More stories

  • in

    Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).Article 

    Google Scholar 
    Ptacnik, R. et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl.Acad. Sci. USA 105, 5134–5138 (2008).Article 

    Google Scholar 
    Corcoran, A. A. & Boeing, W. J. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE 7, e49397 (2012).Article 

    Google Scholar 
    Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).Article 

    Google Scholar 
    Lewis, M., Hebert, D., Harrison, W. G., Platt, T. & Oakey, N. S. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).Article 

    Google Scholar 
    McGillicuddy, D. J. J. et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316, 1021–1026 (2007).Article 

    Google Scholar 
    Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).Article 

    Google Scholar 
    Tang, W. et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat. Commun. 10, 831 (2019).Article 

    Google Scholar 
    Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 

    Google Scholar 
    Lévy, M., Franks, P. J. S. & Smith, K. S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).Article 

    Google Scholar 
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Bakker, D. C., Nielsdóttir, M. C., Morris, P. J., Venables, H. J. & Watson, A. J. The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res. Pt II 54, 2174–2190 (2007).Article 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Pt I 43, 555–578 (1996).Article 

    Google Scholar 
    Palacios, D. M. Factors influencing the island-mass effect of the Galapagos archipelago. Geophys. Res. Lett. 29, 2134 (2002).Article 

    Google Scholar 
    Gilmartin, M. & Revelante, N. The ‘island mass’ effect on the phytoplankton and primary production of the Hawaiian Islands. J. Exp. Mar. Biol. Ecol. 16, 181–204 (1974).Article 

    Google Scholar 
    Signorini, S. C., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).Article 

    Google Scholar 
    Messié, M., Radenac, M.-H., Lefèvre, J. & Marchesiello, P. Chlorophyll bloom in the western Pacific at the end of the 1997-98 El Niño: the role of the Kiribati Islands. Geophys. Res. Lett. 33, L14601 (2006).Article 

    Google Scholar 
    Messié, M. & Radenac, M.-H. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep Sea Res. Pt I 53, 1581–1600 (2006).Article 

    Google Scholar 
    Le Borgne, R., Dandonneau, Y. & Lemasson, L. The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare (Loyalty Islands) and New Caledonia. Bull. Mar. Sci. 37, 450–459 (1985).
    Google Scholar 
    Messié, M. et al. The delayed island mass effect: how islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).Article 

    Google Scholar 
    Dandonneau, Y. & Charpy, L. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations. Deep Sea Res. Pt A 32, 707–721 (1985).Article 

    Google Scholar 
    Shiozaki, T., Kodama, T. & Furuya, K. Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean. Geophys. Res. Lett. 41, 2907–2913 (2014).Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33, 391–419 (2019).Article 

    Google Scholar 
    Martinez, E., Rodier, M., Pagano, M. & Sauzède, R. Plankton spatial variability within the Marquesas archipelago, South Pacific. J. Mar. Syst. 212, 103432 (2020).Article 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).Article 

    Google Scholar 
    Laws, E. A., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. A global analysis of ENSO synchrony: the oceans’ biological response to physical forcing. J. Geophys. Res. 117, C09001 (2012).
    Google Scholar 
    Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A. & Doney, S. C. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences 11, 691–708 (2014).Article 

    Google Scholar 
    Messié, M. & Chavez, F. P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18 (2015).Article 

    Google Scholar 
    Mouw, C. B. et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4, 41 (2017).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Bréon, F. M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Pt I 52, 1989–2004 (2005).Article 

    Google Scholar 
    Rêve-Lamarche, A.-H. et al. Ocean color radiance anomalies in the North Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00408 (2017).Alvain, S., Loisel, H. & Dessailly, D. Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. Opt. Express 20, 1070–1083 (2012).Article 

    Google Scholar 
    Mackey, D. J., Blanchot, J., Higgins, H. W. & Neveux, J. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Res. Pt II 49, 2561–2582 (2002).Article 

    Google Scholar 
    Johnson, Z. I. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).Article 

    Google Scholar 
    Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. USA 106, 10787–10792 (2009).Article 

    Google Scholar 
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).Article 

    Google Scholar 
    Dai, S. et al. The seamount effect on phytoplankton in the tropical western Pacific. Mar. Environ. Res. 162, 105094 (2020).Article 

    Google Scholar 
    Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).Article 

    Google Scholar 
    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).Article 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).Article 

    Google Scholar 
    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).Article 

    Google Scholar 
    Harrison, A.-L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).Article 

    Google Scholar 
    Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605 (2011).Article 

    Google Scholar 
    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741––8743 (1996).Article 

    Google Scholar 
    Nunn, P. D., Kumar, L., Eliot, I. & McLean, R. F. Classifying Pacific islands. Geosci. Lett 3, 7 (2016).Article 

    Google Scholar 
    Hasegawa, D., Lewis, M. R. & Gangopadhyay, A. How islands cause phytoplankton to bloom in their wakes. Geophys. Res. Lett. 36, L20605 (2009).Article 

    Google Scholar 
    Platt, T. & Sathyendranath, S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241, 1613–1620 (1988).Article 

    Google Scholar 
    Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima, H. & Koike, Y. Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst. 69, 238–246 (2008).Article 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).Article 

    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).Article 

    Google Scholar 
    Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, GB3001 (2008).Article 

    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).Article 

    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727 (2004).Article 

    Google Scholar 
    De Monte, S., Soccodato, A., Alvain, S. & d’Ovidio, F. Can we detect oceanic biodiversity hotspots from space? ISME J. 7, 2054–2056 (2013).Article 

    Google Scholar 
    Soccodato, A. et al. Estimating planktonic diversity through spatial dominance patterns in a model ocean. Mar. Geonom. 29, 9–17 (2016).Article 

    Google Scholar 
    Messié, M., Petrenko, A., Doglioli, A., Martinez, E. & Alvain, S. Data from: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6416130 (2022).Messié, M. Code for: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6494328 (2022). More

