More stories

  • in

    Major biodiversity summit will go ahead in Canada not China: what scientists think

    Deforestation, in places such as the Amazon, contributes to biodiversity loss.Credit: Ivan Valencia/Bloomberg/Getty

    Researchers are relieved that a pivotal summit to finalize a new global agreement to save nature will go ahead this year, after two-years of delays because of the pandemic. But they say the hard work of negotiating an ambitious deal lays ahead.The United Nations Convention on Biological Diversity (CBD) announced yesterday that the meeting will move from Kunming in China to Montreal in Canada. The meeting of representatives from almost 200 member states of the CBD — known as COP15 — will now run from 5 to 17 December. China will continue as president of the COP15 and Huang Runqiu, China’s minister of ecology and environment, will continue as chairman.Conservation and biodiversity scientists were growing increasingly concerned that China’s strict ‘zero COVID’ strategy, which uses measures such as lockdowns to quash all infections, would force the host nation to delay the meeting again. Researchers warned that another setback to the agreement, which aims to halt the alarming rate of species extinctions and protect vulnerable ecosystems, would be disastrous for countries’ abilities to meet ambitious targets to protect biodiversity over the next decade.“We are relieved and thankful that we have a firm date for these critically important biodiversity negotiations within this calendar year,” says Andrew Deutz, an expert in biodiversity law and finance at the Nature Conservancy, a conservation group in Virginia, US. “The global community is already behind in agreeing, let alone implementing, a plan to halt and reverse biodiversity loss by 2030,” he says.With the date now set, Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services, says the key to success in Montreal will be for the new global biodiversity agreement to focus on the direct and indirect drivers of nature loss, and the behaviors that underpin them. “Policy should be led by science, action adequately resourced and change should be transformative,” she adds.New locationThe decision to move the meeting came about after representatives of the global regions who make up the decision-making body of the COP reached a consensus to shift it to Montreal. China and Canada then thrashed out the details of how the move would work. The CBD has provisions that if a host country is unable to hold a COP, the meeting shifts to the home of the convention’s secretariat, Montreal.Announcing the decision, Elizabeth Mrema, executive secretary of the CBD, said in a statement, “I want to thank the government of China for their flexibility and continued commitment to advancing our path towards an ambitious post 2020 Global Biodiversity Framework.”In a statement, Runqiu said, “China would like to emphasize its continued strong commitment, as COP president, to ensure the success of the second part of COP 15, including the adoption of an effective post 2020 Global Biodiversity Framework, and to promote its delivery throughout its presidency.”China also agreed to pay for ministers from the least developed countries and small Island developing states to travel to Montreal to participate in the meeting.Work aheadPaul Matiku, an environmental scientist and head of Nature Kenya, a conservation organization in Nairobi, Kenya, says the move “is a welcome decision” after “the world lost patience after a series of postponements”.But he says that rich nations need to reach deeper into their pockets to help low- and middle-income countries — which are home to much of the world’s biodiversity — to implement the deal, including meeting targets such as protecting at least 30% of the world’s land and seas and reducing the rate of extinction. Disputes over funding already threaten to stall the agreement. At a meeting in Geneva in March, nations failed to make progress on the new deal because countries including Gabon and Kenya argued that the US$10 billion of funding per year proposed in the draft text of the agreement was insufficient. They called for $100 billion per year in aid.“The extent to which the CBD is implemented will depend on the availability of predictable, adequate financial flows from developed nations to developing country parties,” says Matiku.Talks on the agreement are resuming in Nairobi from 21-26 June, where Deutz hopes countries can find common ground on key issues such as financing before heading to Montreal. Having a firm date set for the COP15 will help push negotiations forward, he says.“Negotiators only start to compromise when they are up against a deadline. Now they have one,” he says. More

  • in

    Pleistocene drivers of Northwest African hydroclimate and vegetation

    de Menocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl Acad. Sci. U.S.A. 108, 20422–20427 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maslin, M. A. et al. East african climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).ADS 
    Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of Green Sahara periods and their role in hominin evolution. PLoS One 8, 76514 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA. 106, 20159–20163 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations World Food Programme. Scaling up for resilient individuals, communities and systems in the Sahel Operational Reference Note. (2018).Barbier, B., Yacouba, H., Karambiri, H., Zoromé, M. & Somé, B. Human vulnerability to climate variability in the sahel: Farmers’ adaptation strategies in northern burkina faso. Environ. Manag. 43, 790–803 (2009).ADS 
    Article 

    Google Scholar 
    Mohamed, A. Ben Climate change risks in Sahelian Africa. Reg. Environ. Chang. 11, 109–117 (2011).Article 

    Google Scholar 
    Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 118, 1613–1623 (2013).ADS 
    Article 

    Google Scholar 
    Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Chang 21, 1073–1083 (2011).Article 

    Google Scholar 
    Keeling, R. F. & Keeling, C. D. Atmospheric monthly in situ CO2 data—Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections. https://doi.org/10.6075/J08W3BHW (2017).Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B., Ruddiman, W. F. & Pokras, E. M. Influences of high‐ and low‐latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial atlantic Ocean Drilling Program Site 663. Paleoceanography 8, 209–242 (1993).ADS 
    Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Rose, C. et al. Changes in northeast African hydrology and vegetation associated with pliocene-pleistocene sapropel cycles. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150243 (2016).Article 
    CAS 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & De Menocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tierney, J. E. & Russell, J. M. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophys. Res. Lett. 34, 1–6 (2007).Article 
    CAS 

    Google Scholar 
    Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGee, D. et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).Article 

    Google Scholar 
    Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2014).Article 

    Google Scholar 
    Mantsis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014).ADS 
    Article 

    Google Scholar 
    Rachmayani, R., Prange, M. & Schulz, M. Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Clim. Past 12, 677–695 (2016).Article 

    Google Scholar 
    Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).ADS 
    Article 

    Google Scholar 
    Bischoff, T., Schneider, T. & Meckler, A. N. A conceptual model for the response of tropical rainfall to orbital variations. J. Clim. 30, 8375–8391 (2017).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate.Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 6, 865–869 (2000).ADS 
    Article 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. N. Phytol. 191, 197–209 (2011).Article 

    Google Scholar 
    Vallé, F., Dupont, L. M., Leroy, S. A. G. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 403–414 (2014).Article 

    Google Scholar 
    Leroy, S. & Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 295–316 (1994).Article 

    Google Scholar 
    Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M. & Eglinton, G. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochim. Cosmochim. Acta 64, 3505–3513 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Chang. Biol. 18, 675–684 (2012).ADS 
    Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Stevens, N., Erasmus, B. F. N., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. B Biol. Sci. 371, (2016).Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral. Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Scheff, J., Seager, R., Liu, H., Coats, S. & Observatory, L. E. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).ADS 
    Article 

    Google Scholar 
    Bragg, F. J. et al. Stable isotope and modelling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosciences 10, 2001–2010 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, T., Tierney, J. E., Addison, J. A. & Murray, J. W. Ice-sheet modulation of deglacial North American monsoon intensification. Nat. Geosci. 11, 848–852 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 1–12 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).ADS 
    Article 

    Google Scholar 
    Raymo, M. E. & Nisancioglu, K. H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18, 1011 (2003).Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).Article 

    Google Scholar 
    Bosmans, J. H. C. et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 123, 16–30 (2015).ADS 
    Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).ADS 
    Article 

    Google Scholar 
    Bradtmiller, L. I. et al. Changes in biological productivity along the northwest African margin over the past 20,000 years. Paleoceanography 31, 185–202 (2016).ADS 
    Article 

    Google Scholar 
    Guan, K., Wood, E. F. & Caylor, K. K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 124, 653–665 (2012).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sage, R. F. The evolution of C4 photosynthesis. N. Phytol. 161, 341–370 (2004).CAS 
    Article 

    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 
    Article 

    Google Scholar 
    Archibald, S. & Hempson, G. P. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150309 (2016).Elderfield, H. et al. Evolution of ocean temperature. Science 337, 704–709 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (2006).Article 

    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).ADS 
    Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim 16, 117–140 (2020).ADS 

    Google Scholar 
    Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 4, 42–45 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J. & Thiede, J. Late quaternary climatic changes in western tropical africa deduced from deep-sea sedimentation off the Niger delta. Oceanol. Acta 1, 217–232 (1978).CAS 

    Google Scholar 
    Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N. & Schmidt, G. A. Model, proxy and isotopic perspectives on the East African Humid Period. Earth Planet. Sci. Lett. 307, 103–112 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    COHMAP members. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043–1052 (1988).Article 

