Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns
Soil physicochemical propertiesTable 1 shows the basic chemical characteristics of the 81 soil samples. The pH values of most of the soil samples from the rape fields and the paddy fields ranged between 6.5 and 7.5, while the pH values of most of the soil samples from the wheat fields were less than 6.0. The relatively low pH values for soils from the wheat fields could be due to traditional farming practices adopted in the farms, including continuous cropping. In addition, acidic soil is conducive for wheat growth. Organic matter contents were generally low in all the soils, and soils from the rape fields had the lowest organic matter contents. Generally, the mean soil total N contents in the fields were in the order of rape fields (756 mg/kg) Zn > Cd, and the concentrations of metals in most soil samples collected from the wheat and paddy fields were in the order of Fe > Mn > Pb > Cu > Zn > Cd. However, independent of the farmland use patterns, the concentrations of all the metals extracted using NH4OAC and NH4NO3 were much lower than those extracted with the other three types of extractants.Table 3 Extractable metal concentrations in the soils (mg/kg).Full size tableThe concentrations of 0.1 mol/L HCl-extracted heavy metals in soils from the rape fields at the R21, R23, and R32 sites, in the wheat fields at the W21 site, and in the paddy fields at the P1 and P2 sites were extremely low, especially in the cases of Fe and Pb. For example, 0.1 mol/L HCl-extracted Fe concentrations at the R21, R23, and R32 sites were 0.2 mg/kg, 0.6 mg/kg, and below the detection limit, respectively, whereas the range of 0.1 mol/L HCl-extracted Fe concentration in the other sites in the rape fields was 22.4–533 mg/kg. Therefore, 0.1 mol/L HCl-extracted heavy metal concentrations at the R21, R23, R32, W21, P1, and P2 sites were omitted from subsequent analyses to ensure homogeneity of variance. The basic pH values at the sites (pH values at R21, R23, R32, W21, P1, and P2 were 8.0, 8.0, 7.7, 8.0, 8.0, and 8.0, respectively) could explain this low HCl-extractability and reduced mobility35,36. Although HCl is considered a universal extractant, it may not be suitable under alkaline soil conditions.Heavy metal concentrations in rape, wheat and rice grainsFigure 4 illustrates the concentrations of six heavy metals in rape, wheat, and rice grains. Similar to the order of the soil metal concentrations, the Fe, Mn, Zn, and Cu concentrations in the grains were much higher than the Pb and Cd concentrations.Figure 4Concentrations of heavy metals ((a) Cu, (b) Zn, (c)Pb, (d) Cd, (e) Fe, and (f) Mn) in the grain of three different crops. (Rape grains (n = 36); Wheat grains (n = 25); Rice grains (n = 20), on dry weight basis).Full size imageThe results are similar to those reported in previous studies with regard to heavy metal concentration trends in rice grains16,37. The reason could be Fe, Mn, Zn, and Cu are all essential for crop growth as micronutrients, leading to the higher levels in soils. Among the studied crops, rice grains accumulated relatively lower amounts of Fe, Mn, and Zn than rape and wheat grains, where Pb and Cd concentrations exhibited opposite trends. The trends are consistent with the findings of Liu et al.38 and Du et al.1, and indicate that rice has a stronger Cd uptake capacity from soil. Williams et al.39 also reported higher rice Cd concentrations than wheat, barley, and maize Cd concentrations. The results could also be attributed to water management and soil oxidation–reduction status in soil-rice systems. Paddy fields are irrigated considerably more than wheat and rape fields. In addition, the water in the study area was contaminated by Cd, Cu, As, and Zn27. Previous studies have also reported that water management practices influence Cd uptake by rice and its bioavailability in soils19,20,40. In the cases of Zn and Pb, according to Feng et al.23, rice grains accumulated lower amounts of Zn than wheat grains, whereas rice grains accumulated higher Pb amounts than wheat grains. Although soil Cd concentrations were generally high in the rape fields, the concentrations of Cd in rape grains were lower than those in the wheat and rice grains.On the other hand, Cu concentrations in grains in all the three crops were below the maximum allowable Cu levels in food (10 mg/kg (GB 15199-94)). Similarly, Zn concentrations in rice grains were below the maximum allowable Zn levels in food (50 mg/kg (GB 13106-91)), while 25% of the rape grain samples and 20% of the wheat grain samples exceeded the threshold value. Although total Pb concentrations in soils were generally low in the three farmland use patterns, Pb concentrations in 70% of the rice grain samples exceeded the maximum allowable Pb levels in food (0.2 mg/kg (GB 2762-2005)). Only four rape and two wheat grain samples exceeded the Pb threshold values, respectively. The varying Pb trends are potentially linked to physical contamination from direct atmospheric deposition8, differences in physiological activities among the crops, and the fruit structures of the studied crops23. Similar to the soil Cd contamination, 96% and 60% of wheat and rice grain samples, respectively exceeded the maximum allowable Cd levels in food (0.1 mg/kg and 0.2 mg/kg for wheat and rice, respectively (GB 2762-2005)). Furthermore, Cd concentrations in approximately 10% of the rice grain samples exceeded 1.0 mg/kg. Conversely, only 14% of rape grain samples exceeded the maximum allowable Cd levels in food (Cd: 0.1 mg/kg for rape (GB 2762-2005)), and the maximum Cd concentration in rape grains was 0.18 mg/kg. According to the results, rape grains were generally safe for consumption whereas wheat and rice grains posed health threats in the study area.Soil to grain bioaccumulation factorsBAF values have been used widely to evaluate the capacity of crop grains to accumulate metals from soil30,41. Similar to a previous study on food crops37, Fe and Pb had the lowest BAF values (Fig. 5). Generally, metal accumulation in crop grains did not increase considerably with an increase in total concentrations of metals in soil. Heavy metal accumulation could have been regulated by crops, so that only low amounts were accumulated into grains. In addition, there were significant differences in some BAF values of the same metal across different crop species (Fig. 5). Different crop species have different accumulation capacities for the same metal42. Overall, the average BAF values of Cu (0.22), Zn (0.37), and Mn (0.14) in wheat grains were significantly higher than those in rape and rice grains. The average BAF value of Pb (0.005) in rice grains was significantly higher than those in rape and wheat grains, and the average BAF values of Cu (0.07) and Cd (0.06) in rape grains were significantly lower than those in wheat and rice grains. The results indicated that rape grains have lower heavy metal accumulation capacity than wheat and rice grains, except in the cases of Zn and Fe. However, the finding is not consistent with the results of a previous study43, which report that grasses have lower accumulation capacity than dicotyledonous plants. Nevertheless, as mentioned above, numerous factors could influence the accumulation capacity of metals in crop grains.Figure 5Bioaccumulation factors (BAF) of heavy metals ((a) Cu, (b) Zn, (c) Pb, (d) Cd, (e) Fe, and (f) Mn) from soil to the grains of three crop species. The error bars indicate the standard deviation. Different letters on bars indicate significant difference (p More