  • in

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler

    Considering the actual and predicted values, the model generated through the different inputted parameters should be diagnosed satisfactorily. It is pretty understanding that agreement between the actual and predicted values given the effectiveness and accuracy of the generated model, as shown in Fig. 2. The following polynomial regression model equations were obtained:$$begin{aligned} COD;removal , % , & = 76.63 – 0.019*A , + , 0.064*B , – 0.511*C , – 0.405*AB , – 0.153*AC , \ &quad – 0.099*BC , + , 0.263*A^{2} + , 0.479*B^{2} – 0.303*C^{2} \ end{aligned}$$
    (1)
    $$begin{aligned} Nitrate;Removal , % , & = 72.04 , – 1.881*A – 0.142* , B , + , 2.384*C , + , 2.623*AB , + , 8.579*AC , \ &quad – 2.626*BC , – 10.783*A^{2} + , 0.223*B^{2} + , 0.963*C^{2 } hfill \ end{aligned}$$
    (2)
    $$begin{aligned} & Phosphate , Removal , % , = \ & 67.179 – 1.215*A , + , 3.539*B , – 1.068*C , + , 1.610*AB , – 2.559*AC , + , 0.392*BC , + , 0.788*A^{2} – 2.943*B^{2} + , 0.564*C^{2} \ end{aligned}$$
    (3)
    where A is initial pH, B is current time (min), C is MLSS concentration (mg L−1) at which the study was carried out.Figure 2Normal probability versus studentized residuals and predicted versus actual plots for (i) COD removal, (ii) nitrate removal, and (iii) phosphate removal.Full size imageIt has been observed that statistics for the model having low values represent well for the system and its predictions.Statistical analysis of COD, nitrate and phosphate removalIt was seen that 3D surface plots could provide a better understanding of the interactive effects of the parameters. The 3D surface plots are illustrated in Figs. 3, 4, and 5, respectively. It was observed that the maximum removal efficiency for COD, nitrate, and phosphate is in the range of 59% to 74%.Figure 3Model generated surface plot of % COD removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 4Model generated surface plot of %nitrate removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 5Model generated surface plot of %phosphate removal (i) pH versus current time (ii) pH versus MLSS (iii) MLSS versus current time.Full size imageTable 4 (i) shows the statistics for COD removal. Adeq Precision is desirable, which measures the signal-to-noise ratio and a ratio greater than 4. For the COD removal, Adeq Precision was 19.255, indicating an adequate signal. It was also observed that the adjusted R2 is 0.9118 (difference less than 0.2), and the predicted R2 of 0.8601 was significant, implying that the predictions are in good agreement with experimental values.Table 4 Fit statistics for (i) COD removal, (ii) Nitrate removal, (iii) Phosphate removal.Full size tableFigure 3 illustrates the effect of current flow time and pH concerning the percentage removal of COD. The model predicted values observed were seen to lie in the range of 73.1% at MLSS values of 2500 mg L−1, keeping initial COD values as 200 mg L−1. As the COD load increases, it seems to be predicted that the overloading of bacteria occurs, thereby slowing down the consumption of organics. In Fig. 4, the expected removal efficacy shows upward trends with an increase in the values of MLSS, which also coincided with previous studies. As the value of MLSS increases, the contact time of biomass in the system increases, hence producing more effective results than others.Table 4 (ii) shows the statistics for nitrate removal. The predicted R2 of 0.9164 was in reasonable agreement with the adjusted R2 of 0.9730. For the nitrate removal, Adeq Precision was 29.608, indicating an adequate signal. This model can be used to navigate the design space.Table 4 (iii) shows the statistics for phosphate removal. The predicted R2 of 0.9165 was in reasonable agreement with the adjusted R2 of 0.9720. For the phosphate removal, Adeq Precision was 34.945, indicating an adequate signal. This model can be used to navigate the design space.Figure 5 illustrates that as we reduce the cycle time from 24 to 18 h, the system efficacy, i.e., COD removal effectiveness shows a downward trend due to less contact time with biomass. Meanwhile, if we increase the cycle time, we observe higher efficacy in the system. The model generated surface plot in Fig. 5 illustrated that increasing MLSS values by 3000 mg L−1 will enhance the COD removal by 73.1%, keeping the initial pH constant. This may be due to many microbes that can break down organic matter. In aerobic reactors, pH is an essential factor in the growth of the microbial population. To create granules, the pH of the reactor has a direct impact. Studies have shown that granule formation occurs when bacteria grow at the ideal pH level, whereas mass proliferation of fungus occurs in an acidic environment.COD removal in EBR and tubesettlerThe Influence, effluent, and removal of COD in EBR & tubesettler are illustrated in Fig. 6a,b. Results demonstrate that the COD concentration is consistent and better COD removal efficacy rate. The average removal rate values observed in the EBR were between 74 and 79%, with the initial COD concentration kept around 360–396 mg L−1. It was also observed that tubesettler resulted in approximately 25–36% efficacy when the initial concentration was between 75 and 97 mg L−1. The results of EBR are promising and can be attributed to the fact that electrocoagulation takes place along with the oxidation and biodegradation process. It was also observed that the percentage removal of COD shows downward trends due to electrochemical oxidation and adsorption, thereby resulting in physical entrapment and electrostatic attraction30. It has also been reported in many other studies that COD removal of around 85–90% was observed using composite cathode membrane using MRB/MFC system19 for the specialized treatment of landfill leachate. It was seen with the electrooxidation process having COD removal of around 80–84% and 84–96% with submerged membrane bioreactors, using Iron electrode6. For the Coal industry, it was found to be around 85% using membrane electro bioreactors31.Figure 6(a) Influent, effluent and removal of COD in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of COD in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn the current study, results seemed to be lower than the values reported in the previous studies. The main reason might be the employment of a modified EBR system and the production of biomass species. When the overall COD removal with tubesettler is considered, up to 83.58% removal efficiency is observed. The overall COD removal efficiency is significant and is at par with other studies3,4,5. This signifies that EBR performed better than tubesettler in COD removal. The tubesettler’s lower removal efficiency can be attributed to lower influent concentration from already reduced wastewater from EBR.Nitrate removal in EBR and tubesettlerIt was observed in many studies that nitrifying is the leading cause of nitrification, i.e., conversion of NH3-N to nitrate NO3-N10. The indirect method of system nitrification process claudication was to be ascertained using measurements concerning ammonia values32,33. In the current study, the nitrification process was considered using the nitrate concentration measurement from the influent and effluent in both systems, i.e., EBR and tubesettler34,35,36. The nitrate concentration of influent and effluent was observed and illustrated in Fig. 7a,b. The system stabilized and produced enhanced results up to 70% of nitrate removal, and it was seen to be in the range of 40–45% for the tubesettler. It has been observed that EBR produced better results than the tubesettler. The results variation in both the systems were reasonably attributed mainly to two primary reasons (1) low influent concentration in the influent compared to the EBR system and (2) inhibition effect due to the applied DC field, which was absent in tubesettlers.Figure 7(a) Influent, effluent, and removal of nitrate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of nitrate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageThe removal efficiency of around 70% was achieved, lower than the values in submerged membrane bioreactors, i.e., 82%6. However, including a membrane would have enhanced the removal efficiency and considered a hybrid EBR system. The results of the current study are close enough to many other studies with a similar system and different operating parameters. Hence, a combined approach can be used for better efficacy. During the weekly analysis, the nitrate concentration during the 1st to 3rd week is lower than in the following weeks. As the concentration of nitrifying bacteria decreased, they had less to work with. Thus, the substrate concentration grew, and so did the removal rate. Nitrate concentrations rose by more than twice the previous week during Week 7. They slowed the bacterial activity, resulting in an efficiency decline to 47% from 70% during the last week’s study period and weeks 6 and 8. A similar pattern emerged for the seventh week in a row in tubesettler. On the other hand, microorganisms overcame differences in engagement because the nitrate content was low in other weeks.Phosphate removal in EBR and tubesettlerMany researchers have looked at nitrate content, but none have looked at phosphate concentration. Eutrophication in receiving water bodies, on the other hand, is predominantly caused by phosphate and nitrate. Additionally, there is a lack of information available on hospital wastewater. The influent and effluent phosphate concentrations in the Electro bioreactor and the tubesettler is shown in Fig. 8a,b. A 75% reduction in the effluent phosphate content in EBR was achieved tubesettler had a 67% effectiveness in phosphate removal but a lower efficiency in nitrate reduction. A previous similar study that used a Submerged Membrane Electro bioreactor claimed a clearance rate of 76% to 95%, which is lower than this study’s results6. Phosphate removal was reported at 50–70% using the electrocoagulation process for different Ph and current6.Figure 8(a) Influent, effluent, and removal of phosphate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of phosphate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn week 6 and week 8, the EBR’s phosphate removal efficiency fluctuated dependent on the weekly average concentration in EBR. This volatility can be linked to a shift in the composition of hospital wastewater. tubesettler had a modest variation ranging from 5 to 6%. Although phosphate concentrations rose in week two, tubesettler removal efficiency improved. As demonstrated in Fig. 8a,b, the arriving wastewater ingredient exhibited a strong affinity in terms of phosphate reduction.Excess effluent concentration and standard deviation from EBR and tubesettler are shown in Table 5. EBR performed better than tubesettler in COD reduction when nitrate and phosphate were compared. Because tubesettler solely employs a physical process to remove contaminants, this is to be anticipated. Effluent from the secondary treatment facility is sent to a tubesettler, which acts as a polishing unit. EBR eliminated COD by 91%, nitrate by 85%, and Phosphate reduction by 81% compared to tubesettler’ s total efficiency. At the same time, tubesettler reduced COD by 37%, nitrate by 51%, and phosphate by 53%. Hence, EBR primarily removed pollutants from wastewater while tubesettler acted as a polishing unit. Table 5 illustrates the effluent wastewater characteristics of EBR and tubesettler.Table 5 Effluent wastewater characteristics of EBR and tubesettler.Full size tableKinetic models post optimizationFirst-order modelA first-order linear model was analyzed on the experimental data by plotting (So − Se)/Se against hydraulic retention time (HRT), providing K1 and R2. For COD, R2 values were 0.761 with a constant value of 1.213, as shown in Table 6. Henceforth based on the results, the obtained model did not seem to fit well for either of the cases.Table 6 Analyzed kinetic models.Full size tableGrau second-order modelA Grau second-order model was analyzed on the experimental data by plotting HRT/((So − Se)/So) versus HRT. The COD constant obtained was Ks = 10–5, as shown in Table 6. The R2 value of 0.99 suggests a good correlation coefficient. Therefore, the obtained results fit well for AOX and COD.Modified Stover–Kincannon modelSubstrate utilization rate expressed as organic loading in this model is widely used in biological reactor kinetic modelling of wastewater. The developed model can evaluate the performance of the biological system and estimate its efficiency based on the input parameters. The kinetic constant KB and Umax for COD were 0.35 and 1.73 g L−1 d−1, respectively. The R2 was 0.98 for the substrate removal, as presented in Table 6.Monod modelCOD utilization rate was obtained by plotting VX/Q (So − Se) against 1/Se. The value of 1/K (0.421) was obtained from the intercept, while the Ks/K value (1.235) was the slope of the line. COD removal half-saturation values were 0.045 and 0.056 g L−1. These values infer a high affinity of bacteria for the substrate. The R2 value of 0.95 depicted an excellent correlation coefficient in the case of COD. The Monod model fits well for COD, resulting in R2 = 0.98, as shown in Table 6. More

