More stories

  • in

    Dental macrowear reveals ecological diversity of Gorilla spp.

    Fossey, D. & Harcourt, D. H. Feeding ecology of free-ranging mountain gorilla (Gorilla gorilla beringei). In Primate ecology (ed. Clutton-Brock, T. H.) 415–447 (Academy Press, New York, 1977).Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Watts, D. Comparative socio-ecology of gorillas. In Great Ape Societies (eds. McGrew, W. C., Marchant, L. F. & Nishida, T.) 16–28 (Cambridge University Press, Cambridge, 1986).Doran, D. M. & McNeilage, A. Gorilla ecology and behavior. Evol. Anthropol. 6, 120–131 (1988).Article 

    Google Scholar 
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the mammals of the world. Primates Vol. 3 (Lynx Edicions, 2013).
    Google Scholar 
    Groves, C. Primate Taxonomy (Smithsonian Institution Press, 2001).
    Google Scholar 
    Cooksey, K. E. & Morgan, D. B. Gorilla (Gorilla). In The International encyclopedia of primatology, Vol. 1 (ed. Fuentes, A.) 472–477 (Wiley, Hoboken, 2017).McFarland, K. L. Ecology of cross river gorillas (Gorilla gorilla diehli) on Afi mountain, Cross River State, Nigeria. Ph.D. Dissertation. City University of New York, USA (2007).Rogers, M. E., Maisels, F., Wiliamson, E. A., Fernandez, M. & Tutin, C. E. G. Gorilla diet in the Lopé Reserve, Gabon: a nutritional analysis. Oecologia 84, 326–339 (1990).ADS 
    Article 

    Google Scholar 
    van Casteren, A., Wright, E., Kupczik, K. & Robbins, M. M. Unexpected hard-object feeding in Western lowland gorillas. Am. J. Phys. Anthropol. 170, 433–438 (2019).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Yamagiwa, J., Basabose, A. K., Kaleme, K. & Yumoto, T. Diet of grauer’s gorillas in montane forest of Kahuzi, Democratic Republic of Congo. Int. J. Primatol. 26, 1345–1373 (2005).Article 

    Google Scholar 
    Grueter, C. C. et al. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda. Am. J. Primatol. 75, 267–280 (2013).PubMed 
    Article 

    Google Scholar 
    Ostrofsky, K. R. & Robbins, M. M. Fruit-feeding and activity patterns of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Am. J. Phys. Anthropol. 173, 3–20 (2020).PubMed 
    Article 

    Google Scholar 
    Berthaume, M. A. Tooth cusp sharpness as a dietary correlate in great apes. Am. J. Phys. Anthropol. 153, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    King, S. J. et al. Dental senescence in a long-lived primate links infant survival to rainfall. Proc. Natl. Acad. Sci. USA 102, 16579–16583 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berthaume, M. A. & Schroer, K. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. J. Hum. Evol. 112, 15–29 (2017).PubMed 
    Article 

    Google Scholar 
    Sheine, W. S. & Kay, R. F. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47, 15–20 (1977).Article 

    Google Scholar 
    Galbany, J., Estebaranz, F., Martínez, L. M. & Pérez-Pérez, A. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates 50, 221–230 (2009).PubMed 
    Article 

    Google Scholar 
    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).PubMed 
    Article 

    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anhtropol. 80, 447–460 (1989).CAS 
    Article 

    Google Scholar 
    Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgart, A. A. Dental wear, wear rate, and dental disease in the African apes. Am. J. Primatol. 72, 481–491 (2010).PubMed 

    Google Scholar 
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anhtropol. 159, 79–104 (2016).Article 

    Google Scholar 
    Galbany, J. et al. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. Am. J. Phys. Anhtropol. 159, 457–465 (2016).Article 

    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species, in Evolutionary paleobiology of behavior and coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).Knight-Sadler, J. & Fiorenza, L. Tooth wear inclination in great ape molars. Folia Primatol. 88, 223–236 (2017).Article 

    Google Scholar 
    Kullmer, O. et al. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. et al. Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE 6, e14769 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Oxilia, G. & Kullmer, O. Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations. Int. J. Osteoarchaeol. 28, 153–161 (2018).Article 

    Google Scholar 
    Fiorenza, L. et al. The functional role of the Carabelli trait in early and late hominins. J. Hum. Evol. 145, 102816 (2020).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. & Kullmer, O. Occlusion in an adult male gorilla with a supernumerary maxillary premolar. Int. J. Primatol. 37, 762–777 (2016).Article 

    Google Scholar 
    Kullmer, O., Menz, U., & Fiorenza, L. Occlusal fingerprint analysis (OFA) reveal dental occlusal behaviour in primate teeth. In T. Martin & W. von Koenigswald (Eds.), T Martin, W von Koenigswald, K-H Südekum), Mammalian teeth: form and function. (pp. 25–43). Munich, Germany: Dr. F. Pfeil (2020)Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Estalrrich, A., & Kullmer, O. Diet and cultural diversity in Neanderthals and modern humans from dental macrowear analyses. In C. Schmidt & J. T. Watson (Eds.), Dental wear in evolutionary and biocultural contexts (pp. 39–72). London, UK: Academic Press (2020).M’Kirera, F. & Ungar, P. S. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am. J. Primatol. 60, 31–41 (2003).PubMed 
    Article 

