and one animal in the control group at 21 days before the expected calving date. One animal in the control group (15 days after calving) and two animals in the treatment group (calving day) were diagnosed with displaced abomasum symptoms and were excluded from further sampling. Owing to technical problems, samples were not collected from three animals aged 7 days in the treatment group and one animal aged 21 days in the control group. All other samples (n = 176) were obtained at the target sampling points.Sampling of rumen contentsRumen contents were collected orally using a stomach tube. The stomach tube and the sample collection flask were thoroughly cleaned using water between sample collections from individual animals; the first fraction of the sample was discarded to avoid contamination from the previous sample and saliva. All samples were collected at 4 h after morning feeding. Rumen contents were collected at 7, 21, 35, 49, and 56 days, and at 9 months of age, 60 and 21 days before the expected calving date, at calving day, and 21 days after calving. The pH was measured using a pH meter (pH meter F-51; Horiba, Kyoto, Japan) immediately after sampling. Samples were collected in a sterile 50 mL tube and immediately placed on ice, followed by storage at − 30 °C until use.Chemical analysisRumen contents (1.0 g) were centrifuged at 16,000×g at 4 °C for 5 min, and the supernatant was collected. The SCFA content was analyzed using a gas chromatograph (GC-14B; Shimadzu, Kyoto, Japan) as described previously39. In brief, the supernatant of the rumen contents was mixed with 25% meta-phosphoric acid at a 5:1 ratio, incubated overnight at 4 °C, and centrifuged at 10,000×g at 4 °C. The supernatant was then mixed with crotonic acid as an internal standard and injected into a gas chromatograph equipped with an ULBON HR-20 M fused silica capillary column (0.53 mm i.d. × 30 m length, 3.0 µm film; Shinwa, Kyoto, Japan) and a flame-ionization detector. d/l-lactic acid levels were measured using a commercial assay kit (Megazyme International Ireland, Wicklow, Ireland) according to the manufacturer’s instructions. NH3-N levels were measured via the phenol-hypochloride reaction method40 using a microplate reader at 660 nm (ARVO MX; Perkin Elmer, Yokohama, Japan).DNA extraction and rumen microbiota profiling via amplicon sequencingTotal DNA was extracted and purified using the repeated bead-beating plus column method41. Rumen contents (0.25 g) were homogenized using sterile glass beads (0.4 g; 0.3 g of 0.1 mm and 0.1 g of 0.5 mm) and cell lysis buffer (1 mL; 500 mM NaCl, 50 mM Tris–HCl [pH 8.0], 50 mM ethylenediaminetetraacetic acid (EDTA), and 4% sodium dodecyl sulfate). The lysates were then incubated at 70 °C for 15 min, and the supernatant was collected for further processing. Bead-beating and incubation steps were repeated once, and all supernatants were combined. Total DNA was precipitated using 10 M ammonium acetate and isopropanol, followed by purification using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany). The DNA concentration was quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and adjusted with Tris–EDTA buffer to the appropriate concentration.For a comprehensive analysis of rumen bacterial communities, the MiSeq sequencing platform (Illumina, San Diego, CA, USA) was used. Total DNA obtained from the rumen contents was diluted to a final concentration of 5 ng/μL and subjected to PCR amplification of the V3-V4 regions of the 16S rRNA gene using the primer sets S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and S-D-Bact-0785-a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′)42. The PCR mixture consisted of 12.5 μL of 2× KAPA HiFi HotStart Ready Mix (Roche Sequencing, Basel, Switzerland), 0.1 μM of each primer, and 2.5 μL of DNA (5 ng/μL). PCR amplification was performed according to the following program described previously9: initial denaturation at 95 °C for 3 min; 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s; and a final extension step at 72 °C for 5 min. Amplicons were purified using AMPure XP beads (Beckman-Coulter, Brea, CA, USA) and subjected to sequencing on the Illumina MiSeq platform (Illumina) using the MiSeq Reagent Kit v3 (2 × 300 paired-end). Data obtained from amplicon sequencing using the MiSeq platform were analyzed using QIIME2 version 2019.443. Paired reads were filtered, dereplicated, merged, and chimera-filtered using the q2-dada2 plugin44 to generate ASVs. Taxonomic classification of the ASVs was performed at the phylum, class, order, family, and genus levels using the SILVA 132 99% operational taxonomic units, full length, seven level taxonomy classifier (silva-132-99-nb-classifier.qza). Sequenced data were processed further and analyzed using R software version 3.6.245. ASV and taxonomy tables generated using QIIME2 were imported into R and merged with the sample metadata using the Phyloseq Bioconductor packages46. ASVs identified as Archaea, chloroplasts, and mitochondria were excluded. All samples were rarefied to a sampling depth of 16,805 reads, which was the smallest number of reads observed per sample in the filtered ASV table. Alpha diversity indices including Chao1, ACE, Shannon, and Simpson indices were calculated using the phyloseq function “estimate_richness”. PCoA was performed to determine differences in the microbial community structure based on the Bray–Curtis dissimilarity matrices at the genus level using the Phyloseq package. Venn diagrams were generated using ASVs showing mean relative sequence abundances of  > 0.1% in either the control or the treatment groups at each sampling point. The relative abundance of each bacterial taxon was calculated by dividing the number of reads assigned to each taxon by the total number of reads. Taxa with an average relative abundance  > 0.1% in  > 50% of samples in either the control or treatment group during at least one sampling point were used for the analysis. Hierarchical cluster analysis of bacterial genera determined via amplicon sequencing at 21 days after calving and the weekly and monthly average milk yield for the first 30 days of lactation period was performed using the distances calculated from Spearman’s correlation and average linkage clustering.Quantification of target bacterial species/groups using real-time PCRThe relative abundance of known ruminal bacterial species and groups, including the total bacteria, F. succinogenes, R. flavefaciens, Ruminococcus albus, Butyrivibrio spp., Prevotella spp., Selenomonas ruminantium, Megasphaera elsdenii, Treponema spp., Streptococcus bovis, Anaerovibrio lipolytica, and Ruminobacter amylophilus, was quantified using real-time PCR. Amplification was performed using a Light Cycler 480 system (Roche Applied Science, Mannheim, Germany) with a KAPA SYBR Fast qPCR Kit (Roche Sequencing, Basel, Switzerland) and the respective primer sets (Supplementary Table S9). The standards used for the real-time PCR were prepared as described previously47. Briefly, plasmid DNA containing the respective target bacterial 16S rRNA gene sequence was obtained by PCR cloning using the species/genus-specific or bacterial universal primer sets. The concentration of the plasmid was determined with a spectrometer. Copy number of each standard plasmid was calculated using the molecular weight of nucleic acid and the length (base pair) of the cloned standard plasmid. Ten-fold dilution series ranging from 1 to 108 copies were prepared for each target and run along with the samples. The respective genes were quantified using standard curves obtained from the amplification profile of the dilution series of the plasmid DNA standard (Supplementary Table S9). The PCR cycling conditions and reaction mixture were the same as those reported previously48. The relative abundance of each bacterial target was expressed as the proportion (%) of the abundance of the 16S rRNA genes of each bacterial target relative to that of the total bacteria.Statistical analysisAll data were sorted based on animal age into two sets, from 7 to 56 days of age and from 9 months of age to 21 days after calving, and analyzed separately. Data on fermentation parameters and bacterial abundance quantified via real-time PCR were analyzed using a repeated measures model using GraphPad Prism software version 9.1 (GraphPad Software, San Diego, CA, USA) with the fixed effects of dietary group, age, and diet × age interaction, and the random effect of animals within the groups. The Greenhouse–Geisser correction was used where sphericity was violated. If the P-value for the treatment effect was  More

  • in

    The network nature of language endangerment hotspots

    Database utilizedThe database comprises information obtained with permission from the Catalogue of Endangered Languages that is hosted on the Endangered Languages Project platform (https://www.endangeredlanguages.com/). The Endangered Languages Project was first developed and launched by Google, and is currently overseen by First People’s Cultural Council and the Institute for Language Information and Technology at Eastern Michigan University. Information about the languages in this project is provided by the Catalogue, which is produced by the University of Hawai’i at Mānoa and Eastern Michigan University, with funding provided by the U.S. National Science Foundation (Grants #1058096 and #1057725) and the Luce Foundation. The project is supported by a team of global experts comprising its Governance Council and Advisory Committee.In general, the Catalogue aims to present all languages that communities and scholars have pointed out to be at some level of risk as well as languages that have become dormant. In addition to being the largest database of endangered languages globally, the Catalogue is updated periodically based on feedback gathered from language communities and scholars worldwide. The data therefore represents what was most accurately known about the state of each language’s vitality at its point of utilization. At the time of usage, there were 3423 languages represented in the Catalogue that were determined to be at various levels of risk. Assessment of each language’s risk level is carried out using the Language Endangerment Index, which was developed for the Catalogue’s purposes. The Index is used to assess the level of endangerment of any given language based on whether there is intergenerational transmission of the language (whether the language is being passed on to younger generations), its absolute number of speakers, speaker number trends (whether numbers are stable, increasing, or decreasing), and domains of language use (whether the language is used in a wide number of domains or limited ones). The levels of endangerment that the Index generates include ‘safe’, ‘vulnerable’, ‘threatened’, ‘endangered’, ‘severely endangered’, and ‘critically endangered’. Languages for which it remains unclear if the language has gone extinct or whose last fluent speaker is reported to have died in recent times are referred to as ‘dormant’. Given that the focus of the Catalogue is languages that are at some level of threat, safe languages are excluded in general. Where locality information is available, each language is also accompanied with its latitudinal and longitudinal coordinates.Steps taken to prepare the data for network analysisThe data obtained from the Catalogue was further organized and cleaned up for analysis.

