More stories

  • in

    Sixth sense in the deep-sea: the electrosensory system in ghost shark Chimaera monstrosa

    Danovaro, et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4(2), 181–192. https://doi.org/10.1038/s41559-019-1091-z (2020).Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29(8), 465–475. https://doi.org/10.1016/j.tree.2014.06.002 (2014).Article 
    PubMed 

    Google Scholar 
    Collin, S. P. The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behav. Evol. 80(2), 80–96. https://doi.org/10.1159/000339870 (2012).Article 
    PubMed 

    Google Scholar 
    Carrier, J. C., Musick, J. A., & Heithaus, M. R. (Eds.). Biology of sharks and their relatives. CRC (2012).Musick, J. A. & Cotton, C. F. Bathymetric limits of chondrichthyans in the deep sea: a re-evaluation. Deep Sea Res. Part II 115, 73–80. https://doi.org/10.1016/j.dsr2.2014.10.010 (2015).Article 

    Google Scholar 
    Treberg, J. R. & Speers-Roesch, B. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?. J. Exp. Biol. 219(5), 615–625. https://doi.org/10.1242/jeb.128108 (2016).Article 
    PubMed 

    Google Scholar 
    Didier, D. A., Kemper, J. M. & Ebert, D. A. Phylogeny, biology and classification of extant holocephalans. In Biology of Sharks and Their Relatives, 2nd edn (Carrier, J. C., Musick, J. A. & Heithaus, M. R., eds), pp. 97–124. New York, NY: CRC Pres. (2012).Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish Biol. 88(3), 837–1037. https://doi.org/10.1111/jfb.12874 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E. & Tietjen, K. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541(7636), 208–211. https://doi.org/10.1038/nature20806 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lisney, T. J. A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev. Fish Biol. Fisheries 20(4), 571–590. https://doi.org/10.1007/s11160-010-9162-x (2010).Article 

    Google Scholar 
    Finucci, B. et al. Ghosts of the deep–biodiversity, fisheries, and extinction risk of ghost sharks. Fish Fish. 22(2), 391–412. https://doi.org/10.1111/faf.12526 (2021).Article 

    Google Scholar 
    Newton, K. C., Gill, A. B. & Kajiura, S. M. Electroreception in marine fishes: chondrichthyans. J. Fish Biol. 95(1), 135–154. https://doi.org/10.1111/jfb.14068 (2019).Article 
    PubMed 

    Google Scholar 
    Crampton, W. G. Electroreception, electrogenesis and electric signal evolution. J. Fish Biol. 95(1), 92–134. https://doi.org/10.1111/jfb.13922 (2019).Article 
    PubMed 

    Google Scholar 
    Whitehead, D. L. Ampullary organs and electroreception in freshwater Carcharhinus leucas. J. Physiol.-Paris 96(5–6), 391–395. https://doi.org/10.1016/S0928-4257(03)00017-2 (2002).Article 
    PubMed 

    Google Scholar 
    Raschi, W. G., & Gerry, S. Adaptations in the elasmobranch electroreceptive system. Fish Adaptations. Enfield, NH: Scientific Publishers, 233–258 (2003).Atkinson, C. J. L. & Bottaro, M. Ampullary pore distribution of Galeus melastomus and Etmopterus spinax: possible relations with predatory lifestyle and habitat. J. Mar. Biol. Assoc. UK 86(2), 447–448. https://doi.org/10.1017/S0025315406013336 (2006).Article 

    Google Scholar 
    Kempster, R. M. & Collin, S. P. Electrosensory pore distribution and feeding in the basking shark Cetorhinus maximus (Lamniformes: Cetorhinidae). Aquat. Biol. 12(1), 33–36. https://doi.org/10.3354/ab00328 (2011).Article 

    Google Scholar 
    Kempster, R. M., McCarthy, I. D. & Collin, S. P. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J. Fish Biol. 80(5), 2055–2088. https://doi.org/10.1111/j.1095-8649.2011.03214.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Whitehead, D. L., Gauthier, A. R., Mu, E. W., Bennett, M. B. & Tibbetts, I. R. Morphology of the Ampullae of Lorenzini in juvenile freshwater Carcharhinus leucas. J. Morphol. 276(5), 481–493. https://doi.org/10.1002/jmor.20355 (2015).Article 
    PubMed 

    Google Scholar 
    Gauthier, A. R. G., Whitehead, D. L., Tibbetts, I. R., Cribb, B. W. & Bennett, M. B. Morphological comparison of the Ampullae of Lorenzini of three sympatric benthic rays. J. Fish Biol. 92(2), 504–514. https://doi.org/10.1111/jfb.13531 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fields, R. D., Bullock, T. H. & Lange, G. D. Ampullary sense organs, peripheral, central and behavioral electroreception in Chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav. Evol. 41(6), 269–289. https://doi.org/10.1159/000113849 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    Didier, D.A. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). American Museum Novitates; n. 3119 (1995).Serena, F. Field identification guide to the sharks and rays of the Mediterranean and Black Sea (Food and Agriculture Organization, 2005).
    Google Scholar 
    Holt, R. E., Foggo, A., Neat, F. C. & Howell, K. L. Distribution patterns and sexual segregation in chimaeras: implications for conservation and management. ICES J. Mar. Sci. 70(6), 1198–1205. https://doi.org/10.1093/icesjms/fst058 (2013).Article 

    Google Scholar 
    Ragonese, S., Vitale, S., Dimech, M., & Mazzola, S. Abundances of demersal sharks and chimaera from 1994–2009 scientific surveys in the central Mediterranean Sea. PloS one, 8(9). https://doi.org/10.1371/journal.pone.0074865 (2013).Vacchi, M., & Orsi, L. R. Alimentazione di Chimaera monstrosa L. sui fondi batiali liguri. Atti della Società Toscana di Scienze Naturali, Memorie serie B, 86, 388–391 (1979).Macpherson, E. Food and feeding of Chimaera monstrosa, Linnaeus, 1758, in the western Mediterranean. ICES J. Mar. Sci. 39(1), 26–29. https://doi.org/10.1093/icesjms/39.1.26 (1980).Article 

    Google Scholar 
    Mauchline, J. & Gordon, J. D. M. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75(2–3), 269–278. https://doi.org/10.1007/BF00406012 (1983).Article 

    Google Scholar 
    Albo-Puigserver, et al. Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 524, 255–268. https://doi.org/10.3354/meps11188( (2015).ADS 
    Article 

    Google Scholar 
    Priede, I. G. Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press (2017).Ferrando, S. et al. First description of a palatal organ in Chimaera monstrosa (Chondrichthyes, Holocephali). Anat. Rec. 299(1), 118–131. https://doi.org/10.1002/ar.23280 (2016).Article 

    Google Scholar 
    Garza-Gisholt, E., Hart, N. S., & Collin, S. P. Retinal morphology and visual specializations in three species of chimaeras, the deep-sea R. pacifica and C. lignaria, and the Vertical Migrator C. milii (Holocephali). Brain, behavior and evolution, 92(1–2), 47–62. https://doi.org/10.1159/000490655 (2018).Pethybridge, H., Daley, R. K. & Nichols, P. D. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409(1–2), 290–299. https://doi.org/10.1016/j.jembe.2011.09.009 (2011).Article 

    Google Scholar 
    Rivera-Vicente, A. C., Sewell, J. & Tricas, T. C. Electrosensitive spatial vectors in elasmobranch fishes: implications for source localization. PLoS ONE 6(1), e16008. https://doi.org/10.1371/journal.pone.0016008 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kajiura, S. M., Cornett, A. D. & Yopak, K. E. Sensory adaptations to the environment: electroreceptors as a case study. Biol. Sharks Relatives 2, 393–434 (2010).Article 