    Google Scholar 
    Street-Perrott, F. A., Marchand, D. S., Roberts, N. & Harrison, S. P. Global lake-level variations from 18,000 to 0 years ago: a palaeoclimate analysis. U.S. Department of Energy Technical Report 46, 20545 (1989).de Menocal, P. B. & Tierney, J. E. Green Sahara: African humid periods paced by Earth’ s orbital changes. Nat. Educ. Knowl. 3(10):12 (2012).Sage, R. F. & Kubien, D. S. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77, 209–225 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K. & Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, 193–196 (1981).ADS 
    Article 

    Google Scholar 
    Rowland, G. H. et al. The spatial distribution of aeolian dust and terrigenous fluxes in the tropical Atlantic ocean since the last glacial maximum. Paleoceanogr. Paleoclimatol. 36, 1–17 (2021).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & DeMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Jullien, E. et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat. Res. 68, 379–386 (2007).Article 

    Google Scholar 
    Pye, K. Aeolian Dust and Dust Deposits. (Academic Press, 1987).Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Malaizé, B. et al. The impact of African aridity on the isotopic signature of Atlantic deep waters across the Middle Pleistocene Transition. Quat. Res. 77, 182–191 (2012).Article 
    CAS 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
    Google Scholar 
    Polissar, P. J. & D’Andrea, W. J. Uncertainty in paleohydrologic reconstructions from molecular D values. Geochim. Cosmochim. Acta 129, 146–156 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).ADS 
    Article 

    Google Scholar 
    Tierney, J. E. & deMenocal, P. B. Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum. Science 342, 843–846 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002).ADS 
    Article 

    Google Scholar 
    Vogts, A., Moossen, H., Rommerskirchen, F. & Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 40, 1037–1054 (2009).CAS 
    Article 

    Google Scholar 
    Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    White, F. The Vegetation of Africa. (UNESCO 1983).Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352–355 (1985).ADS 
    Article 

    Google Scholar 
    Watrin, J. et al. Plant migration and plant communities at the time of the ‘green Sahara’. Comptes Rendus—Geosci. 341, 656–670 (2009).ADS 
    Article 

    Google Scholar 
    Hély, C. et al. Holocene changes in African vegetation: tradeoff between climate and water availability. Clim 10, 681–686 (2014).ADS 

    Google Scholar 
    Lézine, A. M. Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. Comptes Rendus—Geosci. 341, 750–759 (2009).ADS 
    Article 

    Google Scholar 
    Dupont, L. M. & Hooghiemstra, H. The Saharan-Sahelian boundary during the Brunhes chron. Acta Bot. Neerl. 38, 405–415 (1989).Article 

    Google Scholar 
    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 
    Article 

    Google Scholar 
    Worden, J. et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Risi, C., Bony, S. & Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2 Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 113, D19306 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Risi, C. et al. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 35, L24808 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Badewien, T., Vogts, A. & Rullkötter, J. n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Org. Geochem. 89–90, 71–79 (2015).Bezabih, M., Pellikaan, W. F., Tolera, A. & Hendriks, W. H. Evaluation of n-alkanes and their carbon isotope enrichments (d 13 C) as diet composition markers. Anim. Int. J. Anim. Biosci. 5, 57–66 (2011).CAS 
    Article 

    Google Scholar 
    Kristen, I. et al. Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. 143–160 https://doi.org/10.1007/s10933-009-9393-9 (2010).Magill, C. R., Ashley, G. M. & Freeman, K. H. Water, plants, and early human habitats in eastern Africa. Proc. Natl Acad. Sci. 110, 1175–1180 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheddadi, R., Carré, M., Nourelbait, M., François, L. & Rhoujjati, A. Early Holocene greening of the Sahara requires Mediterranean winter rainfall. 1–7 https://doi.org/10.1073/pnas.2024898118 (2021).Niedermeyer, E. M. et al. Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C. Quat. Sci. Rev. 29, 2996–3005 (2010).ADS 
    Article 

    Google Scholar 
    Adkins, J., deMenocal, P. & Eshel, G. The ‘African humid period’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography 21, 1–14 (2006).Article 

    Google Scholar 
    Mcgee, D. Glacial—interglacial precipitation changes. Annu. Rev. Mar. Sci. 12, 525–557 (2020).Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Weijers, J. W. H., Schefuß, E., Schouten, S. & Damsté, J. S. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lezine, A. M. & Cazet, J. P. High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago. Quat. Res. 64, 432–443 (2005).Article 

    Google Scholar 
    Marret, F., Scourse, J. D., Versteegh, G., Fred Jansen, J. H. & Schneider, R. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. J. Quat. Sci. 16, 761–766 (2001).Article 

    Google Scholar 
    Dupont, L. & Behling, H. Land-sea linkages during deglaciation: High-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quat. Int. 148, 19–28 (2006).Article 

    Google Scholar 
    Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Palaeobot. Palynol. 99, 157–187 (1998).Article 

    Google Scholar 
    Giresse, P., Maley, J. & Brenac, P. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 65–78 (1994).Article 

    Google Scholar 
    Maley, J. The African rain forest vegetation and palaeoenvironments during late quaternary. Clim. Change 19, 79–98 (1991).ADS 
    Article 

    Google Scholar 
    Talbot, M. R. & Johannessen, T. A high resolution paleoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992).Anhuf, D. et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 510–527 (2006).Article 

    Google Scholar 
    Elenga, H. et al. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J. Biogeogr. 27, 621–634 (2000).Article 

    Google Scholar 
    Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J. & Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 27, 2316–2340 (2008).ADS 
    Article 

    Google Scholar 
    Wu, H., Guiot, J., Brewer, S. & Guo, Z. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, 211–229 (2007).Article 

    Google Scholar 
    Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9, 983–1004 (2003).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P. & Roulstone, I. Reconstructing ice-age palaeoclimates: quantifying low-CO2 effects on plants. Glob. Planet. Change 149, 166–176 (2017).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 103790 https://doi.org/10.1016/j.gloplacha.2022.103790 (2022).Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Winckler, G., Anderson, R. F. & Schlosser, P. Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20, 1–10 (2005).Article 

    Google Scholar 
    McGee, D. & Mukhopadhyay, S. Extraterrestrial He in sediments: from recorder of asteroid collisions to timekeeper of global environmental changes. in Advances in Isotope Geochemistry 155–176 (Springer, 2013). https://doi.org/10.1007/978-3-642-28836-4_7Costa, K. & McManus, J. Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochim. Cosmochim. Acta 197, 215–225 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Nier, A. O. & Schlutter, D. J. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27, 166–173 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, A. Application of the Helium Isotopic System to Accretion of Terrestrial and Extraterrestrial Dust Through the Cenozoic. (Harvard University, 2012).Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).ADS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 515–533 (2004).Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Eisenman, I. & Huybers, P. J. daily_insolation. (2006).Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography. Oceanography 29, 9–13 (2016).Article 

    Google Scholar 
    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Rommerskirchen, F. et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4, (2003).Zhao, M., Dupont, L., Eglinton, G. & Teece, M. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org. Geochem. 34, 131–143 (2003).CAS 
    Article 

    Google Scholar 
    Küechler, R. R. A Revised Orbital Forcing Concept of West African Climate and Vegetation Variability During the Pliocene and the Last Glacial Cycle-Molecular Isotopic Approach and Proxy Calibration. (University of Bremen, 2015). More

  • in

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Haque, M. N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60, 1–10. https://doi.org/10.1186/s40781-018-0175-7(2018) (2018).Article 

    Google Scholar 
    IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press (in press).Lauder, A. R. et al. Offsetting methane emissions—An alternative to emission equivalence metrics. Int. J. Greenh. 12, 419–429. https://doi.org/10.1016/j.ijggc.2012.11.028 (2013).CAS 
    Article 

    Google Scholar 
    Hill, J., McSweeney, C., Wright, A. G., Bishop-Hurley, G. & Kalantar-Zadeh, K. Measuring methane production from ruminants. Trends Biotechnol. 34, 26–35. https://doi.org/10.1016/j.tibtech.2015.10.004 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob Change Biol. 24, 4185–4194. https://doi.org/10.1111/gcb.14321 (2018).ADS 
    Article 

    Google Scholar 
    Naumann, H. D., Tedeschi, L. O., Zeller, W. E. & Huntley, N. F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. de Zootec. 46, 929–949. https://doi.org/10.1590/S1806-92902017001200009 (2017).Article 

    Google Scholar 
    Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010–2037. https://doi.org/10.1002/jsfa.2577 (2006).CAS 
    Article 

    Google Scholar 
    Burggraaf, V. T. et al. Morphology and agronomic performance of white clover with increased flowering and condensed tannin concentration. N. Z. J. Agric. Res. 49, 147–155. https://doi.org/10.1080/00288233.2006.9513704 (2006).CAS 
    Article 

    Google Scholar 
    Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288. https://doi.org/10.1038/s41597-021-01061-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salminen, J.-P. & Karonen, M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x (2011).Article 

    Google Scholar 
    Zeller, W. E. Activity, purification, and analysis of condensed tannins: current state of affairs and future endeavors. Crop Sci. 59, 886–904. https://doi.org/10.2135/cropsci2018.05.0323 (2019).CAS 
    Article 