    1.

    Identifier code
    Where available, the ISO 639-3 code for each language was utilized as its unique identifier. Otherwise, its LINGUIST List local use code was utilized. These are temporary codes that are not in the current version of the ISO 639-3 Standard for languages. For languages with neither, unique 3-letter codes were constructed.

    2.

    Endangerment level
    Each language’s endangerment level appeared together with a level of certainty score in the same cell in the original data file. Both pieces of information were split into separate columns and only endangerment levels were utilized.
    For languages where different data were available in the Catalogue depending on resource utilized, the data was listed in additional columns. The endangerment level data points utilized in these cases were the ones with the most complete and updated information. If there was no data available regarding endangerment level, this information was also reflected.

    3.

    Coordinates
    Where exact coordinates were not available, coordinates were approximated using Google maps based on the location description provided in the Catalogue source (e.g., the Tel Aviv district), attained from other sources such as Glottolog, UNESCO Atlas of the World’s Languages in Danger, or approximated from maps provided in other sources. ‘NA’ was indicated in the field for coordinates if none could be found.
    Coordinates found to be inaccurate were rejected, for example in the instance that coordinates provided indicate a different location than the country the language is supposedly found in. The above steps were then taken to populate the coordinates field.
    In instances where a language appears in more than one country, these are listed in separate rows as separate entries. Where there are two sets of coordinates for a country, the set that best corresponds with the written description in the Catalogue source, has greater detail, or is more recent is chosen. Where there are more than two sets of coordinates, a middle point is chosen as being representative of the language’s location, by plotting all coordinates on MapCustomizer (www.mapcustomizer.com).

    4.

    Language family
    On the Catalogue, the information regarding language family may be multi-tiered. For example, Laghuu falls under the Lolo-Burmese branch of the Sino-Tibetan family. For this study, the broader family is utilized—in the case of Laghuu the label ‘Sino-Tibetan’ is used.
    Mixed languages, pidgins, and creoles have all been categorized as ‘contact languages’.
    Language isolates are listed as ‘isolates’.

    5.

    Region

    The Catalogue groups ‘Mexico, Central America, Caribbean’ together under region. Central America and Caribbean are listed as separate regions in this study, with Mexico falling under Central America.Network constructionA spatial network of endangered languages was constructed from the database. Each node represented an endangered language, and edges or links depicted the distance between the locations of the languages as specified in the database. A distance matrix containing the distances between all endangered languages was computed by using functions from the ‘geosphere’ R package. Specifically, Haversine distances were computed for each pair of longitude and latitude points in the dataset. The radius of the earth used in the Haversine distance calculation is 6,378,137 m (for more details see: https://www.rdocumentation.org/packages/geosphere/versions/1.5-14/topics/distHaversine). Haversine distance refers to the shortest distance between two points on a spherical earth, also referred to as the “great-circle-distance”29.Sensitivity analyses of edge thresholdsThe distance matrix is a fully connected network with weighted, undirected links. We set out to capture the strongest or “closest” spatial relationships among the endangered languages, therefore an edge threshold was applied to the distance matrix such that only the edges in the xth lowest percentile were retained in the spatial network. Such an approach allows for the analysis of the most meaningful (i.e., the physically closest) spatial relations in the dataset and how they relate to language endangerment status. The edges were then transformed into unweighted connections to create a simple unweighted, undirected graph for analysis. In order to determine the value of x (i.e., the percentile at which the edge threshold is to be applied), we constructed 10 spatial networks that retained edges with distances below the 1st, 2nd, 3rd… 10th percentile (in increments of 1%) of all distances in the matrix. Additional information of the distances depicted by the edges in each of the 10 networks is provided in Supplementary Information.These 10 networks were then analyzed for their macro- and meso-scale network properties. A summary of macro and meso-scale network measures used in this analysis and their definitions is provided in Table 1, which depicts the 10 networks showing similar patterns in their network structures.Table 1 An overview of macro- and meso-level network measures of spatial networks with different thresholds.Full size tableResultsAs expected, network density and average degree of the networks, which serve as indicators of the number of edges relative to the number of nodes in the network, increased as the edge threshold used to connect nodes became more liberal. The relatively high values of C (i.e., high levels of local clustering among nodes) and low values of ASPL (i.e., relatively short paths despite large size of network) suggested the presence of small world structure30. The community detection analysis using the Louvain method31 indicated strong evidence of community structure in the networks—suggesting the presence of clusters of endangered languages.The point at which the vast majority of nodes was located within the largest connected component of the network occurred at the 5% edge threshold. Because the 5% network was not too fragmented, we report the analyses conducted on the largest connected component of the 5% network in the following subsections. Please see Supplementary Information for additional details behind the rationale for selecting the 5% network for further analyses. The smaller connected components were excluded. Note however that our results are robust across spatial networks of various edge thresholds (due to lack of space, please see Supplementary Information for a complete summary of all reported analyses conducted on all 10 spatial networks).Macro-level analysis: assortative mixing of endangerment statusesMethodTo investigate the macro-level structure of the spatial network of endangered languages, we computed the assortativity coefficient of the spatial network. Specifically, we wanted to know if the endangerment statuses of the languages tended to cluster at the global level of the entire network. If the assortativity coefficient is positive, the languages in the network would tend to be connected to languages of similar levels of endangerment. If the assortativity coefficient is negative, the languages in the network would tend to be connected to languages of dissimilar levels of endangerment.ResultsThere is a significant positive correlation (Spearman’s rank correlation) between the endangerment status of connected pairs of endangered languages in the network, r = 0.20, p  More

  • in

    Exceptional soft-tissue preservation of Jurassic Vampyronassa rhodanica provides new insights on the evolution and palaeoecology of vampyroteuthids