    Google Scholar 
    Raschi, W. A morphological analysis of the Ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J. Morphol. 189(3), 225–247. https://doi.org/10.1002/jmor.1051890303 (1986).Article 
    PubMed 

    Google Scholar 
    Jordan, L. K. et al. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. Conserv. Physiol. 1(1), cot002. https://doi.org/10.1093/conphys/cot002 (2013).Wueringer, B. E., Peverell, S. C., Seymour, J., Squire Jr, L., Kajiura, S. M., & Collin, S. P. Sensory systems in sawfishes. 1. The ampullae of Lorenzini. Brain, behavior and evolution, 78(2), 139–149. https://doi.org/10.1159/000329515 (2011).Bird C.S. The tropho-spatial ecology of deep-sea sharks and chimaeras from a stable isotope perspective. PhD thesis – University of Southampton, UK (2017).Andres, K. H. & Von Düring, M. Comparative anatomy of vertebrate electroreceptors. Prog Brain Res 74, 113–131. https://doi.org/10.1016/S0079-6123(08)63006-X (1998).Article 

    Google Scholar 
    Crooks, N. & Waring, C. P. A study into the sexual dimorphisms of the Ampullae of Lorenzini in the lesser-spotted catshark, Scyliorhinus canicula (Linnaeus, 1758). Environ. Biol. Fishes 96(5), 585–590. https://doi.org/10.1016/S0079-6123(08)63006-X (2013).Article 

    Google Scholar 
    Didier, D. A. Phylogeny and classification of extant Holocephali. Biol. Sharks Relatives 4, 115–138 (2004).Article 

    Google Scholar 
    Wueringer, B. E. & Tibbetts, I. R. Comparison of the lateral line and ampullary systems of two species of shovelnose ray. Rev. Fish Biol. Fisheries 18(1), 47–64. https://doi.org/10.1007/s11160-007-9063-9 (2008).Article 

    Google Scholar 
    Theiss, S. M., Collin, S. P. & Hart, N. S. Morphology and distribution of the ampullary electroreceptors in wobbegong sharks: implications for feeding behaviour. Mar. Biol. 158(4), 723–735. https://doi.org/10.1007/s00227-010-1595-1 (2011).Article 

    Google Scholar 
    Schäfer, B. T. et al. Morphological observations of Ampullae of lorenzini in Squatina guggenheim and S. occulta (Chondrichthyes, Elasmobranchii, Squatinidae). Microscopy Res Tech. 75(9), 1213–1217. https://doi.org/10.1002/jemt.22051 (2012).Brown, B. R. Sensing temperature without ion channels. Nature 421(6922), 495–495. https://doi.org/10.1038/421495a (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fields, R. D., Fields, K. D. & Fields, M. C. Semiconductor gel in shark sense organs?. Neurosci. Lett. 426(3), 166–170. https://doi.org/10.1016/j.neulet.2007.08.064 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Brown, B. R. Temperature response in electrosensors and thermal voltages in electrolytes. J. Biol. Phys. 36(2), 121–134. https://doi.org/10.1007/s10867-009-9174-8 (2010).Article 
    PubMed 

    Google Scholar 
    Josberger, E. E. et al. Proton conductivity in Ampullae of Lorenzini jelly. Sci. Adv. 2(5), e1600112. https://doi.org/10.1126/sciadv.1600112 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Froese, R. and Pauly D. https://www.fishbase.de/ (2021).Sims, D. W. The biology, ecology and conservation of elasmobranchs: recent advances and new frontiers. J. Fish Biol. 87(6), 1265–1270. https://doi.org/10.1111/jfb.12861 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Heithaus, M. R., Frid, A., Wirsing, A. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article 
    PubMed 

    Google Scholar 
    Dymek, J., Muñoz, P., Mayo-Hernández, E., Kuciel, M. & Żuwała, K. Comparative analysis of the olfactory organs in selected species of marine sharks and freshwater batoids. Zool. Anz. 294, 50–61. https://doi.org/10.1016/j.jcz.2021.07.013 (2021).Article 

    Google Scholar 
    Bellono, N. W., Leitch, D. B. & Julius, D. Molecular tuning of electroreception in sharks and skates. Nature 558(7708), 122. https://doi.org/10.1038/s41586-018-0160-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luchetti, E. A., Iglésias, S. P., & Sellos, D. Y. Chimaera opalescens n. sp., a new chimaeroid (Chondrichthyes: Holocephali) from the north‐eastern Atlantic Ocean. J. Fish Biol., 79(2), 399–417. https://doi.org/10.1111/j.1095-8649.2011.03027.x (2011).Marranzino, A. N. & Webb, J. F. Flow sensing in the deep sea: the lateral line system of stomiiform fishes. Zool. J. Linn. Soc. 183(4), 945–965. https://doi.org/10.1093/zoolinnean/zlx090 (2018).Article 

    Google Scholar 
    Yopak, K. E. & Montgomery, J. C. Brain organization and specialization in deep-sea chondrichthyans. Brain Behav. Evol. 71(4), 287–304. https://doi.org/10.1159/000127048 (2008).Article 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). More

  • in

    Population structure of blackfin tuna (Thunnus atlanticus) in the western Atlantic Ocean inferred from microsatellite loci

    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer Netherlands, 1995). https://doi.org/10.1007/978-94-011-1218-5_3.Chapter 

    Google Scholar 
    Avise, J. C. Conservation genetics in the marine realm. J. Hered. 89, 377–382 (1998).Article 

    Google Scholar 
    Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).Article 

    Google Scholar 
    Pecoraro, C. et al. The population genomics of yellowfin tuna (Thunnus albacares) at global geographic scale challenges current stock delineation. Sci. Rep. 8, 13890 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nikolic, N. et al. Connectivity and population structure of albacore tuna across southeast Atlantic and southwest Indian Oceans inferred from multidisciplinary methodology. Sci. Rep. 10, 15657 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, G., Lal, M., Hampton, J., Smith, N. & Rico, C. Close kin proximity in yellowfin tuna (Thunnus albacares) as a driver of population genetic structure in the tropical western and central Pacific Ocean. Front. Mar. Sci. 6, 341 (2019).Article 

    Google Scholar 
    Collette, B. B. & Nauen, C. E. Scombrids of the World: An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos, and Related Species Known to date v.2 (FAO, 1983).
    Google Scholar 
    Majkowski, J., Arrizabalaga, H. & Carocci, F. C1. Tuna and Tuna-like Species. Review of the state of World Fisheries Resources (FAO, 2005).Mahon, R. Fisheries and research for tunas and tuna-like species in the Western Central Atlantic: implications of the agreement for the implementation of the provisions of the United Nations Convention on the Law of the Sea of the 10 December 1982 relating to the conservation and management of straddling fish stocks and highly migratory fish stocks. (FAO Fisheries Technical Paper, 1996).Doray, M., Stéquert, B. & Taquet, M. Age and growth of blackfin tuna (Thunnus atlanticus ) caught under moored fish aggregating devices, around Martinique Island. Aquat. Living Resour. 17, 13–18 (2004).Article 