    Google Scholar 
    Galbany, J. et al. Age-related tooth wear differs between forest and savanna primates. PLoS ONE 9, e94938 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, S. R. & Shea, B. T. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36, 37–60 (1995).PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Zanolli, C. et al. Evidence of increased hominid diversity in the Early and Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).PubMed 
    Article 

    Google Scholar 
    Krueger, K. L., Scott, J. R., Kay, R. F. & Ungar, P. S. Dental microwear textures of “phase I” and “phase II” facets. Am. J. Phys. Anthropol. 137, 485–490 (2008).PubMed 
    Article 

    Google Scholar 
    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H. & Hylander, W. L. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am. J. Phys. Anthropol. 129, 215–224 (2006).PubMed 
    Article 

    Google Scholar 
    Glowacka, H. et al. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient. Am. J. Primatol. 79, e22661 (2017).Article 

    Google Scholar 
    Cooper, J. E. & Hull, G. Gorilla pathology and health (Academic Press, 2017).
    Google Scholar 
    Hammerton, R., Hunt, K. A. & Riley, L. M. An investigation into keeper opinions of great apes diet and abnormal behaviour. J. Zoo Aquar. Res. 7, 170–178 (2019).
    Google Scholar 
    Kay, R. F. Mastication, molar tooth structure and diet in primates. Ph.D. thesis, Yale University, New Haven, CT (1973).Smith, B. H. Patterns of molar wear in hunter-gatherers and agriculturalists. Am. J. Phys. Anhtropol. 63, 39–56 (1984).CAS 
    Article 

    Google Scholar 
    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O. & Schrenk, F. Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis. Am. J. Phys. Anthropol. 143, 306–312 (2010).PubMed 
    Article 

    Google Scholar 
    Kullmer, O., Huck, M., Engel, K., Schrenk, F. & Bromage, T. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In Three-dimensional imaging in paleoanthropology and prehistoric archaeology (eds. Mafart, B. & Delingette, H.) 71–82 (Acts of the XIVth UISPP Congress, BAR Int. Ser.1049, 2002).Hammer, Ø. & Harper, D. Paleontological data analysis (Blackwell Publishing, 2006).
    Google Scholar 
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).MATH 
    Article 

    Google Scholar 
    Noguchi, K. & Gel, Y. R. Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparam. Stat. 22, 897–913 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gastwirth, J. L., et al. Lawstat: tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021)Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4 (2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Metagenomic assembled plasmids of the human microbiome vary across disease cohorts

    Dollive, S. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13, 60 (2012).Article 

    Google Scholar 
    Pausan, M. R. Exploring the archaeome: Detection of archaeal signatures in the human body. Front. Microbiol 10, 2796 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, D. P., Pazdernik, N. J. & McGehee, M. R. Plasmids. in Molecular Biology, 712–748 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-813288-3.00023-9.Meinhardt, F., Schaffrath, R. & Larsen, M. Microbial linear plasmids. Appl. Microbiol. Biotechnol 47, 329–336 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. MBio 7, 00863–16 (2016).Article 

    Google Scholar 
    Łobocka, M. B. Genome of bacteriophage P1. J. Bacteriol. 186, 7032–7068 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spaziante, M., Oliva, A., Ceccarelli, G. & Venditti, M. What are the treatment options for resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria?. Expert Opin. Pharmacother. 21, 1781–1787 (2020).PubMed 
    Article 

    Google Scholar 
    Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 1457, 61–91 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ogilvie, L. A., Firouzmand, S. & Jones, B. V. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered 3, 13–31 (2012).Article 

    Google Scholar 
    Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9, 87924 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kav, A. B. Insights into the bovine rumen plasmidome. Proc. Natl. Acad. Sci. 109, 5452–5457 (2012).CAS 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Brown Kav, A. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ. Microbiol. 22, 32–44 (2020).PubMed 
    Article 

    Google Scholar 
    Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host. Microbe 26, 764-778.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sutton, T. D. S., Clooney, A. G. & Hill, C. Giant oversights in the human gut virome. Gut 69, 1357–1358 (2020).PubMed 
    Article 

    Google Scholar 
    Zuo, T. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662.e20 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamminen, M., Virta, M., Fani, R. & Fondi, M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29, 1225–1240 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angelakis, E. et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 27, 14–21 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackie, R. I. et al. Ecology of uncultivated oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69, 6808–6815 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Konikoff, T. & Gophna, U. Oscillospira: A central, enigmatic component of the human gut microbiota. Trends Microbiol. 24, 523–524 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, Y. et al. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 10, (2020).Bushman, F. D. Multi-omic analysis of the interaction between clostridioides difficile infection and pediatric inflammatory bowel disease. Cell Host Microbe 28, 422–433 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).PubMed 
    Article 

    Google Scholar 
    Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE 9, e90981 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halfvarson, J. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pascal, V. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nitzan, O., Elias, M., Chazan, B., Raz, R. & Saliba, W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 19, 7577–7585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton, E. M. et al. The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am. J. Gastroenterol. 104, 1162–1169 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Tariq, R. et al. Efficacy of fecal microbiota transplantation for recurrent C.Marcella, C. Systematic review: The global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. https://doi.org/10.1111/apt.16148 (2020).Article 
    PubMed 