    In their original description of V. rhodanica, Fischer & Riou16 determined that the previously undescribed genus was a Jurassic relative of V. infernalis. This assignment was based on the configuration of the arm crown and armature, fin type, presence of luminous organs, lateral eyes, and the absence of an ink sac. Assuming this assignment is correct, then V. rhodanica is a member of the suborder Vampyromorphina, which includes the family Vampyroteuthidae22,29.Reappraisal of the anatomy shows that V. rhodanica and V. infernalis both have 8 arms and uniserial suckers flanked by cirri. They both possess V. infernalis-like sucker attachments34,36, which are broader at the base and taper up to a radially symmetrical sucker.Both species have distinctly modified arms though the morphology differs in each. V. infernalis, has retractable filaments in the position of arm pair II27,33,34, though there is no evidence of these appendages in V. rhodanica. Instead, the species has elongate dorsal arms (arm pair I) with a unique configuration of suckers and cirri on the distal section.The suckers and cirri of V. rhodanica are more numerous than those of V. infernalis27,37. They are also more closely positioned. Proportionally, the suckers of both species have a consistent ratio to mantle length37, though the diameter of the cirri and infundibulum are greater in V. rhodanica. The V. infernalis-like attachment1,3,34 is present in both species, though in V. rhodanica, the distal part of the neck protrudes into the acetabular cavity. Of note, the sucker stalks on the dorsal arms of V. rhodanica are more elongate than those on the other arms (Figs. 2b,c, and 3a,b). This variation in suckers and their attachments suggests a specialized function between the dorsal and sessile appendages. On the longer dorsal arms, the larger sucker diameter, and more elongate stalks (Figs. 2b and 4) indicate the potential for increased mobility over their extant relatives, and possibly facilitated additional manipulation and prey capture capability.Figure 4Hypothesised reconstruction of V. rhodanica based on the data from this study (A. Lethiers, CR2P). The scale is based on measurements from the holotype (MNHN.B.74247) and the arm crown is completed using dimensions from MNHN.B.74244.Full size imageIn addition to the arm crown specialization, V. rhodanica has a more streamlined shape than V. infernalis, which is caused by a proportionally narrower head. Their muscular body is narrower and more elongate than the gelatinous V. infernalis16,27,37 suggesting a higher energy locomotory style. This is consistent with increased predation relative to the modern form. Observations in this study support many assertions of Fischer & Riou16 about the characters in V. rhodanica, though the presence of luminous organs cannot be confirmed. Rather than luminous organs much larger than those present in the deep-sea, extant V. infernalis, it is possible that these structures represent displaced cartilage prior to fossilization (Supplementary Fig. 6).Two other genera from the La Voulte-sur-Rhône locality, Gramadella and Proteroctopus are, like V. rhodanica, considered to be Incertae sedis Vampyromorpha22. All three share morphological similarities that include an elongated mantle fused with the head, and a longer dorsal arm pair with armature on the distal ends1,16,22,38. Neither the second nor fourth arm pair have been modified. Each has one pair of fins. In Gramadella, the fins are lateral and skirt-like16,38. In V. rhodanica and Proteroctopus these fins are located posteriorly1,16.V. rhodanica shows the greatest length variation between the dorsal and sessile arms (Fig. 4), though proportionally, Gramadella, and Proteroctopus have longer dorsal arms1,31. Fischer & Riou31 and Kruta et al.1 described biserial suckers in their descriptions of Gramadella, and Proteroctopus, respectively. In Proteroctopus, these suckers have a proportionally smaller diameter than the uniserial row in V. rhodanica, and do not exhibit the same tapered pattern.None of these specimens shows evidence of an ink sac, though it is present in contemporaneous genera from the same assemblage (Mastigophora, Rhomboteuthis and Romaniteuthis)8,16. That this character occurs only in some taxa from the same assemblage suggests variation in ecology, possibly associated with the steep, bathymetric relief in the La Voulte-sur-Rhône paleoenvironment11. The mosaic of characters found within the coleoid taxa at La Voulte-sur-Rhône suggests that Mesozoic vampyromorphs co-occurred in different ecological niches during the mid-Jurassic.Today, extant V. infernalis is uniquely adapted to a low-energy, deep-sea mode of life27,28,29,39, though the timing of character acquisition and progression of this ecology is unclear24. It is hypothesised that the vampyromorph Necroteuthis Kretzoi 1942 was already exploiting this niche by the Oligocene29, and that the initial shift to offshore environments was possibly driven by onshore competition24,29. The data obtained here suggests that V. rhodanica, the purportedly oldest-known genus of the Vampyromorphina group, was an active predator following a pelagic mode of life.Indeed, several anatomical details, mainly found in the brachial crown, seem to support this hypothesis. Though we cannot directly compare functionality of the arm crown elements with other Jurassic taxa, we can infer function based on observation in modern forms. In Octopoda, the sister group to Vampyromorpha, suckers are attached to the arm by a cylindrical layer of muscle, encircling oblique musculature40,41, that connects the arm musculature and the lateral margin of the acetabulum34,40,41,42. This facilitates a variety of functions including locomotion, manipulation, and prey retention43. The sucker attaches by flattening the infundibulum against the surface and then the encircling epithelium creates a watertight seal36,40,41,42,43,44,45. Contraction of the radial acetabular muscles provides the pressure differential required to create the suction force43,44,46.The stalked sucker attachments2,34 of decabrachians (Fig. 3d, and Supplementary Fig. 4) are muscular35 and connect the musculature of the arm with the base of the sucker, forming part of the acetabulum33,34. Tension on the sucker stretches this muscular attachment, which pulls locally on the acetabular base. This facilitates a greater pressure differential inside the sucker, allowing the teeth on the sucker ring to maintain the hold47.Extant V. infernalis lack decabrachian-like stalks2,18 and the neck of the attachment joins to the base of the acetabulum (Fig. 3c, and Supplementary Fig. 4), rather than being inserted into it18. The infundibulum is not distinct, and the suckers do not provide strong suction27. Instead, suckers function by secreting mucus to coat detritus—marine snow captured by retractable filaments—which is then moved to the mouth by cirri7,27.A mosaic of these characters is present in V. rhodanica (Fig. 3a,b), therefore, suggesting their potential for increased attachment and hold on prey over extant V. infernalis. These include a larger infundibular diameter, a neck attachment integrated with the acetabular muscles, and the elongated stalks of the dorsal suckers.Additionally, the paired, filamentous cirri observed in extant cirrates48 are present in V. rhodanica (Fig. 4, and Supplementary Fig. 2). In extant forms they are understood to have a sensory function and are used in the detection and capture of prey48. In V. infernalis, they serve to transport the food proximally along the arms to the mouth27. The greater diameters of cirri, and placement along the entire arm in V. rhodanica (Fig. 4), suggests an increased sensory function in these fossil forms.The shape of the arms also contributes to the suction potential49 in coleoids. Functional analysis in Octopoda highlights a positive correlation between distal tapering of the arms and their flexibility. A tapered, flexible arm facilitates more precise adhesion than a cylindrical-shaped one and requires a greater force for sucker detachment49. Suckers detach sequentially, rather than the more simultaneous release observed in models of arms with less taper variation. The tapered diameter of the suckers, like those seen on the sessile arms of V. rhodanica, potentially facilitated this kind of sequential detachment49 allowing them more adherence force and flexibility. Though V. rhodanica has just two suckers on the distal tips of their dorsal arms, the most distal is marginally smaller in diameter than the proximal one. On the dorsal arms, this tapering is observed in conjunction with a well-developed axial nerve cord (Fig. 2b). In extant forms, the nerve cord facilitates complex motor functions42. The combination of these characters in V. rhodanica suggests their arms had increased potential to be actively used in prey capture50 over extant V. infernalis.Though arm crown characters offer insight on the ecology of V. rhodanica, in fossil coleoid phylogenies only a few characters are based on the suckers1, 3. Two studies that have attempted to create a phylogeny using morphological characters that include both fossil and extant taxa return V. rhodanica and V. infernalis as sister taxa1,3. These matrices are, by necessity, heavily influenced by the gladius51 and more than 50% of the characters are based on this feature1,3. Indeed, the authors1 note that the lack of gladius data for some fossil forms, including V. rhodanica, creates an inherent bias in the phylogenetic matrix. Fischer & Riou16 suggested that V. rhodanica and V. infernalis are related on the basis of the observable morphological characters in the family Vampyroteuthidae, though without morphological information on the gladius, a recent systematic synthesis of fossil Octobrachia22 positioned V. rhodanica as Vampyromorpha Incertae sedis.X-ray CT analysis in this study did not allow a reconstruction of the gladius. Nevertheless, it does provide new data on soft tissues, and permits comparisons between extant and fossil taxa. Specifically, we can add distinct states to 4 of the 132 characters in the existing phylogenetic matrix from Sutton et al.3 that was modified and used in Kruta et al.1. These four characters (#89–#92) represent the suckers, and sucker attachments. Detailed examination revealed that the sessile and dorsal arms have the Vampyroteuthis-like attachment. In the dorsal arms, this is more elongated, though it cannot be considered pedunculate like those seen in modern decabrachians. Indeed, the attachment type (plug and base34) is the same, only the length varies. As previously discussed, this variation may have functional implications.When updated with these new data, the matrix from this study returns the same topology seen in Kruta et al.1 that supports the positioning of V. rhodanica and V. infernalis as sister taxa. Further, it strengthens their relationship as they both share a sucker attachment that is not clearly attached to the arm muscles, a state that was previously considered autapomorphic in V. infernalis. However, it is important to note that no additional characters were added for the gladius, which is the cornerstone of coleoid systematics52. Indeed, just 29 of the 132 matrix characters can so far be coded for V. rhodanica, with only 9 of these relating to the 74 states of the gladius.Assuming the phylogenetic work so far is correct, then both species belong to the family Vampyromorphina, and are joined by the Oligocene fossil Necroteuthis hungarica29. While the lack of gladius characters precludes a full phylogenetic understanding of this group, preservation and observation of the soft tissues allow us to infer information regarding palaeobiology.The data obtained in this study demonstrates that the characters observed in V. infernalis, including the sucker attachments and lack of ink sac, were present in Jurassic Vampyromorpha. Comparative anatomy of V. rhodanica and extant V. infernalis revealed that the fossil taxon displayed more morphological variation and were more diversified than previously understood. The assemblage of characters observed in V. rhodanica are consistent with a pelagic predatory lifestyle and corroborate the likelihood of a distinctly different ecological niche. These findings support the hypothesis that a shift towards a deep-sea environment occurred prior to the Oligocene5,29. More

