More stories

  • in

    Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B: Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. & Lirman, D. Genotype by environment interactions in coral bleaching. Proc. R. Soc. B Biol. Sci., https://doi.org/10.1098/rspb.2021.0177 (2021).Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).PubMed 
    Article 

    Google Scholar 
    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci., https://doi.org/10.3389/fmars.2017.00434 (2018).Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol. Ecol. 28, 3371–3382 (2019).PubMed 
    Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & van Oppen, M. J. Genome‐wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowan, R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430, 742 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. USA 105, 10444–10449 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, J. et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J., 15, 2028–2042 (2021).Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 369 (2020).Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jin, Y. K. et al. Genetic markers for antioxidant capacity in a reef-building coral. Sci. Adv. 2, e1500842 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cooke, I. et al. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Sci. Adv. 6, eabc6318 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. Resilience in reef-building corals: the ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 00, 1–18 (2019).CAS 

    Google Scholar 
    Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508 (2013).Article 
    CAS 

    Google Scholar 
    Quigley, K. M., Warner, P. A., Bay, L. K. & Willis, B. L. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity, 121, 524–536 (2018).Cunning, R., Ritson-Williams, R. & Gates, R. D. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).CAS 
    Article 

    Google Scholar 
    Dilworth, J., Caruso, C., Kahkejian, V. A., Baker, A. C. & Drury, C. Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs, https://doi.org/10.1007/s00338-020-02024-3 (2020).Rocha de Souza, M. et al. Community composition of coral-associated Symbiodiniaceae is driven by fine-scale environmental gradients. bioRxiv https://doi.org/10.1101/2021.11.10.468165 (2021).Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Coral Reefs 37, 423–430 (2018).Article 

    Google Scholar 
    Shore-Maggio, A., Runyon, C. M., Ushijima, B., Aeby, G. S. & Callahan, S. M. Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Appl. Environ. Microbiol. 81, 7312–7318 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roach, T. N., Dilworth, J., Jones, A. D., Quinn, R. A. & Drury, C. Metabolomic signatures of coral bleaching history. Nat. Ecol. Evol., 5, 495–503 (2021).Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol., Evolution, Syst. 40, 551–571 (2009).Article 

    Google Scholar 
    Caruso, C. et al. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne’ohe Bay. bioRxiv https://doi.org/10.1101/2021.10.07.463582 (2021).Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution 72, 82–94 (2017).PubMed 
    Article 

    Google Scholar 
    Rose, N. H. et al. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc. R. Soc. B 288, 20210678 (2021).PubMed 
    Article 

    Google Scholar 
    Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS ONE 5, e15021 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon, G., Abbott, E. & Matz, M. Meta‐analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, S., Kim, D. G. & Kim, S. ERK-dependent phosphorylation of the linker and substrate-binding domain of HSP70 increases folding activity and cell proliferation. Exp. Mol. Med. 51, 1–14 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yancey, P. H. et al. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol. Biochem. Zool. 83, 167–173 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, R., Li, C., Jones, A., Gunn, J. & Frade, P. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs 29, 869–880 (2010).Article 

    Google Scholar 
    Ngugi, D. K., Ziegler, M., Duarte, C. M. & Voolstra, C. R. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience 23, 101120 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. et al. Metabolome shift associated with thermal stress in coral holobionts. bioRxiv https://doi.org/10.1101/2020.06.04.134619 (2021).Sakamoto, A. & Murata, N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ. 25, 163–171 (2002).CAS 
    Article 

    Google Scholar 
    Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34, 1–20 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Petronini, P., De Angelis, E., Borghetti, A. & Wheeler, K. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. Biochem. J. 293, 553–558 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7, e38440 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayfield, A. B. & Gates, R. D. Osmoregulation in anthozoan–dinoflagellate symbiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 1–10 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).Article 

    Google Scholar 
    Rose, N. H., Seneca, F. O. & Palumbi, S. R. Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol. Evolution 8, 243–252 (2016).CAS 
    Article 

    Google Scholar 
    Ruiz-Jones, L. J. & Palumbi, S. R. Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Sci. Adv. 3, e1601298 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reef‐building corals. Glob. Change Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quigley, K., Randall, C., van Oppen, M. & Bay, L. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00178 (2020).Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kane ‘ohe Bay, Hawai ‘i. Coral Reefs. 39, 757–769 (2020).Hancock, J. et al. Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth and resilience in juvenile Montipora capitata. Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps13534 (2020).Falconer, D. S. Introduction To Quantitative Genetics (Pearson, 1960).Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2012).Article 

    Google Scholar 
    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).Article 

    Google Scholar 
    Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 1–17 (2019).Article 

    Google Scholar 
    Shumaker, A. et al. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9, 2571 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).Article 

    Google Scholar 
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.17-2. R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2010).
    Google Scholar 
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hivert, V., Leblois, R., Petit, E. J., Gautier, M. & Vitalis, R. Measuring genetic differentiation from Pool-seq data. Genetics 210, 315–330 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 1–11 (2010).Article 
    CAS 

    Google Scholar 
    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. methods 16, 299–302 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ludwig, M., Fleischauer, M., Dührkop, K., Hoffmann, M. A. & Böcker, S. in Computational Methods and Data Analysis for Metabolomics 185–207 (Springer, 2020).Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 1–13 (2008).Article 
    CAS 

    Google Scholar 
    Pedersen, H. K. et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 13, 2781–2800 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pei, G., Chen, L. & Zhang, W. in Methods in enzymology 585 135–158 (Elsevier, 2017).Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Harnessing agricultural microbiomes for human pathogen control

    Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018;67:1.PubMed Central 
    Article 

    Google Scholar 
    CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated With Consumption of Fresh Spinach – United States. JAMA. 2006;296:2195–6.Article 

    Google Scholar 
    Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis. 2007;13:1908.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS One. 2007;2:e1159.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee A, Mammel MK, LeClerc JE, Cebula TA. Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak. J Bacteriol. 2008;190:1710–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macarisin D, Patel J, Bauchan G, Giron JA, Sharma VK. Role of Curli and Cellulose Expression in Adherence of Escherichia coli O157:H7 to Spinach Leaves. Foodborne Pathog Dis. 2012;9:160–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol. 2014;44:108–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage. Appl Environ Microbiol. 2014;80:2504–15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    CDC. Investigation Details. 2021 [updated 2021; cited]; Available from: https://www.cdc.gov/ecoli/2021/o157h7-02-21/details.html.Karp DS, Gennet S, Kilonzo C, Partyka M, Chaumont N, Atwill ER, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones MS, Fu Z, Reganold JP, Karp DS, Besser TE, Tylianakis JM, et al. Organic farming promotes biotic resistance to foodborne human pathogens. J Appl Ecol. 2019;56:1117–27.Article 

    Google Scholar 
    Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMs Microbiol Rev. 2009;33:689–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holden N. You are what you can find to eat: bacterial metabolism in the rhizosphere. Curr Issues Mol Biol. 2019;30:1–16.Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165:503–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liao H, Li X, Bai Y, Cui P, Wen C, Liu C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evolut. 2021;38:2337–50.CAS 
    Article 

    Google Scholar 
    Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014;7:496–516.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology. 2013;103:333–40.PubMed 
    Article 

    Google Scholar 
    Dinu L-D, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol. 2011;77:8295–302.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, et al. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology. 2021;167:1–12.Franz E, Semenov AV, Van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol. 2008;105:1569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. Internal colonization of salmonella enterica serovar typhimurium in tomato plants. PLoS One. 2011;6:e27340.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, et al. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;12:1088. 7
    Google Scholar 
    Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front Plant Sci. 2020;30:10.
    Google Scholar 
    Launders N, Locking ME, Hanson M, Willshaw G, Charlett A, Salmon R, et al. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes. Epidemiol Infect. 2016;144:171–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenkel D, Deveau A, Niimi J, Mariotte P, Vitra A, Meisser M, et al. Linking soil’s volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environ Microbiol. 2019;21:3313–27.Article 

    Google Scholar 
    Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Darlison J, Mogren L, Rosberg A-K, Grudén M, Minet A, Liné C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett. 2013;346:146–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet J-Y, et al. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes. 2020;11:1207.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, et al. Global soil biodiversity atlas. European Commission; 2016.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Scientific Reports. 2016;6:23584.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol. 2016;38:137–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME Journal. 2016;10:265–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schikora A, Jackson RW, Van Overbeek L, Holden N. Editorial: plants as alternative hosts for human and animal pathogens – second edition. Front Microbiol. [Editorial] 2020;14:11.
    Google Scholar 
    Lebeis SL. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol. 2015;24:82–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, et al. A conceptual framework for invasion in microbial communities. ISME J. 2016;10:2773–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf. 2015;14:336–56.Article 

    Google Scholar 
    Litchman E. Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13:1560–72.PubMed 
    Article 

    Google Scholar 
    Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24:1942–53.PubMed 
    Article 

    Google Scholar 
    Hawkes CV, Connor EW. Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes. Journal. 2017;1:57–69.
    Google Scholar 
    Meyer KM, Leveau JH. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621–9.PubMed 
    Article 