    Google Scholar 
    Barbehenn, R. V. & Peter Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chung, Y. H. et al. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa1. J. Anim. Sci. 91, 4861–4874. https://doi.org/10.2527/jas.2013-6498 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christensen, R. G. et al. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows1. J. Dairy Sci. 98, 7982–7992. https://doi.org/10.3168/jds.2015-9348 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonker, A. & Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 18, 1105. https://doi.org/10.3390/ijms18051105 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81, 263–272. https://doi.org/10.1017/S0007114599000501 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verma, S., Taube, F. & Malisch, C. S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 13, 2743. https://doi.org/10.3390/su13052743 (2021).CAS 
    Article 

    Google Scholar 
    Malisch, C. S. et al. Large variability of proanthocyanidin content and composition in Sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 63, 10234–10242. https://doi.org/10.1021/acs.jafc.5b04946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verma, S., Salminen, J.-P., Taube, F. & Malisch, C. S. Large inter- and intraspecies variability of polyphenols and proanthocyanidins in eight temperate forage species indicates potential for their exploitation as nutraceuticals. J. Agric. Food Chem. 69, 12445–12455. https://doi.org/10.1021/acs.jafc.1c03898 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, H., Reinsch, T., Kluß, C., Taube, F. & Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley?. Sustainability 12, 5842. https://doi.org/10.3390/su12145842 (2020).Article 

    Google Scholar 
    Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    Mueller-Harvey, I. et al. Benefits of condensed tannins in forage legumes fed to ruminants : Importance of structure, concentration and diet compsition. Crop Sci. 59, 861–885. https://doi.org/10.2135/cropsci2017.06.0369 (2017).CAS 
    Article 

    Google Scholar 
    Loza, C. et al. Assessing the potential of diverse forage mixtures to reduce enteric methane emissions in vitro. Animals 11, 1126. https://doi.org/10.3390/ani11041126 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Min, B. R. et al. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 6, 231–236. https://doi.org/10.1016/j.aninu.2020.05.002 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Gastelen, S., Dijkstra, J. & Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?. J. Dairy Sci. 102, 6109–6130. https://doi.org/10.3168/jds.2018-15785 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hatew, B. et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202, 20–31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 (2015).CAS 
    Article 

    Google Scholar 
    Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2, 160–183. https://doi.org/10.3390/ani2020160 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 48, 167–187 (2009).CAS 

    Google Scholar 
    Hakl, J., Fuksa, P., Konečná, J. & Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 71, 413–423. https://doi.org/10.1111/gfs.12192 (2016).CAS 
    Article 

    Google Scholar 
    Jayanegara, A., Makkar, H. & Becker, K. The use of principal component analysis in identifying and integrating variables related to forage quality and methane production. J. Indones. Trop. Anim. 34, 241–247. https://doi.org/10.14710/jitaa.34.4.241-247 (2009).Article 

    Google Scholar 
    Maccarana, L. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 7, 35–35. https://doi.org/10.1186/s40104-016-0094-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baruah, L., Malik, P. K., Kolte, A. P., Dhali, A. & Bhatta, R. Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet. World 11, 809–818. https://doi.org/10.14202/vetworld.2018.809-818 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassanat, F. & Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339. https://doi.org/10.1002/jsfa.5763 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123. https://doi.org/10.3390/molecules23092123 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jayanegara, A., Makkar, H. P. S. & Becker, K. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan 38, 57–63. https://doi.org/10.5398/medpet.2015.38.1.57 (2015).Article 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H. P. S. & Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209, 60–68. https://doi.org/10.1016/j.anifeedsci.2015.08.002 (2015).CAS 
    Article 

    Google Scholar 
    Hatew, B. et al. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 70, 474–490. https://doi.org/10.1111/gfs.12125 (2015).CAS 
    Article 

    Google Scholar 
    Huyen, N. T. et al. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487. https://doi.org/10.1017/S0021859616000393 (2016).CAS 
    Article 

    Google Scholar 
    Salami, S. A. et al. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy061 (2018).Article 
    PubMed 

    Google Scholar 
    Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem.-Eur. J. 17, 2806–2816. https://doi.org/10.1002/chem.201002662 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bezabih, M., Pellikaan, W. F., Tolera, A., Khan, N. A. & Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 69, 635–643. https://doi.org/10.1111/gfs.12091 (2013).CAS 
    Article 

    Google Scholar 
    Navarrete, S., Kemp, P. D., Pain, S. J. & Back, P. J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008 (2016).CAS 
    Article 

    Google Scholar 
    Basha, N. A., Scogings, P. F. & Nsahlai, I. V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 93, 1338–1348. https://doi.org/10.1002/jsfa.5895 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Donovan, L. & Brooker, J. D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033. https://doi.org/10.1099/00221287-147-4-1025 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhatta, R. et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522. https://doi.org/10.3168/jds.2008-1441 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. D. et al. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 199, 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H.P.S., & Becker, K. Reduction in
    methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Food and Agriculture Organization of the United Nations (FAO) Rome, Italy, 151–157. ISBN 978-92-5-106697-3 (2010).Hatew, B. et al. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100, 348–360. https://doi.org/10.1111/jpn.12336 (2016).CAS 
    Article 

    Google Scholar 
    Waghorn, G. C., Douglas, G. B., Niezen, J. H., McNabb, W. C. & Foote, A. G. Forages with condensed tannins-their management and nutritive value for ruminants. Proc. N. Z. Grassl. Assoc., 60, 89−98 (1998).Woodward, S. L., Waghorn, G. C. & Lassey, K. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23–26 (2001).
    Google Scholar 
    Molle, G. et al. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 123, 138–146. https://doi.org/10.1016/j.livsci.2008.11.018 (2009).Article 

    Google Scholar 
    Orlandi, T., Kozloski, G. V., Alves, T. P., Mesquita, F. R. & Ávila, S. C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 210, 37–45. https://doi.org/10.1016/j.anifeedsci.2015.09.012 (2015).CAS 
    Article 

    Google Scholar 
    Patra, A. K. & Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01434 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niderkorn, V. et al. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 13, 718–726. https://doi.org/10.1017/S1751731118002185 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, J., Hemmingson, N., Minneé, E. & Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics, and plant density. Crop Pasture Sci. 66, 168. https://doi.org/10.1071/CP14181 (2015).CAS 
    Article 

    Google Scholar 
    Cong, W.-F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1422. https://doi.org/10.1038/s41598-017-01632-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanderson, M. A., Labreveux, M., Hall, M. H. & Elwinger, G. F. Nutritive value of chicory and English plantain forage. Crop Sci. 43, 1797. https://doi.org/10.2135/cropsci2003.1797 (2003).CAS 
    Article 

    Google Scholar 
    Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 (1991).Article 
    PubMed 

    Google Scholar 
    Engström, M. T. et al. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390–3399. https://doi.org/10.1021/jf500745y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Menke, K. & Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Venables, B. & Ripley, B. Generalised linear models. In Modern Applied Statistics With S.(4th edition) 183–208 (Springer, 2013). More

  • in

    Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings

    Genome’s collection and phylogenetic analysisThe study examined the genomes of 139 isolates, 61 of environmental samples (ENV) and 78 clinical (CLI) (Supplementary Table 1, Supplementary Fig. 1), with origin in 21 countries: USA (23/139, 17%), UK, Portugal and Spain (each 15/139, 33%), China (14/139, 10%), Germany (13/139, 9%), Thailand (11/139, 8%) and other countries (each  More

  • in

    Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe

    Backman, C. R. The worlds of medieval Europe. (Oxford University Press, 2003).Brown, P. The World of Late Antiquity. From Marcus Aurelius to Muhammad. (Thames & Hudson, 1971).Brown, P. The Making of Late Antiquity. (Harvard University Press, 1978).Holmes, G. The Oxford History of Medieval Europe. (Oxford University Press, 2002).Hoffmann, R. C. An environmental history of medieval Europe. (Cambridge University Press, 2014).Ward-Perkins, B. The Fall of Rome: And the End of Civilization. (Oxford University Press, 2006).Wickham, C. Framing the Early Middle Ages: Europe and the Mediterranean, 400–800. (Oxford University Press, 2006).Wickham, C. The inheritance of Rome: a history of Europe from 400 to 1000. (Penguin Books, 2010).Wickham, C. Medieval Europe. (Yale University Press, 2016).Halsall, G. The sources and their interpretations. In The New Cambridge Medieval History, Volume 1 c.500–c.700 (ed. Fouracre, P.) 56–92 (Cambridge University Press, 2005).Alexander, M. M., Gerrard, C. M., Gutiérrez, A. & Millard, A. R. Diet, society, and economy in late medieval Spain: Stable isotope evidence from Muslims and Christians from Gandía, Valencia. Am. J. Phys. Anthropol. 156, 263–273 (2015).PubMed 
    Article 

