Sixth sense in the deep-sea: the electrosensory system in ghost shark Chimaera monstrosa
Danovaro, et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4(2), 181–192. https://doi.org/10.1038/s41559-019-1091-z (2020).Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29(8), 465–475. https://doi.org/10.1016/j.tree.2014.06.002 (2014).Article
PubMed
Google Scholar
Collin, S. P. The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behav. Evol. 80(2), 80–96. https://doi.org/10.1159/000339870 (2012).Article
PubMed
Google Scholar
Carrier, J. C., Musick, J. A., & Heithaus, M. R. (Eds.). Biology of sharks and their relatives. CRC (2012).Musick, J. A. & Cotton, C. F. Bathymetric limits of chondrichthyans in the deep sea: a re-evaluation. Deep Sea Res. Part II 115, 73–80. https://doi.org/10.1016/j.dsr2.2014.10.010 (2015).Article
Google Scholar
Treberg, J. R. & Speers-Roesch, B. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?. J. Exp. Biol. 219(5), 615–625. https://doi.org/10.1242/jeb.128108 (2016).Article
PubMed
Google Scholar
Didier, D. A., Kemper, J. M. & Ebert, D. A. Phylogeny, biology and classification of extant holocephalans. In Biology of Sharks and Their Relatives, 2nd edn (Carrier, J. C., Musick, J. A. & Heithaus, M. R., eds), pp. 97–124. New York, NY: CRC Pres. (2012).Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish Biol. 88(3), 837–1037. https://doi.org/10.1111/jfb.12874 (2016).CAS
Article
PubMed
Google Scholar
Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E. & Tietjen, K. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541(7636), 208–211. https://doi.org/10.1038/nature20806 (2017).ADS
CAS
Article
PubMed
Google Scholar
Lisney, T. J. A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev. Fish Biol. Fisheries 20(4), 571–590. https://doi.org/10.1007/s11160-010-9162-x (2010).Article
Google Scholar
Finucci, B. et al. Ghosts of the deep–biodiversity, fisheries, and extinction risk of ghost sharks. Fish Fish. 22(2), 391–412. https://doi.org/10.1111/faf.12526 (2021).Article
Google Scholar
Newton, K. C., Gill, A. B. & Kajiura, S. M. Electroreception in marine fishes: chondrichthyans. J. Fish Biol. 95(1), 135–154. https://doi.org/10.1111/jfb.14068 (2019).Article
PubMed
Google Scholar
Crampton, W. G. Electroreception, electrogenesis and electric signal evolution. J. Fish Biol. 95(1), 92–134. https://doi.org/10.1111/jfb.13922 (2019).Article
PubMed
Google Scholar
Whitehead, D. L. Ampullary organs and electroreception in freshwater Carcharhinus leucas. J. Physiol.-Paris 96(5–6), 391–395. https://doi.org/10.1016/S0928-4257(03)00017-2 (2002).Article
PubMed
Google Scholar
Raschi, W. G., & Gerry, S. Adaptations in the elasmobranch electroreceptive system. Fish Adaptations. Enfield, NH: Scientific Publishers, 233–258 (2003).Atkinson, C. J. L. & Bottaro, M. Ampullary pore distribution of Galeus melastomus and Etmopterus spinax: possible relations with predatory lifestyle and habitat. J. Mar. Biol. Assoc. UK 86(2), 447–448. https://doi.org/10.1017/S0025315406013336 (2006).Article
Google Scholar
Kempster, R. M. & Collin, S. P. Electrosensory pore distribution and feeding in the basking shark Cetorhinus maximus (Lamniformes: Cetorhinidae). Aquat. Biol. 12(1), 33–36. https://doi.org/10.3354/ab00328 (2011).Article
Google Scholar
Kempster, R. M., McCarthy, I. D. & Collin, S. P. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J. Fish Biol. 80(5), 2055–2088. https://doi.org/10.1111/j.1095-8649.2011.03214.x (2012).CAS
Article
PubMed
Google Scholar
Whitehead, D. L., Gauthier, A. R., Mu, E. W., Bennett, M. B. & Tibbetts, I. R. Morphology of the Ampullae of Lorenzini in juvenile freshwater Carcharhinus leucas. J. Morphol. 276(5), 481–493. https://doi.org/10.1002/jmor.20355 (2015).Article
PubMed
Google Scholar
Gauthier, A. R. G., Whitehead, D. L., Tibbetts, I. R., Cribb, B. W. & Bennett, M. B. Morphological comparison of the Ampullae of Lorenzini of three sympatric benthic rays. J. Fish Biol. 92(2), 504–514. https://doi.org/10.1111/jfb.13531 (2018).CAS
Article
PubMed
Google Scholar
Fields, R. D., Bullock, T. H. & Lange, G. D. Ampullary sense organs, peripheral, central and behavioral electroreception in Chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav. Evol. 41(6), 269–289. https://doi.org/10.1159/000113849 (1993).CAS
Article
PubMed
Google Scholar
Didier, D.A. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). American Museum Novitates; n. 3119 (1995).Serena, F. Field identification guide to the sharks and rays of the Mediterranean and Black Sea (Food and Agriculture Organization, 2005).