    Google Scholar 
    Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 2011;5:1108–14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ. 2014;29:123–35.Alegbeleye OO, Singleton I, Sant’Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol. 2018;73:177–208.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johannessen GS, Bengtsson GB, Heier BT, Bredholt S, Wasteson Y, Rørvik LM. Potential uptake of Escherichia coli O157: H7 from organic manure into crisphead lettuce. Appl Environ Microbiol. 2005;71:2221–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fett WF. Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot. 2006;69:719–28.PubMed 
    Article 

    Google Scholar 
    Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. Phytopathology. 2013;103:316–25.PubMed 
    Article 

    Google Scholar 
    Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol. 2019;84:103241.PubMed 
    Article 

    Google Scholar 
    Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, et al. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol. 2021;131:1564–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TR, Moyne A-L, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8:e68642.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, et al. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. 2018;94:fiy135.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015;15:1–13.CAS 
    Article 

    Google Scholar 
    Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J, Chattopadhyay S, et al. Creek to rable: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci Total Environ. 2019;666:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu G, Yin H-B, Ottesen A, Bolten S, Patel J, Rideout S, et al. Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes J. 2019;3:137–47.Article 

    Google Scholar 
    Obayomi O, Edelstein M, Safi J, Mihiret M, Ghazaryan L, Vonshak A, et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology Fertility Soils. 2020;56:729–42.CAS 
    Article 

    Google Scholar 
    Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One. 2018;13:e0199291.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Distribution of invasive versus native whitefly species and their pyrethroid knock-down resistance allele in a context of interspecific hybridization

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    Wilcove, D. S. & Chen, L. Y. Management costs for endangered species. Conserv. Biol. 12, 1405–1407 (1998).
    Google Scholar 
    Singer, M. C., Wee, B., Hawkins, S. & Butcher, M. Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies in The Evolutionary Biology of Herbivorous Insects: Speciation, Specialization and Radiation (ed. Tilmon, K. J.). 311–324. (University of California Press, 2008).Ruesink, J. L., Parker, I. M., Groom, M. J. & Kareiva, P. M. Reducing the risks of nonindigenous species introductions. Bioscience 45, 465–477 (1995).
    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).
    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).ADS 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 

    Google Scholar 
    Blackburn, T. M. & Jeschke, J. M. Invasion success and threat status: two sides of a different coin?. Ecography 32, 83–88 (2009).
    Google Scholar 
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).PubMed 

    Google Scholar 
    Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Natl. Acad. Sci. USA 97, 7043–7050 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verhoeven, K. J. F., Macel, M., Wolfe, L. M. & Biere, A. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc. R. Soc. B-Biol. Sci. 278, 2–8 (2011).
    Google Scholar 
    Brevik, K., Lindström, L., McKay, S. D. & Chen, Y. H. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr. Opin. Insect Sci. 26, 34–40 (2018).PubMed 

    Google Scholar 
    Kirk, W. D. J. & Terry, L. I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. Forest. Entomol. 5, 301–310 (2003).
    Google Scholar 
    Piiroinen, S., Lyytinen, A. & Lindström, L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6, 313–323 (2013).PubMed 

    Google Scholar 
    Margus, A. et al. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Vais, H., Williamson, M. S., Devonshire, A. L. & Usherwood, P. N. R. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci. 57, 877–888 (2001).CAS 
    PubMed 

    Google Scholar 
    Smith, L. B., Kasai, S. & Scott, J. G. Voltage-sensitive sodium channel mutations S989P+ V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Manag. Sci. 74, 737–745 (2018).CAS 
    PubMed 

    Google Scholar 
    Guerrero, F. D., Jamroz, R. C., Kammlah, D. & Kunz, S. E. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: Identification of kdr and super-kdr point mutations. Insect Biochem. Mol. 27, 745–755 (1997).CAS 

    Google Scholar 
    Morin, S. et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. 32, 1781–1791 (2002).CAS 

    Google Scholar 
    Kasai, S. et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn. J. Infect. Dis. 64, 217–221 (2011).CAS 
    PubMed 

    Google Scholar 
    Brito, L. P. et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8, e60678 (2013).ADS 
    MathSciNet 

    Google Scholar 
    De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).PubMed 

    Google Scholar 
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Google Scholar 
    Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).CAS 
    PubMed 

    Google Scholar 
    Mugerwa, H. et al. African ancestry of new world, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanakala, S. & Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14, e0213946 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, J. et al. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondr. DNA Part DNA Mapp. Seq. Anal. 29, 474–484 (2018).Vyskocilova, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheek, S. & Macdonald, O. Statutory controls to prevent the establishment of Bemisia tabaci in the United Kingdom. Pestic. Sci. 42, 135–137 (1994).CAS 

    Google Scholar 
    Horowitz, A. R. et al. Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 94–98 (2003).
    Google Scholar 
    Basit, M. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47, 207–225 (2019).CAS 

    Google Scholar 
    Horowitz, A. R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58, 216–225 (2005).CAS 
    PubMed 

    Google Scholar 
    Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R. & Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 93, 893–910 (2020).
    Google Scholar 
    Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. B. Entomol. Res. 95, 29–35 (2005).CAS 

    Google Scholar 
    Peterschmitt, M. et al. First report of tomato yellow leaf curl virus in Réunion Island. Plant Dis. 83, 303 (1999).CAS 
    PubMed 

    Google Scholar 
    Delatte, H., Lett, J.-M., Lefeuvre, P., Reynaud, B. & Peterschmitt, M. An insular environment before and after TYLCV introduction in Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance (ed. Czosnek, H.). 13–23. (Springer, 2007).Delatte, H. et al. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet. Res. 87, 109–124 (2006).CAS 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms. B. Entomol. Res. 101, 487–497 (2011).CAS 

    Google Scholar 
    Thierry, M. et al. Mitochondrial, nuclear, and endosymbiotic diversity of two recently introduced populations of the invasive Bemisia tabaci MED species in La Réunion. Insect. Conserv. Divers. 8, 71–80 (2015).
    Google Scholar 
    Tsagkarakou, A. et al. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic. Biochem. Phys. 94, 49–54 (2009).CAS 

    Google Scholar 
    Delatte, H. et al. Differential invasion success among biotypes: case of Bemisia tabaci. Biol. Invasions 11, 1059–1070 (2009).
    Google Scholar 
    Chu, D., Tao, Y.-L., Zhang, Y.-J., Wan, F.-H. & Brown, J. K. Effects of host, temperature and relative humidity on competitive displacement of two invasive Bemisia tabaci biotypes [Q and B]. Insect Sci. 19, 595–603 (2012).
    Google Scholar 
    Chu, D., Wan, F. H., Zhang, Y. J. & Brown, J. K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 39, 1028–1036 (2010).PubMed 

    Google Scholar 
    Pascual, S. & Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. B. Entomol. Res. 94, 369–375 (2004).CAS 

    Google Scholar 
    Pan, H. et al. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25, 1585–1595 (2015).PubMed 

    Google Scholar 
    Shatters, R. G. et al. Population genetics of Bemisia tabaci biotypes B and Q from the Mediterranean and the U.S. inferred using microsatellite markers. in Fourth International Bemisia Workshop International Whitefly Genomics Workshop (3–8 December 2006). (Duck Key: USDA/ARS US Horticultural Research Laboratory, 2006).McKenzie, C. L. & Osborne, L. S. Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Fla. Entomol. 100, 481–484 (2017).
    Google Scholar 
    Guo, X.-J. et al. Diversity and genetic differentiation of the whitefly Bemisia tabaci species complex in China based on mtCOI and cDNA-AFLP analysis. J. Integr. Agr. 11, 206–214 (2012).CAS 

    Google Scholar 
    Prabhaker, N., Castle, S., Henneberry, T. J. & Toscano, N. C. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). B. Entomol. Res. 95, 535–543 (2005).CAS 

    Google Scholar 
    Taquet, A. et al. Insecticide resistance and fitness cost in Bemisia tabaci (Hemiptera: Aleyrodidae) invasive and resident species in La Réunion Island. Pest Manag. Sci. 76, 1235–1244 (2020).CAS 
    PubMed 

    Google Scholar 
    Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thierry, M. et al. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol. Ecol. 20, 2172–2187 (2011).CAS 
    PubMed 

    Google Scholar 
    Gauthier, N. et al. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. Pest Manag. Sci. 70, 1477–1491 (2014).CAS 
    PubMed 

    Google Scholar 
    Alon, M. et al. Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. 36, 71–79 (2006).CAS 

    Google Scholar 
    Vassiliou, V. et al. Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci. 18, 30–39 (2011).CAS 

    Google Scholar 
    Gnankiné, O., Hema, O., Namountougou, M., Mouton, L. & Vavre, F. Impact of pest management practices on the frequency of insecticide resistance alleles in Bemisia tabaci (Hemiptera: Aleyrodidae) populations in three countries of West Africa. Crop Prot. 104, 86–91 (2018).
    Google Scholar 
    Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). B. Entomol. Res. 85, 181–187 (1995).CAS 

    Google Scholar 
    Weill, M. et al. Insecticide resistance: A silent base prediction. Curr. Biol. 14, 552–553 (2004).
    Google Scholar 
    Bouvier, J.-C. et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity (Edinb) 87, 456–462 (2001).CAS 

    Google Scholar 
    Calvert, L. A. et al. Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Ann. Entomol. Soc. Am. 94, 512–519 (2001).CAS 