    Google Scholar 
    Alexander, M. M., Gutiérrez, A., Millard, A. R., Richards, M. P. & Gerrard, C. M. Economic and socio-cultural consequences of changing political rule on human and faunal diets in medieval Valencia (c. fifth–fifteenth century AD) as evidenced by stable isotopes. Archaeol. Anthropol. Sci. 11, 3875–3893 (2019).Article 

    Google Scholar 
    Dotsika, E., Michael, D. E., Iliadis, E., Karalis, P. & Diamantopoulos, G. Isotopic reconstruction of diet in Medieval Thebes (Greece). J. Archaeol. Sci. Rep. 22, 482–491 (2018).
    Google Scholar 
    Francisci, G. et al. Strontium and oxygen isotopes as indicators of Longobards mobility in Italy: an investigation at Povegliano Veronese. Sci. Rep. 10, 11678 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guede, I. et al. Isotope analyses to explore diet and mobility in a medieval Muslim population at Tauste (NE Spain). PLOS ONE 12, e0176572 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hakenbeck, S., McManus, E., Geisler, H., Grupe, G. & O’Connell, T. Diet and mobility in Early Medieval Bavaria: A study of carbon and nitrogen stable isotopes. Am. J. Phys. Anthropol. 143, 235–249 (2010).PubMed 
    Article 

    Google Scholar 
    Hughes, S. S., Millard, A. R., Chenery, C. A., Nowell, G. & Pearson, D. G. Isotopic analysis of burials from the early Anglo-Saxon cemetery at Eastbourne, Sussex, U.K. J. Archaeol. Sci. Rep. 19, 513–525 (2018).
    Google Scholar 
    Kaupová, S. D. et al. Diet in transitory society: isotopic analysis of medieval population of Central Europe (ninth–eleventh century AD, Czech Republic). Archaeol. Anthropol. Sci. 10, 923–942 (2018).Article 

    Google Scholar 
    Lamb, A. L., Evans, J., Buckley, R. & Appleby, J. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J. Archaeol. Sci. 50, 559–565 (2014).CAS 
    Article 

    Google Scholar 
    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).Article 

    Google Scholar 
    Lubritto, C. et al. New Dietary Evidence on Medieval Rural Communities of the Basque Country (Spain) and Its Surroundings from Carbon and Nitrogen Stable Isotope Analyses: Social Insights, Diachronic Changes and Geographic Comparison: Palaeodietary Evidence on Medieval Basque Rural Communities. Int. J. Osteoarchaeol. 27, 984–1002 (2017).Article 

    Google Scholar 
    MacRoberts, R. A. et al. Diet and mobility during the Christian conquest of Iberia: The multi-isotopic investigation of a 12th–13th century military order in Évora. Portugal. J. Archaeol. Sci. Rep. 30, 102210 (2020).
    Google Scholar 
    Miclon, V. et al. Social characterization of the medieval and modern population from Joué-lès-Tours (France): Contribution of oral health and diet. BMSAP 31, 77–92 (2017).Article 

    Google Scholar 
    Mion, L. et al. The influence of religious identity and socio-economic status on diet over time, an example from medieval France. Archaeol. Anthropol. Sci. 11, 3309–3327 (2019).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Price, T. D., Peets, J., Allmäe, R., Maldre, L. & Oras, E. Isotopic provenancing of the Salme ship burials in Pre-Viking Age Estonia. Antiquity 90, 1022–1037 (2016).Article 

    Google Scholar 
    Tafuri, M. A., Goude, G. & Manzi, G. Isotopic evidence of diet variation at the transition between classical and post-classical times in Central Italy. J. Archaeol. Sci. Rep. 21, 496–503 (2018).
    Google Scholar 
    Torino, M. et al. Convento di San Francesco a Folloni: the function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    Toso, A., Gaspar, S. Banha da Silva, R., Garcia, S. J. & Alexander, M. High status diet and health in Medieval Lisbon: a combined isotopic and osteological analysis of the Islamic population from São Jorge Castle, Portugal. Archaeol. Anthropol. Sci. 11, 3699–3716 (2019).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Dreslerová, D. et al. Maintaining soil productivity as the key factor in European prehistoric and Medieval farming. J. Archaeol. Sci. Rep. 35, 102633 (2021).
    Google Scholar 
    Evans, J., Tatham, S., Chenery, S. R. & Chenery, C. A. Anglo-Saxon animal husbandry techniques revealed through isotope and chemical variations in cattle teeth. Appl. Geochem. 22, 1994–2005 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, A. & Thomas, R. Isotopic and zooarchaeological investigation of later medieval and post-medieval cattle husbandry at Dudley Castle, West Midlands. Environ. Archaeol. 17, 151–167 (2012).Article 

    Google Scholar 
    Halley, D. J. & Rosvold, J. Stable isotope analysis and variation in medieval domestic pig husbandry practices in northwest Europe: absence of evidence for a purely herbivorous diet. J. Archaeol. Sci. 49, 1–5 (2014).CAS 
    Article 

    Google Scholar 
    Hamerow, H. et al. An Integrated Bioarchaeological Approach to the Medieval ‘Agricultural Revolution’: A Case Study from Stafford, England, c. AD 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).Article 

    Google Scholar 
    Hamilton, J. & Thomas, R. Pannage, Pulses and Pigs: Isotopic and Zooarchaeological Evidence for Changing Pig Management Practices in Later Medieval England. Mediev. Archaeol. 56, 234–259 (2012).Article 

    Google Scholar 
    Hammond, C. & O’Connor, T. Pig diet in medieval York: carbon and nitrogen stable isotopes. Archaeol. Anthropol. Sci. 5, 123–127 (2013).Article 

    Google Scholar 
    Kovačiková, L. et al. Pig-Breeding Management in the Early Medieval Stronghold at Mikulčice (Eighth–Ninth Centuries, Czech Republic). Environ. Archaeol. 1–15, https://doi.org/10.1080/14614103.2020.1782583 (2020).Lahtinen, M. Isotopic Evidence for Environmental Adaptation in Medieval Iin Hamina, Northern Finland. Radiocarbon 59, 1117–1131 (2017).CAS 
    Article 

    Google Scholar 
    Müldner, G., Britton, K. & Ervynck, A. Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD). J. Archaeol. Sci. 41, 322–332 (2014).Article 

    Google Scholar 
    Orton, D. C. et al. Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery. PLoS ONE 6, e27568 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reitsema, L. J., Kozłowski, T. & Makowiecki, D. Human–environment interactions in medieval Poland: a perspective from the analysis of faunal stable isotope ratios. J. Archaeol. Sci. 40, 3636–3646 (2013).CAS 
    Article 

    Google Scholar 
    Sirignano, C. et al. Animal husbandry during Early and High Middle Ages in the Basque Country (Spain). Quat. Int. 346, 138–148 (2014).Article 

    Google Scholar 
    Vogel, J. C. & Van Der Merwe, N. J. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiq. 42, 238–242 (1977).CAS 
    Article 

    Google Scholar 
    Van Der Merwe, N. J. & Vogel, J. C. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).ADS 
    PubMed 
    Article 

    Google Scholar 
    Leng, M. J. Isotopes in Palaeoenvironmental Research. Isotopes in Palaeoenvironmental Research (Springer, 2006).Meier-Augenstein, W. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis. (Wiley, 2011).Archaeological Science: An Introduction. (Cambridge University Press, 2020).Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L. & Riehl, S. Stable isotopes in archaeobotanical research. Veg. Hist. Archaeobotany 24, 215–227 (2015).Article 

    Google Scholar 
    Hedges, R. E. M., Stevens, R. E. & Richards Michael. P. Bone as a stable isotope archive for local climatic information. Quat. Sci. Rev. 23, 959–965 (2004).ADS 
    Article 

    Google Scholar 
    Lahtinen, M., Arppe, L. & Nowell, G. Source of strontium in archaeological mobility studies—marine diet contribution to the isotopic composition. Archaeol. Anthropol. Sci. 13, 1 (2021).Article 

    Google Scholar 
    Lee-Thorp, J. A. On Isotopes and Old Bones. Archaeometry 50, 925–950 (2008).CAS 
    Article 

    Google Scholar 
    Lightfoot, E. & O’Connell, T. C. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations. PLOS ONE 11, e0153850 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Makarewicz, C. A. Stable isotopes in pastoralist archaeology as indicators of diet, mobility, and animal husbandry practices. in Isotopic Investigations of Pastoralism in Prehistory (eds. Ventresca Miller, A. & Makarewicz, C. A.) (Routledge, 2017).Pederzani, S. & Britton, K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Sci. Rev. 188, 77–107 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Styring, A. K. et al. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. Anthr. Rev. 3, 2–22 (2016).
    Google Scholar 
    Szpak, P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5 (2014).Roberts, P. et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 32, 361–372 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkin, S. et al. Economic Diversification Supported the Growth of Mongolia’s Nomadic Empires. Sci. Rep. 10, 3916 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. The Circulation of Ancient Animal Resources Across the Yellow River Basin: A Preliminary Bayesian Re-evaluation of Sr Isotope Data From the Early Neolithic to the Western Zhou Dynasty. Front. Ecol. Evol. 9, 16 (2021).ADS 
    CAS 