  • in

    Modelling of life cycle cost of conventional and alternative vehicles

    Life cycle cost modelAn analysis of life cycle costs is an economic analysis of the assessment of the total cost of acquisition, ownership and liquidation of a product. It is applicable during the entire life cycle of the product or a life cycle stage or combination of different stages21 and22.There are five period phases of the vehicle life cycle:Generally, the total costs for the above listed phases are acquisition costs, ownership costs and liquidation costs21 and22. For the LCC model, I recommend to divide the life cycle costs into four categories:$$LCC={C}_{P}+{C}_{M}+{C}_{O}+{C}_{D},$$
    (1)
    $${LCC}_{s}=frac{LCC}{t},$$
    (2)

    where LCC—the life cycle cost of vehicles, LCCs—the specific life cycle cost of vehicles, CP—the vehicle purchase cost, CM—the maintenance cost, CO—operating state of vehicle cost, CD—the vehicle disposal cost, t—the time of vehicle operation.The model for evaluating the economic viability of products is based on the general LCC model which is based on acquisition and ownership costs$$LCC={C}_{P}+{C}_{OW},$$
    (3)

    where CP—purchase cost, COW—ownership costs.Acquisition cost (CP) is represented by the purchase price at the time of acquisition of the assessed passenger vehicle.Ownership cost (COW) is significant during the life cycle of a motor vehicle and varies according to the type of the vehicle. This cost includes the costs of maintenance and operation time can be defined as follows10$${C}_{Ow}={C}_{M}+{C}_{O},$$
    (4)

    where CM—cost of maintenance, CO—operation cost.The cost of ownership a vehicle (COW) can be defined as follows$${C}_{OW}={C}_{O}+{C}_{MC}+{C}_{MP},$$
    (5)

    where CO—operation cost, CMC—corrective maintenance cost, CMP—preventive maintenance cost.The cost of ownership (COW) may include the operating and maintenance costs which consist of the corrective maintenance cost (CMC) and the cost of preventive maintenance (CMP) of a motor vehicle.Calculation of operating costsOperating cost CO is determined by the price and amount consumed of conventional or alternative types of fuel. It cover the cost of fuel CF, operating fluids, oils and lubricants COL that are supplied during vehicle operation (not during service inspection), tyres CT, accumulator batteries CAB, vehicle insurance fee and road tax or other mandatory fees CIRT, cost of the motorway tax sticker CMT, mandatory vehicle inspection and emission measurement in special vehicles CETC. The costs are calculated according to$${C}_{O}={C}_{F}+{C}_{OL}+{C}_{T}+{C}_{AB}+{C}_{IRT}+{C}_{MT}+{C}_{ETC}.$$
    (6)
    Fuel costs (CF) are affected by the average consumption of a given type of propulsion vehicle. Then the comparative fuel costs (CF) can be expressed by the equation$${C}_{F}=frac{{bar{c}}_{aF}}{100}{p}_{F}{t}_{l},$$
    (7)

    where CF—total fuel costs (EUR), (bar{c})aF—average fuel consumption (l/100 km), pF—fuel price (EUR/l), tl—service life of a passenger vehicle (km).Costs for operating fluids, oils and lubricants (COL) are any costs for operating fluids, oils and lubricants that are replenished during operation and not during service maintenance; it can be expressed by the equation$${C}_{OL}=frac{{bar{c}}_{aOL}}{100}{p}_{OL}{t}_{l},$$
    (8)

    where (bar{c})aOL—average consumption of oil and lubricant (l/100 km), pOL—price of oil and lubricant (EUR/l).The cost of tyres (CT) can be expressed by the equation$${C}_{T}=frac{{t}_{l}}{{bar{d}}_{aT}}{n}_{T}{p}_{T},$$
    (9)

    where (bar{d})aT—average life of a passenger vehicle tyre (km), nt—number of tyres on the passenger vehicle (pc), pT—price of one piece of tyre (EUR).Accumulator battery costs (CAB) —can be expressed by the equation$${C}_{AB}=frac{{t}_{l}}{{bar{d}}_{aAB}}{n}_{AB}{p}_{AB},$$
    (10)

    where (bar{d}_{aB})—average life of one accumulator battery (km), nAB—number of accumulator batteries in the passenger vehicle (pc), pAB—price of an accumulator battery (EUR).Costs arising from laws (CIRT) are the costs of motor vehicle insurance (compulsory liability, accident insurance, or other). Some of them can be omitted in case of the same costs due to the simplification of the model. Otherwise, they can be expressed by the equation$${C}_{IRT}=left({C}_{SI}+{C}_{AI}+{C}_{RT}+{C}_{R}right){t}_{la},$$
    (11)
    where CS1—price of mandatory annual insurance of a passenger vehicle (EUR), CA1—price of the annual accident insurance of a passenger vehicle (EUR), CRT—price of annual road tax (EUR), CR—price of statutory fee (EUR), tla—operating time of the passenger vehicle until decommissioning (years).The cost of obtaining a motorway sticker (CMT) may be omitted if the same type of passenger vehicle is compared. Otherwise, the cost of a motorway sticker (CMT) can be expressed by the equation$${C}_{MT}={c}_{MT}{t}_{la},$$
    (12)

    where cMT—price of annual motorway sticker for the passenger vehicle (EUR).The costs of the mandatory vehicle inspection and emission measurement (CETC) include the costs incurred for the measurement of emissions of the drive engine unit (CE) and for the technical inspection of the passenger vehicle (CTC). For the proposed model, the costs of the mandatory technical inspections and emission measurements can be expressed by the equation$${C}_{ETC}=left({C}_{E}+{C}_{TC}right)frac{{y}_{n}}{{t}_{la}},$$
    (13)

    where CE—costs related to the measurement of passenger vehicle emissions (EUR), CTC—costs of mandatory technical inspection (EUR), yn—number of years of legal validity of emission measurement and technical condition for the given type of the passenger vehicle (years).Calculation of maintenance costThe total costs for vehicle maintenance CM consist of the cost of preventive maintenance CMP and the cost of corrective maintenance CMC10,11$${C}_{M}={C}_{MC}+{C}_{MP}.$$
    (14)
    Vehicle maintenance costs include the cost of material and the cost of labour$${C}_{M}={(C}_{MCM}+{C}_{MCL}+{C}_{MCF})+left({C}_{MPM}+{C}_{MPL}+{C}_{MPF}right),$$
    (15)

    where CM—cumulative maintenance costs, CMC—corrective maintenance costs, CMP—preventive maintenance costs, CMCM—costs of material used for corrective maintenance, CMCL—costs of labour force for corrective maintenance, CMCF—costs of workshop equipment used for corrective maintenance, CMPM—costs of material used for preventive maintenance, CMPL—costs of labour force for preventive maintenance, CMPF—costs of workshop equipment used for preventive maintenance.

    Preventive maintenance costs (CMP) are costs that include all costs associated with preventive maintenance performed to reduce degradation and mitigate the likelihood of failure. At present, preventive maintenance is performed at predetermined time intervals (according to the manufacturer’s preventive maintenance program) or when a specified number of kilometres are not covered before the next service maintenance, depending on the time. In practice, for passenger cars, it is usually 1 or 2 years, depending on the use of engine oil. This mainly includes the cost of:

    material consumed during preventive maintenance,

    work spent on preventive maintenance,

    workshop equipment, training of preventive maintenance specialists.$${C}_{MP}=frac{{t}_{l}}{MTB{M}_{p}}left({C}_{MPM}+{(bar{c}}_{p}{bar{t}}_{pm})right),$$
    (17)

    where MTBMp—mean operating time between preventive maintenances (km), CMPM—costs of material used for preventive maintenance (EUR), (bar{c})p—average hourly cost of labour and workshop equipment used for maintenance (EUR/hour), ̅tpm—mean time of labour-intensity per one preventive maintenance (hour).