    Google Scholar 
    Tocko-Marabena, B. K. et al. Genetic diversity of Bemisia tabaci species colonizing cassava in Central African Republic characterized by analysis of cytochrome c oxidase subunit I. PLoS ONE 12, e0182749 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2020).Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).PubMed 

    Google Scholar 
    Vähä, J.-P. & Primmer, C. R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63–72 (2006).PubMed 

    Google Scholar  More

  • in

    Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem

    Dai, A. Drought under global warming: A review. Vo Lu Me 21, 2 (2011).
    Google Scholar 
    Sirdaş, S. & Sen, Z. Spatio-temporal drought analysis in the Trakya region Turkey. Hydrol. Sci. J. 48, 809–820 (2003).Article 

    Google Scholar 
    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).ADS 
    Article 

    Google Scholar 
    Zhang, L., Jiao, W., Zhang, H., Huang, C. & Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 190, 96–106 (2017).ADS 
    Article 

    Google Scholar 
    Humphries, P. & Baldwin, D. S. Drought and aquatic ecosystems: An introduction: Drought and aquatic ecosystems. Freshw. Biol. 48, 1141–1146 (2003).Article 

    Google Scholar 
    Lake, P. S. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshw. Biol. 48, 1161–1172 (2003).Article 

    Google Scholar 
    Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. & Luo, Z. Drought-induced tree mortality: Ecological consequences, causes, and modeling. Environ. Rev. 20, 109–121 (2012).Article 

    Google Scholar 
    Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article 

    Google Scholar 
    Trzcinski, M. K., Srivastava, D. S., Corbara, B. & De, O. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 14, 2 (2016).
    Google Scholar 
    Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    Bartout, P. & Touchart, L. A New Approach to Inventorying Bodies of Water, from Local to Global Scale (Gesellschaft für Erdkunde zu, 2015).
    Google Scholar 
    Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).Article 

    Google Scholar 
    Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39 (2017).Article 

    Google Scholar 
    Bonhomme, C. et al. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13392 (2020).Article 
    PubMed 

    Google Scholar 
    Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshw. Biol. 52, 357–369 (2007).CAS 
    Article 

    Google Scholar 
    Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw. Biol. 60, 1917–1929 (2015).Article 

    Google Scholar 
    Wang, Y., Yu, S. & Wang, J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol. Lett. 10, 401–410 (2007).PubMed 
    Article 

    Google Scholar 
    Pallarés, S., Velasco, J., Millán, A., Bilton, D. T. & Arribas, P. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4, e2382 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).Article 

    Google Scholar 
    Atkinson, C. L., Julian, J. P. & Vaughn, C. C. Species and function lost: Role of drought in structuring stream communities. Biol. Conserv. 176, 30–38 (2014).Article 

    Google Scholar 
    Bogan, M. T., Boersma, K. S. & Lytle, D. A. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Biol. 60, 2547–2558 (2015).Article 

    Google Scholar 
    Srivastava, D. S. et al. Ecological response to altered rainfall differs across the Neotropics. Ecology 101, 15 (2020).Article 

    Google Scholar 
    Amundrud, S. L. & Srivastava, D. S. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 97, 1475–1483 (2016).PubMed 
    Article 

    Google Scholar 
    Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2014).ADS 
    Article 

    Google Scholar 
    Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).PubMed 
    Article 

    Google Scholar 
    Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems: Functional diversity in bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).Article 

    Google Scholar 
    Petermann, J. S. et al. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96, 428–439 (2015).PubMed 
    Article 

    Google Scholar 
    Romero, G. Q., Piccoli, G. C. O., de Omena, P. M. & Gonçalves-Souza, T. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97, 2705–2715 (2016).PubMed 
    Article 

    Google Scholar 
    Srivastava, D. S. & Bell, T. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol. Lett. 12, 1016–1028 (2009).PubMed 
    Article 

    Google Scholar 
    Carrias, J.-F. et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol. Ecol. 96, 45 (2020).Article 
    CAS 

    Google Scholar 
    Romero, G. Q. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat. Commun. 11, 3215 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hairston, N. G. & Hairston, N. G. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142, 379–411 (1993).Article 

    Google Scholar 
    Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article 

    Google Scholar 
    Dézerald, O. et al. Tank bromeliads sustain high secondary production in neotropical forests. Aquat. Sci. 80, 14 (2018).Article 

    Google Scholar 
    Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context: modules and beyond. In Metacommunities: Spatial Dynamics and Ecological Communities 68–83 (University of Chicago Press, 2005).
    Google Scholar 
    Srivastava, D. S., Trzcinski, M. K., Richardson, B. A. & Gilbert, B. Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am. Nat. 172, 761–771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundrud, S. L. et al. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189, 733–744 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Adler, P. B. & Drake, J. M. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172, E186–E195 (2008).Article 

    Google Scholar 
    Anisiu, M.-C. Lotka Volterra and their model. Didact. Math. 32, 9–17 (2014).
    Google Scholar 
    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS 
    Article 

    Google Scholar 
    Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 38, 119–125 (2002).Article 

    Google Scholar 
    Parkyn, S. M. & Collier, K. J. Interaction of press and pulse disturbance on crayfish populations: Flood impacts in pasture and forest streams. Hydrobiologia 527, 113–124 (2004).Article 

    Google Scholar 
    Rowe, L. & Richardson, J. S. Community responses to experimental food depletion: Resource tracking by stream invertebrates. Oecologia 129, 473–480 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    McPeek, M. A. The growth/predation risk trade-off: So what is the mechanism?. Am. Nat. 163, E88–E111 (2004).PubMed 
    Article 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 2 (2019).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).CAS 
    Article 

    Google Scholar 
    Pires, A. P. F. et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99, 1203–1213 (2018).PubMed 
    Article 

    Google Scholar 
    Rodríguez Pérez, H. et al. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 187, 267–279 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Marino, N. A. C. et al. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Glob. Change Biol. 23, 673–685 (2017).ADS 
    Article 

    Google Scholar 
    Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).PubMed 
    Article 

    Google Scholar 
    Céréghino, R. et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct. Ecol. 32, 2435–2447 (2018).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More

  • in

    Optimal strategies and cost-benefit analysis of the $${varvec{n}}$$ n -player weightlifting game

    PreliminariesTo unify all the five classes of two-by-two games, Yamamoto et al.35 introduced the weightlifting game. In this game, each player either cooperates or defects in carrying a weight. Players who carry the weight pay a cost, (cge 0). The weight is successfully lifted with probability ({p}_{i}), where (i=mathrm{0,1},2) is the total number of cooperators and ({p}_{i}) increases with the number of cooperators (i). If the cooperators succeed, both players receive a benefit (b >0). However, in case of failure, both players gain nothing. The pay-off of the cooperators is (b{p}_{i}-c), and the pay-off of the defectors is (b{p}_{i}) (Table 2). In terms of the parameters (Delta {p}_{1}={p}_{1}-{p}_{0}) and (Delta {p}_{2}={p}_{2}-{p}_{1}), which represents the increase in the probability of success due to an additional cooperator, the following inequalities are obtained for the pay-offs (R, T, S), and (P) (Table 1):

    (i)

    (Delta {p}_{1} >c/b) for (S >P),

    (ii)

    (Delta {p}_{2} >c/b) for (R >T), and

    (iii)

    (Delta {p}_{1}+Delta {p}_{2} >c/b) for (R >P).