    Google Scholar 
    Arocha, F., Barrios, A. & Marcano, J. Blackfin tuna (Thunnus atlanticus) in the Venezuelan fisheries. Collect. Vol. Sci. Pap ICCAT 68(3), 1253–1260 (2012).
    Google Scholar 
    Mathieu, H., Pau, C. & Reynal, L. Chapter 2.1.10.7 THON A NAGEOIRES NOIRES. ICCAT ICCAT Manual. International Commission for the Conservation of Atlantic Tuna. 15 (2013).Maghan, W. B. & Rivas, L. R. The blackfin tuna (Thunnus atlanticus) as an underutilized fishery resource in the tropical western Atlantic Ocean. FAO Fish. Rep. 71(2), 163–172 (1971).
    Google Scholar 
    De Sylva, D. P., Rathjen, W. F. & Higman, J. B. Fisheries development for underutilized Atlantic tunas: Blackfin and little tunny. NOAA Technical Memorandum NMFS-SEFC-191 (1987).Richardson, D. E., Llopiz, J. K., Guigand, C. M. & Cowen, R. K. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Prog. Oceanogr. 86, 8–20 (2010).ADS 
    Article 

    Google Scholar 
    Freire, K. M. F., Lessa, R. & Lins-Oliveira, J. E. Fishery and biology of blackfin tuna Thunnus atlanticus off northeastern Brazil. Gulf Caribb. Res. 17, 15–24 (2005).Article 

    Google Scholar 
    Vieira, K. R., Oliveira, J. E. L. & Barbalho, M. C. Aspects of the dynamic population of blackfin tuna (Thunnus atlanticus-Lesson, 1831) caught in the Northeast Brazil. Collect. Vol. Sci. Pap ICCAT 58(5), 1623–1628 (2005).
    Google Scholar 
    FJ Mather, I. I. I. Tunas (genus Thunnus) of the western North Atlantic. Part III. Distribution and behavior of Thunnus species. World Sci. Meeting Biol. Tunas Exper. Pap. Vol. 8, 1–23 (1962)Cornic, M. & Rooker, J. R. Influence of oceanographic conditions on the distribution and abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fish. Res 201, 1–10 (2018).Article 

    Google Scholar 
    Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Luckhurst, B. E., Trott, T. & Manuel, S. Landings, seasonality, catch per unit effort, and tag-recapture results of yellowfin tuna and blackfin tuna at Bermuda. Am. Fish. Soc. Symp. 25, 225–234 (2001).
    Google Scholar 
    Singh-Renton, S. & Renton, J. CFRAMP’s large pelagic fish tagging program. Gulf Caribb. Res. Vol 19, (2007).Cermeño, P. et al. Electronic tagging of Atlantic bluefin tuna (Thunnus thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea. PLoS ONE 10, e0116638 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res 43, 1–8 (1999).Article 

    Google Scholar 
    Saxton, B. Historical demography and genetic population structure of theBlackfin tuna (Thunnus atlanticus) from the Northwest Atlantic Ocean and the Gulf of Mexico. Texas A&M University (2009).Antoni, L., Luque, P. L., Naghshpour, K., Reynal, L. & Saillant, E. A. Development and characterization of microsatellite markers for blackfin tuna (Thunnus atlanticus) with the use of Illumina paired-end sequencing. Fish. Bull. 112, 322–325 (2014).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered 86, 485–486 (1995).Article 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Van Oosterhout, C., Huthinson, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(Pt 5), 561–573 (1999).PubMed 
    Article 

    Google Scholar 
    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bezerra, N. P. A. et al. Reproduction of Blackfin tuna Thunnus atlanticus (Perciformes: Scombridae) in Saint Peter and Saint Paul Archipelago, Equatorial Atlantic, Brazil. Rev. Biol. Trop. 61, 1327–1339 (2013).PubMed 
    Article 

    Google Scholar 
    Fitzpatrick, B. M. Power and sample size for nested analysis of molecular variance. Mol. Ecol. 18, 3961–3966 (2009).PubMed 
    Article 

    Google Scholar 
    Ely, B. et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: The yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol. Biol. 5, 19 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alvarado Bremer, J. R., Viñas, J., Mejuto, J., Ely, B. & Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36, 169–187 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hedgecock, D., Barber, P. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).Article 

    Google Scholar 
    Pruett, C. L., Saillant, E. & Gold, J. R. Historical population demography of red snapper (Lutjanus campechanus) from the northern Gulf of Mexico based on analysis of sequences of mitochondrial DNA. Mar. Biol. 147, 593–602 (2005).CAS 
    Article 

    Google Scholar 
    Saillant, E., Bradfield, S. C. & Gold, J. R. Genetic variation and spatial autocorrelation among young-of-the-year red snapper (Lutjanus campechanus) in the northern Gulf of Mexico. ICES J. Mar. Sci 67, 1240–1250 (2010).Article 

    Google Scholar 
    Robledo-Arnuncio, J. J. & Rousset, F. Isolation by distance in a continuous population under stochastic demographic fluctuations. J. Evol. Biol. 23, 53–71 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rocha, L. A., Craig, M. T. & Bowen, B. W. Phylogeography and the conservation of coral reef fishes. Coral Reefs 26, 501–512 (2007).ADS 
    Article 

    Google Scholar 
    Vasconcellos, A. V., Vianna, P., Paiva, P. C., Schama, R. & Solé-Cava, A. Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic. Genet. Mol. Biol. 31, 308–316 (2008).CAS 
    Article 

    Google Scholar 
    Vieira, K. R., Oliveira, J. E. L. & Barbalho, M. C. Reproductive characteristics of blackfin tuna Thunnus atlanticus (Lesson, 1831), in northeast Brazil. Collect. Vol. Sci. Pap ICCAT 58, 1629–1634 (2005).
    Google Scholar 
    Nielsen, E. E. et al. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 276 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lamichhaney, S. et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc. Natl. Acad. Sci. USA 109, 19345–19350 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7, 295–302 (2006).Article 

    Google Scholar 
    Brophy, D., Rodríguez-Ezpeleta, N., Fraile, I. & Arrizabalaga, H. Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus). Sci. Rep. 10, 14675 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Climatic and tectonic drivers shaped the tropical distribution of coral reefs

    Spalding, M. D. & Grenfell, A. M. New estimates of global and regional coral reef areas. Coral Reefs 16, 225–230 (1997).Article 

    Google Scholar 
    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Roberts, C. M. et al. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 295, 1280–1284 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Johannes, R., Wiebe, W., Crossland, C., Rimmer, D. & Smith, S. Latitudinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 11, 105–111 (1983).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Yamano, H., Hori, K., Yamauchi, M., Yamagawa, O. & Ohmura, A. Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20, 9–12 (2001).Article 

    Google Scholar 
    Guan, Y., Hohn, S. & Merico, A. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean. PLOS ONE 10, e0128831 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellwood, D. R. & Hughes, T. P. Regional-Scale Assembly Rules and Biodiversity of Coral Reefs. Science 292, 1532–1535 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Connolly, S. R., Bellwood, D. R. & Hughes, T. P. Indo-Pacific Biodiversity of Coral Reefs: Deviations from a Mid-Domain Model. Ecology 84, 2178–2190 (2003).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. Environmental and geometric constraints on Indo‐Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651 (2005).Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea. J. Coral Reef. Stud. 11, 91–100 (2009).Article 

    Google Scholar 
    Briggs, J. C. Marine Longitudinal Biodiversity: Causes and Conservation. Divers. Distrib. 13, 544–555 (2007).Article 

    Google Scholar 
    Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiessling, W. Paleoclimatic significance of Phanerozoic reefs. Geology 29, 751–754 (2001).ADS 
    Article 