    Design of a model for the analysis of selected life cycle costs of a passenger motor vehicleThe model for performing an analysis of life cycle costs for the purchase of a new motor vehicle is based on the basic Eq. (3), (18). We will not count the costs of improvement (CE) and the costs of the decommissioning phase (CD) for the mentioned model due to the calculations of costs that are unnecessary for the analysis. Then the model can be expressed as follows$$LCC={C}_{P}+{C}_{O}+{C}_{M}.$$
    (18)
    Then, the following Eqs. (6), (7), (8), (9), (10), (11), (12), (13), (16) and (17) are substituted into the given equation, and the selected costs can be calculated for individual vehicles. The resulting model for calculating the LCC costs has the following form$$LCC={C}_{p}+frac{{bar{c}}_{aF}}{100}{p}_{F}{t}_{l}+frac{{bar{c}}_{aOL}}{100}{p}_{OL}{t}_{l}+frac{{t}_{l}}{{bar{d}}_{aT}}{n}_{T}{p}_{T}+frac{{t}_{l}}{{bar{d}}_{aAB}}{n}_{AB}{p}_{AB}+{C}_{SI}{t}_{la}+{c}_{MT}{t}_{la}+left({C}_{E}+{C}_{TC}right)frac{{y}_{n}}{{t}_{la}}+frac{{t}_{l}}{MTBF}left({bar{c}}_{m}+{(bar{c}}_{p}{bar{t}}_{pc})right)+frac{{t}_{l}}{MTB{M}_{p}}left({C}_{OMPM}+{bar{(c}}_{p}{bar{t}}_{pm})right).$$
    (19)
    It is presented in a Fig. 6.Figure 6Structure of model input parameters for LCC model calculation.Full size imageIn this way, the cumulative costs for each passenger motor vehicle are calculated. Since the passenger motor vehicles may have a different service life tl which is expressed in kilometres, it is recommended to convert this equation to specific costs which are related to one kilometre of use. The selected LCCS life cycle specific costs can be expressed by the following equation$${LCC}_{S}=frac{LCC}{{t}_{l}}.$$
    (20)
    LCC model input values and items affecting ownership costs for alternative drivesThe process of the calculation of selected life cycle costs for the propulsion of passenger vehicles and the structure of individual cost items is shown in Fig. 6. These are the input parameters to the LCC model.The total life cycle costs are divided into two main cost groups, which are the ownership and acquisition costs for a given drive type. Fuel costs are determined by the price and the quantity of conventional or alternative fuel consumed. For the calculation of the selected LCCs, the authors of the paper assume that the availability of conventional and alternative fuels is not limited in any way. It is assumed that the availability of fuels is ideal, which is not entirely true in practice. This is dependent on the support for each alternative fuel in each state.In practice, therefore, multiple costs may arise due to the distance to the refuelling station to provide alternative fuels such as E85, CNG, LPG and hydrogen. In addition, there is a distance to the charging station for electric drives.Another item that affects the cost of operation for hybrid passenger vehicles is the percentage of alternative fuel driving, which can have a significant impact on life cycle costs. Values for this item are given as a percentage, which is then converted into the number of kilometres driven on alternative and conventional fuel.One of the important parameters for calculating the life cycle operating costs for the hybrid-electric and electric drive is the setting of a threshold value for the capacity of the electric vehicle battery (EV battery) when the replacement is performed. For the model calculation, a limit value of 70% of the electric vehicle battery capacity at 20 °C was set.Return on investmentReturn on investment (ROI) is a performance measure used to evaluate the efficiency or profitability of an investment or compare the efficiency of a number of different investments. ROI tries to directly measure the amount of return on a particular investment, relative to the investment’s cost. To calculate ROI, the benefit (or return) of an investment is divided by the cost of the investment. The result is expressed as a percentage or a ratio12,23.For our calculation of the return on investment ROI on alternative and conventional passenger car propulsion the following formula is used, which is expressed as a percentage$$ROI=frac{{LCC}_{A}-{LCC}_{C}}{{LCC}_{C}}100,$$
    (21)

    where LCCA—selected live cycle costs of the alternative passenger car propulsion (EUR), LCCC—selected live cycle costs of the conventional passenger car propulsion (EUR).The return on investment of an alternative vehicle ROIAV purchase expresses after how many kilometres the increased cost of purchasing an alternative fuel vehicle compared to a conventional one is recovered. If the value is negative, the payback will not occur for various reasons. The following equation is used to calculate ROIAV$${ROI}_{AV}=frac{{C}_{{P}_{AV}}-{C}_{{P}_{CV}}}{frac{{C}_{O{W}_{CV}}-{C}_{O{W}_{AV}}}{{t}_{l}}}$$
    (22)

    where ({C}_{{P}_{AV}})—purchase cost on alternative vehicle (EUR), ({C}_{{P}_{CV}})—purchase cost on conventional vehicle (EUR), ({C}_{O{W}_{CV}})—ownership cost on conventional vehicle (EUR), ({C}_{O{W}_{AV}})—ownership cost on alternative vehicle (EUR), tl—service life of the passenger vehicle (km).Ownership costs on conventional vehicle are expressed by the following equation$${C}_{{OW}_{CV}}={left(frac{{bar{c}}_{aF}}{100}{p}_{F}{t}_{l}+frac{{bar{c}}_{aOL}}{100}{p}_{OL}{t}_{l}+frac{{t}_{l}}{{bar{d}}_{aT}}{n}_{T}{p}_{T}+frac{{t}_{l}}{{bar{d}}_{aAB}}{n}_{AB}{p}_{AB}+{C}_{SI}{t}_{la}+{c}_{MT}{t}_{la}+left({C}_{E}+{C}_{TC}right)frac{{y}_{n}}{{t}_{la}}+frac{{t}_{l}}{MTBF}left({bar{c}}_{m}+{(bar{c}}_{p}{bar{t}}_{pc})right)+frac{{t}_{l}}{MTB{M}_{p}}left({C}_{OMPM}+({bar{c}}_{p}{bar{t}}_{pm})right)right)}_{CV}.$$
    (23)
    Ownership costs on alternative vehicle are expressed by the following equation$${C}_{{OW}_{AV}}={left(frac{{bar{c}}_{aF}}{100}{p}_{F}{t}_{l}+frac{{bar{c}}_{aOL}}{100}{p}_{OL}{t}_{l}+frac{{t}_{l}}{{bar{d}}_{aT}}{n}_{T}{p}_{T}+frac{{t}_{l}}{{bar{d}}_{aAB}}{n}_{AB}{p}_{AB}+{C}_{SI}{t}_{la}+{c}_{MT}{t}_{la}+left({C}_{E}+{C}_{TC}right)frac{{y}_{n}}{{t}_{la}}+frac{{t}_{l}}{MTBF}left({bar{c}}_{m}+{(bar{c}}_{p}{bar{t}}_{pc})right)+frac{{t}_{l}}{MTB{M}_{p}}left({C}_{OMPM}+({bar{c}}_{p}{bar{t}}_{pm})right)right)}_{AV}.$$
    (24)
    The rate of return on investment for the purchase of an alternative vehicle depending on the kilometres travelled to is expressed by the following equation$${ROI}_{AV({t}_{o})}={(C}_{{P}_{AV}}-{C}_{{P}_{CV}})-({C}_{O{W}_{CV}left({t}_{o}right)}-{C}_{O{W}_{AV}left({t}_{o}right)}) quad text{when} ;to = (0-tl)$$
    (25)

    where to—operation of the passenger vehicle (km). More

  • in

    Ecological networks of dissolved organic matter and microorganisms under global change