    Table 2 Pay-off table of two-person weightlifting game.Full size tablePD satisfies only (iii), CH satisfies (i) and (iii), SH satisfies (ii) and (iii), DT satisfies none of the three conditions, and CT satisfies all three. In 2021, Chiba et al.1 studied the evolution of cooperation in society by incorporating environmental value in the weightlifting game. They found that the evolution of cooperation seems to follow a DT to DT trajectory, which can explain the rise and fall of human societies.The ({varvec{n}})-player weightlifting gameIn this study, we generalize the weightlifting game to (n)-players. Suppose (n) self-interested and rational individuals selected from a population of infinite size. The (n) players are asked to lift a weight. Each individual (or player) can decide to either carry the weight (cooperate, (C)) or not carry/pretend to carry the weight (defect, (D)). Players who decide to carry the weight can either succeed or fail. The probability of successful weightlifting is denoted by ({p}_{i}), (i=mathrm{0,1},dots ,n), where (i) indicates the number of cooperators (henceforth, (i) always represents the number of cooperators). The probability of success increases with the number of individuals cooperating, and it may remain less than unity even if all (n) individuals cooperate. Players who decide to carry the weight pay a cost, (cge 0), regardless of the outcome, while those who defect need not pay anything. If the cooperators succeed, all (n) individuals receive a benefit (bge 0). There is no penalty for failure. We use the expected gains/losses of the players as the pay-off. If there are (i-1) cooperative players, then the pay-off of (j) is ({B}_{C}left(iright)=b{p}_{i}-c) when (j) cooperates and ({B}_{D}left(i-1right)=b{p}_{i-1}) when (j) defects. The number of cooperators differs by one, since in ({B}_{C}left(iright)), there is an additional cooperator, which is (j) him- or herself. To decide whether to cooperate or defect, all players weigh their expected gain and rationally choose the option with the highest expected gain. The graphical outline of this game is illustrated in Fig. 1 (see also Supplementary Figure S1 for the flow of the game). The pay-off table for a four-player game is shown as an example in Table 3. Here, player (1) is the innermost row (strategies are listed in the second column of the table), player (2) is the innermost column (strategies are listed in the second row of the table), and the succeeding players take the succeeding rows or columns (we enter the first player as a row player and the following player as a column player and continue in this order). Each cell represents players’ pay-offs, with the first component being the pay-off for the first player, the second for the second player, and so on. For instance, consider the entry in the first row and third column, where players (1, 2) and (3) cooperate but player (4) defects. The pay-offs of players (1) to (3) are ({B}_{C}(3)), while the pay-off of player (4) is ({B}_{D}left(3right)). In the above example, there are as many row players as column players because the number of players is even. However, we can have one more player in the rows than in the columns if there is an odd number of players.Figure 1A schematic diagram of the n-player weightlifting game. In this game, players decide whether to cooperate or defect in carrying the weight. Cooperators need to pay a cost. The weightlifting can either succeed or fail. In case of success, all players receive a benefit. In case of failure, all players receive nothing. The player’s pay-off depends on the benefit, cost and probability of success. Each player decides whether to cooperate or defect so as to maximize the expected gain.Full size imageTable 3 Pay-off table of four-player weightlifting game.Full size tableNash equilibrium and pareto optimal strategiesHere we present the Nash equilibrium and Pareto optimal strategies of the (n)-player weightlifting game in terms of the cost-to-benefit ratio (c/b) and probability of success ({p}_{i}). The Nash equilibrium consists of the best responses of each player. Players have no incentive to deviate from this strategy profile since deviation will not increase an individual’s pay-off if the other players maintain the same strategy. If ({B}_{C}(i)ge {B}_{D}(i-1)), the best response of player (j) is to cooperate, but if ({B}_{C}(i)le {B}_{D}(i-1)), the best response is to defect.We have (Delta {p}_{i}={p}_{i}-{p}_{i-1}ge 0) for the increase in the probability of success because the probability ({p}_{i}) increases with the number of cooperators (i). It is convenient to divide cases depending on whether (Delta {p}_{i} >c/b) or (Delta {p}_{i} More

  • in

    Climate mediates color morph turnover in a species exhibiting alternative reproductive strategies

    Gray, S. M. & McKinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).PubMed 

    Google Scholar 
    Forsman, A., Ahnesjö, J., Caesar, S. & Karlsson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).PubMed 

    Google Scholar 
    O’Neill, K. M. & Evans, H. E. Alternative male mating tactics in Bembecinus quinquespinosus (Hymenoptera: Sphecidae): correlations with size and color variation. Behav. Ecol. Sociobiol. 14, 39–46 (1983).
    Google Scholar 
    Roulin, A. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol. Rev. 79, 815–848 (2004).PubMed 

    Google Scholar 
    Dijkstra, P. D., Hemelrijk, C., Seehausen, O. & Groothuis, T. G. Color polymorphism and intrasexual competition in assemblages of cichlid fish. Behav. Ecol. 20, 138–144 (2009).
    Google Scholar 
    Brown, D. M. & Lattanzio, M. S. Resource variability and the collapse of a dominance hierarchy in a colour polymorphic species. Behaviour 155, 443–463 (2018).
    Google Scholar 
    Sacchi, R. et al. Morph-specific assortative mating in common wall lizard females. Curr. Zool. 64, 449–453 (2018).PubMed 

    Google Scholar 
    Alonzo, S. H. & Sinervo, B. Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana. Behav. Ecol. Sociobiol. 49, 176–186 (2001).
    Google Scholar 
    Lancaster, L. T., Hipsley, C. A. & Sinervo, B. Female choice for optimal combinations of multiple male display traits increases offspring survival. Behav. Ecol. 20, 993–999 (2009).
    Google Scholar 
    Colborne, S. F., Garner, S. R., Longstaffe, F. J. & Neff, B. D. Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism. J. Evol. Biol. 29, 633–644 (2016).CAS 
    PubMed 

    Google Scholar 
    Huyghe, K. et al. Relationships between hormones, physiological performance and immunocompetence in a color-polymorphic lizard species, Podarcis melisellensis. Horm. Behav. 55, 488–494 (2009).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B., Miles, D. B., Frankino, W. A., Klukowski, M. & DeNardo, D. F. Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm. Behav. 38, 222–233 (2000).CAS 
    PubMed 

    Google Scholar 
    Mills, S. C. et al. Gonadotropin hormone modulation of testosterone, immune function, performance, and behavioral trade-offs among male morphs of the lizard Uta stansburiana. Am. Nat. 171, 339–357 (2008).PubMed 

    Google Scholar 
    Kusche, H., Elmer, K. R. & Meyer, A. Sympatric ecological divergence associated with a color polymorphism. BMC Biol. 13, 1–11 (2015).
    Google Scholar 
    Lattanzio, M. S. & Miles, D. B. Trophic niche divergence among colour morphs that exhibit alternative mating tactics. R. Soc. Open Sci. 3, 150531 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Scali, S. et al. Does a polymorphic species have a ‘polymorphic’diet? A case study from a lacertid lizard. Biol. J. Linn. Soc. 117, 492–502 (2016).
    Google Scholar 
    Pérez i de Lanuza, G. & Carretero, M. Á. Partial divergence in microhabitat use suggests environmental-dependent selection on a colour polymorphic lizard. Behav. Ecol. Sociobiol. 72, 1–7 (2018).
    Google Scholar 
    Pryke, S. R., Astheimer, L. B., Griffith, S. C. & Buttemer, W. A. Covariation in life-history traits: differential effects of diet on condition, hormones, behavior, and reproduction in genetic finch morphs. Am. Nat. 179, 375–390 (2012).PubMed 

    Google Scholar 
    Jaworski, K. E. & Lattanzio, M. S. Physiological consequences of food limitation for a color polymorphic lizard: are coping responses morph-specific?. Copeia 2017, 689–695 (2017).
    Google Scholar 
    Lattanzio, M. S. & Miles, D. B. Ecological divergence among colour morphs mediated by changes in spatial network structure associated with disturbance. J. Anim. Ecol. 83, 1490–1500 (2014).PubMed 

    Google Scholar 
    Paterson, J. E. & Blouin-Demers, G. Male throat colour polymorphism is related to differences in space use and in habitat selection in tree lizards. J. Zool. 306, 101–109 (2018).
    Google Scholar 
    McLean, C. A., Stuart-Fox, D. & Moussalli, A. Environment, but not genetic divergence, influences geographic variation in colour morph frequencies in a lizard. BMC Evol. Biol. 15, 1–10 (2015).
    Google Scholar 
    Friedman, D., Magnani, J., Paranjpe, D. & Sinervo, B. Evolutionary games, climate and the generation of diversity. PLoS ONE 12, e0184052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez i de Lanuza, G., Sillero, N. & Carretero, M. Á. Climate suggests environment-dependent selection on lizard colour morphs. J. Biogeogr. 45, 2791–2802 (2018).
    Google Scholar 
    Miñano, M. R. et al. Climate shapes the geographic distribution and introgressive spread of color ornamentation in common wall lizards. Am. Nat. 198, 379–393 (2021).PubMed 

    Google Scholar 
    Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).CAS 

    Google Scholar 
    Amar, A., Koeslag, A., Malan, G., Brown, M. & Wrefordm, E. Clinal variation in the morph ratio of Black Sparrowhawks Accipiter melanoleucus in South Africa and its correlation with environmental variables. Ibis 156, 627–638 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Li, W. et al. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Global Ecol. Conserv. 19, e00664 (2019).
    Google Scholar 
    Hillman, S. S. & Gorman, G. C. Water loss, desiccation tolerance, and survival under desiccating conditions in 11 species of Caribbean Anolis. Oecologia 29, 105–116 (1977).CAS 
    PubMed 

    Google Scholar 
    Le Galliard, J. F. et al. A worldwide and annotated database of evaporative water loss rates in squamate reptiles. Global Ecol. Biogeogr. 30, 1938–1950 (2021).
    Google Scholar 
    Winters, A. & Gifford, M. E. Geographic variation in the water economy of a lungless salamander. Herpetol. Conserv. Biol. 8, 741–747 (2013).
    Google Scholar 
    Gilbert, A. L. & Lattanzio, M. S. Ontogenetic variation in the thermal biology of yarrow’s spiny lizard, Sceloporus jarrovii. Plos One 11, e0146904 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cox, R. M. & John-Alder, H. B. Growing apart together: The development of contrasting sexual size dimorphisms in sympatric Sceloporus lizards. Herpetologica 63, 245–257 (2007).
    Google Scholar 
    Takahashi, Y., Morita, S., Yoshimura, J. & Watanabe, M. A geographic cline induced by negative frequency-dependent selection. BMC Evol. Biol. 11, 1–11 (2011).
    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, S91–S115 (1991).
    Google Scholar 
    Kopáček, J. et al. Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback. Sci. Total Environ. 720, 137518 (2020).PubMed 

    Google Scholar 
    Haworth, K. & McPherson, G. R. Effects of Quercus emoryi trees on precipitation distribution and microclimate in a semi-arid savanna. J. Arid Environ. 31, 153–170 (1995).
    Google Scholar 
    Moore, M. C., Hews, D. K. & Knapp, R. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. Am. Zool. 38, 133–151 (1998).CAS 