    Google Scholar 
    Wallace, C. & Rosen, B. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: Implications for the evolution of modern diversity patterns of reef corals. Proc. Biol. Sci. 273, 975–982 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Perrin, C. & Kiessling, W. Latitudinal trends in Cenozoic reef patterns and their relationship to climate. Carbonate Syst. Oligocene–Miocene Clim. Transit. 17–33 (Wiley-Blackwell, 2010).Kiessling, W. Habitat effects and sampling bias on Phanerozoic reef distribution. Facies 51, 24–32 (2005).Article 

    Google Scholar 
    Kiessling, W. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 11–19 (2010).Article 

    Google Scholar 
    Ziegler, A. M., Hulver, M. L., Lotts, A. L. & Schmachtenberg, W. F. Uniformitarianism and palaeoclimates: inferences from the distribution of carbonate rocks. In: Fossils and Climate (ed. Brenchley, P. J.), 3–25 (Wiley, Chichester, 1984).Crame, J. A. & Rosen, B. R. Cenozoic palaeogeography and the rise of modern biodiversity patterns. Geol. Soc. Lond. Spec. Publ. 194, 153–168 (2002).ADS 
    Article 

    Google Scholar 
    Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. U. S. A. 114, 5653–5658 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roberts, G. G. & Mannion, P. D. Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci. Rep. 9, 6116 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valentine, J. W. & Moores, E. M. Global Tectonics and the Fossil Record. J. Geol. 80, 167–184 (1972).ADS 
    Article 

    Google Scholar 
    Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2017).Article 

    Google Scholar 
    Chittaro, P. M. Species-area relationships for coral reef fish assemblages of St. Croix, US Virgin Islands. Mar. Ecol. Prog. Ser. 233, 253–261 (2002).ADS 
    Article 

    Google Scholar 
    Tittensor, D. P., Micheli, F., Nyström, M. & Worm, B. Human impacts on the species–area relationship in reef fish assemblages. Ecol. Lett. 10, 760–772 (2007).PubMed 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huntington, B. E. & Lirman, D. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern. Coral Reefs 31, 929–938 (2012).ADS 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M. et al. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, 215–227 (2011).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, S. W. et al. Refugia under threat: Mass bleaching of coral assemblages in high-latitude eastern Australia. Glob. Change Biol. 25, 3918–3931 (2019).ADS 
    Article 

    Google Scholar 
    Pörtner, H.-O. et al. IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergov. Panel Clim. Change Geneva Switz. 1, 1–755 (2019).Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral Reef Ecosystems under Climate Change and Ocean Acidification. Front. Mar. Sci. 4, 1–20 (2017).O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 
    Article 

    Google Scholar 
    Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307–314 (2004).Article 

    Google Scholar 
    Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).ADS 
    Article 

    Google Scholar 
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilhena, D. A. & Smith, A. B. Spatial Bias in the Marine Fossil Record. PLoS ONE 8, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, L. A., Dean, C. D., Mannion, P. D., Farnsworth, A. & Allison, P. A. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc. R. Soc. B Biol. Sci. 288, 20202762 (2021).Article 

    Google Scholar 
    Jones, L. A. & Eichenseer, K. Uneven spatial sampling distorts reconstructions of Phanerozoic seawater temperature. Geology (2021) https://doi.org/10.1130/G49132.1.Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 1–11 (2011).Article 

    Google Scholar 
    Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    Hirzel, A. H., LeLay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Miller, K. G. et al. The Phanerozoic Record of Global Sea-Level Change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallam, A., Grose, J. A. & Ruffell, A. H. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 173–187 (1991).Article 

    Google Scholar 
    Gröcke, D. R., Price, G. D., Ruffell, A. H., Mutterlose, J. & Baraboshkin, E. Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 97–118 (2003).Article 

    Google Scholar 
    Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 1–10 (2004).
    Google Scholar 
    Grabowski, J. et al. Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretac. Res. 43, 1–17 (2013).Article 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes. GSA Bull. 131, 1979–1994 (2019).CAS 
    Article 

    Google Scholar 
    Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth-Sci. Rev. 115, 262–272 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36, 147 (2008).ADS 
    Article 

    Google Scholar 
    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).
    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. 116, 12895–12900 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).ADS 
    Article 

    Google Scholar 
    Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).Article 

    Google Scholar 
    Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).Article 

    Google Scholar 
    Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim 17, 203–227 (2021).ADS 

    Google Scholar 
    Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral Reef Habitat Response to Climate Change Scenarios. PLoS ONE 8, 1–14 (2013).
    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 1–8 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Zhang, L. et al. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 10, 1–18 (2015).
    Google Scholar 
    Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).ADS 
    Article 

    Google Scholar 
    Seo, C., Thorne, J. H., Hannah, L. & Thuiller, W. Scale effects in species distribution models: implications for conservation planning under climate change. Biol. Lett. 5, 39–43 (2009).PubMed 
    Article 

    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Environmental controls on the global distribution of shallow-water coral reefs. J. Biogeogr. 39, 1508–1523 (2012).Article 

    Google Scholar 
    Laborel, J. West African reef corals: an hypothesis on their origin. in Proceedings of the Second International Coral Reef Symposium vol. 1 425–443 (Great Barrier Reef Committee Brisbane, 1974).Spalding, M., Spalding, M. D., Ravilious, C. & Green, E. P. World Atlas of Coral Reefs. (University of California Press, 2001).Block, S. et al. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models. PLoS ONE 11, 1–16 (2016).Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kusumoto, B. et al. Global distribution of coral diversity: Biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326 (2020).Article 

    Google Scholar 
    Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2021).Article 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models:HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Sheppard, C. R. C. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425, 294–297 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Saupe, E. E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Haywood, A. M. et al. What can Palaeoclimate Modelling do for you? Earth Syst. Environ. 3, 1–18 (2019).Article 

    Google Scholar 
    Sellwood, B. W. & Valdes, P. J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 190, 269–287 (2006).ADS 
    Article 

    Google Scholar 
    Waterson, A. M. et al. Modelling the climatic niche of turtles: a deep-time perspective. Proc. R. Soc. B Biol. Sci. 283, 1–9 (2016).
    Google Scholar 
    Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    Dunne, E. M., Farnsworth, A., Greene, S. E., Lunt, D. J. & Butler, R. J. Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity. Palaeontology 64, 101–117 (2020).Article 

    Google Scholar 
    Lyster, S. J., Whittaker, A. C., Allison, P. A., Lunt, D. J. & Farnsworth, A. Predicting sediment discharges and erosion rates in deep time—examples from the late Cretaceous North American continent. Basin Res. 1–27 (2020) https://doi.org/10.1111/bre.12442.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim 12, 1181–1198 (2016).ADS 

    Google Scholar 
    Vasquez, V. L., de Lima, A. A., dos Santos, A. P. & Pinto, M. P. Influence of spatial extent on habitat suitability models for primate species of Atlantic Forest. Ecol. Inform. 61, 101179 (2021).Article 

    Google Scholar 
    Collins, D. S. et al. Controls on tidal sedimentation and preservation: Insights from numerical tidal modelling in the Late Oligocene–Miocene South China Sea, Southeast Asia. Sedimentology 65, 2468–2505 (2018).Article 

    Google Scholar 
    Dean, C. D., Collins, D. S., van Cappelle, M., Avdis, A. & Hampson, G. J. Regional-scale paleobathymetry controlled location, but not magnitude, of tidal dynamics in the Late Cretaceous Western Interior Seaway, USA. Geology 47, 1083–1087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Markwick, P. J. & Valdes, P. J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 37–63 (2004).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222, 1343–1346 (2011).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R. (Cambridge University Press, 2017).Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18 (2013).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction. (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511810602.Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).Article 