    Experimental designThe comparative field microcosm experiments were conducted on Laojun Mountain in China (26.6959 N; 99.7759 E) in September–October 2013, and on Balggesvarri Mountain in Norway (69.3809 N; 20.3483 E) in July 2013, designed to be broadly representative of subtropical and subarctic climatic zones, respectively, as first reported in Wang et al.29. In the Laojun Mountain region, mean annual temperatures ranged from 4.2 to 12.9 °C, with July mean temperatures of 17–25 °C. In the Balggesvarri Mountain region, mean annual temperatures ranged from −2.9 to 0.7 °C, with July mean temperatures of 8–16 °C. The experiments were characterised by an aquatic ecosystem with consistent initial DOM composition but different locally colonised microbial communities and newly produced endogenous DOM. While allowing us to minimise the complexity of natural ecosystems, the experiment provided a means for investigating DOM-microbe associations at large spatial scales by controlling the initial DOM supply. Briefly, we selected locations with five different elevations on each mountainside. The elevations were 3822, 3505, 2915, 2580 and 2286 m a.s.l. on Laojun Mountain in China, and 750, 550, 350, 170 and 20 m a.s.l. on Balggesvarri Mountain in Norway. At each elevation, we established 30 aquatic microcosms (1.5 L bottle) composed of 15 g of sterilised lake sediment and 1.2 L of sterilised artificial lake water at one of ten nutrient levels of 0, 0.45, 1.80, 4.05, 7.65, 11.25, 15.75, 21.60, 28.80 and 36.00 mg N L−1 of KNO3 in the overlying water. To compensate for nitrate additions shifting stoichiometric ratios, KH2PO4 was added to the bottles so that the N/P ratio of the initial overlying water was 14.93, which was similar to the annual average ratio in Taihu Lake during 2007 (that is, 14.49). Thus, we use “nutrient enrichment” to indicate a series of targeted nutrient levels of both nitrate and phosphate, the former of which was used to represent nutrient enrichment in the statistical analyses. Each nutrient level was replicated three times. The lake sediments were obtained from the centre of Taihu Lake, China, and were aseptically canned per bottle after autoclaving at 121 °C for 30 min. Nutrient levels for the experiments were selected based on conditions of the eutrophic Taihu Lake, and the highest nitrate concentration was based on the maximum total nitrogen in 2007 (20.79 mg L−1; Fig. S19). We chose the nutrient level of this year because a massive cyanobacteria bloom in Taihu Lake happened in May 2007 and initiated an odorous drinking water crisis in the nearby city of Wuxi.The microcosms were left in the field for one month allowing airborne bacteria to freely colonise the sediments and water. To keep the microbial dispersal events as natural as possible, we did not cover the experimental microcosms in case of rainfall. To avoid or minimize potential influence of extreme nature events, we (i) left the top 20% of each microcosm empty to prevent water from overflowing during heavy rains, and (ii) checked the experimental sites twice during each experimental period, and added sterilized water to obtain a final volume of approximately 1.2 L. The bottom of our microcosm was buried into the local soils by 10% of the bottle height, partly to reduce UV exposure to sediments. More considerations of the experimental design were detailed in the Supplementary Methods. To avoid the effects of daily temperature variation, we measured the water temperature and pH within 2 h before noon at all elevations in the day before the final sample collection. At the end of the experimental period, we aseptically sampled the water and sediments of the 300 bottles (that is, 2 mountains × 5 elevations × 10 nutrient levels × 3 replicates) for the following analyses of physiochemical variables, bacterial community and DOM composition.Physiochemical variables and bacterial communityWe measured environmental variables, namely, the total nitrogen (TN), total phosphorus (TP), dissolved nutrients (that is, NOx−, NO2−, NH4+ and PO43−), total organic carbon (TOC), dissolved organic carbon (DOC) and chlorophyll a (Chl a) in the sediments, and the NO3−, NO2−, NH4+, PO43− and pH in the overlying water (Table S2, Fig. S20), according to Wang et al.29.The sediment bacteria were examined using high-throughput sequencing of 16S rRNA genes. The sequences were processed in QIIME (v1.9)45 and OTUs were defined at 97% sequence similarity. The bacterial sequences were rarefied to 20,000 per sample. Further details on physicochemical and bacterial community analyses are available in Wang et al.29.ESI FT-ICR MS analysis of DOM samplesHighly accurate mass measurements of DOM within the sediment samples were conducted using a 15 Tesla solariX XR system, a ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS, Bruker Daltonics, Billerica, MA) coupled with an electrospray ionization (ESI) interface, as demonstrated previously46 with some modifications. It should be noted that FT-ICR MS does not identify molecules, but only molecular formulae in terms of elemental composition and there can be many molecular structures sharing the same elemental compositions. DOM was solid-phase extracted (SPE) with Agilent VacElut resins before FT-ICR MS measurement47 with minor modifications. Briefly, an aliquot of 0.7 g freeze-dried sediment was sonicated with 30 ml ultrapure water for 2 h, and centrifuged at 5000 × g for 20 min. The extracted water was filtered through the 0.45 μm Millipore filter and further acidified to pH 2 using 1 M HCl. Cartridges were drained, rinsed with ultrapure water and methanol (ULC-MS grade), and conditioned with pH 2 ultrapure water. Calculated volumes of extracts were slowly passed through cartridges based on DOC concentration. Cartridges were rinsed with pH 2 ultrapure water and dried with N2 gas. Samples were finally eluted with methanol into precombusted amber glass vials, dried with N2 gas and stored at −20 °C until DOM analysis. The extracts were continuously injected into the standard ESI source with a flow rate of 2 μl min−1 and an ESI capillary voltage of 3.5 kV in negative ion mode. One hundred single scans with a transient size of 4 mega word (MW) data points, an ion accumulation time of 0.3 s, and within the mass range of m/z 150–1200, were co-added to a spectrum with absorption mode for phase correction, thereby resulting in a resolving power of 750,000 (FWHM at m/z 400). All FT-ICR mass spectra were internally calibrated using organic matter homologous series separated by 14 Da (-CH2 groups). The mass measurement accuracy was typically within 1 ppm for singly charged ions across a broad m/z range (150–1200 m/z).Data Analysis software (BrukerDaltonik v4.2) was used to convert raw spectra to a list of m/z values using FT-MS peak picker with a signal-to-noise ratio (S/N) threshold set to 7 and absolute intensity threshold to the default value of 100. Putative chemical formulae were assigned using the software Formularity (v1.0)48 following the Compound Identification Algorithm49. In total, 19,538 molecular formulas were putatively assigned for all samples (n = 300) based on the following criteria: S/N  > 7, and mass measurement error  0.80, P ≤ 0.001; Fig. S9). Similar conclusions were also obtained with either OTUs or genera when relating the pairwise distances of molecular traits with SparCC correlation coefficient ρ values among DOM molecules in Fig. 4c. To reduce type I errors in the correlation calculations created by low-occurrence genera or molecules, the majority rule was applied; that is, we retained genera or molecules that were observed in more than half of the total samples (≥75 samples) in China or Norway. The filtered table, including 1340 and 1246 DOM molecules, and 75 and 49 bacterial genera in China and Norway, respectively, was then used for pairwise correlation calculation of DOM and bacteria using SparCC with default parameters35.Finally, bipartite network analysis at a molecular level was performed to quantify the specialization of DOM-bacteria networks (Box 1). The specialization considers interaction abundance and is standardised to account for heterogeneity in the interaction strength and species richness, which describes the levels of “vulnerability” of DOM molecules and “generality” of bacterial taxa27. The threshold correlation for inclusion in bipartite networks was |ρ| = 0.30 to exclude weak interactions and we retained the adjacent matrix with only the interactions between DOM and bacteria. We then constructed two types of interaction networks (i.e., negative and positive networks) based on negative and positive correlation coefficients (SparCC ρ ≤ −0.30 and ρ ≥ 0.30, respectively). According to resource-consumer relationships, negative networks likely indicate the degradation of larger molecules into smaller structures, while positive networks may suggest the production of new molecules via degradation or biosynthetic processes. The SparCC ρ values were multiplied by 10,000 and rounded to integers, and the absolute values were taken for negative networks to enable the calculations of specialization indices. A separate negative and positive sub-network was obtained for each microcosm by selecting the DOM molecules and bacterial taxa in each sample based on its bacterial and DOM compositions. For the network level analysis, we calculated H2′, a measure of specialization27, for each network:$${H}_{2}=-mathop{sum }limits_{i{{mbox{=}}}1}^{i}mathop{sum }limits_{j{{mbox{=}}}1}^{j}{{mbox{(}}}{{{mbox{p}}}}_{{ij}}{{{{{{rm{ln}}}}}}}{{{mbox{p}}}}_{{ij}}{{mbox{)}}}$$
    (2)
    $${H}_{2}{prime} =frac{{H}_{2{max }}{-}{H}_{2}}{{H}_{2{max }}{-}{H}_{2{min }}}$$
    (3)
    where ({{{mbox{p}}}}_{{ij}}{{mbox{=}}}{{{mbox{a}}}}_{{ij}}{{mbox{/}}}m), represents the proportion of interactions in a i × j matrix. ({{{mbox{a}}}}_{{ij}}) is the number of interactions between DOM molecule i and bacterial genus j, which is also referred as “link weight”. m is the total number of interactions between all DOM molecules and bacterial genera. H2′ is the standardised H2 against the minimum (H2min) and maximum (H2max) possible for the same distribution of interaction totals. For the molecular level analysis, we calculated the specialization index Kullback–Leibler distance (d′) for DOM molecules (di′) and bacterial genera (dj′), which describes the levels of “vulnerability” of DOM molecules and “generality” of bacterial genera, respectively:$${d}_{i}=mathop{sum }limits_{j=1}^{j}left(frac{{{{mbox{a}}}}_{{ij}}}{{{{mbox{A}}}}_{i}}{{{mbox{ln}}}}frac{{{{mbox{a}}}}_{{ij}}m}{{{{mbox{A}}}}_{i}{{{mbox{A}}}}_{j}}right)$$
    (4)
    $${d}_{i}{prime} =frac{{d}_{i}-{d}_{{min }}}{{d}_{{max }}-{d}_{{min }}}$$
    (5)
    where ({A}_{i}) = (mathop{sum }limits_{j{{mbox{=}}}1}^{j}{{{mbox{a}}}}_{{ij}}) and ({A}_{j}) = (mathop{sum }limits_{i{{mbox{=}}}1}^{i}{{{mbox{a}}}}_{{ij}}), are the total number of interactions of DOM molecule i and bacterial genus j, respectively. di′ is the standardised di against the minimum (dmin) and maximum (dmax) possible for the same distribution of interaction totals. The equations of dj′ are analogous to di′, replacing j by i. Weighted means of d′ for DOM were calculated for each network as the sum of the product of d′ for each individual molecule i (di′) and relative intensity Ii divided by the sum of all intensities d′  = Ʃ(di′ × Ii)/Ʃ(Ii). Weighted means of d′ for bacteria were calculated as the sum of the d′ of each individual bacterial genus j (dj′) and relative abundance of bacterial genus Ij divided by the sum of all abundance. All calculations were performed using the R package FD V1.0.12. The observed H2′ and d′ values ranged from 0 (complete generalization) to 1 (complete specialization)28 (Fig. S21). Specifically, elevated H2′ or d′ values indicate a high degree of specialization, while lower values suggest increased generalization, that is, higher vulnerability of DOM and/or higher generality of microbes. To directly compare the network indices across the elevations or nutrient enrichment levels, we used a null modelling approach. We standardised the three observed specialization indices (Sobserved; that is, H2′, d′ of DOM, and d′ of bacteria) by calculating their z-scores63 using the equation:$${z}_{S}=({S}_{{{{{{rm{observed}}}}}}}-overline{{{S}}_{{{{{{rm{null}}}}}}}})/({sigma }_{S_{{{{{rm{null}}}}}}})$$
    (6)
    where (overline{{{S}}_{{{{{{rm{null}}}}}}}}) and ({sigma }_{S_{{{{{rm{null}}}}}}}) were, respectively, the mean and standard deviation of the null distribution of S (Snull). One hundred randomised null networks were generated for each bipartite network to derive Snull using the swap.web algorithm, which keeps species richness and the number of interactions per species constant along with network connectance. This null model analysis indicates that interactions between DOM and bacteria were non-random as the observed network specialization indices were generally significantly lower than expected by chance (P  0.05), which tests whether the model structure differs from the observed data, high comparative fit index (CFI  > 0.95) and low standardised root mean squared residual (SRMR  More