    Google Scholar 
    Tinkle, D. W. & Dunham, A. E. Demography of the tree lizard, Urosaurus ornatus, in central Arizona. Copeia 1983, 585–598 (1983).
    Google Scholar 
    Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).CAS 
    PubMed 

    Google Scholar 
    Zucker, N. A dual status-signalling system: a matter of redundancy or differing roles?. Anim. Behav. 47, 15–22 (1994).
    Google Scholar 
    Haenel, G. J. Phylogeography of the tree lizard, Urosaurus ornatus: responses of populations to past climate change. Mol. Ecol. 16, 4321–4334 (2007).CAS 
    PubMed 

    Google Scholar 
    Hammerson, G. A., Frost, D. R. & Santos-Barrera, G. Urosaurus ornatus. The IUCN Red List of Threatened Species 2007, e.T64174A12750887 (2007).Hover, E. L. Differences in aggressive behavior between two throat color morphs in a lizard, Urosaurus ornatus. Copeia 1985, 933–940 (1985).
    Google Scholar 
    Thompson, C. W., Moore, I. T. & Moore, C. W. Social, environmental and genetic factors in the ontogeny of phenotypic differentiation in a lizard with alternative male reproductive strategies. Behav. Ecol. Sociobiol. 33, 137–146 (1993).
    Google Scholar 
    Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hews, D. K., Thompson, C. W., Moore, I. T. & Moore, M. C. Population frequencies of alternative male phenotypes in tree lizards: geographic variation and common-garden rearing studies. Behav. Ecol. Sociobiol. 41, 371–380 (1997).
    Google Scholar 
    Feldman, C. R., Flores-Villela, O. & Papenfuss, T. J. Phylogeny, biogeography, and display evolution in the tree and brush lizard genus Urosaurus (Squamata: Phrynosomatidae). Mol. Phylogenet. Evol. 61, 714–725 (2011).PubMed 

    Google Scholar 
    Haisten, D. C., Paranjpe, D., Loveridge, S. & Sinervo, B. The cellular basis of polymorphic coloration in common side-blotched lizards, Uta stansburiana. Herpetologica 71, 125–135 (2015).
    Google Scholar 
    Morrison, R. L., Rand, M. S. & Frost-Mason, S. K. Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995, 397–408 (1995).
    Google Scholar 
    Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with preceding Information, and Summary of User Needs. Prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center, Denver, Colorado (2013).Keefer, T. O., Moran, M. S. & Paige, G. B. Long-term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res. 44, W05S07 (2008).
    Google Scholar 
    Rankin, K. & Stuart-Fox, D. Testosterone-induced expression of male colour morphs in females of the polymorphic tawny dragon lizard, Ctenophorus decresii. Plos One 10, e0140458 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Meyers, J. J., Irschick, D. J., Vanhooydonck, B. & Herrel, A. Divergent roles for multiple sexual signals in a polygynous lizard. Funct. Ecol. 20, 709–716 (2006).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Bartón, K. MuMIn: Multi-Model Inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn (2018).Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Nagelkerke, N. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Searching the web builds fuller picture of arachnid trade

    Our online sampling methods largely follow protocols detailed in3,4, though we limited our online searches to online shops and did not extend to social media. Large portions of code are directly re-used from those papers, although we provide modified code with this paper additionally. For keyword searches and data review we used R v.4.1.149 via RStudio v.1.4.110350, and made wide use of functions supplied by the anytime v.0.3.951, assertthat v.0.2.152, dplyr v.1.0.753, glue v.1.4.254, lazyeval v.0.2.255, lubridate v.1.7.1056, magrittr v.2.0.157, 17urr v.0.3.458, reshape2 v.1.4.459, stringr v.1.4.060, and tidyr v.1.1.361 other specific package uses are listed during the methods description. We used the grateful v.0.0.362 package to generate citations for all R packages. Code and data used to produce figures and summary data are also available at: 10.5281/zenodo.5758541.Website sampling and searchWe searched for contemporary arachnid selling websites using the Google search engine and targeted nine languages (English, French, Spanish, German, Portuguese, Japanese, Czech, Polish, Russian). Terms were created to be inclusive, so only spiders and scorpions were on the initial search string as specialist groups may exist for either, but are unlikely for smaller arachnid groups, which were often listed under “other” in online shops. Terms were selected to be encompassing so that any sites listing variants of “spider” or mentioning arachnid in the chosen language were selected. Whilst some groups such as tarantulas are more popular as pets such sites will not omit translations of spider and should also be captured in the search, hence Terraristika (as was shown in previous analysis of amphibians and reptiles) listed the greatest number of species, despite not being a specialist site. We used the localised versions of each of these languages with the following Boolean search strings:

    English: (Spider OR scorpion OR arachnid) AND for sale

    French: (Araignée OR scorpion OR arachnide) AND à vendre

    Spanish: (Araña OR escorpión OR arácnido) AND en venta

    German: (Arachnoid OR Spinne OR Skorpion OR Spinnentier) AND zum Verkauf

    Portuguese: (Aranha OR escorpião OR aracnídeo) AND à venda

    Japanese: (クモ OR サソリ OR クモ型類) AND (中村彰宏 OR 販売)