    Google Scholar 
    Leggett, S., Rose, A. & Praet, E. & Le Roux, P. Multi-tissue and multi-isotope (δ13C, δ15N, δ18O and 87/86Sr) data for early medieval human and animal palaeoecology. Ecology 102, e03349 (2021).PubMed 
    Article 

    Google Scholar 
    Mallet, S. & Stansbie, D. Substance and Subsistence. in English Landscapes and Identities. Investigating Landscape Change from 1500 BC to AD 1086 (eds. Gosden, C. & Green, C.) (Oxford University Press, 2021).Buikstra, J. E. & Ubelaker, D. H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. (Arkansas Archeological Survey, 1994).Cocozza, C., Cirelli, E., Groß, M., Teegen, W.-R. & Fernandes, R. Compendium Isotoporum Medii Aevi (CIMA). Pandora https://doi.org/10.48493/s9nf-1q80 (2021).Cocozza, C. & Fernandes, R. Amalthea: A Database of Isotopic Measurements on Archaeological and Forensic Tooth Dentine Increments. J. Open Archaeol. Data 9, 4 (2021).Article 

    Google Scholar 
    Etu-Sihvola, H. et al. The dIANA database – Resource for isotopic paleodietary research in the Baltic Sea area. J. Archaeol. Sci. Rep. 24, 1003–1013 (2019).
    Google Scholar 
    Fernandes, R. et al. The ARCHIPELAGO Archaeological Isotope Database for the Japanese Islands. J. Open Archaeol. Data 9, 3 (2021).Article 

    Google Scholar 
    Scheibner, A. Prähistorische Ernährung in Vorderasien und Europa. Eine kulturgeschichtliche Synthese auf der Basis ausgewählter Quellen. Berl. Archäol. Forschungen 16 (2016).Williams, A. N., Ulm, S., Smith, M. & Reid, J. AustArch: a database of 14C and non-14C ages from archaeological sites in Australia: composition, compilation and review. Internet Archaeol. 36, 1–12 (2014).
    Google Scholar 
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).Article 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009).Article 

    Google Scholar 
    van Klinken, G. J. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 26, 687–695 (1999).Article 

    Google Scholar 
    van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H. & Meijer, H. A. J. Status report: The Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 172, 58–65 (2000).ADS 
    Article 

    Google Scholar 
    Prasad, G. V. R., Culp, R. & Cherkinsky, A. δ13C correction to AMS data: Values derived from AMS vs IRMS values. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 244–249 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pollard, A. M., Pellegrini, M. & Lee-Thorp, J. A. Technical note: Some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. Am. J. Phys. Anthropol. 145, 499–504 (2011).CAS 
    Article 

    Google Scholar 
    Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. & Evans, J. A. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 26, 309–319 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehn, C., Rossmann, A. & Mayr, C. Stable isotope relationships between apatite phosphate (δ18O), structural carbonate (δ18O, δ13C), and collagen (δ2H, δ13C, δ15N, δ34S) in modern human dentine. Rapid Commun. Mass Spectrom. 34, e8674 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. Shiny: web application framework for R. R Package Version 1, 2017 (2017).
    Google Scholar 
    Cocozza, C., Fernandes, R., Ughi, A., Groß, M. & Alexander, M. M. Investigating infant feeding strategies at Roman Bainesse through Bayesian modelling of incremental dentine isotopic data. Int. J. Osteoarchaeol. 31, 429–439 (2021).Article 

    Google Scholar 
    Sołtysiak, A. & Fernandes, R. Much ado about nothing: assessing the impact of the 4.2 kya event on human subsistence patterns in northern Mesopotamia using stable isotope analysis. Antiquity 95, 1145–1160 (2021).Article 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).Article 

    Google Scholar 
    Montanari, M. Alimentazione e cultura nel Medioevo. (Laterza, 1988).Castiglioni, E. & Rottoli, M. Broomcorn millet, foxtail millet and sorghum in north Italian Early Medieval sites. Post-Class. Archaeol. 3, 131–144 (2013).
    Google Scholar 
    Rippon, S., Wainwright, A. & Smart, C. Farming Regions in Medieval England: The Archaeobotanical and Zooarchaeological Evidence. Mediev. Archaeol. 58, 195–255 (2014).Article 

    Google Scholar 
    Lewit, T. Pigs, presses and pastoralism: farming in the fifth to sixth centuries AD: Farming in the fifth to sixth centuries. Early Mediev. Eur. 17, 77–91 (2009).Article 

    Google Scholar 
    MacKinnon, M. Consistency and change: zooarchaeological investigation of Late Antique diets and husbandry techniques in the Mediterranean region. Antiq. Tardive 27, 135–148 (2019).Article 

    Google Scholar 
    Salvadori, F. The transition from late antiquity to early Middle Ages in Italy. A zooarchaeological perspective. Quat. Int. 499, 35–48 (2019).Article 

    Google Scholar 
    Witcher, R. Agricultural Production in Roman Italy. in A Companion to Roman Italy (ed. Cooley, A. E.) 459–482 (Wiley, 2016).Pearson, K. L. Nutrition and the Early-Medieval Diet. Speculum 72, 1–32 (1997).Article 

    Google Scholar 
    Salesse, K. et al. IsoArcH.eu: An open-access and collaborative isotope database for bioarchaeological samples from the Graeco-Roman world and its margins. J. Archaeol. Sci. Rep. 19, 1050–1055 (2018).
    Google Scholar 
    Winklerová, D. Zooarchaeological and archaeobotanical indicators for aspects of diet in medieval Kingdom of Bohemia. In Food in the Medieval Rural Environment: Processing, Storage, Distribution of Food (eds. Klápšte, J. & Sommer, P.) 421–429 (Brepols Publishers, 2011).Gyulai, F. The history of broomcorn millet (Panicum miliaceum L.) In the Carpathian-basin in the mirror of archaeobotanical remains II. From the roman age until the late medieval age. Columella J. Agric. Environ. Sci. 1 (2014).Iacumin, P., Galli, E., Cavalli, F. & Cecere, L. C4-consumers in southern europe: The case of friuli V.G. (NE-Italy) during early and central middle ages. Am. J. Phys. Anthropol. 154, 561–574 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bynum, C. W. Holy feast and holy fast: the religious significance of food to medieval women. (Univiversity of California Press, 2000).Garnsey, P. Food & Society Classical Antiquity. (Cambridge University Press, 2008).James, P. Food Provisions for Ancient Rome: A Supply Chain Approach. (Routledge).Minniti, C. L’approvvigionamento alimentare a Roma nel Medioevo: analisi dei resti faunistici provenienti dalle aree di scavo della Crypta Balbi e di Santa Cecilia. In Atti del III Convegno Nazionale di Archeozoologia (eds. Fiore, I., Malerba, G. & Chilardi, S.) 469–492 (Istituto poligrafico e Zecca dello Stato, 2005).Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian Model for Diet Reconstruction. PLoS ONE 9, e87436 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fernandes, R., Grootes, P., Nadeau, M.-J. & Nehlich, O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). Am. J. Phys. Anthropol. 158, 325–340 (2015).PubMed 
    Article 

    Google Scholar 
    Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 142, 1–17 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Sayle, K. L. et al. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland. Geochim. Cosmochim. Acta 120, 531–544 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Alt, K. W. et al. Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary. PLoS ONE 9, e110793 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brettell, R., Evans, J., Marzinzik, S., Lamb, A. & Montgomery, J. ‘Impious Easterners’: Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations? Eur. J. Archaeol. 15, 117–145 (2012).Article 

    Google Scholar 
    Knipper, C. et al. Mobility in Thuringia or mobile Thuringians: A strontium isotope study from early medieval Central Germany. In Population Dynamics in Prehistory and Early History (eds. Kaiser, E., Burger, J. & Schier, W.) 287–310, https://doi.org/10.1515/9783110266306.287 (De Gruyter, 2012).Winter-Schuh, C. & Makarewicz, C. A. Isotopic evidence for changing human mobility patterns after the disintegration of the Western Roman Empire at the Upper Rhine. Archaeol. Anthropol. Sci. 11, 2937–2955 (2019).Article 

    Google Scholar 
    Biddle, M. & Kjølbye-Biddle, B. Repton and the Vikings. Antiquity 66, 36–51 (1992).Article 