  • in

    Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea

    Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).Unwin, D. M. The pterosaurs from deep time (Pi Press, 2005).Witton, M. P. Pterosaurs: Natural History (Anatomy (Princeton University Press, 2013).Book 

    Google Scholar 
    Williams, C. J. et al. Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications. iScience 24, 102338 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bestwick, J., Unwin, D. M., Butler, R. J. & Purnell, M. A. Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nat. Commun. 11, 5293 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryang, W. H. Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geo. Soc. Korea 49, 31–45 (2013).CAS 

    Google Scholar 
    Kim, B. G. & Park, B. G. Geological report of the Dongbok sheet (1:50,000) (Geological Survey of Korea, Seoul, 1966).Lee, H., Sim, M. S. & Choi, T. Stratigraphic evolution of the northern part of the Cretaceous Neungju basin South Korea. Geosci. J. 23, 849–865 (2019).CAS 
    Article 

    Google Scholar 
    Paik, I. S., Huh, M., So, Y. H., Lee, J. E. & Kim, H. J. Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications. J. Asian Earth Sci. 30, 93–107 (2007).Article 

    Google Scholar 
    Cohen, K. M., Finney, S. M., Gibbard, P. L. & Fan, J.-X. The ICS international Chronostratigraphic chart. Episodes 36, 199–204 (2013).Article 

    Google Scholar 
    Calvo, J. O. & Lockley, M. G. The first pterosaur tracks from Gondwana. Cretac. Res. 22, 585–590 (2001).Article 

    Google Scholar 
    Kukihara, R. & Lockley, M. G. Fossil footprints from the dakota group (Cretaceous) john martin reservoir, bent county, Colorado: New insights into the paleoecology of the Dinosaur freeway. Cretac. Res. 33, 165–182 (2012).Article 

    Google Scholar 
    Lockley, M. & Schumacher, B. A new pterosaur swim tracks locality from the Cretaceous Dakota Group of eastern Colorado: implications for pterosaur swim track behavior. Fossil Footprints of Western North America. Bull. NM Mus. Nat. Hist. Sci, 365–371 (2014).Smith, R. E., Martill, D. M., Unwin, D. M. & Steel, L. Edentulous pterosaurs from the Cambridge Greensand (Cretaceous) of eastern England with a review of Ornithostoma Seeley, 1871. Proc. Geol. Assoc. (2020).Ibrahim, N., Unwin, D. M., Martill, D. M., Baidder, L. & Zouhri, S. A new pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco. PLoS ONE 5, e10875 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martill, D. M. & Ibrahim, N. An unusual modification of the jaws in cf. Alanqa, a mid-Cretaceous azhdarchid pterosaur from the Kem Kem beds of Morocco. Cretac. Res. 53, 59–67 (2015).Article 

    Google Scholar 
    Jacobs, M. L., Martill, D. M., Ibrahim, N. & Longrich, N. A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa. Cretac. Res. 95, 77–88 (2019).Article 

    Google Scholar 
    Jacobs, M. L. et al. New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity. Cretac. Res. 110, 104413 (2020).Article 

    Google Scholar 
    McPhee, J. et al. A new ? Chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of southern Morocco. Cretac. Res. 110, 104410 (2020).Article 

    Google Scholar 
    Martill, D. M. et al. A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco. Cretac. Res. 112, 104424 (2020).Article 

    Google Scholar 
    Martill, D. M., Unwin, D. M., Ibrahim, N. & Longrich, N. A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco. Cretac. Res. 84, 1–12 (2018).Article 

    Google Scholar 
    Smith, R. E. et al. Small, immature pterosaurs from the Cretaceous of Africa: implications for taphonomic bias and palaeocommunity structure in flying reptiles. Cretac. Res. 130, 105061 (2022).Article 

    Google Scholar 
    Smith, R. E., Martill, D. M., Kao, A., Zouhri, S. & Longrich, N. A long-billed, possible probe-feeding pterosaur (Pterodactyloidea: ?Azhdarchoidea) from the mid-Cretaceous of Morocco North Africa. Cretac. Res. 118, 104643 (2021).Article 

    Google Scholar 
    Kellner, A. W. A. et al. First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity. Sci. Rep. 9, 17875 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgin, R. A. & Frey, E. A new azhdarchoid pterosaur from the Cenomanian (Late Cretaceous) of Lebanon. Swiss J. Geosci. 104, 21–33 (2011).Article 

    Google Scholar 
    Averianov, A. O., Kurochkin, E. N., Pervushov, E. M. & Ivanov, A. V. Two bone fragments of ornithocheiroid pterosaurs from the Cenomanian of Volgograd Region, southern Russia. Acta Palaeontol. Pol. 50 (2005).Averianov, A. & Kurochkin, E. A new pterosaurian record from the Cenomanian of the Volga region. Paleontol. J. 44, 695–697 (2010).Article 

    Google Scholar 
    Nessov, L. Flying reptiles from the Jurassic and cretaceous of the USSR and significance of their remains for the reconstruction of paleogeographical conditions. Vestn. Leningr. Gos. Univ. Ser. 7, 28 (1990).
    Google Scholar 
    Bakhurina, N. N. & Unwin, D. M. A survey of pterosaurs from the Jurassic and Cretaceous of the former Soviet Union and Mongolia. (1995).Averianov, A. O. New records of azhdarchids (Pterosauria, Azhdarchidae) from the Late Cretaceous of Russia, Kazakhstan, and Central Asia. Paleontol. J. 41, 189–197 (2007).Article 

    Google Scholar 
    Averianov, A. Mid-Cretaceous ornithocheirids (Pterosauria, Ornithocheiridae) from Russia and Uzbekistan. Paleontol. J. 41, 79–86 (2007).Article 

    Google Scholar 
    Huh, M., Paik, I. S., Chung, C. H., Hwang, K. G. & Kim, B. S. Theropod tracks from Seoyuri in Hwasun, Jeollanamdo, Korea: occurrence and paleontological significance. J. Geo. Soc. Korea 39, 461–478 (2003).CAS 

    Google Scholar 
    Huh, M. et al. Well-preserved theropod tracks from the Upper Cretaceous of Hwasun County, southwestern South Korea, and their paleobiological implications. Cretac. Res. 27, 123–138 (2006).Article 

    Google Scholar 
    Lockley, M. G., Huh, M. & Kim, B. S. Ornithopodichnus and pes-only sauropod Trackways from the Hwasun tracksite Cretaceous of Korea. Ichnos 19, 93–100 (2012).Article 

    Google Scholar 
    Hwang, K. G., Huh, M. & Paik, I. S. A unique trackway of small theropod from Seoyu-ri, Hwasun-gun Jeollanam province. J. Geo. Soc. Korea 42, 69–78 (2006).CAS 

    Google Scholar 
    Kim, B. S. & Huh, M. Analysis of the acceleration phase of a theropod dinosaur based on a Cretaceous trackway from Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 1–8 (2010).Article 

    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Sci. Rev. 193, 109–145 (2019).Article 

    Google Scholar 
    Rodríguez-de La Rosa, R. A. Pterosaur tracks from the latest Campanian Cerro del Pueblo formation of southeastern Coahuila. Mexico. Geol. Soc. Spec. Publ. 271, 275–282 (2003).Article 

    Google Scholar 
    Lockley, M. G. & Meyer, C. Crocodylomorph trackways from the Jurassic to early cretaceous of North America and Europe: Implications for Ichnotaxonomy. Ichnos 11, 167–178 (2004).Article 

    Google Scholar 
    Ambroggi, R. & De Lapparent, A. Les empreintes de pas fossiles du Maestrichtien d’Agadir. Notes du Service Géologique du Maroc 10, 43–57 (1954).
    Google Scholar 
    Stokes, W. L. Pterodactyl tracks from the Morrison Formation. J. Paleontol. 31, 952–954 (1957).
    Google Scholar 
    Delair, J. Note on Purbeck fossil footprints, with descriptions of two hitherto unknown forms from Dorset. Proceedings of the Dorset Natural History and Archaeological Society. 92–100 (1963).Hwang, K.-G., Huh, M. I. N., Lockley, M. G., Unwin, D. M. & Wright, J. L. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea. Geol. Mag. 139, 421–435 (2002).Article 

    Google Scholar 
    Mazin, J.-M. & Pouech, J. The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58, 39–53 (2020).Article 