    Google Scholar 
    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fraser-Liggett, C. Metagenomic analysis of the structure and function of the human gut microbiota in Crohn’s disease. Nat. Preced. [Internet] (2010).Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut (2017).Mira-Pascual, L. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50, 167–179 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Rampelli, S. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, (2020).Monaghan, T. M. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 12, 1752605 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chu, D. M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MD, D. G., K, F., C, C. & EL, C. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Hum. Microbiome J. 12, (2019).Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain J. Neurol. 143, 2474–2489 (2020).Article 

    Google Scholar 
    Kao, D. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA 318, 1985–1993 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. (2018). https://doi.org/10.1101/295642.Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinform. 8, 18 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (2019). Accessed Aug 2021–Mar 2022.Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Jari Oksanen et al. vegan: Community Ecology Package. (2019).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flor M. chorddiag: Interactive Chord Diagrams [Internet]. (2020).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hulsen, T., Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, (2008).Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinform. Oxf. Engl. 21, 537–539 (2005).CAS 
    Article 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinform. Oxf. Engl. 30, 2068–2069 (2014).CAS 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge

    Fox MD, Williams GJ, Johnson MD, Radice VZ, Zgliczynski BJ, Kelly ELA, et al. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol. 2018;28:3355–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63.PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagès C, Hoogenboom M, Houlbreque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds). Coral Reefs: An Ecosystem in Transition. 2011. Springer, pp 215–29.Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Ann Rev Mar Sci. 2017;9:311–35.PubMed 
    Article 

    Google Scholar 
    Fabricius KE, Klumpp DW. Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser. 1995;125:195–204.Article 

    Google Scholar 
    Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, et al. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev. 2020;95:1720–58.PubMed 
    Article 

    Google Scholar 
    Freeman CJ, Easson CG, Fiore CL, Thacker RW. Sponge–microbe interactions on coral reefs: multiple evolutionary solutions to a complex environment. Front Mar Sci. 2021;8:1–24.Article 

    Google Scholar 
    Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci USA. 2015;112:E1453–60.
    Google Scholar 
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:1–12.CAS 

    Google Scholar 
    Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT, et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rützler K. Associations between Caribbean sponges and photosynthetic organisms. In: New Perspectives in Sponge Biology: 3d International Sponge Conference, 1985. 1990. Smithsonian Institution Press.Trautman DA, Hinde R, Borowitzka MA. Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Bio Ecol. 2000;244:87–105.Article 

    Google Scholar 
    Sarà M. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol. 1971;11:214–21.Article 

    Google Scholar 
    Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc U Kingd. 2007;87:1683–92.CAS 
    Article 

    Google Scholar 
    Arillo A, Bavestrello G, Burlando B, Sarà M. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol. 1993;117:159–62.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.CAS 
    Article 

    Google Scholar 
    Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G. Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol. 2000;137:453–61.CAS 
    Article 

    Google Scholar 
    Unson MD, Faulkner DJ. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia. 1993;49:349–53.CAS 
    Article 

    Google Scholar 
    Freeman CJ, Thacker RW, Baker DM, Fogel ML. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J. 2013;7:1116–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilkinson CR. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea. Coral Reefs. 1987;5:183–8.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR, Seddon S, Westphalen G. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar Freshw Res. 1997;48:589–99.Article 

    Google Scholar 
    Thacker RW, Diaz MC, Rützler K, Erwin PM, Kimble SJ, Pierce MJ, et al. Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Hajdu E, Muricy G (eds). Porifera Research: Biodiversity, Innovation and Sustainability. 2007. Museu Nacional: Rio de Janeiro, pp 621–6.Erwin PM, Thacker RW. Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser. 2008;362:139–47.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Trott L. Light as a factor determining the distribution of sponges across the central Great Barrier Reef. Proc. 5th Int. Coral Reef Congr. 1985. pp 125–30.Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature. 2001;413:726–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerovasileiou V, Voultsiadou E. Marine caves of the mediterranean sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS One. 2012;7:1–17.Article 
    CAS 

    Google Scholar 
    Kornder NA, Cappelletto J, Mueller B, Zalm MJL, Martinez SJ, Vermeij MJA, et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs. 2021;40:1137–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente J, Webb MK, Paulay G, Rakchai W, Timmers MA, Jury CP, et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs 2021; https://doi.org/10.1007/s00338-021-02109-7.Beer S, Ilan M. In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol. 1998;131:613–7.Article 

    Google Scholar 
    Erwin PM, López-Legentil S, Turon X. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Micro Ecol. 2012;64:771–83.CAS 
    Article 

    Google Scholar 
    Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.PubMed 
    Article 

    Google Scholar 
    Biggerstaff A, Smith DJ, Jompa J, Bell JJ. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions. Coral Reefs. 2015;34:1049–61.Article 

    Google Scholar 
    Freeman CJ, Baker DM, Easson CG, Thacker RW. Shifts in sponge-microbe mutualisms across an experimental irradiance gradient. Mar Ecol Prog Ser. 2015;526:41–53.Article 

    Google Scholar 
    Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. ISME J. 2021;16:1163–75.Achlatis M, Pernice M, Green K, de Goeij JM, Guagliardo P, Kilburn MR, et al. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B Biol Sci 2019;286:20192153.Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rützler K, Duran S, Piantoni C. Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida). Mar Ecol. 2007;28:95–111.Article 

    Google Scholar 
    de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMed 
    Article 
    CAS 