    Google Scholar 
    Biddle, M. & Kjølbye-Biddle, B. Repton and the ‘great heathen army’, 873–4. In Vikings and the Danelaw (eds. Graham-Campbell, J., Hall, R., Jesch, J. & Parsons, D. N.) 45–96 (Oxbow, 2001).Budd, P., Millard, A., Chenery, C., Lucy, S. & Roberts, C. Investigating population movement by stable isotope analysis: a report from Britain. Antiquity 78, 127–141 (2004).Article 

    Google Scholar 
    Jarman, C. L., Biddle, M. & Higham, T. & Bronk Ramsey, C. The Viking Great Army in England: new dates from the Repton charnel. Antiquity 92, 183–199 (2018).Article 

    Google Scholar 
    Roffey, S. et al. Investigation of a Medieval Pilgrim Burial Excavated from the Leprosarium of St Mary Magdalen Winchester, UK. PLoS Negl. Trop. Dis. 11, e0005186 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A framework to understand the role of biological time in responses to fluctuating climate drivers

    Mathematical theoryWe consider a biological response (e.g. body size, survival, biodiversity) to two environmental drivers (i.e. any abiotic or biotic factor) but the same idea may be applied to a larger number of drivers. The response depends of a set of predictors consisting in the magnitudes (m1 and m2) and time scales of fluctuation of two drivers (i = 1, 2); in addition, the response is quantified at least once after the fluctuations have been experienced (Fig. 1a).Time is defined using two different frames; chronological (= clock) time (measured by clocks) and biological time. For the “clock” time scales of the fluctuations (t1, t2) there are associated biological times (τ1, τ2). Likewise, for the clock time at which the response is quantified (({t}^{^*})) there is an associated biological time (τ({^*})).Biological time is the proportion of (clock) time needed to reach a life history event (e.g. moulting, maturity). Hence, for t1, t2 and t({^*}) we obtain τi = ti/D and τ({^*}) = t({^*})/D, (D = clock time needed to reach such life history event). We express the τi and τ({^*}) in terms of a function L = 1/D. For instance, for t({^*}) we obtain:$${tau }^{^*}={t}^{^*}cdot{L}$$
    (1)
    where L = L(ω) = D−1(ω) characterises the timing of a life history event (with units as the inverse of clock time units). L depends on the set of predictors ω associated to the fluctuations; an important set of predictors will be defined by thermal fluctuations (the amplitude and time scales), which in ectotherm species have a strong influence on developmental time32,33. We find by differentiation that L provides the transform function between clock and biological time frames; for instance, if L does not depend on any ti we have L = dτ/dti.The response is expressed as a function of the predictors defined above, as R(m1, m2, t1, t2, t({^*})) = r[m1, m2, τ1 (t1), τ2(t2), τ({^*})]. The contribution of each predictor to the response is better understood by the partial derivatives with respect to each predictor; this defines a system of partial differential equations (PDE; Supplementary note 1) which expressed in matrix form give the following matrix equation.$$left[begin{array}{c}frac{dR}{d{m}_{1}}\ frac{dR}{d{m}_{2}}\ frac{dR}{d{t}_{1}}\ frac{dR}{d{t}_{2}}\ frac{dR}{d{t}^{^*}}end{array}right]=left[begin{array}{ccccc}1& frac{d{m}_{2}}{d{m}_{1}}& frac{d{tau }_{1}}{d{m}_{1}}& frac{d{tau }_{2}}{d{m}_{1}}& frac{d{tau }^{^*}}{d{m}_{1}}\ frac{d{m}_{1}}{d{m}_{2}}& 1& frac{d{tau }_{1}}{d{m}_{2}}& frac{d{tau }_{2}}{d{m}_{2}}& frac{d{tau }^{^*}}{d{m}_{2}}\ frac{d{m}_{1}}{d{t}_{1}}& frac{d{m}_{2}}{d{t}_{1}}& frac{d{tau }_{1}}{d{t}_{1}}& frac{d{tau }_{2}}{d{t}_{1}}& 0\ frac{d{m}_{1}}{d{t}_{2}}& frac{d{m}_{2}}{d{t}_{2}}& frac{d{tau }_{1}}{d{t}_{2}}& frac{d{tau }_{2}}{d{t}_{2}}& 0\ 0& 0& 0& 0& frac{d{tau }^{^*}}{d{t}^{^*}}end{array}right]cdot left[begin{array}{c}frac{dr}{d{m}_{1}}\ frac{dr}{d{m}_{2}}\ frac{dr}{d{tau }_{1}}\ frac{dr}{d{tau }_{2}}\ frac{dr}{d{tau }^{^*}}end{array}right]$$
    (2)
    In the PDE (Eq. 2), the left-hand side is a vector column of the derivatives of the response in clock time (R), with respect to each predictor; the right-hand side is the standard (= inner) product of a matrix (M) by a vector of the derivatives of the response in biological time (r), i.e. R = Mr. The matrix contains the derivatives of the predictors with respect to each other, with time both expressed in clock or biological scales; one can think of M as an object containing coefficients that transform r into R in the same way as a constant (= 1000) would transform kilometres into meters of distance. The large number of terms in M highlights the considerable diversity and the challenges in quantifying responses to multivariate environmental fluctuations. We show below how to use Eq. (2) to quantify the effect of fluctuating environmental drivers on biological responses, as mediated by biological time.First, we note that M contains three groups of terms: (1) Terms accounting for situations where the magnitude of a driver affects the magnitude of the second driver (e.g. temperature drives oxygen concentration in aquatic habitats): these are dmi/dmj for any i, j = 1, 2. (2) Terms accounting for cases where the magnitudes and time scales of stressors are related: dmi/dtj and dmi/dti. (3) Terms where biological time depends on the magnitude or time scale of the environmental fluctuation dτi/dtj and dτi/dmj. The terms of groups (1) and (2) are zero when they are mutually independent, such as in a factorial experiment with orthogonal manipulation. We will set those to zero in the rest of this analysis.Second, we note that for group (3) there are three scenarios: (3a) biological time does not depend on any environmental driver. This is the trivial case where biological time is proportional to clock time, not considered here; M is simplified to a diagonal matrix, i.e. with constants in the diagonal, and zero’s otherwise leading to a single constant term per equation (3b). Biological time depends on the magnitudes of any or both drivers. In such case, τ1 τ2, and τ({^*}) will be driven by the same equation: if τi = ti · L (m1, m2) we obtain dτi/dtj = dτi/dti = L (m1, m2). (3c) Biological time depends on the time scale of the fluctuations: in such case, differentiating Eq. (1) with respect to time, we obtain dτi/dti = L + ti dL/dti.Here, we explore four special cases where the equations are simplified to highlight the importance of biological time in modifying the responses as compared to clock time. We start with the simplest case where there is a single environmental variable and then we consider cases with two variables. We focus on cases representing the most frequent experiments carried out on multiple driver research, i.e. factorial manipulations where terms of the groups 1 and 2 are zero.Case 1: responses to the magnitude of a single variableWe start with the simplest case i.e. where the response is driven by the magnitude of a single driver, e.g. temperature (= m). Examples of this case are laboratory experiments quantifying the effect of temperature on body mass or survival of a given species, or mesocosm experiments quantifying effects of temperature on species richness where thermal treatments are kept constant over time. Here, the response is quantified at different times, both in the clock and biological frames. In such case we have R(m, t({^*})) = r[m, τ({^*})(m, t({^*}))] and the PDEs simplify to.$$frac{dR}{dm}=frac{partial r}{partial m}+frac{partial r}{partial {tau }^{^*}}cdot frac{d{tau }^{^*}}{dm}$$
    (3)
    From Eq. (3), and because dR/dm ≠ dr/dm, we see that the response to the magnitude of the driver depends on a component quantifying the effect biological time: as long as dτ({^*})/dm ≠ 0 the time reference frame affects the observed effect of m on the response. The simulation illustrated in Fig. 2 shows a case where there are differences between the observed responses at clock vs biological times. In the simulated experiment, there is a strong effect of the magnitude of the driver on the response at clock time, but such effect is much less pronounced at biological time. By contrast, there is no effect when the response is measured in the biological time frame.Figure 2Case 1: Response to the magnitude of a single variable (m). Horizontal line: measurement taken at clock time t({^*}) = t({^*})c; note that, along the line, the response increase with m (it crosses the colour gradient). Curve with yellow circles: measurements taken at a constant biological time (τ({^*})c = 100); along the curve, the response does not vary with m. The equations used were: R = m(0.5t({^*})), τ({^*}) = t. m giving r = 0.5. τ({^*}) not depending on m.Full size imageEquation (3) (details in Supplementary code 1) captures an obvious but important feature of experiments manipulating temperature over the development of ectotherms, for instance, from birth to metamorphosis; namely that there is no consistent definition of a simultaneous event across the different time frames. Experiments are usually stopped at different clock times because organisms must be sampled at the same biological time. All points located in the horizonal line in Fig. 3 represent simultaneous events, as defined in clock time occurring at different temperatures (e.g. whether an animal is dead or alive); however, simultaneous events occurring in biological time are represented by the points on the curve. Hence, Fig. 2 gives a geometric representation of such fact. Temperature as a driver of developmental rates32 is a central candidate to produce responses that differ at clock vs biological time.
    We explore further this case with an example where the response is expressed as a function of time and an instantaneous rate μ(m) quantifying for instance mortality, growth or biomass loss. For this example, we obtain R(m, t({^*})) = r[μ(m), τ({^*})(m, t({^*}))]. By differentiating in both sides, we get:$$frac{dR}{dm}=frac{partial r}{partial mu }cdot frac{dmu }{dm}+frac{partial r}{partial {tau }^{^*}}cdot frac{d{tau }^{^*}}{dm}$$