    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed 
    Article 

    Google Scholar 
    Kiessling, W. & Krause, M. C. PARED—An online database of Phanerozoic reefs. https://www.paleo-reefs.pal.uni-erlangen.de/ (2021).Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Code from ‘Climatic and tectonic drivers shaped the tropical distribution of coral reefs’. Zenodo (2022) https://doi.org/10.5281/zenodo.6458366. More

  • in

    Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings

    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Froschauer, A. & Coleman, J. North American bat death toll exceeds 5.5 million from white-nose syndrome. Biol. Rep. US Fish Wildl. Serv. 2, 1–2 (2012).
    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414 (2009).PubMed 
    Article 

    Google Scholar 
    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc. Natl. Acad. Sci. USA. 112, 7478–7483 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 135 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verant, M. L., Boyles, J. G., Waldrep, W., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Field, K. A. et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boyles, J. G. & Willis, C. K. R. Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome?. Front. Ecol. Environ. 8, 92–98 (2010).Article 

    Google Scholar 
    Storm, J. J. & Boyles, J. G. Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrome. Acta Theriol. 56, 123–127 (2011).Article 

    Google Scholar 
    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. MSphere 1, 4 (2016).Article 
    CAS 

    Google Scholar 
    White-Nose Syndrome Response Team. Where is WNS Now? White-Nose Syndrome https://www.whitenosesyndrome.org/spreadmap (2021).Turner, G. G., Reeder, D. & Coleman, J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in north American bats, with a look at the future: update of white-nose syndrome in bats. Bat Res. News 52, 13 (2011).
    Google Scholar 
    Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: The impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2011).PubMed 
    Article 

    Google Scholar 
    Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoS ONE 8, e65907 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vanderwolf, K. J. & McAlpine, D. F. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol. Evol. 11, 2273–2288 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Puig‐Montserrat, X. & Flaquer, C. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. (2020).Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Padhi, S., Dias, I., Korn, V. & Bennett, J. Pseudogymnoascus destructans: Causative agent of white-nose syndrome in bats is inhibited by safe volatile organic compounds. Journal of Fungi 4, 48 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chaturvedi, S. et al. Antifungal testing and high-throughput screening of compound library against Geomyces destructans, the etiologic agent of geomycosis (WNS) in bats. PLoS ONE 6, e17032 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cornelison, C. T. et al. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253. BMC Microbiol. 14, 246 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boire, N. et al. Potent inhibition of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless, Valencia orange oil. PLoS ONE 11, 1–10 (2016).Article 
    CAS 

    Google Scholar 
    Padhi, S., Dias, I. & Bennett, J. W. Two volatile-phase alcohols inhibit growth of Pseudogymnoascus destructans, causative agent of white-nose syndrome in bats. Mycology 8, 11–16 (2017).CAS 
    Article 

    Google Scholar 
    Raudabaugh, D. B. & Miller, A. N. Effect of Trans, trans-farnesol on Pseudogymnoascus destructans and several closely related species. Mycopathologia 180, 325–332 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulhanek. The Application of Chitosan on an Experimental Infection of Pseudogymnoascus Destructans Increases Survival in Little Brown Bats. (Western Michigan University, 2016).Ghosh, S. et al. Evidence for Anti-Pseudogymnoascus destructans (Pd) activity of propolis. Antibiotics 7, 2 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bernard, R. F. & Grant, E. H. C. Identifying common decision problem elements for the management of emerging fungal diseases of wildlife. Soc. Nat. Resour. (2019).Haas, D. & Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becker, M. H. & Harris, R. N. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS ONE 5, e10957 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 6, 209–240 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Becker, M. H. et al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. Biol. Sci. 282, 2881 (2015).
    Google Scholar 
    Hamm, P. S. et al. Western bats as a reservoir of novel Streptomyces species with antifungal activity. Appl. Environ. Microbiol. 83, 1–10 (2017).Article 

    Google Scholar 
    Hoyt, J. R. et al. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS ONE https://doi.org/10.1371/journal.pone.0121329 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).Article 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases?. Trends Ecol. Evol. 24, 378–385 (2009).PubMed 
    Article 

    Google Scholar 
    Clay, K. EDITORIAL: Defensive symbiosis: A microbial perspective. Funct. Ecol. 28, 293–298 (2014).Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA. 111, E5049–E5058 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemieux-Labonté, V., Simard, A., Willis, C. K. R. & Lapointe, F.-J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5, 115 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walke, J. B. et al. Most of the dominant members of amphibian skin bacterial communities can be readily cultured. Appl. Environ. Microbiol. 81, 6589–6600 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1753 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8, 830–840 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Vertebrate hosts as islands: Dynamics of selection, immigration, loss, persistence, and potential function of bacteria on salamander skin. Front. Microbiol. 7, 333 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winter, A. S. et al. Skin and fur bacterial diversity and community structure on American southwestern bats: Effects of habitat, geography and bat traits. PeerJ 5, e3944 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. Biol. Sci. 284, 2274 (2017).
    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 4, 5224 (2015).
    Google Scholar 
    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 

    Google Scholar 
    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lausen, C. L., Nagorsen, D. N., Brigham, R. M. & Hobbs, J. Bats of British Columbia 2nd edn. (Royal BC Museum, 2022).
    Google Scholar 
    Spring Cleaning: Why Wash a Bridge? https://www.tranbc.ca/2011/06/22/spring-cleaning-why-wash-a-bridge/ (2012).Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 9 (2018).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, S. R. & Gray, P. P. A differential procedure for bacteriological studies useful in the fermentation industry. Arch. Biochem. Biophys. 32, 59–69 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Basu, S. et al. Evolution of bacterial and fungal growth media. Bioinformation 11, 182–184 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medina, D. et al. Culture media and individual hosts affect the recovery of culturable bacterial diversity from amphibian skin. Front. Microbiol. 8, 1574 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).PubMed 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl. Acad. Sci. USA. 114, 13768–13773 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ingala, M. R. et al. Comparing microbiome sampling methods in a wild mammal: Fecal and intestinal samples record different signals of host ecology, evolution. Front. Microbiol. 9, 1–10 (2018).Article 

    Google Scholar 
    Lewis, S. E. Night roosting ecology of pallid bats (Antrozous pallidus) in oregon. Am. Midl. Nat. 132, 219–226 (1994).Article 

    Google Scholar 
    Hershey, O. S. & Barton, H. A. The microbial diversity of caves. Cave Ecol. 1, 69–90. https://doi.org/10.1007/978-3-319-98852-8_5 (2018).Article 

    Google Scholar 
    British Columbia Government Mineral Inventory. https://www2.gov.bc.ca/gov/content/industry/mineral-exploration-mining/british-columbia-geological-survey/mineralinventory (2018).Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagorsen, D. W., Brigham, R. M., Royal British Columbia Museum. Bats of British Columbia (UBC Press, 1993).
    Google Scholar 
    Fenton, M. B., Merriam, H. G. & Holroyd, G. L. Bats of Kootenay, Glacier, and Mount Revelstoke national parks in Canada: Identification by echolocation calls, distribution, and biology. Can. J. Zool. 61, 2503–2508 (1983).Article 

    Google Scholar 
    Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the Southeastern USA. J. Wildl. Dis. 51, 519–522 (2015).PubMed 
    Article 