    Google Scholar 
    Chalker BE. Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol. 1981;63:135–41.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–18.Article 

    Google Scholar 
    Muscatine L, McCloskey LR, Marian R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26:601–611.CAS 
    Article 

    Google Scholar 
    Koopmans M, Martens D, Wijffels RH. Growth efficiency and carbon balance for the sponge Haliclona oculata. Mar Biotechnol. 2010;12:340–349.CAS 
    Article 

    Google Scholar 
    Leys SP, Kahn AS, Fang JKH, Kutti T, Bannister RJ. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol Oceanogr. 2018;63:187–202.CAS 
    Article 

    Google Scholar 
    de Kluijver A, Bart MC, van Oevelen D, de Goeij JM, Leys SP, Maier SR, et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front Mar Sci. 2021;7:1–18.Article 

    Google Scholar 
    de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser. 2008;357:139–51.Article 
    CAS 

    Google Scholar 
    Bart MC, Mueller B, Rombouts T, van de Ven C, Tompkins G, Osinga R, et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr. 2021;66:925–38.CAS 
    Article 

    Google Scholar 
    Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs. 2004;23:413–22.Article 

    Google Scholar 
    Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, et al. A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol. 2015;17:3570–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hudspith M, Rix L, Achlatis M, Bougoure J, Guagliardo P, Clode P, et al. Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome. 2021;9:1–15.Article 
    CAS 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: User Manual/Tutorial. Plymouth, UK. 2015. pp 1–296.Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK. 2008. pp 1–214.Muscatine L, Falkowski PG, Porter JW, Dubinsky Z. Fate of photosynthetically fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B Biol Sci. 1984;222:181–202.CAS 

    Google Scholar 
    Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Chang Biol. 2014;20:1043–54.PubMed 
    Article 

    Google Scholar 
    Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. Increasing ocean stratification over the past half-century. Nat Clim Chang. 2020;10:1116–23.Article 

    Google Scholar 
    Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA. 2009;106:6176–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol. 1998;34:281–90.Article 

    Google Scholar 
    de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds). Climate Change, Ocean Acidification and Sponges. 2017. Springer, Cham, pp 373–410.Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr. 2018;63:337–51.CAS 
    Article 

    Google Scholar 
    McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.CAS 
    Article 

    Google Scholar 
    Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.CAS 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis, Thiele, 1900. Mar Biol. 2016;163:100.Article 

    Google Scholar 
    Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS. Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep. 2016;6:39038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mews LK. The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc R Soc Lond Ser B Biol Sci. 1980;209:377–401.CAS 

    Google Scholar 
    Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, van Woesik R, Yamazato K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser. 1996;139:167–178.Article 

    Google Scholar 
    Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:1–9.CAS 
    Article 

    Google Scholar 
    Wilkinson CR. Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds). Biologie des Spongiaires. 1979. Coli. Int. C.N.R.S., Paris, p No. 291.Wilkinson CR. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 1978;49:177–85.Article 

    Google Scholar 
    Berthold RJ, Borowitzka MA, Mackay MA. The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia. 1982;21:327–35.Article 

    Google Scholar 
    Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio. 2015;6:1–14.Article 
    CAS 

    Google Scholar 
    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao ZM, Zhou GW, Huang H, Wang Y. The cyanobacteria-dominated sponge Dactylospongia elegans in the South China Sea: prokaryotic community and metagenomic insights. Front Microbiol. 2017;8:1–12.
    Google Scholar 
    Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trautman DA, Hinde R. Sponge/algal symbioses: a diversity of associations. In: Seckback J (ed). Symbiosis. Springer, Dordrecht; 2006, pp 521–37.Pile AJ, Grant A, Hinde R, Borowitzka MA. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. J Exp Biol. 2003;206:4533–8.PubMed 
    Article 

    Google Scholar 
    Davy SK, Lucas IAN, Turner JR. Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol. 1996;126:773–83.Article 

    Google Scholar 
    Pupier CA, Fine M, Bednarz VN, Rottier C, Grover R, Ferrier-Pagès C. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci Rep. 2019;9:1–10.CAS 
    Article 

    Google Scholar 
    Podell S, Blanton JM, Oliver A, Schorn MA, Agarwal V, Biggs JS, et al. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome. 2020;8:1–17.Article 
    CAS 

    Google Scholar 
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Botté ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkinson CR. Interocean differences in size and nutrition of coral reef sponge populations. Science. 1987;236:1654–1657.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2013;16:225–233.PubMed 
    Article 

    Google Scholar 
    Steindler L, Beer S, Ilan M. Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis. 2002;33:263–73.
    Google Scholar 
    Lemloh M-L, Fromont J, Brümmer F, Usher KM. Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol. 2009;9:4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    The microbiome of cryospheric ecosystems