    (4)
    Equation (4) shows that m affects the response through two components: the instantaneous rate (dμ/dm) and the biological time (dτ({^*})/dm). We call the first component “eco-physiological” and the second component “phenological” (m drives the timing of a biological event, e.g. time to maturation). Those components are not evident if the response is expressed in clock time; otherwise we would obtain dR/dm = ∂R/∂μ · dμ/dm.In order to better understand Eq. (4), consider an example where the response is biomass loss experienced by an organism during the process of migration (e.g. towards a feeding or reproductive ground); when the access to food during migration is very limited the result should be a decrease in body mass reserves through time. Let biomass (B) be modelled as an exponential decaying function of time and an instantaneous rate of biomass loss μ; let μ depend on temperature (= m) such that, μ = μ(m). In such case we obtain:$$B(m,t)={e}^{-mu left(mright)cdot {t}^{^*}}={e}^{-mu left(mright)cdot {tau }^{^*}left(m,{t}^{^*}right)}$$
    (5)
    By differentiation in both sides of Eq. (5) we get:$$frac{dB}{dm}={-e}^{-mu left(mright)cdot {tau }^{^*}left(m,{t}^{^*}right)}left{{tau }^{^*}cdot frac{dmu }{dm}+mu cdot frac{d{tau }^{^*}}{dm}right}$$
    (6)
    Equation (6) shows the eco-physiological (dμ/dm) and phenological components (dτ({^*})/dm) within the brackets. If μ responds linearly to temperature, then dμ/dm would be represented by a constant quantifying the thermal sensitivity of biomass loss; the value of such constant would depend on physiological processes associated to use of reserves to sustain movement and the basal metabolic rate. Likewise, if τ({^*}) responds linearly to temperature, the dτ({^*})/dm would be driven by a constant controlling the sensitivity of developmental time to temperature.Because biomass is a trait that is central to fitness, Eq. (6) gives the indirect contribution of phenological and physiological responses to fitness. Assuming that fitness should be maximised, adaptive responses should involve the mitigation of negative effect of m on both components of Eq. (5), represented by the partial derivative of the right-hand term. For instance, organisms with the ability to minimise the eco-physiological effect (through e.g. a compensatory physiological mechanisms) or the phenological effect (e.g. shortening the exposure time) would complete the migration minimal loss of reserves.By generalization, Eqs. (4–6) help us to provide biological meaning to the terms of the matrix M: any term of the form dτ({^*})/dmj, dτi/dmj or dτi/dtj represents the effect of an environmental driver on the timing of a phenological event; hence, they are phenological components. Terms that contain the effect of an environmental variable on an instantaneous rate are eco-physiological components. By substitution we find that the terms of the matrix in Eq. (2) can be classified in two categories according to whether the component is eco-physiological (E) or phenological (P):$$left[begin{array}{ccccc}E& 0& P& P& P\ 0& E& P& P& P\ 0& 0& P& P& 0\ 0& 0& P& P& 0\ 0& 0& 0& 0& Pend{array}right]$$
    (7)
    Case 2: multiple driver responsesHere we expand the previous case by looking at a response to the magnitude of two different drivers; i.e. keeping the levels of each driver constant over the duration of the experiment. Examples of this case are experiments quantifying the effect of temperature and nutrient load on body mass (e.g. in a rearing containers) or species richness (e.g. in mesocosms). This case is represented by the terms of first two rows of the matrix and the vectors of Eq. (2), with the terms of the remaining rows set to zero. Here, there are different scenarios, but we focus on the one highlighting the importance of biological time.Consider a case where biological time depends on the magnitude of the first driver while the response is explicitly driven by the magnitude of the second driver (Fig. 4). For instance, the response may be the survival rate of a host organism exposed to different temperature and parasitic load. The response in clock time is described as R(mP, t({^*})). The driver controlling the biological time is temperature (mT) while the parasitic load (mP) controls survival. In such case, dτ({^*})/∂mP = 0, dR/dmP ≠ 0 and dR/dmT = 0. Although by definition the response in clock time does not depend on mT , it will do so in biological time. This is because, applying the matrix multiplication in Eq. (2), we obtain:
    $$frac{partial R}{partial {m}_{T}}=frac{partial r}{partial {m}_{T}}+frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8a)
    $$0=frac{partial r}{partial {m}_{T}}+frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8b)
    $$frac{partial r}{partial {m}_{T}}=-frac{partial r}{partial tau *}cdot frac{dtau *}{d{m}_{T}}$$
    (8c)
    The second right-hand term in Eq. (8a) quantifies the effect of temperature on the response mediated by biological time. In order to better understand the responses, consider a simple linear response: R = R0 − mP·t({^*}) and notice that, for a fixed clock time (t({^*})c) the effect of the magnitude of parasitism is constant (dR/dmP = −t({^*})c); hence, the response can be understood, geometrically, as a flat surface with slope not depending on temperature. Now, note that under the specific conditions of our example, r = R0 − mP·τ({^*})/L(mT). Hence, for a fixed biological time (τ({^*})c) we obtain ∂r/∂mP = −τ({^*})c/L(mT); i.e. the importance of the parasitic effect depends now on temperature. In addition, this example is valid for the case of additive effects of any two environmental drivers: assuming R = R0 − (a1·mP + a2· mT)·t({^*}) (a1, a2 are constants), we obtain dR/dmP = −a1t({^*}); however, ∂r/∂mP = −a1τ({^*})c/L(mT). In words, additive effects observed in clock time become interactive in biological time. This is illustrated in the simulation (Supplementary code 2) depicted in Fig. 4: the response in clock time depends on a single driver (parasite load); however, the response in biological time is interactive, i.e. the effect of parasite load depends on temperature.Figure 3Case 2: Multiple driver responses. (A) Modelled responses (colour scale) at a specific clock (t({^*}) = 40) and biological times (τ({^*}) = 1), showing an interactive effect only in the biological time frame. (B) Interaction plots of the responses for specific levels of temperature and a second driver showing that the effect high temperature mitigates the negative effect of the second driver on the response. The response was modelled with as a sigmoidal function R = exp(−t({^*})φ) with φ = 0.1[1 + exp(m2/2)]−1 to produce a strong gradient in the range of m2 = 25–30 units. The biological time was modelled based on the effect of temperature on the development of marine organisms33 as so that t({^*}) = τ({^*}) exp[−22.47 + 0.64/(k(m1 + 273)], i.e., using the Arrhenius equation with k: Boltzmann constant (≈ 8.617 10–5 eV K−1).Full size imageCase 3: role of clock and biological time scale of fluctuationPrevious examples did not consider, the time scale of the fluctuations as drivers of the response. Here we explore how a biological variable (= survival rate) responds to different levels of magnitude of a driver (= temperature) and to simultaneously changing the time scale of a fluctuation (from clock to biological time) of a second driver (= food limitation). As model, we use larval stages of a crab because there is sufficient information on the effect of temperature and food levels on survival and the timing of moulting33,34.We performed the so-called point-of-reserve-saturation experiment (PRS35), i.e. exposing groups of recently hatched larvae of the crab Hemigrapsus sanguineus to different initial feeding periods (= our time scale of fluctuation), after which they were starved until they either died or moulted to the second larval stage (Supplementary Fig. 1). H. sanguineus is originated from East Asia but has invaded the Atlantic shores of North America and North Europe36,37. This experiment was carried out at 4 temperature levels (15–21 °C), within the range of thermal tolerance of larvae of this species, i.e. where the magnitude of temperature does not affect survival38,39. In addition, because there is a single level of food limitation (= starvation), the magnitude of food limitation (mF) is not considered as a variable in the example.The response variable was the proportion of first stage larvae surviving the moulting event to the second stage, set to biological time τ({^*}) = 1. In response to different starvation periods (preceded by feeding), the survival shows a sigmoidal pattern35, characterised by a parameter, PRS50. This is the point of development where larval reserves are “saturated”; i.e. enough reserves have been accumulated during the previous feeding period to ensure survival and moulting to the next stage.Under the conditions of the experiment, the survival proportion (= R) is driven only by the time scale of a fluctuation (here t1 = t, τ1 = τ for simplicity), characterised by the starvation period; hence, R = R(t) = r[τ(t)] given that there is a single time of observation fixed to τ({^*}) = 1. Because biological time does not depend t, we get L = dτ/dt and:$$frac{dR}{dt}=frac{partial r}{partial tau }cdot mathcal{L}({m}_{2})$$
    (9)
    Equation (9) is represented in the PDE by the terms of row 3 and column 4 of M multiplied by the term of row 3 of the column vector r; dτ/dt = L(m), m represents the magnitude of temperature.The relationship between biological time and temperature was best explained by a power function D(T) = aTb (Fig. 4A, Supplementary Table 1, Supplementary Fig. 2), in consistence with previous studies36,40. The interaction between starvation time and temperature was weak (Supplementary Fig. 3); best models retained starvation time only at 21 °C where the percentage of explained variance was still low (R2  More