    Google Scholar 
    Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. MSystems 4, 1–10 (2019).
    Google Scholar 
    Gaona, O., Gómez-Acata, E. S., Cerqueda-García, D., Neri-Barrios, C. X. & Falcón, L. I. Fecal microbiota of different reproductive stages of the central population of the lesser-long nosed bat, Leptonycteris yerbabuenae. PLoS ONE 14, e0219982 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voigt, C. C., Caspers, B. & Speck, S. Bats, bacteria, and bat smell: Sex-specific diversity of microbes in a sexually selected scent organ. J. Mammal. 86, 745–749 (2005).Article 

    Google Scholar 
    Gharout-Sait, A. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae in bat guano. Microb. Drug Resist. 25, 1057–1062 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, C. et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74, 1136–1144 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Charyulu, E. M. & Gnanamani, A. Condition stabilization for Pseudomonas aeruginosa MTCC 5210 to yield high titers of extra cellular antimicrobial secondary metabolite using response surface methodology. Curr. Res. Bacteriol. 4, 197–213 (2010).Article 

    Google Scholar 
    Shen, Y. et al. Psychrobacillus lasiicapitis sp. nov., isolated from the head of an ant (Lasius fuliginosus). Int. J. Syst. Evol. Microbiol. 67, 4462–4467 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez, M., Reina, J. C., Béjar, V. & Llamas, I. Psychrobacillus vulpis sp. nov., a new species isolated from faeces of a red fox in Spain. Int. J. Syst. Evol. Microbiol. 70, 882–888 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pham, V. H. T., Jeong, S.-W. & Kim, J. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 65, 3046–3052 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kontro, M., Lignell, U., Hirvonen, M.-R. & Nevalainen, A. pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett. Appl. Microbiol. 41, 32–38 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wodzinski, R. S., Umholtz, T. E., Rundle, J. R. & Beer, S. V. Mechanisms of inhibition of Erwinia amylovora by Erw. herbicola in vitro and in vivo. J. Appl. Bacteriol. 76, 22–29 (1994).Article 

    Google Scholar 
    Kuncharoen, N. et al. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm. f. Int. J. Syst. Evol. Microbiol. 67, 37–41 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aizawa, T. et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int. J. Syst. Evol. Microbiol. 57, 1447–1452 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaira, G. S., Dhakar, K. & Pandey, A. A psychrotolerant strain of Serratia marcescens (MTCC 4822) produces laccase at wide temperature and pH range. AMB Express 5, 92 (2015).PubMed 
    Article 

    Google Scholar 
    Moon, J. & Kim, J. Isolation of Paenibacillus pinesoli sp. Nov. from forest soil in Gyeonggi-Do, Korea. J. Microbiol. 52, 273–277 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heyrman, J. et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54, 47–57 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, K. L. & Sulaiman, I. The ecology of Rhodococcus equi and physicochemical influences on growth. Vet. Microbiol. 14, 241–250 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrempf, H. Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79, 285–289 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seco, E. M., Cuesta, T., Fotso, S., Laatsch, H. & Malpartida, F. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108. Chem. Biol. 12, 535–543 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 8, e1002743 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    León, M. et al. Antifungal activity of selected indigenous pseudomonas and bacillus from the soybean rhizosphere. Int. J. Microbiol. 2009, 572049 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Hai, N. & Fotedar, R. Comparison of the effects of the prebiotics (Bio-Mos® and β-1, 3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289, 310–316 (2009).Article 
    CAS 

    Google Scholar 
    Lauer, A., Simon, M. A., Banning, J. L., Lam, B. A. & Harris, R. N. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2, 145–157 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ligon, J. M. et al. Natural products with antifungal activity fromPseudomonas biocontrol bacteria. Pest Manag. Sci. 56, 688–695 (2000).CAS 
    Article 

    Google Scholar 
    Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I. & Gross, D. C. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant Microb. Interact. 14, 336–348 (2001).CAS 
    Article 

    Google Scholar 
    Souza, J. T. & Raaijmakers, J. M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43, 21–34 (2003).PubMed 
    Article 

    Google Scholar 
    Mavrodi, D. V. et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diby, P. et al. Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Ann. Microbiol. 55, 129–133 (2005).CAS 

    Google Scholar 
    Vengust, M., Knapic, T. & Weese, J. S. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE 13, e0196728 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banskar, S., Mourya, D. T. & Shouche, Y. S. Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol. Res. 182, 99–108 (2016).PubMed 
    Article 

    Google Scholar 
    Wolkers-Rooijackers, J. C. M., Rebmann, K., Bosch, T. & Hazeleger, W. C. Fecal Bacterial Communities in Insectivorous Bats from the Netherlands and Their Role as a Possible Vector for Foodborne Diseases. Acta Chiropterol. 20, 475 (2019).Article 

    Google Scholar 
    Weller, T. J., Scott, S. A., Rodhouse, T. J., Ormsbee, P. C. & Zinck, J. M. Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis. Acta Chiropt. 9, 133–147 (2007).Article 

    Google Scholar 
    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104625 (2014).Article 
    CAS 

    Google Scholar 
    McArthur, R. L., Ghosh, S. & Cheeptham, N. Improvement of protocols for the screening of biological control agents against white-nose syndrome. JEMI 2, 1–7 (2017).
    Google Scholar 
    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 17, 1273–1276 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, P. et al. Clonal spread of Geomyces destructans among bats, Midwestern and Southern United States. Emerg. Infect. Dis. 18, 883–885 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, K. Genomc DNA extraction using the modified CTAB method. Curr. Protoc. Mol. Biol. 1, 1–2 (1997).
    Google Scholar 
    Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stackebrandt, E. & Liesack, W. Handbook of New Bacterial Systematics (Springer, 1993).
    Google Scholar 
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).Venables, W. N. & Ripley, B. D. Modern applied statistics with S. Stat. Comput. https://doi.org/10.1007/978-0-387-21706-2 (2002).Article 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Stat. 34, 216–221 (2018).
    Google Scholar 
    Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.1. 7 (2018). More

  • in

    Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf

    Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495. https://doi.org/10.1126/science.284.5413.493%JScience (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brüchert, V. et al. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia. In Past and Present Water Column Anoxia (ed. Neretin, L. N.) 161–193 (Springer, 2006).Chapter 

    Google Scholar 
    Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341. https://doi.org/10.3389/fmars.2018.00341 (2018).Article 

    Google Scholar 
    Emeis, K. C. et al. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24, 627–642 (2004).ADS 
    Article 

    Google Scholar 
    Eisenbarth, S. & Zettler, M. L. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea. J. Mar. Syst. 155, 1–10 (2016).Article 

    Google Scholar 
    Zettler, M. L., Bochert, R. & Pollehne, F. Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia. Mar. Biol. 156, 1949–1961. https://doi.org/10.1007/s00227-009-1227-9 (2009).CAS 
    Article 

    Google Scholar 
    Cary, S. C., Vetter, R. D. & Felbeck, H. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55, 31–45 (1989).ADS 
    Article 

    Google Scholar 
    Le Pennec, M., Beninger, P. G. & Herry, A. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp. Biochem. Physiol. A Physiol. 111, 183–189. https://doi.org/10.1016/0300-9629(94)00211-B (1995).Article 

    Google Scholar 
    Taylor, J. D. & Glover, E. A. Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol. Soc. Lond. Spec. Publ. 177, 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12 (2000).ADS 
    Article 