  • in

    The plant rhizosheath–root niche is an edaphic “mini-oasis” in hyperarid deserts with enhanced microbial competition

    Laity JJ. Deserts and desert environments. John Wiley & Sons; UK, 2009.Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2015;6:166–71.Article 

    Google Scholar 
    Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, et al. Global ecosystem thresholds driven by aridity. Science. 2020;367:787–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Danin A. Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F, editors. Adaptations of desert organisms. Plant of desert dunes. Springer; Verlag Berlin Heidelberg, 1996.Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N, Leff JWJ, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronca S, Ramond J-BB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noy-Meir I. Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst. 1974;5:195–214.Article 

    Google Scholar 
    Danin A. Plants of desert dunes. In: Cloudsley-Thompson J, editor. Adaptations of desert organisms. Springer; Verlag Berlin Heidelberg, 2000.Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, et al. Leaf surface structures enable the endemic Namib Desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface. 2012;9:1965–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J Arid Environ. 2011;75:524–31.Article 

    Google Scholar 
    Cartwright J. Ecological islands: conserving biodiversity hotspots in a changing climate. Front Ecol Environ. 2019;17:fee.2058.Article 

    Google Scholar 
    André HM, Noti MI, Jacobson KM. The soil microarthropods of the Namib Desert: a patchy mosaic. J African Zool. 1997;111:499–517.
    Google Scholar 
    Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown LK, George TS, Neugebauer K, White PJ. The rhizosheath—a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 
    Article 

    Google Scholar 
    Pang J, Ryan MH, Siddique KHMM, Simpson RJ. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 
    Article 

    Google Scholar 
    Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, et al. Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome. 2022;17:14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.Article 
    CAS 

    Google Scholar 
    Wullstein LHH, Pratt SAA. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot. 1981;68:408–19.Article 

    Google Scholar 
    Young IM. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 1995;130:135–9.Article 

    Google Scholar 
    Ashraf M, Hasnain S, Berge O, Campus Q. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol. 2006;3:45–53.Article 

    Google Scholar 
    George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol. 2014;203:195–205.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 
    Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA. Biodiversity of diazotrophs associated to the plant cover of north sinai deserts. Arch Agron Soil Sci. 2003;49:683–705.Article 

    Google Scholar 
    Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat. 2009;69:105–14.Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol. 2016;7:1–11.Article 

    Google Scholar 
    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 
    Article 

    Google Scholar 
    Alsharif W, Saad MM, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 2020;11:1666.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016;405:357–70.CAS 
    Article 

    Google Scholar 
    Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. Competition-colonization dynamics in experimental bacterial metacommunities. Nat Commun. 2012;3:1–8.Article 
    CAS 

    Google Scholar 
    Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seely MK. The Namib dune desert: an unusual ecosystem. J Arid Environ. 1978;1:117–28.Article 

    Google Scholar 
    Klaassen E, Craven P. Checklist of grasses in Namibia. SABONET; Pretoria & Windhoek, 2014. (Produced by National Botanical Research Institute Private Bag 13184).Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems. 2017;2:1–15.Article 

    Google Scholar 
    Darwin C. On the origin of species. London: Routledge; 1859.Gunnigle E, Frossard A, Ramond J-B, Guerrero L, Seely M, Cowan DA. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep. 2017;7:40189.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. Media. Springer; New York, NY 2016.RC-Team. R: A language and environment for statistical computing (Version 3.5. 2, R foundation for statistical computing, Vienna, Austria, 2018). R Foundation for Statistical Computing; 2019.Anderson MMJJ, Gorley RNRN, Clarke KRR. PERMANOVA + for PRIMER: guide to software and statistical methods; PRIMER-E. Plymouth, UK: PRIMER-E Ltd.; 2008.Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep. 2015;7:668–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Craig Cary S, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo dry valleys of Antarctica. Front Microbiol. 2018;9:1–12.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2014;22:5271–7.Article 
    CAS 

    Google Scholar 
    Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: user manual/tutorial. Plymouth, UK: PRIMER-E; 2015.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, et al. The vegan R package: community ecology. 2013:0–291Wang Y, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–4.Article 

    Google Scholar 
    Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.Article 

    Google Scholar 
    Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Package ‘adespatial’. R package version. 2018.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. 2009;8:361–2.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.Article 

    Google Scholar 
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:1–9.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2019;21:3212–28.CAS 
    Article 

    Google Scholar 
    Al-Hosni K, Shahzad R, Khan AL, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact. 2018;13:112–8.CAS 
    Article 

    Google Scholar 
    Sen D, Paul K, Saha C, Mukherjee G, Nag M, Ghosh S, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26:131–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae–induced disease development in roots. Mol Plant-Microbe Interact. 2019;32:351–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–65.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zeng Y, Charkowski AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology®. 2021;111:600–10.Article 

    Google Scholar 
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 

    Google Scholar 
    Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329:1653–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith VH. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002;81:99–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    Albalasmeh AA, Ghezzehei TA. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil. 2014;374:739–51.CAS 
    Article 

    Google Scholar 
    Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ. 2002;50:99–108.Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Hegazi NA. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 
    Article 