    The datasetWe curated and explored 695 published 16S rRNA gene samples from cryospheric ecosystems (Methods section and Supplementary Table 7), including polar ice sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal ocean under the influence of glacier runoff, and compared these to 3552 published 16S rRNA gene samples from non-cryospheric ecosystems, including temperate and tropical lakes and soils (Supplementary Table 7). This approach allowed us to identify and explore features specific to the cryospheric microbiome and compare it to other environmental microbiomes. However, we note a geographical bias towards polar regions in current publicly available repositories, and the paucity of alpine samples specifically highlights the need to further characterise these habitats given that they are among the most endangered cryospheric ecosystems globally. This bias is further compounded by the inconsistent methodologies applied across studies (e.g. primer pairs and sequencers used). To account for potential primer biases, we analysed two 16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r)12,13 commonly used in amplicon high-throughput sequencing. In total, this dataset contains 241,502,708 paired sequence reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into the functional space of the cryospheric microbiome, we compared 34 published metagenomes from cryospheric ecosystems with 56 metagenomes from similar but non-cryospheric ecosystems (Fig. 1A). Given the difficulty of obtaining high-quality metagenomes from cryospheric ecosystems, we restricted our analyses to glacier surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to samples where raw sequence data are available (Methods section), the breadth of habitats covered are representative of the most abundant cryospheric ecosystems, e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of permafrost may not entirely be represented due to data unavailability. We reanalysed all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue representing a snapshot of the functional diversity in the cryospheric microbiome, integrating across diverse habitats. This represents what we believe to be the first global overview of the functional repertoire of the Earth’s cryosphere compared to other ecosystems.Fig. 1: A unique cryospheric microbiome.A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs ( >0.5% relative abundance in at least one sample) in the PP1 dataset. The heatmap (inner rings) shows the presence (at a  > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.Full size imageA cryospheric microbiomeGiven the communal constraints imposed by the harsh environment of cryospheric ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a specific microbiome. Accordingly, machine-learning classification (logistic regression models, Methods) based on community composition was able to differentiate between cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy >0.96, Supplementary Table 1). Both primer pairs consistently yielded a high classification accuracy and especially a high precision. Interestingly, many of the discriminating cryospheric ASVs were spread widely across the bacterial tree of life (Fig. 1A and Supplementary Fig. 1).The notion that a part of the microbiome is specific to the cryosphere is also strongly supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we found higher pairwise phylogenetic overlap among cryospheric samples than among cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p  More

  • in

    Northern wildlife feels the heat

    Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2022).Lenoir, J. et al. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Antão, L. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01381-x (2022).Article 

    Google Scholar 
    Trisos, C. H. et al. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Outhwaite, C. L. et al. Nat. Ecol. Evol. 4, 384–392 (2020).Article 

    Google Scholar 
    Pilotto, F. et al. Nat. Commun. 11, 3486 (2020).CAS 
    Article 

    Google Scholar 
    Marta, S. et al. Nat. Ecol. Evol. 5, 1291–1300 (2021).Article 

    Google Scholar 
    Outhwaite, C. L. et al. Nature https://doi.org/10.1038/s41586-022-04644-x (2022).Article 

    Google Scholar 
    Sonne, J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01693-3 (2022).Article 

    Google Scholar 
    Stefanescu, C. et al. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13689 (2022).Article 

    Google Scholar 
    Rumpf, S. et al. Nat. Commun. 10, 4293 (2019).Article 

    Google Scholar 
    Fourcade, Y. et al. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Mingarro, M. et al. Insect Conserv. Diversity 14, 647–660 (2021).Article 

    Google Scholar 
    Hodgson, J. et al. Glob. Change Biol. https://doi.org/10.1111/gcb.16220 (2022). More