  • in

    The NEON Daily Isotopic Composition of Environmental Exchanges Dataset

    Chai et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. J. Hydrol. 523, 67–78 (2015).Article 

    Google Scholar 
    Brooks et al. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 59, 2150–2165 (2014).Article 

    Google Scholar 
    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).CAS 
    Article 

    Google Scholar 
    Gupta, A., Gerber, E. P. & Lauritzen, P. H. Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc. 146, 3937–3964 (2020).Article 

    Google Scholar 
    Kanner, L. C., Buenning, N. H., Stott, L. D., Timmermann, A. & Noone, D. The role of soil processes in d18O. Global Biogeochem. Cycles 28, 239–252 (2014).CAS 
    Article 

    Google Scholar 
    Remondi, F., Kircher, J. W., Burlando, P. & Fatichi, S. Water flux tracking with a distributed hydrologic model to quantify controls on the spatio-temporal variability of transit time distributions. Water Resour. Res. 54, 3081–3099 (2018).Article 

    Google Scholar 
    Abbott, B. W. et al. Using multi-tracer inference to move beyond single catchment ecohydrology. Earth-Sci. Rev. 160, 19–42 (2016).Article 

    Google Scholar 
    Krause, P., Boyle, D. P. & Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. in Geosci. 5, 89–97 (2005).Article 

    Google Scholar 
    Bowen, G. J. & Good, S. P. Incorporating water isotopes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water 2, 107–119 (2015).Article 

    Google Scholar 
    McGuire, K. J. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).Article 

    Google Scholar 
    Sprenger, M. et al. The demographics of water: A review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).Article 

    Google Scholar 
    Turnadge, C. & Smerdon, B. D. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. J. Hydrol. 519, 3674–3689 (2014).CAS 
    Article 

    Google Scholar 
    Fiorella, R. et al. Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. J. Geophys. Res. Biogeosci. 126 (2021).Xiao, W., Wei, Z. & Wen, X. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agric For Meteorol. 263, 346–361 (2018).Article 

    Google Scholar 
    Wu, Y. et al. Stable isotope measurements show increases in corn water use efficiency under deficit irrigation. Sci Rep 8, 14113 (2018).Article 

    Google Scholar 
    Al-Oqaili, F., Good, S. P., Frost, K. & Higgins, C. W. Differences in soil evaporation between row and interrow positions in furrowed agricultural fields. Vadose Zone J. 19, e20086 (2020).CAS 
    Article 

    Google Scholar 
    Bowen, G. J., Cai, Z., Fiorella, R. P. & Putman, A. L. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci. 47, 453–479 (2019).CAS 
    Article 

    Google Scholar 
    Lu, X. et al. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agric. Water Manag. 179, 103–109 (2017).Article 

    Google Scholar 
    Wieser, G. et al. Stable water use efficiency under climate change of three sympatric conifer species at the alpine treeline. Front. Plant Sci. 7, 799 (2016).Article 

    Google Scholar 
    Pataki, D. E. et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles, 17 (2003).Miller, J. B., & Tans, P. P., Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, 55 (2003).Finkenbiner, C. E., Good, S. P., Allen, S. T., Fiorella, R. P. & Bowen, G. J. A statistical method for generating temporally downscaled geochemical tracers in precipitation. J. Hydrometeorol. 22 (2021).NEON (National Ecological Observatory Network). Precipitation (DP1.00006.001), RELEASE-2022. https://doi.org/10.48443/6wkc-1p05. Dataset accessed from https://data.neonscience.org on May 12, 2022.Lunch, C. K. & Laney, C. M. NEON (National Ecological Observatory Network). neonUtilities: Utilities for working with NEON data. R package version 1.3.4. https://github.com/NEONScience/NEON-utilities (2020).Lee, R. and S. Weintraub. NEON User Guide to Stable Isotopes in Precipitation (NEON.DPI.00038) Version B. NEON (National Ecological Observatory Network). (2021).IAEA: Global network of isotopes in precipitation. https://www.iaea.org/services/networks/gnip 2020.Allen, S. T., Kirchner, J. W. & Goldsmith, G. R. Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes. Geophys. Res. 45, 4859–4868 (2018).
    Google Scholar 
    Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).CAS 
    Article 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).Article 

    Google Scholar 
    Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris. 8, 229–231 (1959).MATH 

    Google Scholar 
    NEON (National Ecological Observatory Network). Bundled data products – eddy covariance (DP4.00200.001). https://data.neonscience.org (2021).Good, S. P., Soderberg, K., Wang, L., & Caylor, K. K. Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser‐based water vapor isotope analyzers. J. Geophys. Res. Atmos. 177 (2012).Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci. 15, 5015–5030 (2018).CAS 
    Article 

    Google Scholar 
    Zobitz, J. M., Keener, J. P., Schnyder, H. & Bowling, D. R. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol. 136, 56–75 (2006).Article 

    Google Scholar 
    Wehr, R. & Saleska, S. R. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. Agric For Meteorol. 214, 515–531 (2015).Article 

    Google Scholar 
    Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C. & Sato, P. The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmos. Meas. Tech. 8, 4521–4538 (2015).CAS 
    Article 

    Google Scholar 
    Rambo, J., Lai, C., Farlin, J., Schroeder, M. & Bible, K. Vapor isotope ratios using off-axis cavity-enhanced absorption spectroscopy. J Atmos. Ocean Technol. 28, 1448–1457 (2011).Article 

    Google Scholar 
    Finkenbiner, C. The National Ecological Observation Network Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) Dataset, HydroShare, https://doi.org/10.4211/hs.e74edc35d45441579d51286ea01b519f (2022). More

  • in

    Natural and anthropogenic factors drive large-scale freshwater fish invasions

    InvasionWe used freshwater fish biodiversity data collated by and described in Milardi, et al.47. In summary, the dataset included 3777 sites sampled 1999–2014, recorded a total of 99 different fish species (35 of which were exotic and already established, even if some are restricted to areas with thermal springs), spanned  > 11 degrees of longitude (~ 1200 km) and 10 degrees of latitude (~ 1100 km), covering streams at altitudes -2.7–2500 m above sea level. Community turnover was not a relevant factor in our study, because fish communities are typically stable over these timescales and the data was collected in a restricted timeframe within each area29,39. Furthermore, time elapsed since last introductions was sufficient to analyze distribution patterns after major invasions had already occurred see e.g.23,48.Abundance of each species sampled during the monitoring was recorded with Moyle classes (Moyle and Nichols, 1973), which were weighted according to body-size classes in order to obtain a body-mass-corrected abundance, hereafter referred to simply as abundance. We then calculated an invasion degree, i.e. the share of introduced species in freshwater fish communities, based on the abundance of introduced and native species see e.g.9,49. A high invasion degree equals to a high share of introduced species and a low share of native species.We also selected the top 10 invasive species as further response variables, under the assumption that these would be the main components of the invasion degree, but would respond to different invasion drivers based on each species’ ecology. Invasiveness rank was defined through an index obtained by multiplying colonization (share of sites colonized) and prevalence (average relative abundance in the fish community) of each introduced species. The relative abundance of each of these species in the fish community was used as a response variable, being a measure comparable to invasion degree for single species.Invasion driversWe tested a combination of geographical, climate and anthropogenic impact factors as potential drivers of invasion. To avoid temporal mismatches, we chose time periods that overlapped as much as possible with our biological data.We used basin area, altitude and slope (derived from a seamless digital elevation model of the whole Italian territory at 10 m resolution, Tarquini, et al.50) as geographical variables.We derived climate data from available series of long-term national monitoring (http://www.scia.isprambiente.it/). We used daily air temperature (2000–2009), measured at a total of 2266 sites throughout the country, as a proxy for temperature regimes. We also used cumulated annual precipitations, number of annual dry days (precipitation  More