    Google Scholar 
    Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 2018;58:1009–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGAA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-TT, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez BR, Bacilio M. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils. 2020;56:447–59.CAS 
    Article 

    Google Scholar 
    Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11:343–8.Article 

    Google Scholar 
    Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol. 2017;67:94–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiménez-Gómez A, Saati-Santamaría Z, Igual J, Rivas R, Mateos P, García-Fraile P. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms. 2019;7:354.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu T, Ye N, Wang X, Das D, Tan Y, You X, et al. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol. 2021;63:1753–74.Blouin M. Chemical communication: an evidence for co-evolution between plants and soil organisms. Appl Soil Ecol. 2018;123:409–15.Article 

    Google Scholar 
    Sarrocco S, Diquattro S, Baroncelli R, Cimmino A, Evidente A, Vannacci G, et al. A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycol Prog. 2015;14:112.Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15.Zhang K, Bonito G, Hsu C, Hameed K, Vilgalys R, Liao H-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020;10:754.Article 

    Google Scholar 
    Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 2016;7:1–15.Article 

    Google Scholar 
    Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43:760–5.CAS 
    Article 

    Google Scholar 
    Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep. 2019;9:7537.Article 
    CAS 

    Google Scholar 
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol. 2017;93:fiw217.PubMed 
    Article 
    CAS 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82:770–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287–19.Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.CAS 
    Article 

    Google Scholar 
    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlatter DC, Kinkel LL. Antibiotics: conflict and communication in microbial communities. Microbe Mag. 2014;9:282–8.Article 

    Google Scholar  More

  • in

    Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances

    Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).
    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4, 25 (2013).
    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001).CAS 
    PubMed 

    Google Scholar 
    Tomasello, M., Hare, B., Lehmann, H. & Call, J. Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. J. Hum. Evol. 52, 314–320 (2007).PubMed 

    Google Scholar 
    Farroni, T. et al. Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proc. Natl. Acad. Sci. USA 102, 17245–17250 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farroni, T., Massaccesi, S., Pividori, D. & Johnson, M. H. Gaze following in newborns. Infancy 5, 39–60 (2004).
    Google Scholar 
    Itakura, S. & Tanaka, M. Use of experimenter-given cues during object-choice tasks by chimpanzees (Pan troglodytes), an orangutan (Pongo pygmaeus), and human infants (Homo sapiens). J. Comp. Psychol. 112, 119–126 (1998).CAS 
    PubMed 

    Google Scholar 
    Yorzinski, J. L., Thorstenson, C. A. & Nguyen, T. P. Sclera and iris color interact to influence gaze perception. Front. Psychol. 12, 1–11 (2021).
    Google Scholar 
    Yorzinski, J. L., Harbourne, A. & Thompson, W. Sclera color in humans facilitates gaze perception during daytime and nighttime. PLoS One 16, 1–15 (2021).
    Google Scholar 
    Yorzinski, J. L. & Miller, J. Sclera color enhances gaze perception in humans. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).CAS 
    PubMed 

    Google Scholar 
    Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014).
    Google Scholar 
    Kano, F., Kawaguchi, Y. & Yeow, H. Experimental evidence for the gaze-signaling hypothesis: White sclera enhances the visibility of eye gaze direction in humans and chimpanzees. bioRxiv 2021.09.21.461201 (2021).Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. USA 116, 19248–19250 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos ?. J. Hum. Evol. 157, 103043 (2021).PubMed 

    Google Scholar 
    Mearing, A. S., Burkart, J. M., Dunn, J., Street, S. E. & Koops, K. The evolutionary origins of primate scleral coloration. bioRxiv 40, 2021.07.25.453695 (2021).Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 

    Google Scholar 
    Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Kano, F. et al. What is unique about the human eye? Comparative image analysis on the external eye morphology of human and nonhuman great apes. Evol. Hum. Behav. https://doi.org/10.1016/j.evolhumbehav.2021.12.004 (2021).
    Google Scholar 
    Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).
    Google Scholar 
    Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752 (2005).CAS 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. The gaze of a social monkey is perceptible to conspecifics and predators but not prey. Proc. R. Soc. B Biol. Sci. 20, 10 (2002).
    Google Scholar 
    Bethell, E. J., Vick, S. & Bard, K. A. Measurement of eye-gaze in chimpanzees (Pan troglodytes). Am. J. Primatol. 69, 562–575 (2007).PubMed 

    Google Scholar 
    Sreekar, R. & Quader, S. Influence of gaze and directness of approach on the escape responses of the Indian rock lizard, Psammophilus dorsalis (Gray, 1831). J. Biosci. 38, 829–833 (2013).CAS 
    PubMed 

    Google Scholar 
    Lee, S. et al. Direct look from a predator shortens the risk-assessment time by prey. PLoS One 8, 1–7 (2013).
    Google Scholar 
    Carter, J., Lyons, N. J., Cole, H. L. & Goldsmith, A. R. Subtle cues of predation risk: Starlings respond to a predator’s direction of eye-gaze. Proc. R. Soc. B Biol. Sci. 275, 1709–1715 (2008).
    Google Scholar 
    Newton-Fisher, N. E. Chimpanzee hunting. Behav. Handb. Paleoanthropol. https://doi.org/10.1007/978-3-540-33761-4_42. (2007).
    Google Scholar 
    Caro, T. et al. The evolution of primate coloration revisited. Behav. Ecol. 32, 555–567 (2021).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergman, T. J. & Beehner, J. C. A simple method for measuring colour in wild animals: Validation and use on chest patch colour in geladas (Theropithecus gelada). Biol. J. Linn. Soc. 94, 231–240 (2008).
    Google Scholar 
    Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: Towards visual system-dependent methods. Int. J. Primatol. 30, 893–917 (2009).
    Google Scholar 
    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).
    Google Scholar 
    Deeb, S. S., Jorgensen, A. L., Battisti, L., Iwasaki, L. & Motulsky, A. G. Sequence divergence of the red and green visual pigments in great apes and humans. Proc. Natl. Acad. Sci. USA 91, 7262–7266 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsuzawa, T. Form perception and visual acuity. Folia Primatol. Int. J. Primatol. 55, 24–32 (1990).CAS 

    Google Scholar 
    Jacobs, G. H., Deegan, J. F. & Moran, J. L. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vis. Res. 36, 2587–2594 (1996).CAS 
    PubMed 

    Google Scholar 
    Jacobs, G. H. & Deegan, J. F. Uniformity of colour vision in Old World monkeys. Proc. R. Soc. B Biol. Sci. 266, 2023–2028 (1999).CAS 

    Google Scholar 
    Kemp, A. D. & Christopher Kirk, E. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).
    Google Scholar 
    Osorio, D., Smith, A. C., Vorobyev, M. & Buchanan-Smith, H. M. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164, 696–708 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour threshoIds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed 

    Google Scholar  More

  • in

    Synchrony and idiosyncrasy in the gut microbiome of wild baboons

    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finnicum, C. T. et al. Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol. 19, 230 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, E. T., Svanback, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).PubMed 

    Google Scholar 
    Bjork, J., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tredennick, A. T., de Mazancourt, C., Loreau, M. & Adler, P. B. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology 98, 971–981 (2017).PubMed 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).PubMed 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 

    Google Scholar 
    Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).CAS 
    PubMed 

    Google Scholar 
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).PubMed 

    Google Scholar 
    Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).PubMed 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. B 375, 20190248 (2020).CAS 

    Google Scholar 
    Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).PubMed 

    Google Scholar 
    Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).CAS 
    PubMed 

    Google Scholar 
    Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12, 6017 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019).CAS 
    PubMed 