  • in

    Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm

    Experimental dataThe dataset used in this study is the global long-term air quality indicator data of 5577 regions from 2010 to 2014 extracted by Betancourt et al.14 based on the TOAR database (https://gitlab.jsc.fz-juelich.de/esde/machine-learning/aq-bench/-/blob/master/resources/AQbench_dataset.csv)29. As shown in Fig. 3, the monitoring sites include 15 regions, including EUR (Europe), NAM (North America), and EAS (East Asia), and are mainly distributed in NAM (North America), EUR (Europe) and EAS (East Asia). The dataset mainly includes the geographical location information of the monitoring site, such as longitude and latitude, the area to which it belongs, altitude, etc., and the site environment information, such as population density, night light intensity, and vegetation coverage. Since it is difficult to directly quantify factors such as the degree of industrial activity and the degree of human activity, environmental information such as the average light intensity at night and population density are used as proxy variables for the above factors. The ozone indicator records the hourly ozone concentration from air quality observation points in various regions and aggregates the collected ozone time series in units of one year into one indicator. Using a longer aggregation period can be used to average short-term weather fluctuations. The experimental data have a total of 35 input variables, including 4 categorical attributes and 31 continuous attributes. The predictor variable is the average ozone concentration in each region from 2010 to 2014. The specific variable names and descriptions14 are shown in the supplementary materials. A total of 4/5 of the total samples were used as the training set, and 1/5 were used as the test set.Figure 3Global distribution of monitoring sites.Full size imageResults of BO-XGBoost-RFEAccording to the XGBoost-RFE algorithm for feature selection, XGBoost-RFE combined with the cross-validation method is used to calculate the selected feature set in each RFE stage for fivefold cross-validation, and the mean absolute error (MAE) is used as the evaluation criterion to finally determine the number of features with the lowest mean absolute error (MAE). At the same time, the Bayesian optimization algorithm is used to adjust the hyper-parameters of XGBoost-RFE, and then the feature subset with the lowest cross-validation mean absolute error (MAE) is obtained. The main parameters of the XGBoost model in this article include the learning_rate, n_estimators, max_depth, gamma, reg_alpha, reg_lambda, colsample_bytree, and subsample. All parameters used in the model are shown in the supplementary material. Within the given parameter range, the Bayesian optimization algorithm is used, the mean absolute error (MAE) of the XGBoost-RFE fivefold cross-validation is used as the objective function, and the number of iterations is controlled to be 100. We obtained the hyperparameter combination corresponding to the lowest MAE and the corresponding optimal feature subset. The iterative process of Bayesian optimization is shown in Fig. 4.Figure 4Iterative process of Bayesian optimization.Full size imageThe parameter range and optimized value of XGBoost-RFE are shown in Table 1. The XGBoost-RFE feature selection results under the above optimized hyperparameters are shown in Fig. 5. The number of features in the feature subset with the lowest mean absolute error is 22, and the MAE is 2.410.Table 1 Main hyper-parameter range and optimized value.Full size tableFigure 5XGBoost-RFE feature selection results: Cross-validation MAE under optimal hyperparameter combination.Full size imageAdditionally, the XGBoost-RFE feature selection model without Bayesian optimization is compared with the algorithm in this study. The default parameters of the underlying model XGBoost are set to learning_rate as 0.3, max_depth as 6, gamma as 0, colsample_bytree as 1, subsample as 1, reg_alpha as 1, and reg_lambda as 0. The comparison results are shown in Table 2. The results show that the XGBoost-RFE cross-validation MAE without parameter tuning is larger than that of the algorithm in this study, and the dimension of the feature subset obtained is also higher than that of the algorithm in this study.Table 2 Comparison of MAE and feature num before and after BO.Full size tablePrediction resultsTo test the prediction accuracy of the prediction model with the optimal subset obtained by BO-XGBoost-RFE, three indexes, MAE, RMSE and R2, are used to evaluate the prediction results, and the expressions are as follows:$$begin{array}{*{20}c} {MAE = frac{1}{n}mathop sum limits_{i = 1}^{n} left| {left( {y_{i} – widehat{{y_{i} }}} right)} right|} \ end{array}$$
    (8)
    $$begin{array}{*{20}c} {RMSE = sqrt {frac{1}{n}mathop sum limits_{i = 1}^{n} left( {y_{i} – widehat{{y_{i} }}} right)^{2} } } \ end{array}$$
    (9)
    $$begin{array}{*{20}c} {R^{2} = 1 – frac{{mathop sum nolimits_{i = 1}^{n} left( {widehat{{y_{i} }} – y_{i} } right)^{2} }}{{mathop sum nolimits_{i = 1}^{n} left( {y_{i} – overline{{y_{i} }} } right)^{2} }}} \ end{array}$$
    (10)
    n indicates the number of samples, yi is the true value, (widehat{{y_{i} }}) is the predicted value and (overline{{y_{i} }}) indicates the mean value of the predicted value.The XGBoost-RFE feature selection algorithm based on Bayesian optimization in this study is compared with feature selection using full features and features selected by the Pearson correlation coefficient, which measures the correlation between two variables. In this study, the correlation with predictor variables was selected to be less than 0.1, and the variables with correlations greater than 0.9 were deleted to avoid multicollinearity.XGBoost, random forest, support vector regression machine, and KNN algorithms were used to predict ozone concentration with full features, features selected by Pearson’s correlation coefficient, and features based on BO-XGBoost-RFE. According to the evaluation indicators described above, the comparison of the prediction performance results of the three algorithms before and after dimensionality reduction can be obtained. The MAE, RMSE and R2 results of each prediction model are shown in Table 3.Table 3 MAE, RMSE and R2 of each prediction model.Full size tableAmong the four prediction models, random forest has the lowest MAE and RMSE and the highest R2 based on three different dimensions of data and therefore has the best prediction performance. The prediction accuracy of all four prediction models based on Pearson correlation is lower than that based on BO-XGBoost-RFE, indicating that only selecting features by correlation cannot accurately extract important variables. Although the RMSE of the support vector regression model based on BO-XGBoost-RFE is slightly lower than the RMSE based on full features, the prediction accuracy of XGBoost, RF, KNN after feature selection of BO-XGBoost-RFE is higher than that based on full features and Pearson correlation. Among the four prediction models, random forest has obtained the highest prediction accuracy. The MAE based on BO-XGBoost-RFE is 5.0% and 1.4% lower than that based on the Pearson correlation coefficient and the full-feature-based model, and the RMSE is reduced by 5.1%, 1.8%, R2 improved by 4.3%, 1.4%. Additionally, the XGBoost model achieved the greatest improvement in accuracy. The MAE was reduced by 5.9% and 1.7%, the RMSE was reduced by 5.2% and 1.7%, and the R2 was improved by 4.9% and 1.4% compared with the Pearson correlation coefficient-based and full-feature-based models, respectively. This indicates that feature selection based on BO-XGBoost-RFE effectively extracts important features, improves prediction accuracy based on multiple prediction models, and has better dimensionality reduction performance.Figure 6 shows the importance of each feature obtained by using the random forest prediction model, reflecting the degree of influence of each variable on the prediction results of the global multi-year average near-ground ozone concentration. The most important variables that affect the prediction results according to the ranking of feature importance are altitude, relative altitude, and latitude, followed by night light intensity within a radius of 5 km, population density and nitrogen dioxide concentration, while the proxy variables for vegetation cover have a relatively weak effect on the prediction of ozone concentration.Figure 6Feature importance in random forest.Full size image More