    Czech: (Pavouk OR Štír OR pavoukovec) AND prodej

    Polish: (Pająk OR Skorpion OR pajęczak) AND sprzedaż

    Russian: Продажа пауков OR скорпионов

    We undertook these searches in a private window in the Firefox v.92.0.1 browser63 to limit the impacts of search history. These keywords were used to identify sites which may be selling arachnids, which could then be checked before a comprehensive scrape.For each language, we downloaded the first 15 pages of results between 2021-06-06 and 2021-07-07 (or fewer in the result that the search returned fewer than 15 pages: German 8 pages and Spanish 14 pages). This resulted in ~1270 sites that could potentially be selling arachnids. After removing duplicates and simplifying the URLs (so all ended in.com,.org,. co.uk etc.; Code S1), we reviewed each site for the following criteria (2021-07-31 to 2021-08-02): whether they sell arachnids, the type of site (trade or classified ads), the order arachnids were listed in (e.g., date or alphabetical), the best search method for gather species appearances (see below for hierarchical search methods), a refined target URL listing species inventory, the number of pages within the website potentially required to cycle through, and if the search method required a crawl, whether the site explicitly forbade crawling data collection and whether we could limit the crawl’s scope with a filter on downstream URLs. Finally, we assigned all suitable sites with a unique ID. We have made a censored version of the website review results available in Data S1. In addition to the systematic search for arachnid trade, we added 43 websites discovered ad hoc from links on previously discovered sites (many listed online shops), those listed in other journal articles on invertebrate trade (i.e.,6) or from discussion with informed colleagues (between 2021-08-07 and 2021-09-15). After reviewing these ad hoc sites (2021-08-07 to 2021-09-15), we had a combined total of 111 sites to attempt to search for the appearance of arachnid species.Our searches of websites took one of five forms (Code S2), designed to minimise server load and limit the number of irrelevant pages searched, while ensuring we captured the pages listing species. We prioritised using the lowest/simplest search method possible for each site.Single page or PDFFor websites that listed their entire arachnid stock on a single page, we retrieved that single page using the downloader v.0.4 package64. In cases where the inventory was listed in a PDF, we manually downloaded the PDF and used pdftools v.3.0.165 to assess the text.CycleSome websites had large stocklists split across multiple pages that could be accessed sequentially. In these cases, we used the downloader v.0.4 package64 to retrieve each page, as we cycled from page 1 to the terminal page identified during the website review stage. Two sites required a slight modification to the page cycling process: as the sequential pages were not defined by pages, but by the number of adverts displayed. In these instances, we cycled through all adverts 20 adverts at a time (i.e., matching the default number displayed at a time by the site). For all cycling we implemented a 10 s cooldown between requests to limit server load.Level 1 crawlFor websites that split their stock between multiple pages, but with no sequential ordering, we used a level 1 crawl, via the Rcrawler v.0.1.9.1 package66 to access them all. For example, where a site had an “arachnid for sale” page, but full species names existed only in linked pages (e.g., “tarantulas”, “scorpions”).Cycle and level 1 crawlSome websites required a combined approach, where stock was split sequentially across pages, and the species identities (i.e., scientific names) required accessing the pages linked to from the sequential pages. In these cases, we ran the initial sequential sampling followed by a level 1 crawl.Level 2 crawlWhere level 1 crawls were insufficient to cover all species sold on a site, we used a level 2 crawl to reach all pages listing species. This tended to be the case on websites with multiple categories to classify and split their stock (e.g., “arachnid”—“spider”—“tarantula”).For all crawls, we used a cooldown of 20 s between requests to limit server load, and where possible we limited the scope of the crawl (i.e., linked pages to be retrieved) using a key phrase common to all stock listing pages (e.g., “/category=arachnid/”).In addition to the sampling of contemporary sites, we explored the archived pages available for https://www.terraristik.com via the Internet Archive (2002–201967). Terraristika had been previously shown as a major contributor to traded species lists4, and the website’s age and accessibility via the internet archive meant it was one of the few websites where temporal sampling was feasible. We used pages retrieved via the Internet Archive’s Wayback machine API68, via code created for3,4. The code used was based on the wayback v.0.4.0 package69, but additionally made httr v.1.4.270, jsonlite v.1.7.271, downloader v.0.464, lubridate v.1.7.1056, and tibble v.3.1.3 packages72 (Code S3).Keyword generationWe relied on multiple sources to build a list of arachnid species (spiders, scorpions and uropygi). For spiders we used the WSC (ref. 18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18). We filtered the WSC dataset to remove subspecies, then used a combination of rvest v.1.0.173, dplyr v.1.0.753, and stringr v.1.4.0 packages60 (see Code S4) to query the online version of the WSC database to retrieve all synonyms for each species. Where the synonyms were listed with an abbreviated genus, we replace the abbreviation with the first instance of a genus that matched the first letter of the abbreviation.We combined the WSC data with a list manually retrieved from the Scorpion Files74 (https://www.ntnu.no/ub/scorpion-files/index.php; accessed 2021-09-19). For the uropygi species, we combined species listings from Integrated Taxonomic Information System (ITIS75; https://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=source&search_id=source_id&search_id_value=1209 and https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&anchorLocation=SubordinateTaxa&credibilitySort=TWG%20standards%20met&rankName=ALL&search_value=82710&print_version=SCR&source=from_print#SubordinateTaxa; accessed 2021-09-19) and the Western Australian Museum76 (http://www.museum.wa.gov.au/catalogues-beta/browse/uropygi; accessed 2021-09-19). We were unable to source reliable data on all scorpion and uropygi synonyms; therefore, we used all names listed from all sources, but made note of those names considered nomen dubium. Our final keyword list contained 52,111 species, 94,184 different species names, with mean of 1.81 SE ± 0.01 terms per species (range 1–61). For summaries of total species, we relied on the species classed as accepted by the species databases (WSC, Scorpion Files, ITIS and the Western Australian Museum).Keyword searchWe successfully retrieved 3020 pages from 103 websites (mean = 28.78 SE ± 11.42, range: 1–1077), and used a further 4668 previously archived pages. To prepare each of the retrieved web pages for keyword searching, we removed all double spaces, html elements, and non-alpha-numeric characters, replacing them with single spaces (Code S5). For this process we used rvest v.1.0.173, XML v.3.99.0.877, and xml2 v.1.3.278 packages. This process increased the chances that genus and species epithets would appear in a compatible format when compared to our keyword list. The process was not able to repair abbreviated genera, or aid detection where genus and species epithet were not reported side-by-side.Due to the large number of species we were forced to adapt previous searching methods, instead implementing a hierarchical genus-species search (Code S6). We searched each retrieved page for any mention of genera, then only searched for species that were contained within that genus. We did not differentiate whether the genus was currently accepted or old, so if a species had ever belonged to a genus it was included in the second stage of the search. The specifics of the keyword search used case-insensitive fixed string matching (via the stringr v.1.4.0 package60). While collation string matching would have helped detect species with differently coded ligatures or diacritic marks, the occurrence of ligature and diacritic marks are infrequent in scientific names and did not warrant the considerably increased computational costs.Via the keyword search we recorded all instances of genus matches, species matches, the website ID, and the page number. We also collected the words surrounding a genus match (3 prior and four after) as a means of exploring common terms that may be used to describe the genera.We provide the compiled outputs from searching contemporary and historic pages in Data S2–S4. Prior to combining these two datasets into a final list of traded species, and summarising the overall patterns, we cleaned out instances of spurious genera and species detections. Predominantly this included short genera names that could appear at the start of longer words (e.g., terms such as: “rufus”, “Dia”, “Diana”, “Mala”, “Inca”, “Pero”, “May”, “Janus”, “Yukon”, “Lucia”, “Zora”, “Beata”, “Neon”, “Prima”, “Meta”, “Patri”, “Enna”, “Maso”, “Mica”, “Perro”; we already implemented a filter that required genera to be preceded by a space and thus these were not part of the species name). We are confident these genera should be excluded, as none had species detected within them.Trade database and third-party dataWe downloaded United States Fish and Wildlife Service’s LEMIS data compiled by79,80 from https://doi.org/10.5281/zenodo.3565869 (Data S5). We filtered the LEMIS data to records where the class was listed as Arachnida (Code S6).We downloaded the Gross imports data from the CITES trade database from the website and filtered to Class Arachnid, years 1975–202181 (accessed 2021-09-15; Data S6), and downloaded the CITES appendices filtered to arachnids82 (Data S7).We downloaded the IUCN Redlist assessments for arachnids from https://www.iucnredlist.org83 (accessed 2021-09-15; Data S8).Species summary and visualisationWe compiled all sources of trade data (online, LEMIS, CITES) into a single dataset detailing which genera/species had been detected in each source (Data S9 and Code S7). We used two criteria to determine detection, whether there was an exact match with an accepted genus/species or whether there was a match to any historically used genera/species name. Because of splits in genera, the “ANY genera” matching is likely overly generous. For broad summaries we rely on the “ANY species” name matching.We used cowplot v.1.1.184, ggplot2 v.3.3.585, ggpubr v.0.4.086, ggtext v.0.1.187, scales v.1.1.188, scico v.1.2.089, and UpSetR v.1.4.090 to generate summary visuals (Code S8; Code S9). We added additional details to the upset plot and modified the position of plot labels using Affinity Designer v.1.10.391. We also used Affinity Designer to create the Uropygid silhouette for Fig. 1. We obtained public domain licensed spider and scorpion silhouettes from http://phylopic.org/ (https://phylopic.org/image/d7a80fdc0-311f-4bc5-b4fc-1a45f4206d27/; http://phylopic.org/image/4133ae32-753e-49eb-bd31-50c67634aca1/).Descriptions and coloursWe explored the lag time between species descriptions, and their detection in LEMIS or online trade (Code S10). We relied on the description dates provided alongside the lists of species names. Unlike the broader summaries, we restricted explorations of lag times to species detected only via exact matches (operating under the assumption that newly described species traded swiftly after description would be using the modern accepted name). We distinguished between those species detected only in the complementary data, as the earliest trade date was not known; therefore, our summaries of lag time are based on those species detected in a particular year either via LEMIS or temporal online trade.Following a visual inspection of sites where we often noticed listings with either colour or localities (e.g., “Chilobrachys spp. “Electric Blue” 0.1.3. Chilobrachys sp. “Kaeng Krachan” 0.1.0. Chilobrachys spp. “Prachuap Khiri Khan”: Data S9). We explored the words that surrounded detected genera. After using the forcats v.0.5.192, stringr v.1.4.060, and tidytext v.0.3.193 package to compile common terms and remove English stop words, we determine colour was frequently mentioned (Code S11). To filter out non-colour words, we used wikipedia’s list of colours (https://en.wikipedia.org/wiki/List_of_colors:_N%E2%80%93Z). Once cleaned, we further removed terms that are ambiguously colour related (e.g., “space”, “racing”, “photo”, “boy”, “bean”, “blaze”, “jungle”, “mountain”, “dune”, “web”, “colour”, “rainforest”, “tree”, “sea”). We then summarised this data as the counts of instances where a genus appeared alongside a given colour term (n.b., counts are therefore impacted by any underlying imbalances in how many times a site mentioned a genus). We plotted all colours using the same hex codes listed on the wikipedia page, with the exception of “cobalt”, “grey”, “metallic”, “slate”, “electric”, “dark”, “sheen”, and “chocolate” that required manual linking to a hex code.Summary of trade numbersWe summarised LEMIS data using a number of filters (Code S12). Following3,4,94, we limited our summaries to items that feasibly can be considered to represent whole individuals (LEMIS code = Dead animal BOD, live eggs (EGL), dead specimen (DEA), live specimen (LIV), specimen (SPE), whole skin (SKI), entire animal trophy (TRO)). We describe the portion of trade that is prevented (i.e., seized, where disposition == “S”). We classed non-commercial trade as anything listed as for Biomedical research (M), Scientific (S), or Reintroduction/introduction into the wild (Y). For captive vs. wild summaries, we treated all Animals bred in captivity (C and F), Commercially bred (D), and Specimens originating from a ranching operation (R) as originating from captivity. We only included animals listed as Specimens taken from the wild (W) in wild counts. The few instances that fell outside of our defined captive vs. wild categorisation are treated as other. For summaries of wild capture per genus, we relied entirely on LEMIS’s listings of genera, making no effort to determine synonymisations. We did filter out those listed only as “Non-CITES entry” or NA. We used the countrycode v.1.3.095 package to help plot the LEMIS countries of origin. Taxonomy represents an ongoing challenge, we were limited to recognising the species listed in the aforementioned databases, generating synonym lists from these sources, and attempting to reconcile these lists. Rapid rates of species description means that compiling comprehensive lists can be challenging, and species may be traded under junior synonyms or old names, and newer descriptions may not have been added to sites96. We were also limited to platforms that advertised using text not images, as images can be challenging to identify accurately.MappingMapping species is challenging due to the lack of standardised data on species distributions. Spider distributions were mapped based on the data in the World Spider Catalogue (Data S12). Firstly, the localities associated with each species were collated into four spreadsheets based on the data provided in the WSC (WSC18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18), these listed (1) country, (2) region, (3) “to” (where the range was given as one country to another) and (4) Island.Before processing any “introduced” localities were removed, the four sheets were then checked for any simple spelling errors (in islands file) or mislistings (i.e., regions in the islands file). Country data were cross-referenced with the names of country provided by Thematic Mapper to standardise them (https://thematicmapping.org/; Data S11). This was done by uploading data into Arcmap and using joins and connects to connect it to the standard country name file, and any which could not be paired were corrected to ensure all could be successfully digitised.Regions were digitised based on accepted names of different regions and included 33 different regions (see supplements) for each of these the standard accepted area within each of these regions was searched online to determine the accepted boundaries. These were then selected from the Thematic mapper, exported and labelled with the corresponding region. Once this was completed for all 33 regions they were merged and exported to a geodatabase. The spreadsheet listing regional preferences of each species was also uploaded to Arcmap 10.3, then exported into the geodatabase, then connected to a regional map using joins and relates to connect the regional preferences from the spreadsheet to the shapefiles. The new dbf was then exported to provide a listing of each species and each country in the region it was connected to, and then copied into the same csv as the corrected country listings.For preferences listed as “to” we first separated each country listed in the “to” listings into a separate column, then developed a list of species and each of the countries listed in the “to” list (which was frequently between 5–6). These were then corrected to the standard names from thematic mapper for both countries and the regions used in the previous section. We then merged the countries and regions file and added fields of geometry in ArcMap to provide a centroid for each designated area. This table was then exported and joined and connected to the species in the “to” file. This data was then converted to point form and turned to a point file, then a minimum convex polygon (convex hulls) developed for each species to connect the regions between all those listed. These species specific minimum convex polygons were then intersected with the countries from Thematic mapper, and then dissolve was used to form a shapefile that just listed species and all the countries between those ranges. This was then exported and merged with the listings from countries and regions.The islands file included both independent islands (which needed names corrected, or archipelago names given) and those that fall within a national designation. For those islands we replaced the island name with that of the country, as listings of species may be particularly poor, and tiny non-independent islands are not visible in the global-scale analysis.This forth database table was then merged with the former three, and remove duplicates used to remove any duplicate entries, as species often had individual countries listed in additions to regions or “to”. This was then uploaded into Arcmap and exported to a geodatabase file then connected to the original Thematic mapper file and exported to the geodatabase to yield 134,187 connections between species and countries. This was then connected to our main analysis to include the trade status, and CITES and IUCN Redlist status for each species for further analysis.Scorpion data was considerably messier than that on the world spider catalogue. Firstly, we downloaded all scorpion data from iNaturalist and GBIF97,98 (search; scorpions), removed duplicates, then cross-referenced these with the thematic mapper file within Quantum GIS. Species listed in regions where they were clearly not native (i.e., a species listed in the UK when the rest of that species or genus were in Australia) were removed, and all extinct species were excluded.In addition, all the “update files” were downloaded from the “Scorpion files”, the PDFs collated then using smallpdf tools the tables were extracted into excel form and cleaned to include just species and country listing. This was added to the countries listed for species within99 and100 though this was restricted to a subset of species. The data were all collated into an excel file with the species name, and country listing. This was then added to all the data from https://scorpiones.pl/maps/. These maps have a good coverage of species countries, but are apparently no longer being updated (Jan Ove Rein pers comm 2021) hence the need for further data to provide complete and updated and comprehensive coverage for all species. Country names were then standardised based on the Thematic Mapper standards (Data S13 and Data S11). Species names were then cross-referenced to those listed in the Scorpion files, any not matching were checked as synonyms and converted to the accepted name (though the only collated data for Scorpion synonyms was on French-language Wikipedia, i.e., see https://fr.wikipedia.org/wiki/Bothriurus). Once all country and species names were corrected this provided a listing of 4059 species-country associations. These were then associated with country files in the same way as spiders. We plotted spider and scorpion species/genera, as well as LEMIS origins, using ggplot285, combining Thematic world border data (https://thematicmapping.org/) with summaries of species/genera/and trade levels. Species listed in a single-country (and thus more likely to be country endemic) were also counted using summary statistics, so that species most vulnerable to trade could be noted separately.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management