    Google Scholar 
    Smits, S. A., Marcobal, A., Higginbottom, S., Sonnenburg, J. L. & Kashyap, P. C. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems 1, e00098 (2016).Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).CAS 
    PubMed 

    Google Scholar 
    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).CAS 
    PubMed 

    Google Scholar 
    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberts S. C. & Altmann, J. in Long-Term Field Studies of Primates (eds Kappeler, P. & Watts, D. P.) 261–287 (Springer, 2012).Ren, T., Grieneisen, L., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet, and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 

    Google Scholar 
    Grieneisen, L. et al. Genes, geology, and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 

    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 26 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mellard, J. P., Audoye, P. & Loreau, M. Seasonal patterns in species diversity across biomes. Ecology 100, e02627 (2019).PubMed 

    Google Scholar 
    Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).PubMed 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017).PubMed 

    Google Scholar 
    Amato, K. R. et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthropol. 155, 652–664 (2014).PubMed 

    Google Scholar 
    Perofsky, A. C., Leriw, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Silk, J. B. Activities and feeding behavior of free-ranging pregnant baboons. Int. J. Primatol. 8, 593–613 (1987).
    Google Scholar 
    Altmann, S. A. Foraging for Survival: Yearling Baboons in Africa (Univ. Chicago Press, 1998).Bronikowski, A. M. & Altmann, J. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39, 11–25 (1996).
    Google Scholar 
    Muruthi, P., Altmann, J. & Altmann, S. Resource base, parity and reproductive condition affect females’ feeding time and nutrient intake within and between groups of a baboon population. Oecologia 87, 467–472 (1991).PubMed 

    Google Scholar 
    Shopland, J. M. Food quality, spatial deployment, and the intensity of feeding interference in yellow baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 21, 149–156 (1987).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    Sprockett D. tyRa: Build Models for Microbiome Data. R package version 0.1.0 https://danielsprockett.github.io/tyRa/articles/tyRa.html (2020).Oksanen J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).CAS 
    PubMed 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Personalized microbiomes in social baboons

    Sarkar, A. et al. Nat. Ecol. Evol. 4, 1020–1035 (2020).Article 

    Google Scholar 
    Tung, J. et al. eLife 4, e05224 (2015).Article 

    Google Scholar 
    Bennett, G. et al. Am. J. Primatol. 78, 883–892 (2016).CAS 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Sci. Adv. 2, e1500997 (2016).Article 

    Google Scholar 
    Perofsky, A. C., Ancel Meyers, L., Abondano, L. A., Di Fiore, A. & Lewis, R. J. Mol. Ecol. 30, 6759–6775 (2021).Article 

    Google Scholar 
    Yarlagadda, K., Razik, I., Malhi, R. S. & Carter, G. G. Biol. Lett. 17, 20210389 (2021).Article 

    Google Scholar 
    Björk, J. R. et al. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01773-4 (2022).Blekhman, R. et al. Genome Biol. 16, 191 (2015).Article 

    Google Scholar 
    Grieneisen, L. et al. Science 186, 181–186 (2021).Article 

    Google Scholar 
    Lloyd-Price, J. et al. Nature 550, 61–66 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    AnimalTraits – a curated animal trait database for body mass, metabolic rate and brain size

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Wolff, J. O., Wierucka, K., Uhl, G. & Herberstein, M. E. Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences 118, e2102693118 (2021).CAS 
    Article 

    Google Scholar 
    Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019 (2019).Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data 7, 170 (2020).CAS 
    Article 

    Google Scholar 
    Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. Towards establishment of a centralized spider traits database. The Journal of Arachnology (2020).Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    Article 

    Google Scholar 
    Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).ADS 
    Article 

    Google Scholar 
    De Meester, G. & Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).Article 

    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).ADS 
    Article 

    Google Scholar 
    Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences 105, 16994 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (2020).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).Pebesma, E., Mailund, T. & Hiebert, J. Measurement Units in R. R J. 8, 486–494 (2016).Article 

    Google Scholar 
    Hiebert, J. udunits-2 bindings for R. (2016).Iwaniuk, A. N. & Nelson, J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).Article 

    Google Scholar 
    Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).Christian, K. & Conley, K. Activity and Resting Metabolism of Varanid Lizards Compared With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).Article 

    Google Scholar 
    Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).CAS 
    Article 
    PubMed 

    Google Scholar 
    Haim, A. Adaptive variations in heat production within Gerbils (genus Gerbillus) from different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamel, S. & Gatten, R. E. J. Aerobic and Anaerobic Activity Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).Article 

    Google Scholar 
    Gatten, R. E. Jr. Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).Article 

    Google Scholar 
    Coelho, J. R. & Moore, A. J. Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).CAS 
    Article 

    Google Scholar 
    Lighton, J. & Garrigan, D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).CAS 
    Article 

    Google Scholar 
    Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic rate in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).Article 

    Google Scholar 
    Bozinovic, F. & Contreras, L. C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).ADS 
    Article 
    PubMed 

    Google Scholar 
    Morrison, P. & Middleton, E. H. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).Article 

    Google Scholar 
    Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).Article 

    Google Scholar 
    Leitner, P. & Nelson, J. E. Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Whittow, G. C., Gould, E. & Rand, D. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).Shelton, T. G. & Appel, A. G. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Changes in the Rate of CO2 Release following Feeding in the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).Article 
    PubMed 

    Google Scholar 
    Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).Article 

    Google Scholar 
    Arends, A. & McNab, B. K. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).CAS 
    Article 

    Google Scholar 
    McNab, B. K. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).Article 

    Google Scholar 
    Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).CAS 
    Article 

    Google Scholar 
    Haim, A. & Skinner, J. D. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).Article 

    Google Scholar 
    Else, P. L. & Hulbert, A. J. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).CAS 
    Article 

    Google Scholar 
    Duncan, F. D. & Crewe, R. M. A comparison of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).Article 

    Google Scholar 
    Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).ADS 
    Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Holter, P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).Article 
    PubMed 

    Google Scholar 
    Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).Article 

    Google Scholar 
    Rübsamen, U., Hume, I. D. & Rübsamen, K. Effect of ambient temperature on autonomic thermoregulation and activity patterns in the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).Article 

    Google Scholar 
    Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).Article 

    Google Scholar 
    Louw, G., Young, B. & Bligh, J. Effect of thyroxine and noradrenaline on thermoregulation, cardiac rate and oxygen consumption in the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).CAS 
    Article 

    Google Scholar 
    Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).CAS 
    Article 

    Google Scholar 
    Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).CAS 
    Article 

    Google Scholar 
    Thompson, G. G. & Withers, P. C. Effects of body mass and temperature on standard metabolic rates for two Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).Hack, M. A. The effects of mass and age on standard metabolic rate in house crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).ADS 
    Article 

    Google Scholar 
    Gatten, R. E. Jr. Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).Gleeson, T. T. The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).CAS 
    Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. Endothermy and energy metabolism of a giant tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).Article 

    Google Scholar 
    Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, K. The energetic costs of calling in the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).Article 

    Google Scholar 
    Kotiaho, J. S. et al. Energetic costs of size and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).Article 

    Google Scholar 
    Chaplin, S. B. The energetic significance of huddling behavior in common bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).Article 

    Google Scholar 
    Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).Article 

    Google Scholar 
    Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).Article 

    Google Scholar 
    Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).Article 

    Google Scholar 
    Marhold, S. & Nagel, A. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).CAS 
    Article 

    Google Scholar 
    Pauls, R. W. Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).ADS 
    Article 

    Google Scholar 
    Brush, A. H. Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).Article 