Google Scholar
Holt, R. E., Foggo, A., Neat, F. C. & Howell, K. L. Distribution patterns and sexual segregation in chimaeras: implications for conservation and management. ICES J. Mar. Sci. 70(6), 1198–1205. https://doi.org/10.1093/icesjms/fst058 (2013).Article
Google Scholar
Ragonese, S., Vitale, S., Dimech, M., & Mazzola, S. Abundances of demersal sharks and chimaera from 1994–2009 scientific surveys in the central Mediterranean Sea. PloS one, 8(9). https://doi.org/10.1371/journal.pone.0074865 (2013).Vacchi, M., & Orsi, L. R. Alimentazione di Chimaera monstrosa L. sui fondi batiali liguri. Atti della Società Toscana di Scienze Naturali, Memorie serie B, 86, 388–391 (1979).Macpherson, E. Food and feeding of Chimaera monstrosa, Linnaeus, 1758, in the western Mediterranean. ICES J. Mar. Sci. 39(1), 26–29. https://doi.org/10.1093/icesjms/39.1.26 (1980).Article
Google Scholar
Mauchline, J. & Gordon, J. D. M. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75(2–3), 269–278. https://doi.org/10.1007/BF00406012 (1983).Article
Google Scholar
Albo-Puigserver, et al. Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 524, 255–268. https://doi.org/10.3354/meps11188( (2015).ADS
Article
Google Scholar
Priede, I. G. Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press (2017).Ferrando, S. et al. First description of a palatal organ in Chimaera monstrosa (Chondrichthyes, Holocephali). Anat. Rec. 299(1), 118–131. https://doi.org/10.1002/ar.23280 (2016).Article
Google Scholar
Garza-Gisholt, E., Hart, N. S., & Collin, S. P. Retinal morphology and visual specializations in three species of chimaeras, the deep-sea R. pacifica and C. lignaria, and the Vertical Migrator C. milii (Holocephali). Brain, behavior and evolution, 92(1–2), 47–62. https://doi.org/10.1159/000490655 (2018).Pethybridge, H., Daley, R. K. & Nichols, P. D. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409(1–2), 290–299. https://doi.org/10.1016/j.jembe.2011.09.009 (2011).Article
Google Scholar
Rivera-Vicente, A. C., Sewell, J. & Tricas, T. C. Electrosensitive spatial vectors in elasmobranch fishes: implications for source localization. PLoS ONE 6(1), e16008. https://doi.org/10.1371/journal.pone.0016008 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Kajiura, S. M., Cornett, A. D. & Yopak, K. E. Sensory adaptations to the environment: electroreceptors as a case study. Biol. Sharks Relatives 2, 393–434 (2010).Article
Google Scholar
Raschi, W. A morphological analysis of the Ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J. Morphol. 189(3), 225–247. https://doi.org/10.1002/jmor.1051890303 (1986).Article
PubMed
Google Scholar
Jordan, L. K. et al. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. Conserv. Physiol. 1(1), cot002. https://doi.org/10.1093/conphys/cot002 (2013).Wueringer, B. E., Peverell, S. C., Seymour, J., Squire Jr, L., Kajiura, S. M., & Collin, S. P. Sensory systems in sawfishes. 1. The ampullae of Lorenzini. Brain, behavior and evolution, 78(2), 139–149. https://doi.org/10.1159/000329515 (2011).Bird C.S. The tropho-spatial ecology of deep-sea sharks and chimaeras from a stable isotope perspective. PhD thesis – University of Southampton, UK (2017).Andres, K. H. & Von Düring, M. Comparative anatomy of vertebrate electroreceptors. Prog Brain Res 74, 113–131. https://doi.org/10.1016/S0079-6123(08)63006-X (1998).Article
Google Scholar