  • in

    Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns

    Soil physicochemical propertiesTable 1 shows the basic chemical characteristics of the 81 soil samples. The pH values of most of the soil samples from the rape fields and the paddy fields ranged between 6.5 and 7.5, while the pH values of most of the soil samples from the wheat fields were less than 6.0. The relatively low pH values for soils from the wheat fields could be due to traditional farming practices adopted in the farms, including continuous cropping. In addition, acidic soil is conducive for wheat growth. Organic matter contents were generally low in all the soils, and soils from the rape fields had the lowest organic matter contents. Generally, the mean soil total N contents in the fields were in the order of rape fields (756 mg/kg)  Zn  > Cd, and the concentrations of metals in most soil samples collected from the wheat and paddy fields were in the order of Fe  > Mn  > Pb  > Cu  > Zn  > Cd. However, independent of the farmland use patterns, the concentrations of all the metals extracted using NH4OAC and NH4NO3 were much lower than those extracted with the other three types of extractants.Table 3 Extractable metal concentrations in the soils (mg/kg).Full size tableThe concentrations of 0.1 mol/L HCl-extracted heavy metals in soils from the rape fields at the R21, R23, and R32 sites, in the wheat fields at the W21 site, and in the paddy fields at the P1 and P2 sites were extremely low, especially in the cases of Fe and Pb. For example, 0.1 mol/L HCl-extracted Fe concentrations at the R21, R23, and R32 sites were 0.2 mg/kg, 0.6 mg/kg, and below the detection limit, respectively, whereas the range of 0.1 mol/L HCl-extracted Fe concentration in the other sites in the rape fields was 22.4–533 mg/kg. Therefore, 0.1 mol/L HCl-extracted heavy metal concentrations at the R21, R23, R32, W21, P1, and P2 sites were omitted from subsequent analyses to ensure homogeneity of variance. The basic pH values at the sites (pH values at R21, R23, R32, W21, P1, and P2 were 8.0, 8.0, 7.7, 8.0, 8.0, and 8.0, respectively) could explain this low HCl-extractability and reduced mobility35,36. Although HCl is considered a universal extractant, it may not be suitable under alkaline soil conditions.Heavy metal concentrations in rape, wheat and rice grainsFigure 4 illustrates the concentrations of six heavy metals in rape, wheat, and rice grains. Similar to the order of the soil metal concentrations, the Fe, Mn, Zn, and Cu concentrations in the grains were much higher than the Pb and Cd concentrations.Figure 4Concentrations of heavy metals ((a) Cu, (b) Zn, (c)Pb, (d) Cd, (e) Fe, and (f) Mn) in the grain of three different crops. (Rape grains (n = 36); Wheat grains (n = 25); Rice grains (n = 20), on dry weight basis).Full size imageThe results are similar to those reported in previous studies with regard to heavy metal concentration trends in rice grains16,37. The reason could be Fe, Mn, Zn, and Cu are all essential for crop growth as micronutrients, leading to the higher levels in soils. Among the studied crops, rice grains accumulated relatively lower amounts of Fe, Mn, and Zn than rape and wheat grains, where Pb and Cd concentrations exhibited opposite trends. The trends are consistent with the findings of Liu et al.38 and Du et al.1, and indicate that rice has a stronger Cd uptake capacity from soil. Williams et al.39 also reported higher rice Cd concentrations than wheat, barley, and maize Cd concentrations. The results could also be attributed to water management and soil oxidation–reduction status in soil-rice systems. Paddy fields are irrigated considerably more than wheat and rape fields. In addition, the water in the study area was contaminated by Cd, Cu, As, and Zn27. Previous studies have also reported that water management practices influence Cd uptake by rice and its bioavailability in soils19,20,40. In the cases of Zn and Pb, according to Feng et al.23, rice grains accumulated lower amounts of Zn than wheat grains, whereas rice grains accumulated higher Pb amounts than wheat grains. Although soil Cd concentrations were generally high in the rape fields, the concentrations of Cd in rape grains were lower than those in the wheat and rice grains.On the other hand, Cu concentrations in grains in all the three crops were below the maximum allowable Cu levels in food (10 mg/kg (GB 15199-94)). Similarly, Zn concentrations in rice grains were below the maximum allowable Zn levels in food (50 mg/kg (GB 13106-91)), while 25% of the rape grain samples and 20% of the wheat grain samples exceeded the threshold value. Although total Pb concentrations in soils were generally low in the three farmland use patterns, Pb concentrations in 70% of the rice grain samples exceeded the maximum allowable Pb levels in food (0.2 mg/kg (GB 2762-2005)). Only four rape and two wheat grain samples exceeded the Pb threshold values, respectively. The varying Pb trends are potentially linked to physical contamination from direct atmospheric deposition8, differences in physiological activities among the crops, and the fruit structures of the studied crops23. Similar to the soil Cd contamination, 96% and 60% of wheat and rice grain samples, respectively exceeded the maximum allowable Cd levels in food (0.1 mg/kg and 0.2 mg/kg for wheat and rice, respectively (GB 2762-2005)). Furthermore, Cd concentrations in approximately 10% of the rice grain samples exceeded 1.0 mg/kg. Conversely, only 14% of rape grain samples exceeded the maximum allowable Cd levels in food (Cd: 0.1 mg/kg for rape (GB 2762-2005)), and the maximum Cd concentration in rape grains was 0.18 mg/kg. According to the results, rape grains were generally safe for consumption whereas wheat and rice grains posed health threats in the study area.Soil to grain bioaccumulation factorsBAF values have been used widely to evaluate the capacity of crop grains to accumulate metals from soil30,41. Similar to a previous study on food crops37, Fe and Pb had the lowest BAF values (Fig. 5). Generally, metal accumulation in crop grains did not increase considerably with an increase in total concentrations of metals in soil. Heavy metal accumulation could have been regulated by crops, so that only low amounts were accumulated into grains. In addition, there were significant differences in some BAF values of the same metal across different crop species (Fig. 5). Different crop species have different accumulation capacities for the same metal42. Overall, the average BAF values of Cu (0.22), Zn (0.37), and Mn (0.14) in wheat grains were significantly higher than those in rape and rice grains. The average BAF value of Pb (0.005) in rice grains was significantly higher than those in rape and wheat grains, and the average BAF values of Cu (0.07) and Cd (0.06) in rape grains were significantly lower than those in wheat and rice grains. The results indicated that rape grains have lower heavy metal accumulation capacity than wheat and rice grains, except in the cases of Zn and Fe. However, the finding is not consistent with the results of a previous study43, which report that grasses have lower accumulation capacity than dicotyledonous plants. Nevertheless, as mentioned above, numerous factors could influence the accumulation capacity of metals in crop grains.Figure 5Bioaccumulation factors (BAF) of heavy metals ((a) Cu, (b) Zn, (c) Pb, (d) Cd, (e) Fe, and (f) Mn) from soil to the grains of three crop species. The error bars indicate the standard deviation. Different letters on bars indicate significant difference (p  More