    Google Scholar 
    Bailey, C. G. & Riegert, P. W. Energy dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).Article 

    Google Scholar 
    Prinzinger, R., Lübben, I. & Schuchmann, K.-L. Energy metabolism and body temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).Article 

    Google Scholar 
    Baudinette, R. V. Energy metabolism and evaporative water loss in the California ground squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).Article 

    Google Scholar 
    May, M. L. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).Article 

    Google Scholar 
    Baudinette, R. V., Churchill, S. K., Christian, K. A., Nelson, J. E. & Hudson, P. J. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).CAS 
    Article 

    Google Scholar 
    Withers, P. C. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).Article 

    Google Scholar 
    Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling in the Desert Cicada: Thermal Efficiency and Water/Metabolic Costs. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).Article 

    Google Scholar 
    Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).Article 

    Google Scholar 
    Wunder, B. A. Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).Article 

    Google Scholar 
    Maclean, G. S. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).Article 

    Google Scholar 
    Campbell, K. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).CAS 
    Article 

    Google Scholar 
    Weathers, W. W., Paton, D. C. & Seymour, R. S. Field Metabolic Rate and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).Article 

    Google Scholar 
    Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).ADS 
    Article 
    PubMed 

    Google Scholar 
    Greenstone, M. H. & Bennett, A. F. Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).Article 

    Google Scholar 
    Schmitz, A. Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).CAS 
    Article 

    Google Scholar 
    Marder, J. & Bernstein, R. Heat balance of the partridge Alectoris chukar exposed to moderate, high and extreme thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).CAS 
    Article 

    Google Scholar 
    Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).CAS 
    Article 

    Google Scholar 
    Zari, T. The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).Article 

    Google Scholar 
    Jensen, T. F. & Nielsen, M. G. The influence of body size and temperature on worker ant respiration. Nat. Jutl. 18, 21–25 (1975).
    Google Scholar 
    McNab, B. K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).Article 

    Google Scholar 
    Shillington, C. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).CAS 
    Article 

    Google Scholar 
    Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hailey, A. & Davies, P. M. C. Lifestyle, latitude and activity metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).Article 

    Google Scholar 
    Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).Article 

    Google Scholar 
    Putnam, R. W. & Murphy, R. W. Low metabolic rate in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).Article 

    Google Scholar 
    Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).Article 

    Google Scholar 
    Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular adaptations in the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).Article 

    Google Scholar 
    Casey, T. M., Withers, P. C. & Casey, K. K. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).Article 

    Google Scholar 
    Grant, G. S. & Whittow, G. C. Metabolic cost of incubation in the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).CAS 
    Article 

    Google Scholar 
    Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the cost of foraging in the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).Article 

    Google Scholar 
    Thurling, D. J. Metabolic rate and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vleck, C. M. & Vleck, D. Metabolic rate in five tropical bird species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).Article 

    Google Scholar 
    Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).Article 
    PubMed 

    Google Scholar 
    Worthen, G. L. & Kilgore, D. L. Metabolic rate of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).Article 

    Google Scholar 
    Hails, C. J. The metabolic rate of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmitz, A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).CAS 
    Article 

    Google Scholar 
    Anderson, J. F. Metabolic rates of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).Adams, N. J. & Brown, C. R. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).Article 

    Google Scholar 
    Morrison, P. & Ryser, F. A. Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).CAS 
    Article 

    Google Scholar 
    Bieńkowski, P. & Marszałek, U. Metabolism and energy budget in the snow vole. Acta Theriol. 19, 55–67 (1974).Article 

    Google Scholar 
    Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).Article 

    Google Scholar 
    Król, E. Metabolism and thermoregulation in the eastern hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).Article 

    Google Scholar 
    Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).Article 

    Google Scholar 
    Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).Article 

    Google Scholar 
    Hill, R. W. Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).Article 

    Google Scholar 
    Saarela, S. & Hissa, R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).CAS 
    Article 

    Google Scholar 
    MacMillen, R. E. Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).CAS 
    Article 

    Google Scholar 
    Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).ADS 
    Article 
    PubMed 

    Google Scholar 
    Farrell, D. J. & Wood, A. J. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).Article 

    Google Scholar 
    Hennemann, W. W. & Konecny, M. J. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).Article 

    Google Scholar 
    May, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).Article 

    Google Scholar 
    Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths During Rest, Pre-Flight Warm-Up, and Flight In Relation to Body Size and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).Article 

    Google Scholar 
    MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 72–79 (1977).Francis, C. & Brooks, G. R. Oxygen consumption, rate of heart beat and ventilatory rate in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).Article 

    Google Scholar 
    Tucker, V. A. Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article 

    Google Scholar 
    Genoud, M., Bonaccorso, F. J. & Anends, A. Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).Article 

    Google Scholar 
    Genoud, M. & Ruedi, M. Rate of metabolism, temperature regulations, and evaporative water loss in the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).Article 

    Google Scholar 
    Ricklefs, R. E. & Matthew, K. K. Rates of oxygen consumption in four species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).CAS 
    Article 

    Google Scholar 
    Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).Article 

    Google Scholar 
    Goldstein, R. B. Relation of metabolism to ambient temperature in the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).Article 

    Google Scholar 
    Mispagel, M. E. Relation of oxygen consumption to size and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).Article 

    Google Scholar 
    Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical bird species. The Auk, 25–37 (1984).Holter, P. Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).Article 

    Google Scholar 
    Goldstein, D. L. & Nagy, K. A. Resource Utilization by Desert Quail: Time and Energy, Food and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).Article 

    Google Scholar 
    Louw, G. N., Nicolson, S. W. & Seely, M. K. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).Article 

    Google Scholar 
    Anderson, J. F. & Prestwich, K. N. Respiratory Gas Exchange in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).Article 

    Google Scholar 
    Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Nielsen, M. G. Respiratory rates of ants from different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).Article 

    Google Scholar 
    Calder, W. A. III & Dawson, T. J. Resting metabolic rates of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).Article 

    Google Scholar 
    Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic rates of two orbweb spiders: A first approach to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).CAS 
    Article 

    Google Scholar 
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).Article 

    Google Scholar 
    Bartholomew, G. A. & Lighton, J. R. B. Short Communication: Ventilation and Oxygen Consumption During Rest and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).Article 

    Google Scholar 
    Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic rate in the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).Article 

    Google Scholar 
    Lighton, J. R. Slow Discontinuous Ventilation in the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).Article 

    Google Scholar 
    Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).CAS 
    Article 

    Google Scholar 
    Young, S. R. & Block, W. Some factors affecting metabolic rate in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).Wang, L. C.-H. & Hudson, J. W. Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bedford, G. S. & Christian, K. A. Standard metabolic rate and preferred body temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).Article 

    Google Scholar 
    Vogt, J. T. & Appel, A. G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, G., Heger, N., Heger, T. & Withers, P. Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).Article 

    Google Scholar 
    Vitali, S. D., Withers, P. C. & Richardson, K. C. Standard metabolic rates of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).Article 

    Google Scholar 
    Dawson, T. J., Grant, T. R. & Fanning, D. Standard Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).Article 

    Google Scholar 
    Al-Sadoon, M. K. & Abdo, N. M. Temperature effects on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).ADS 
    Article 

    Google Scholar 
    Roxburgh, L. & Perrin, M. R. Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).Article 

    Google Scholar 
    Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).CAS 
    Article 

    Google Scholar 
    Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).Article 

    Google Scholar 
    Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation in the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ebisu, R. J. & Whittow, G. C. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).CAS 
    Article 

    Google Scholar 
    Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation in the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).CAS 
    Article 