Crooks, N. & Waring, C. P. A study into the sexual dimorphisms of the Ampullae of Lorenzini in the lesser-spotted catshark, Scyliorhinus canicula (Linnaeus, 1758). Environ. Biol. Fishes 96(5), 585–590. https://doi.org/10.1016/S0079-6123(08)63006-X (2013).Article
Google Scholar
Didier, D. A. Phylogeny and classification of extant Holocephali. Biol. Sharks Relatives 4, 115–138 (2004).Article
Google Scholar
Wueringer, B. E. & Tibbetts, I. R. Comparison of the lateral line and ampullary systems of two species of shovelnose ray. Rev. Fish Biol. Fisheries 18(1), 47–64. https://doi.org/10.1007/s11160-007-9063-9 (2008).Article
Google Scholar
Theiss, S. M., Collin, S. P. & Hart, N. S. Morphology and distribution of the ampullary electroreceptors in wobbegong sharks: implications for feeding behaviour. Mar. Biol. 158(4), 723–735. https://doi.org/10.1007/s00227-010-1595-1 (2011).Article
Google Scholar
Schäfer, B. T. et al. Morphological observations of Ampullae of lorenzini in Squatina guggenheim and S. occulta (Chondrichthyes, Elasmobranchii, Squatinidae). Microscopy Res Tech. 75(9), 1213–1217. https://doi.org/10.1002/jemt.22051 (2012).Brown, B. R. Sensing temperature without ion channels. Nature 421(6922), 495–495. https://doi.org/10.1038/421495a (2003).ADS
CAS
Article
PubMed
Google Scholar
Fields, R. D., Fields, K. D. & Fields, M. C. Semiconductor gel in shark sense organs?. Neurosci. Lett. 426(3), 166–170. https://doi.org/10.1016/j.neulet.2007.08.064 (2007).CAS
Article
PubMed
PubMed Central
MATH
Google Scholar
Brown, B. R. Temperature response in electrosensors and thermal voltages in electrolytes. J. Biol. Phys. 36(2), 121–134. https://doi.org/10.1007/s10867-009-9174-8 (2010).Article
PubMed
Google Scholar
Josberger, E. E. et al. Proton conductivity in Ampullae of Lorenzini jelly. Sci. Adv. 2(5), e1600112. https://doi.org/10.1126/sciadv.1600112 (2016).ADS
Article
PubMed
PubMed Central
Google Scholar
Froese, R. and Pauly D. https://www.fishbase.de/ (2021).Sims, D. W. The biology, ecology and conservation of elasmobranchs: recent advances and new frontiers. J. Fish Biol. 87(6), 1265–1270. https://doi.org/10.1111/jfb.12861 (2015).CAS
Article
PubMed
Google Scholar
Heithaus, M. R., Frid, A., Wirsing, A. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article
PubMed
Google Scholar
Dymek, J., Muñoz, P., Mayo-Hernández, E., Kuciel, M. & Żuwała, K. Comparative analysis of the olfactory organs in selected species of marine sharks and freshwater batoids. Zool. Anz. 294, 50–61. https://doi.org/10.1016/j.jcz.2021.07.013 (2021).Article
Google Scholar
Bellono, N. W., Leitch, D. B. & Julius, D. Molecular tuning of electroreception in sharks and skates. Nature 558(7708), 122. https://doi.org/10.1038/s41586-018-0160-9 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Luchetti, E. A., Iglésias, S. P., & Sellos, D. Y. Chimaera opalescens n. sp., a new chimaeroid (Chondrichthyes: Holocephali) from the north‐eastern Atlantic Ocean. J. Fish Biol., 79(2), 399–417. https://doi.org/10.1111/j.1095-8649.2011.03027.x (2011).Marranzino, A. N. & Webb, J. F. Flow sensing in the deep sea: the lateral line system of stomiiform fishes. Zool. J. Linn. Soc. 183(4), 945–965. https://doi.org/10.1093/zoolinnean/zlx090 (2018).Article
Google Scholar
Yopak, K. E. & Montgomery, J. C. Brain organization and specialization in deep-sea chondrichthyans. Brain Behav. Evol. 71(4), 287–304. https://doi.org/10.1159/000127048 (2008).Article
PubMed
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
R Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). More