    Google Scholar 
    Lim, S. J. et al. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. MSystems 4, e00280. https://doi.org/10.1128/mSystems.00280-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    König, S. et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat. Microbiol. 2, 16193. https://doi.org/10.1038/nmicrobiol.2016.193 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16195. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc. Natl. Acad. Sci. 118, e2104378118. https://doi.org/10.1073/pnas.2104378118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lim, S. J. et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 13, 902–920. https://doi.org/10.1038/s41396-018-0318-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Taylor, J., Glover, E. & Williams, S. Diversification of chemosymbiotic bivalves: Origins and relationships of deeper water Lucinidae. Biol. J. Lin. Soc. 111, 401–420. https://doi.org/10.1111/bij.12208 (2014).Article 

    Google Scholar 
    Taylor, J. & Glover, E. Biology, Evolution and Generic Review of the Chemosymbiotic Bivalve Family Lucinidae (Ray Society, 2021).
    Google Scholar 
    Nagel, B. et al. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf-An isotope-based approach. J. Geophys. Res. Biogeosci. 118, 361–371. https://doi.org/10.1002/jgrg.20040 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Neumann, A. & Flohr, A. The bivalve Lembulus bicuspidatus may enhance denitrification in shelf sediment at the Angola-Benguela Frontal Zone. Afr. J. Mar. Sci. 40, 91–96. https://doi.org/10.2989/1814232X.2018.1437774 (2018).Article 

    Google Scholar 
    Sampaio, L., Rodrigues, A. M. & Quintino, V. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60, 1790–1802. https://doi.org/10.1016/j.marpolbul.2010.06.003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakko, A. L. The influence of the Benguela upwelling system on Namibia’s marine biodiversity. Biodivers. Conserv. 7, 419–433. https://doi.org/10.1023/A:1008867310010 (1998).Article 

    Google Scholar 
    Levin, L. A., Mendoza, G. F., Konotchick, T. & Lee, R. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res. II 56, 1632–1648. https://doi.org/10.1016/j.dsr2.2009.05.010 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Soto, L. A. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Res. II 56, 1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Weems, J., Iken, K., Gradinger, R. & Wooller, M. J. Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Biol. Ecol. 430, 32–42. https://doi.org/10.1016/j.jembe.2012.06.015 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740. https://doi.org/10.1002/ece3.4712 (2019).Article 
    PubMed 

    Google Scholar 
    DavySimon, K., Allemand, D. & WeisVirginia, M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261. https://doi.org/10.1128/MMBR.05014-11 (2012).CAS 
    Article 

    Google Scholar 
    Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429 (2011).ADS 
    Article 

    Google Scholar 
    Berg, C. J. & Alatalo, P. Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165–179. https://doi.org/10.1016/0044-8486(84)90264-3 (1984).CAS 
    Article 

    Google Scholar 
    Dando, P. R. & Southward, A. J. Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. Mar. Biol. Assoc. U.K. 66, 915–929. https://doi.org/10.1017/S0025315400048529 (1986).CAS 
    Article 

    Google Scholar 
    Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. 13C/12C ratios in marine invertebrates from reducing sediments: Confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Fisher, C. R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 (1990).CAS 

    Google Scholar 
    Duperron, S., Fiala-Medioni, A., Caprais, J. C., Olu, K. & Sibuet, M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): Comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol. Ecol. 59, 64–70. https://doi.org/10.1111/j.1574-6941.2006.00194.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanzerl, H., Salvo, F., Jones, S. W. & Dufour, S. C. Feeding strategies in symbiotic and asymbiotic thyasirid bivalves. J. Sea Res. 145, 16–23. https://doi.org/10.1016/j.seares.2018.12.005 (2019).ADS 
    Article 

    Google Scholar 
    Descolas-Gros, C. & Fontugne, M. R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87, 1–6. https://doi.org/10.1007/BF00396999 (1985).CAS 
    Article 

    Google Scholar 
    Brooks, J. M. et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238, 1138. https://doi.org/10.1126/science.238.4830.1138 (1987).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conway, N., Capuzzo, J. M. & Fry, B. The role of endosymbiotic bacteria in the nutrition of Solemya velum: Evidence from a stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34, 249–255. https://doi.org/10.4319/lo.1989.34.1.0249 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Conway, N. M., Howes, B. L., McDowell Capuzzo, J. E., Turner, R. D. & Cavanaugh, C. M. Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 601–613. https://doi.org/10.1007/BF00346178 (1992).Article 

    Google Scholar 
    Rau, G. H. Low 15N/14N in hydrothermal vent animals: Ecological implications. Nature 289, 484. https://doi.org/10.1038/289484a0 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennicutt, M. C. et al. Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. https://doi.org/10.1016/0009-2541(92)90009-T (1992).CAS 
    Article 

    Google Scholar 
    Lee, R. W. & Childress, J. J. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl. Environ. Microbiol. 60, 1852–1858. https://doi.org/10.1128/AEM.60.6.1852-1858.1994 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Zanden, M. J. V. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).ADS 
    Article 

    Google Scholar 
    Nagel, B., Gaye, B., Lahajnar, N., Struck, U. & Emeis, K.-C. Effects of current regimes and oxygenation on particulate matter preservation on the Namibian shelf: Insights from amino acid biogeochemistry. Mar. Chem. 186, 121–132. https://doi.org/10.1016/j.marchem.2016.09.001 (2016).CAS 
    Article 

    Google Scholar 
    Holmes, M. E. et al. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134, 1–12. https://doi.org/10.1016/0025-3227(96)00031-X (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article 

    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750. https://doi.org/10.4319/lom.2009.7.740 (2009).CAS 
    Article 

    Google Scholar 
    Glibert, P. M., Middelburg, J. J., McClelland, J. W. & Jake Vander Zanden, M. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol. Oceanogr. 64, 950–981. https://doi.org/10.1002/lno.11087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. I 114, 137–148. https://doi.org/10.1016/j.dsr.2016.05.005 (2016).CAS 
    Article 

    Google Scholar 
    Steinkopf, M. Trophische Strukturen des Mesozooplanktons im Benguela Auftriebsgebiet vor Namibia (Universität Rostock, 2018).
    Google Scholar 
    Sigman, D. & Fripiat, F. Nitrogen isotopes in the Ocean. In Encyclopedia of Ocean Sciences 3rd edn, Vol. 263 (eds Cochran, J. K. et al.) 268 (Academic Press, 2019).
    Google Scholar 
    Nagel, B. et al. Nutrients and δ15N measured in water samples in the oxygen minimum zone over the Namibian shelf during the Meteor campaign M76–2 in 2008. PANGAEA. https://doi.org/10.1594/PANGAEA.892369 (2018).Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T. & Tortell, P. D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74, 1030–1040 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Prokopenko, M. G., Hammond, D. E. & Stott, L. Lack of isotopic fractionation of δ 15N of organic matter during long-term diagenesis in marine sediments, ODP Leg 202, Sites 1234 and 1235. In Proc. Ocean Drilling Program(eds. R. Tiedemann, A. C. Mix, C. Richter and W. F. Ruddiman) 22 (2006).Prokopenko, M. G. et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“Riding on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, 4203. https://doi.org/10.1029/2012PA002321 (2012).ADS 
    Article 

    Google Scholar 
    Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol. J. 12, 113–127. https://doi.org/10.1080/01490459409377977 (1994).CAS 
    Article 

    Google Scholar 
    Grasshoff, K. et al. (eds) Methods of Seawater Analysis 3rd edn. (Wiley, 2009).
    Google Scholar 
    Hofmann, D., Gehre, M. & Jung, K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39, 233–244. https://doi.org/10.1080/1025601031000147630 (2003).CAS 
    Article 