    Google Scholar 
    Fusari, M. H. Temperature responses of standard, aerobic metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).CAS 
    Article 

    Google Scholar 
    Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).Article 

    Google Scholar 
    Campbell, K. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)0812.0.CO;2 (2000).Hosken, D. J. Thermal Biology and Metabolism of the Greater Long-eared Bat. Nyctophilus major (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).Article 

    Google Scholar 
    Duxbury, K. J. & Perrin, M. Thermal biology and water turnover rate in the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).CAS 
    Article 

    Google Scholar 
    Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).Article 

    Google Scholar 
    Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).Article 

    Google Scholar 
    Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).Article 

    Google Scholar 
    Kamau, J. M., Johansen, K. & Maloiy, G. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).Article 

    Google Scholar 
    Knight, M. H. Thermoregulation in the largest African cricetid, the giant rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).CAS 
    Article 

    Google Scholar 
    Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Casey, T. M. & Casey, K. K. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).Article 

    Google Scholar 
    Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).CAS 
    Article 

    Google Scholar 
    Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).Article 

    Google Scholar 
    du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).Article 

    Google Scholar 
    Bradley, W. & Yousef, M. Thermoregulatory responses in the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).CAS 
    Article 

    Google Scholar 
    Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).CAS 
    Article 

    Google Scholar 
    El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama: effects of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).Article 

    Google Scholar 
    Krüger, K., Prinzinger, R. & Schuchmann, K.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).
    Google Scholar 
    Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gas Exchange, Body Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).Article 

    Google Scholar 
    Zachariassen, K. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).Article 

    Google Scholar 
    Bucher, T. L. Ventilation and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).ADS 
    Article 

    Google Scholar 
    Bickler, P. E. & Anderson, R. A. Ventilation, Gas Exchange, and Aerobic Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).Article 

    Google Scholar 
    Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).Article 
    PubMed 

    Google Scholar 
    Quesada, R. et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).Article 
    PubMed 

    Google Scholar 
    Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).Article 
    PubMed 

    Google Scholar 
    Mlikovsky, J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).
    Google Scholar 
    Mlikovsky, J. Brain size in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).
    Google Scholar 
    Bronson, R. T. Brain weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).Article 

    Google Scholar 
    Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).Article 

    Google Scholar 
    Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and brain size in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).Article 

    Google Scholar 
    Rosenzweig, M. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).Article 

    Google Scholar 
    Ashwell, K. W. S. Encephalization of Australian and New Guinean marsupials. Brain Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).Article 
    PubMed 

    Google Scholar 
    Pasquet, A., Toscani, C. & Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).Article 
    PubMed 

    Google Scholar 
    Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).
    Google Scholar 
    Naccarati, S. On the relation between the weight of the internal secretory glands and the body weight and brain weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).Article 

    Google Scholar 
    Crile, G. & Quiring, D. P. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. (1940).Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative brain size in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).Article 

    Google Scholar 
    Hrdlička, A. Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).Article 

    Google Scholar 
    Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).Article 
    PubMed 

    Google Scholar 
    Napiorkowska, T. & Kobak, J. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).Article 
    PubMed 

    Google Scholar 
    El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).Article 
    PubMed 

    Google Scholar 
    Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, B. J. & Leal, M. Brain Organization and Habitat Complexity in Anolis Lizards. Brain Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).Article 
    PubMed 

    Google Scholar 
    Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Academic Press, 1979).Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).Article 
    PubMed 

    Google Scholar 
    Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).Article 

    Google Scholar 
    Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of brain morphology and communication modalities in lizards. Current Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).Article 

    Google Scholar 
    Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).Montgomery, S. H. & Merrill, R. M. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Standard Brain. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, J.-M., Li, R.-D. & Gao, F.-Y. Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).CAS 
    Article 

    Google Scholar 
    Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).CAS 
    PubMed 

    Google Scholar 
    Makarova, A. A. & Polilov, A. A. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).Article 

    Google Scholar 
    Bininda‐Emonds, O. R. P. Pinniped brain sizes. Mar. Mamm. Sci. 16, 469–481 (2000).Article 

    Google Scholar 
    Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, K. Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).Article 

    Google Scholar 
    Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).Article 

    Google Scholar 
    Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).Article 
    PubMed 

    Google Scholar 
    O’Donnell, S. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).Article 

    Google Scholar 
    Weltzien, P. & Barth, F. G. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).Article 
    PubMed 

    Google Scholar  More

  • in

    Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs

    Lund, E. M., Armstrong, P. J., Kirk, C. A. & Klausner, J. S. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. Int. J. Appl. Res. Vet. Med. 4(2), 177 (2006).
    Google Scholar 
    German, A. J. The growing problem of obesity in dogs and cats. J. Nutr. 136(7), 1940S-1946S (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Courcier, E. A., Thomson, R. M., Mellor, D. J. & Yam, P. S. An epidemiological study of environmental factors associated with canine obesity. J. Small Anim. Pract. 51(7), 362–367 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mao, J., Xia, Z., Chen, J. & Yu, J. Prevalence and risk factors for canine obesity surveyed in veterinary practices in Beijing, China. Prev. Vet. Med. 112(3–4), 438–442 (2013).PubMed 
    Article 

    Google Scholar 
    Payan-Carreira, R., Sargo, T. & Nascimento, M. M. Canine obesity in Portugal: Perceptions on occurrence and treatment determinants. Acta Vet. Scand. 57(1), 1–1 (2015).Article 

    Google Scholar 
    Chandler, M. et al. Obesity and associated comorbidities in people and companion animals: A one health perspective. J. Comp. Pathol. 156(4), 296–309 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Montoya-Alonso, J. A. et al. Prevalence of canine obesity, obesity-related metabolic dysfunction, and relationship with owner obesity in an obesogenic region of Spain. Front. Vet. Sci. 4, 59 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Prieto, A. et al. European dog owner perceptions of obesity and factors associated with human and canine obesity. Sci. Rep. 8(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Marshall, W. G., Bockstahler, B. A., Hulse, D. A. & Carmichael, S. A review of osteoarthritis and obesity: Current understanding of the relationship and benefit of obesity treatment and prevention in the dog. Vet. Comp. Orthop. Traumatol. 22(05), 339–345 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zoran, D. L. Obesity in dogs and cats: A metabolic and endocrine disorder. Vet. Clin. N. Am. Small Anim. Pract. 40(2), 221–239 (2010).Article 

    Google Scholar 
    Tvarijonaviciute, A. et al. Obesity-related metabolic dysfunction in dogs: A comparison with human metabolic syndrome. BMC Vet. Res. 8(1), 147 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoenig, M. Comparative aspects of human, canine, and feline obesity and factors predicting progression to diabetes. Vet. Sci. 1(2), 121–135 (2014).Article 

    Google Scholar 
    Yam, P. S. et al. Impact of canine overweight and obesity on health-related quality of life. Prev. Vet. Med. 127, 64–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandøe, P., Palmer, C., Corr, S., Astrup, A. & Bjørnvad, C. R. Canine and feline obesity: A One Health perspective. Vet. Rec. 175(24), 610–616 (2014).PubMed 
    Article 

    Google Scholar 
    Salt, C., Morris, P. J., Wilson, D., Lund, E. M. & German, A. J. Association between life span and body condition in neutered client-owned dogs. J. Vet. Intern. Med. 33(1), 89–99 (2019).PubMed 