  • in

    The role of zinc in the adaptive evolution of polar phytoplankton

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 (1998).CAS 
    PubMed 

    Google Scholar 
    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).CAS 
    PubMed 

    Google Scholar 
    Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).CAS 

    Google Scholar 
    Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020).CAS 

    Google Scholar 
    Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 

    Google Scholar 
    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
    Google Scholar 
    Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).CAS 

    Google Scholar 
    Ellwood, M. J. Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the subantarctic zone between 40–52°S; 155–160°E. Mar. Chem. 112, 107–117 (2008).CAS 

    Google Scholar 
    Zhao, Y., Vance, D., Abouchami, W. & de Baar, H. J. W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–667 (2014).CAS 

    Google Scholar 
    John, S. G., Helgoe, J. & Townsend, E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256–262 (2018).CAS 

    Google Scholar 
    Middag, R., de Baar, H. J. W. & Bruland, K. W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cy. 33, 63–84 (2019).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37, 25–40 (1992).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 

    Google Scholar 
    Vance, D. et al. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10, 202 (2017).CAS 

    Google Scholar 
    Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72 (2018).CAS 
    PubMed 

    Google Scholar 
    Roshan, S., DeVries, T., Wu, J. & Chen, G. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cy. 32, 1833–1849 (2018).CAS 

    Google Scholar 
    Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2012).
    Google Scholar 
    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).CAS 
    PubMed 

    Google Scholar 
    Blaby-Haas, C. E. & Merchant, S. S. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70, 605–638 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. H. et al. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30, 3330–3341 (2020).CAS 
    PubMed 

    Google Scholar 
    Clarke, A. et al. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. Lond. B 338, 299–309 (1992).
    Google Scholar 
    Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).CAS 
    PubMed 

    Google Scholar 
    Krishna, S. S., Majumdar, I. & Grishin, N. V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barlow, P. N. et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J. Mol. Biol. 237, 201–211 (1994).CAS 
    PubMed 

    Google Scholar 
    Stephens, T. G. et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 18, 56 (2020).Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral–dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).CAS 
    PubMed 

    Google Scholar 
    Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365 (2018).CAS 

    Google Scholar 
    Ferguson, R. E. et al. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).CAS 
    PubMed 

    Google Scholar 
    Aslam, S. N. et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, J. J. et al. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9, 2328 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, Thomas. Sea of Change: Eukaryotic Phytoplankton Communities in the Arctic Ocean. United States. https://doi.org/10.25585/1488054Duncan, A. et al. Metagenome-assembled genomes of phytoplankton communities across the Arctic Circle and Atlantic Oceans. Microbiome 10 https://doi.org/10.1186/s40168-022-01254-7 (2022).Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, T. & Gradinger, R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177, 15–26 (1999).CAS 

    Google Scholar 
    Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003).CAS 

    Google Scholar 
    Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proc. US-Japan Conference, Hakone, 12-15 September 1966 (eds Watanabe, A & Hattori, A.) 63–75 (Japanese Society of Plant Physiology, 1968).Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, C. X. et al. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin, M. et al. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20, 955 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).
    Google Scholar 
    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).CAS 
    PubMed 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
    Google Scholar 
    Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf. 7, 62 (2006).
    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2018).PubMed Central 

    Google Scholar 
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).CAS 
    PubMed 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 4, 259–263 (2006).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar 
    Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 

    Google Scholar 
    Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell Proteom. 13, 3497–3506 (2014).
    Google Scholar 
    Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2016).
    Google Scholar 
    Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).Löytynoja, A. Phylogeny-aware Alignment with PRANK: Multiple Sequence Alignment Methods (Humana Press, 2014).Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 

    Google Scholar  More