    Abbasi, N., Bahramloo, R. & Movahedan, M. Strategic planning for remediation and optimization of irrigation and drainage networks: a case study of Iran. J. Agric. Agric. Sci. Proc. 4, 211–221 (2015).
    Google Scholar 
    Abdelhaleem, F., Basiouny, M. & Mahmoud, A. Application of remote sensing and geographic information systems in irrigation water management under water scarcity conditions in Fayoum, Egypt. J. Environ. Manag. 299, 113683 (2021).Article 

    Google Scholar 
    Akbari-Alashti, H., Bozorg-Haddad, O., Fallah-Mehdipour, E. & Mariño, M. A. Multi-reservoir real-time operation rules: a new genetic programming approach. Proc. Instit. Civil Eng. Water Manag. 167(10), 561–576 (2014).Article 

    Google Scholar 
    Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance: when science meets policy. J. Utilities Policy. 43, 14–20 (2016).Article 

    Google Scholar 
    Amblard, L. & Mann, C. Understanding collective action for the achievement of EU water policy objectives in agricultural landscapes: insights from the institutional design principles and integrated landscape management approaches. J. Environ. Sci. Policy. 125, 76–86 (2021).Article 

    Google Scholar 
    Babaeian, F., Delavar, M., Morid, S. & Srinivasan, R. Robust climate change adaptation pathways in agricultural water management. J. Agric. Water Manag. 252, 106904 (2021).Article 

    Google Scholar 
    Barbosa, M. C., Alam, K. & Mushtaq, S. Water policy implementation in the state of São Paulo, Brazil: key challenges and opportunities. J. Environ. Sci. Policy. 60, 11–18 (2016).Article 

    Google Scholar 
    Barrett, S. M. Implementation studies: time for a revival? Personal reflections on 20 years of implementation studies. J. Public Admin. 82(2), 249–269 (2004).MathSciNet 
    Article 

    Google Scholar 
    Baumgartner, R. J. & Korhonen, J. Strategic thinking for sustainable development. J. Sustain. Dev. 18(2), 71–75 (2010).Article 

    Google Scholar 
    Biswas, S. Measuring performance of healthcare supply chains in India: a comparative analysis of multi-criteria decision making methods. J. Decis. Making Appl. Manag. Eng. 3(2), 162–189 (2020).Article 

    Google Scholar 
    Biswas, S., Majumder, S., Pamucar, D. & Suman, D. An extended LBWA framework in picture fuzzy environment using actual score measures application in social enterprise systems. J. Enterp. Inform. Syst. (IJEIS) 17(4), 37–68 (2021).Article 

    Google Scholar 
    Biswas, S., Pamucar, D., Chowdhury, P. & Kar, S. A new decision support framework with picture fuzzy information: comparison of video conferencing platforms for higher education in India. J. Disc. Dyn. Nat. Soc. (2021).Bozorg-Haddad, O., Moradi-Jalal, M., Mirmomeni, M., Kholghi, M. K. H. & Mariño, M. A. Optimal cultivation rules in multi-crop irrigation areas. J. Irrig. Drain. 58(1), 38–49 (2009).Article 

    Google Scholar 
    Bozorg-Haddad, O., Loáiciga, H. A. & Zolghadr-Asli, B. A handbook on multi-attribute decision-making methods chapter (Wiley, 2021).MATH 
    Book 

    Google Scholar 
    Buckley, J. J. Fuzzy hierarchical analysis. J. Fuzzy Sets Syst. 17(3), 233–247 (1985).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Chang, H. H. & Huang, W. C. Application of a quantification SWOT analytical method. J. Math. Comput. Model. 43, 158–169 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Chen, C. T. Extension of the TOPSIS for group decision-making under fuzzy environment. J. Fuzzy Sets Syst. 114(1), 1–9 (2000).MATH 
    Article 

    Google Scholar 
    Conrad, C., Usman, M., Morper-Bush, L. & Schönbrodt-Stitt, S. Remote sensing-based assessments of land use, soil and vegetation status, crop production and water use in irrigation systems of the Aral Sea Basin. J. Water Sec. 11, 100078 (2020).Article 

    Google Scholar 
    David, F. R. Strategic management: concepts and cases (Prentice Hall, 2011).
    Google Scholar 
    Fallah-Mehdipour, E., Bozorg-Haddad, O., Beygi, S. & Mariño, M. A. Effect of utility function curvature of Young’s bargaining method on the design of WDNs. J. Water Resour. Manag. 25(9), 2197–2218 (2011).Article 

    Google Scholar 
    Fanghua, H. & Guanchun, C. Fuzzy multi-criteria group decision-making model based on weighted borda scoring method for watershed ecological risk management: a case study of three Gorges reservoir area of China. J. Water Resour. Manag. 24(10), 2139–2165 (2010).Article 

    Google Scholar 
    Gallego-Ayala, J. & Juızo, D. Strategic implementation of integrated water resources management in Mozambique: an A’WOT analysis. J. PhysChem. Earth. 36(14–15), 1103–1111 (2011).ADS 
    Article 

    Google Scholar 
    Gao, C. Y. & Peng, D. H. Consolidating SWOT analysis with nonhomogeneous uncertain preference information. J. Knowl. Based Syst. 24, 796–808 (2011).Article 

    Google Scholar 
    Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water scarcity. J. Clim. Change. 134, 371–385 (2016).ADS 
    Article 