    Google Scholar 
    Switonski, M. & Mankowska, M. Dog obesity—The need for identifying predisposing genetic markers. Res. Vet. Sci. 95(3), 831–836 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankowska, M. et al. Sequence analysis of three canine adipokine genes revealed an association between TNF polymorphisms and obesity in Labrador dogs. Anim. Genet. 47(2), 245–249 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raffan, E. et al. A deletion in the canine POMC gene is associated with weight and appetite in obesity-prone Labrador retriever dogs. Cell Metab. 23(5), 893–900 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchodolski, J. S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Anim. Pract. 41(2), 261–272 (2011).
    Google Scholar 
    Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 32(1), 9–25 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006).PubMed 
    Article 
    ADS 

    Google Scholar 
    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 101(44), 15718–15723 (2004).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Ghazalpour, A., Cespedes, I., Bennett, B. J. & Allayee, H. Expanding role of gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27(2), 141 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losasso, C. et al. Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: A cross sectional study. Front. Microbiol. 9, 317 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pizarroso, N. A., Fuciños, P., Gonçalves, C., Pastrana, L. & Amado, I. R. A Review on the role of food-derived bioactive molecules and the microbiota—Gut–brain axis in satiety regulation. Nutrients 13(2), 632. https://doi.org/10.3390/nu13020632 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8(1), 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102(31), 11070–11075 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444(7122), 1022–1023 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhi, C. et al. Connection between gut microbiome and the development of obesity. Eur. J. Clin. Microbiol. Infect. Dis. 38(11), 1987–1998 (2019).PubMed 
    Article 

    Google Scholar 
    Huang, Z., Pan, Z., Yang, R., Bi, Y. & Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 11(4), 635–654 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Swanson, K. S. et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 5(4), 639–649 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6(1), 1–11 (2018).Article 

    Google Scholar 
    Hand, D., Wallis, C., Colyer, A. & Penn, C. W. Pyrosequencing the canine faecal microbiota: Breadth and depth of biodiversity. PLoS ONE 8(1), e53115 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Handl, S. et al. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 84(2), 332–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs. J. Vet. Intern. Med. 29(1), 43–50 (2015).PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Fecal microbiota analysis of obese dogs with underlying diseases: A pilot study. Korean J. Vet. Res. 55(3), 205–208 (2015).Article 

    Google Scholar 
    Beloshapka, A. N., Forster, G. M., Holscher, H. D., Swanson, K. S. & Ryan, E. P. Fecal microbial communities of overweight and obese client-owned dogs fed cooked bean powders as assessed by 454-pyrosequencing. J. Vet. Sci. Technol. 7(366), 2 (2016).
    Google Scholar 
    Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y. & Hannah, S. S. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. MBio 8(1), e01703-e1716 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kieler, I. N. et al. Gut microbiota composition may relate to weight loss rate in obese pet dogs. Vet. Med. Sci. 3(4), 252–262 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Forster, G. M. et al. A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top. Companion Anim. Med. 33(4), 126–135 (2018).PubMed 
    Article 

    Google Scholar 
    Salas-Mani, A. et al. Fecal microbiota composition changes after a BW loss diet in beagle dogs. J. Anim. Sci. 96(8), 3102–3111 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander, C. et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 120(6), 711–720 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herstad, K. M. et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res. 13(1), 147 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens Health 38(1), 48–60 (2020).PubMed 
    Article 

    Google Scholar 
    Xu, J. et al. The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Vet. Res. 13(1), 374 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Masuoka, H. et al. Transition of the intestinal microbiota of dogs with age. PLoS ONE 12, e0181739 (2016).Article 
    CAS 

    Google Scholar 
    Mizukami, K. et al. Age-related analysis of the gut microbiome in a purebred dog colony. FEMS Microbiol. Lett. 366(8), fnz095 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: Insights into taxonomic, metabolic and nutritional features. Environ. Microbiol. 21(4), 1331–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, H. et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota. Front. Immunol. 10, 666 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reddy, K. E. et al. Impact of breed on the fecal microbiome of dogs under the same dietary condition. J. Microbiol. Biotechnol. 29(12), 1947–1956 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C. & Brodbelt, D. C. Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS ONE 9(3), e90501 (2014).PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Vilson, Å. et al. Disentangling factors that shape the gut microbiota in German Shepherd dogs. PLoS ONE 13(3), e0193507 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2, e00458 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guard, B. C. et al. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE 12(4), e0175718 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Greer, K. A., Canterberry, S. C. & Murphy, K. E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 82(2), 208–214 (2007).PubMed 
    Article 

    Google Scholar 
    Fleming, J. M., Creevy, K. E. & Promislow, D. E. L. Mortality in North American dogs from 1984 to 2004: An investigation into age-, size-, and breed-related causes of death. J. Vet. Int. Med. 25(2), 187–198 (2011).CAS 
    Article 

    Google Scholar 
    Oberbauer, A. M., Belanger, J. & Famula, T. R. A review of the impact of neuter status on expression of inherited conditions in dogs. Front. Vet. Sci. 6, 397 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J. & Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5, e3019 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, J., An, J. U., Kim, W., Lee, S. & Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog. 9, 68–68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mori, A. et al. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J. Vet. Med. Sci. 81, 1783–1790 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Apper, E. et al. Relationships between gut microbiota, metabolome, body weight, and glucose homeostasis of obese dogs fed with diets differing in prebiotic and protein content. Microorganisms 8(4), 513 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Wernimont, S. M. et al. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01266 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauf, S. et al. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs. J. Anim. Sci. 96(9), 3684–3698 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bresciani, F. et al. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J. Vet. Intern. Med. 32(6), 1903–1910 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madsen, L., Myrmel, L. S., Fjære, E., Liaset, B. & Kristiansen, K. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 8, 1047 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    EU law and publications. Regulation (EC) No 767/2009 of the European parliament and of the council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and council regulation (EC) No 1831/2003 and repealing council directive 79/373/EEC, commission directive 80/511/EEC, council directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and commission decision 2004/217/EC. OJEC L229, 1–28 (2009).
    Google Scholar 
    Paßlack, N. et al. Impact of the dietary inclusion of dried food residues on the apparent nutrient digestibility and the intestinal microbiota of dogs. Arch. Anim. Nutr. 75(4), 311–327 (2021).PubMed 
    Article 

    Google Scholar 
    Macedo, H. T. et al. Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Anim. Microbiome 4(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8(8), e71108 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Remely, M. et al. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef. Microbes 5(1), 33–43 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tamanai-Shacoori, Z. et al. Roseburia spp.: A marker of health?. Future Microbiol. 12(2), 157–170 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. BioMed Res. Int. 5, 1. https://doi.org/10.1155/2017/1829685 (2017).CAS 
    Article 

    Google Scholar 
    Wang, J., Wang, P., Li, D., Hu, X. & Chen, F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur. J. Nutr. 59(2), 699–718 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Mazcorro, J. F., Ivanov, I., Mills, D. A. & Noratto, G. Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. PeerJ 4, e1702 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26(1), 222–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, T. R. et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 68(2), 248–262 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallè, F. et al. Exploring the association between physical activity and gut microbiota composition: a review of current evidence. Ann. Ig. Med. Prev. Comunita 31(6), 582–589 (2019).
    Google Scholar 
    Laflamme, D. R. P. C. Development and validation of a body condition score system for dogs. Canine Practice (Santa Barbara, Calif.: 1990, USA) (1997).FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs https://fediaf.org/self-regulation/nutrition.html#guidelines (2021).Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1), e1–e1 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Research 5, 2122 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. DrImpute: Imputing dropout events in single cell RNA sequencing data. BMC Bioinform. 19(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Finotello, F., Mastrorilli, E. & Di Camillo, B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief. Bioinform. 19(4), 679–692 (2018).PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012). More