    Google Scholar 
    Masrour, M., de Ducla, M., Billon-Bruyat, J.-P. & Mazin, J.-M. Rediscovery of the Tagragra tracksite (Maastrichtian, Agadir, Morocco): Agadirichnus elegans Ambroggi and Lapparent 1954 is Pterosaurian Ichnotaxon. Ichnos 25, 285–294 (2018).Article 

    Google Scholar 
    Wright, J. L., Unwin, D. M., Lockley, M. G. & Rainforth, E. C. Pterosaur tracks from the Purbeck limestone formation of Dorset England. Proc. Geol. Assoc. 108, 39–48 (1997).Article 

    Google Scholar 
    Lockley, M. G. et al. The fossil trackway Pteraichnusis pterosaurian, not crocodilian: Implications for the global distribution of pterosaur tracks. Ichnos 4, 7–20 (1995).Article 

    Google Scholar 
    Billon-Bruyat, J.-P. & Mazin, J.-M. The systematic problem of tetrapod ichnotaxa: the case study of Pteraichnus Stokes, 1957 (Pterosauria, Pterodactyloidae). Geol. Soc. Spec. Publ. 217, 315–324 (2003).Article 

    Google Scholar 
    Pascual Arribas, C. & Sanz Pérez, E. Huellas de Pterosaurios en el grupo Oncala (Soria, España). Pteraichnus palaciei-saenzi, nov. icnosp. Estudios Geol. 56, 73–100 (2000).
    Google Scholar 
    Calvo, M. M., Vidarte, C. F., Fuentes, F. M. & Fuentes, M. M. Huellas de Pterosaurios en la Sierra de Oncala (Soria, España). Nuevas icnoespecies: pteraichnus vetustior, Pteraichnus parvus. Pteraichnus manueli. Celtiberia 54, 471–490 (2004).
    Google Scholar 
    Fuentes Vidarte, C., Meijide Calvo, M., Meijide Fuentes, F. & Meijide Fuentes, M. Pteraichnus longipodus nov. icnosp. en la Sierra de Oncala (Soria, España). Studia Geologica Salmanticensia, 103–114 (2004).Peng, B.-X., Du, Y.-S., Li, D.-Q. & Bai, Z.-C. The first discovery of the early Cretaceous Pterosaur track and its significance in Yanguoxia, Yongjing County, Gansu Province. Earth Sci.-J. China Univ. Geosci. 29, 21–24 (2004).
    Google Scholar 
    Lee, Y.-N., Lee, H.-J., Lü, J. & Kobayashi, Y. New pterosaur tracks from the Hasandong formation (Lower Cretaceous) of Hadong County South Korea. Cretac. Res. 29, 345–353 (2008).Article 

    Google Scholar 
    Lee, Y.-N., Azuma, Y., Lee, H.-J., Shibata, M. & Lü, J. The first pterosaur trackways from Japan. Cretac. Res. 31, 263–273 (2010).Article 

    Google Scholar 
    Chen, R. et al. Pterosaur tracks from the early late cretaceous of Dongyang City, Zhejiang Province China. Geol. Bull. China. 32, 693–698 (2013).CAS 

    Google Scholar 
    Li, Y., Wang, X. & Jiang, S. A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker. PeerJ 9, e11361 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ha, S. et al. Diminutive pterosaur tracks and trackways (Pteraichnus gracilis ichnosp. Nov.) from the lower Cretaceous Jinju formation, Gyeongsang basin. Korea. Cretac. Res. 131, 105080 (2021).Article 

    Google Scholar 
    Sánchez-Hernández, B., Przewieslik, A. G. & Benton, M. J. A reassessment of the Pteraichnus ichnospecies from the early Cretaceous of Soria Province Spain. J. Vertebr. Paleontol. 29, 487–497 (2009).Article 

    Google Scholar 
    Zhou, X. et al. A new darwinopteran pterosaur reveals arborealism and an opposed thumb. Curr. Biol. 31, 2429-2436.e2427 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lü, J. et al. Dragons of the Skies (recent advances on the study of pterosaurs from China) (Zhejiang Science and Technology Press, 2013).
    Google Scholar 
    Beccari, V. et al. Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLoS ONE 16, e0254789 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Acta Geologica Sinica-English Edition 84, 241–246 (2010).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: A reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (2010).Article 

    Google Scholar 
    Wang, X. & Lü, J. Discovery of a pterodactylid pterosaur from the Yixian Formation of western Liaoning China. Chin. Sci. Bull. 46, A3–A8 (2001).Article 

    Google Scholar 
    Frey, E. et al. A new specimen of nyctosaurid pterosaur, cf. Muzquizopteryx sp. from the Late Cretaceous of northeast Mexico. Revista mexicana de ciencias geológicas 29, 131–139 (2012).
    Google Scholar 
    Wu, W.-H., Zhou, C.-F. & Andres, B. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications. PLoS ONE 12, e0185486 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lü, J. et al. The toothless pterosaurs from China. Acta Geol. Sin. 90, 2513–2525 (2016).
    Google Scholar 
    Zhang, X., Jiang, S., Cheng, X. & Wang, X. New Material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China. An. Acad. Bras. Cienc. 91 (2019).Bestwick, J., Unwin, D. M., Butler, R. J., Henderson, D. M. & Purnell, M. A. Pterosaur dietary hypotheses: A review of ideas and approaches. Biol. Rev. 93, 2021–2048 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, H. et al. New anatomical information on Dsungaripterus weii Young, 1964 with focus on the palatal region. PeerJ 8, e8741 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, D. et al. A manus dominated pterosaur track assemblage from Gansu, China: Implications for behavior. Sci. Bull. 60, 264–272 (2015).Article 

    Google Scholar 
    Masrour, M., Pascual-Arribas, C., de Ducla, M., Hernández-Medrano, N. & Pérez-Lorente, F. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only). J. African Earth Sci. 134, 766–775 (2017).Article 

    Google Scholar 
    Bramwell, C. D. & Whitfield, G. R. Biomechanics of Pteranodon. Phil. Trans. R. Soc. Lond. B. 267, 503–581 (1974).Article 

    Google Scholar 
    Bennett, S. C. Terrestrial locomotion of pterosaurs: a reconstruction based on Pteraichnus trackways. J. Vertebr. Paleontol. 17, 104–113 (1997).Article 

    Google Scholar 
    Mazin, J.-M., Billon-Bruyat, J.-P., Hantzpergue, P. & Lafaurie, G. Ichnological evidence for quadrupedal locomotion in pterodactyloid pterosaurs: Trackways from the Late Jurassic of Crayssac (southwestern France). Geol. Soc. Spec. Publ. 217, 283–296 (2003).Article 

    Google Scholar 
    Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    Lockley, M. G. & Wright, J. L. Pterosaur swim tracks and other ichnological evidnce of behaviour and ecology. Geol. Soc. Spec. Publ. 217, 297–313 (2003).Article 

    Google Scholar 
    Lockley, M., Mitchell, L. & Odier, G. P. Small Theropod track assemblages from middle Jurassic Eolianites of eastern Utah: Paleoecological insights from dune Ichnofacies in a transgressive sequence. Ichnos 14, 131–142 (2007).Article 

    Google Scholar 
    Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y. & Tomsich, C. S. A pterosaur manus track from Denali National park, Alaska Range, Alaska United States. Palaios 24, 466–472 (2009).Article 

    Google Scholar 
    Bell, P. R., Fanti, F. & Sissons, R. A possible pterosaur manus track from the late Cretaceous of Alberta. Lethaia 46, 274–279 (2013).Article 

    Google Scholar 
    Stinnesbeck, W. et al. Theropod, avian, pterosaur, and arthropod tracks from the uppermost Cretaceous Las Encinas Formation, Coahuila, northeastern Mexico, and their significance for the end-Cretaceous mass extinction. Geol. Soc. Am. Bull. 129, 331–348 (2017).Article 

    Google Scholar 
    Xing, L. et al. Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 303–313 (2017).Article 

    Google Scholar 
    Lockley, M. G., Gierlinski, G. D., Adach, L., Schumacher, B. & Cart, K. Newly discovered tetrapod ichnotaxa from the Upper Blackhawk Formation Utah. Bull. N. M. M. Nat. Hist. Sci. 79, 469–480 (2018).
    Google Scholar 
    Lockley, M. G. & Gillette, D. Pterosaur and bird tracks from a new Late Cretaceous locality in Utah. Verteb. Paleontol. Utah 99, 355–359 (1999).
    Google Scholar 
    Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a Ctenochasmatid embryo from the Early Cretaceous of Argentina. Geol. Soc. Spec. Publ. 455, 83–94 (2018).Article 

    Google Scholar 
    Mickelson, D. L., Lockley, M. G., Bishop, J. & Kirkland, J. A New Pterosaur Tracksite from the Jurassic Summerville Formation, near Ferron Utah. Ichnos 11, 125–142 (2004).Article 

    Google Scholar  More