    Google Scholar 
    Gurel, M. & Tat, M. SWOT analysis: a theoretical review. J. Int. Soc. Res. 10(51), 994–1006 (2017).Article 

    Google Scholar 
    Hamdy, A., & Trisorio-Liuzzi, G. Water management strategies to combat drought in the semiarid regions. Water management for drought mitigation in the Mediterranean at the regional conference on arab water, Cairo, Egypt (2004).Hartmann, T. & Spit, T. Frontiers of land and water governance in urban regions. J. Water Int. 39(6), 791–797 (2014).Article 

    Google Scholar 
    He, L., Bao, J., Daccache, A., Wang, S. & Guo, P. Optimize the spatial distribution of crop water consumption based on a cellular automata model: a case study of the middle Heihe River basin, China. J. Sci. Total Environ. 720, 137569 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Hwang, C.L. & Yoon, K. Methods for multiple attribute decision making. In: Multiple attribute decision making: lecture notes in economics and mathematical systems, Springer, Heidelberg, Germany, vol 186 (1981).Hwang, F. P., Chen, S. J. & Hwang, C. L. Fuzzy multiple attribute decision making: methods and applications (Springer, 1992).MATH 

    Google Scholar 
    Islam, M. S., Sadiq, R. & Rodriguez, M. J. Evaluating water quality failure potential in water distribution systems: a fuzzy-TOPSIS-OWA-based methodology. J. Water Resour. Manag. 27(7), 2195–2216 (2013).Article 

    Google Scholar 
    Karabasevic, D., Zavadskas, E. K., Turskis, Z. & Stanujkic, D. The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. J. Inform. 27(1), 49–65 (2016).Article 

    Google Scholar 
    Keršuliene, V., Zavadskas, E. K. & Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (Swara). J. Bus. Econ. Manag. 11(2), 243–258 (2010).Article 

    Google Scholar 
    Kim, S. et al. Developing spatial agricultural drought risk index with controllable geo-spatial indicators: a case study for South Korea and Kazakhstan. J. Disast. Risk Reduct. 54, 102056 (2021).Article 

    Google Scholar 
    Kousar, S., Zafar, A., Kausar, N., Pamucar, D. & Kattel, P. Fruit production planning in semiarid zones: a novel triangular intuitionistic fuzzy linear programming approach. J. Math. Prob. Eng. (2022).Lautze, J., de Silva, S., Giordano, M. & Sanford, L. Putting the cart before the horse: Water governance and IWRM. J. Nat. Resour. Forum Unit. Nat. Develop. 35(1), 1–8 (2011).Lee, K. L. & Lin, S. C. A fuzzy quantified SWOT procedure for environmental evaluation of an international distribution center. J. Inform. Sci. 178, 531–549 (2008).Article 

    Google Scholar 
    Loucks, D. P. Sustainable water resources management. Water International. Taylor & Francis, Milton Park (2000).Malczeweski, J. GIS and multicriteria decision analysis (Wiley, 1999).
    Google Scholar 
    Meza, I. et al. Drought risk for agricultural systems in South Africa: drivers, spatial patterns, and implications for drought risk management. J. Sci. Total Environ. 799, 149505 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    OECD. OECD principles on water governance. OECD Publishing (2015).Pahl-Wostl, C., Holtz, G., Kastens, B. & Knieper, C. Analyzing complex water governance regimes: the management and transition framework. J. Environ. Sci. Policy. 13(7), 571–581 (2010).Article 

    Google Scholar 
    Pahl-Wostl, C. et al. Environmental flows and water governance: managing sustainable water uses. J. Curr. Opin. Environm. Sustain. 5(3), 341–351 (2013).Article 

    Google Scholar 
    Pamucar, D., Torkayesh, A.E. & Biswas, S. Supplier selection in healthcare supply chain management during the COVID-19 pandemic: a novel fuzzy rough decision-making approach. J. Ann. Oper. Res. doi:https://doi.org/10.1007/s10479-022-04529-2(2022).Panchal, D., Chatterjee, P., Pamucar, D. & Yazdani, M. A novel fuzzy-based structured framework for sustainable operation and environmental friendly production in coal-fired power industry. J. Intell. Syst. doi: https://doi.org/10.1002/int.22507(2021).Peldschus, F., Zavadskas, E. K., Turskis, Z. & Tamosaitiene, J. Sustainable assessment of construction site by applying game theory. J. Eng. Econ. 21(3), 223–237 (2010).
    Google Scholar 
    Pérez-Blanco, C. & Gómez, C. Drought management plans and water availability in agriculture: a risk assessment model for a Southern European basin. J. Weather Clim. Extrem. 4, 11–18 (2014).Article 

    Google Scholar 
    Portoghese, I., Giannoccaro, G., Giordano, R. & Pagano, A. Modeling the impact of volumetric water pricing in irrigation districts with conjunctive use of water of surface and groundwater resources. J. Agric. Water Manag. 244, 106561 (2020).Article 

    Google Scholar 
    Rani, P., Mishra, A. R., Saha, A., Hezam, I. M. & Pamucar, D. Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: an application to food waste treatment technology selection. J. Intell. Syst. 37(3), 2612–2647 (2021).Article 

    Google Scholar 
    Rogers, P., & Hall, A.W. Effective water governance. J. Tech. Comm. Background Papers.7, Global Water Partnership (GWP) (2003).Rouillard, J. & Rinaudo, J. From State to user-based water allocations: an empirical analysis of institutions developed by agricultural user associations in France. J. Agric. Water Manag. 239, 106269 (2020).Article 

    Google Scholar 
    Ruzgys, A., Volvačiovas, R., Ignatavičius, Č & Turskis, Z. Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. J. Civil Eng. Manag. 20(1), 103–110 (2014).Article 

    Google Scholar 
    Saaty, T. L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Saaty, T. L. The analytic hierarchy process (McGraw-Hill, 1980).MATH 

    Google Scholar 
    Saaty, T. L. The analytic hierarchy process: planning, priority setting, resource allocation (RWS Publication, 1996).MATH 

    Google Scholar 
    Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008).
    Google Scholar 
    Soltanjalili, M., Bozorg-Haddad, O. & Mariño, M. A. Effect of breakage level one in design of water distribution networks. J. Water Resour. Manag. 25(1), 311–337 (2011).Article 

    Google Scholar 
    Srdjevic, Z., Bajcetic, R. & Srdjevic, B. Identifying the criteria set for multi criteria decision making based on SWOT/PESTLE analysis: a case study of reconstructing a water intake structure. J. Water Resour. Manag. 26(12), 3379–3393 (2012).Article 

    Google Scholar 
    Stewart, R. A., Mohamed, S. & Daet, R. Strategic implementation of IT/IS projects in construction: a case study. J. Autom. Const. 11, 681–694 (2002).Article 

    Google Scholar 
    Thaler, T., Nordbeck, R. & Seher, W. Cooperation in flood risk management: understanding the role of strategic planning in two Austrian policy instruments. J. Environ. Sci. Policy. 114, 170–177 (2020).Article 

    Google Scholar 
    Thomson, J. et al. Spatial conservation action planning in heterogeneous landscapes. J. Biol. Conser. 250, 108735 (2020).Article 

    Google Scholar 
    Tortajada, C. Water governance: some critical issues. J. Water Resour. Develop. 26(2), 297–307 (2010).Article 

    Google Scholar 
    Tropp, H. Water governance: trends and needs for new capacity development. J. Water Policy. 9(2), 19–30 (2007).Article 

    Google Scholar 
    Van Laarhoven, P. J. & Pedrycz, W. A fuzzy extension of Saaty’s priority theory. J. Fuzzy Sets Syst. 11(1–3), 229–241 (1983).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Venot, J., Reddy, V. R. & Umapathy, D. Coping with drought in irrigated South India: Farmers’ adjustments in Nagarjuna Sagar. J. Agric. Water Manag. 97(10), 1434–1442 (2010).Article 

    Google Scholar 
    Vermillion, D.L. Irrigation sector reform in Asia: from patronage under participation to empowerment with partnership. In Asian Irrigation in Transition. New Delhi: Sage publications. https://www.cabdirect.org/cabdirect/abstract/20073076323(2003).Yazdani, M., Wen, Z., Liao, H., Banaitis, A. & Turskis, Z. A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. J. Civil Eng. Manag. 25(8), 858–874 (2019).Article 

    Google Scholar 
    Yuksel, I. & Dagdeviren, M. Using the analytic network process (ANP) in a SWOT analysis: a case study for a textile firm. J. Inform. Sci. 177, 3364–3382 (2007).MATH 
    Article 

    Google Scholar 
    Zadeh, L. A. Fuzzy sets. J. Inform. Control. 8(3), 338–353 (1965).MATH 
    Article 

    Google Scholar 
    Zavadskas, E. K., Mardani, A., Turskis, Z., Jusoh, A. & Nor, K. M. Development of TOPSIS method to solve complicated decision-making problems: an overview on developments from 2000 to 2015. J. Inform. Technol. Dec. Making. 15(03), 645–682 (2016).Article 

    Google Scholar 
    Zuo, Q., Wu, Q., Yu, L., Li, Y. & Fan, Y. Optimization of uncertain agricultural management considering the framework of water, energy and food. J. Agric. Water Manag. 253, 106907 (2021).Article 

    Google Scholar  More