    Google Scholar 
    Veuger, B., Middelburg, J. J., Boschker, H. T. S. & Houtekamer, M. Analysis of 15N incorporation into D-alanine: A new method for tracing nitrogen uptake by bacteria. Limnol. Oceanogr. Methods 3, 230–240. https://doi.org/10.4319/lom.2005.3.230 (2005).CAS 
    Article 

    Google Scholar 
    Loick-Wilde, N. et al. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob. Change Biol. 25, 794–810. https://doi.org/10.1111/gcb.14546 (2019).ADS 
    Article 

    Google Scholar 
    Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26, 835–844. https://doi.org/10.1007/s11284-011-0844-1 (2011).Article 

    Google Scholar 
    Chikaraishi, Y. et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. Evol. 4, 2423–2449. https://doi.org/10.1002/ece3.1103 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eglite, E. et al. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: A stable nitrogen isotope approach. Ecosphere 9, e02135. https://doi.org/10.1002/ecs2.2135 (2018).Article 

    Google Scholar 
    Fujii, T. et al. Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8, 1221. https://doi.org/10.3390/microorganisms8081221 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral–dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182. https://doi.org/10.3390/microorganisms9010182 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Maeda, T. et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7, e42024. https://doi.org/10.1371/journal.pone.0042024 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pjevac, P. et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front. Microbiol. 12, 1069 (2021).Article 

    Google Scholar 
    Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. https://doi.org/10.1038/srep08365 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541. https://doi.org/10.1002/ece3.2951 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, J. J. & Cavanaugh, C. M. Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 1496–1502. https://doi.org/10.4319/lo.1995.40.8.1496 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Fry, B. Stable Isotope Ecology (Springer, 2006).Book 

    Google Scholar 
    Emeis, K. et al. pCO2 underway data from the Benguela upwelling system in southeastern South Atlantic Ocean. PANGAEA. https://doi.org/10.1594/PANGAEA.880406 (2017).Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Goericke, R., Montoya, J. & Fry, B. Physiology and isotopic fractionation in algae and cyanobacteria. In Stable Isotopes in Ecology and Environmental Science (eds Kajtah, K. & Michener, R. H.) 187–221 (Blackwell, 1994).
    Google Scholar 
    Duplessis, M. R., Dufour, S. C., Blankenship, L. E., Felbeck, H. & Yayanos, A. A. Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551–561. https://doi.org/10.1007/s00227-004-1350-6 (2004).Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of deposit-feeding animals in marine Sediments. Q. Rev. Biol. 62, 235–260. https://doi.org/10.1086/415511 (1987).Article 

    Google Scholar 
    Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).ADS 
    Article 

    Google Scholar 
    Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85, 186–196. https://doi.org/10.1016/j.seares.2013.04.018 (2014).ADS 
    Article 

    Google Scholar 
    McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744. https://doi.org/10.1016/j.gca.2007.06.061 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Zbinden, M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar. Biol. 162, 435–448. https://doi.org/10.1007/s00227-014-2591-7 (2015).CAS 
    Article 

    Google Scholar 
    Whitlatch, R. B. & Obrebski, S. Feeding selectivity and coexistence in two deposit-feeding gastropods. Mar. Biol. 58, 219–225. https://doi.org/10.1007/BF00391879 (1980).Article 

    Google Scholar 
    Connor, M. S. & Robert, K. E. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53, 271–275 (1982).ADS 
    Article 

    Google Scholar 
    Feller, R. J. Dietary immunoassay of Ilyanassa obsoleta, the eastern mud snail. Biol. Bull. 166, 96–102. https://doi.org/10.2307/1541433 (1984).Article 

    Google Scholar 
    Kelaher, B. P., Levinton, J. S. & Matthew Hoch, J. Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 292, 139–157. https://doi.org/10.1016/S0022-0981(03)00183-7 (2003).Article 

    Google Scholar 
    Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    Checkley, D. M. & Miller, C. A. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1449–1456. https://doi.org/10.1016/0198-0149(89)90050-2 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. C. & Fisher, C. R. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In The Microbiology of Deep-Sea Hydrothermal Vents (ed. Karl, D. M.) 125–167 (CRC Press, 1995).
    Google Scholar 
    Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134. https://doi.org/10.1038/s41396-019-0486-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289 (1999).CAS 
    Article 

    Google Scholar 
    Hentschel, U. & Felbeck, H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata is not regulated by oxygen. Appl. Environ. Microbiol. 61, 1630–1633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sacks, L. E. & Barker, H. A. The influence of oxygen on nitrate and nitrite reduction. J. Bacteriol. 58, 11–22. https://doi.org/10.1128/JB.58.1.11-22.1949 (1949).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Networking for food production

    Mahdavi, A. et al. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).CAS 
    Article 

    Google Scholar 
    Levin, A. et al. Nat. Rev. Chem. 4, 615–634 (2020).CAS 
    Article 

    Google Scholar 
    Graedel, T. E. Annu. Rev. Energy Environ. 21, 69–98 (1996).Article 

    Google Scholar 
    Erkman, S. J. Clean. Prod. 5, 1–10 (1997).Article 

    Google Scholar 
    Lao, A. R., Aviso, K. B., Cabezas, H. & Tan, R. R. Nat. Sustain. https://doi.org/10.1038/s41893-022-00912-w (2022).Benke, K. & Tomkins, B. Sustain. Sci. Practice Policy 13, 13–26 (2017).
    Google Scholar 
    Treich, N. Environ. Resource Econ. 79, 33–61 (2021).Article 

    Google Scholar 
    Liu, J., Caspersen, S. & Yong, J. W. H. Elife 11, e77202 (2022).Article 

    Google Scholar 
    Friedler, F., Tarján, K., Huang, Y. W. & Fan, L. T. Chem. Eng. Sci. 47, 1973–1988 (1992).CAS 
    Article 

    Google Scholar 
    Sait, S. M., Liu, W.-C., Thompson, D. J., Godfray, H. C. J. & Begon, M. Nature 405, 448–450 (2000).CAS 
    Article 

    Google Scholar 
    Nelson, M. Space Sci. Technol. 2021, 8067539 (2021).Article 

    Google Scholar  More

  • in

    Sniffing out forest fungi

    Truffles are socially and economically important in parts of Croatia. They can be worth up to €5,000 (US$5,300) per kilogram. The truffle industry and related tourism provides jobs, supplements incomes and boosts local economies. It’s not just about money, however; many people just love being out in the forest looking for them.My fascination with fungi began at the age of six, when my father and grandfather began taking me out to hunt for game and to collect mushrooms near our home in Istria. Today, I focus mainly on truffles and other hypogeous fungi, which produce their fruiting bodies underground. I spend 50–100 days a year in the field with my dogs, collecting samples and data on the life cycles, ecology and geographical spread of fungi across Croatia. Here, I’m with my dog Masha. I love the work.Thirty years ago, rainfall used to be more predictable across the year in Istria. Now, the climate is more extreme, and includes droughts. Truffles require a specific amount of water to grow. And warm winters have increased the population of wild boars, which damage the soil and eat the truffles. The truffles are becoming harder to find.Truffle plantations could take the pressure off natural habitats. There, the soil water content can be controlled, agricultural methods can be used to enhance production and boars can be kept out. We’re studying the viability of farming black truffles, in part by experimenting with different ways to inoculate tree seedlings with their spores.We’re using DNA barcoding to identify fungi in soil from their spores and root-like mycelium in protected areas. We’re finding that there are often many more species present than previously thought.Our comparisons of areas with and without truffles could help to reveal why they grow in some areas but not others. Our work is also helping to show the importance of biodiversity in places such as the Adriatic islands of Brijuni National Park. More