More stories

  • in

    From the archive: wildlife landscapes, and retaliation against rats

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Anthropogenic impacts on lowland tropical peatland biogeochemistry

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017). This study describes the large extent and huge carbon stocks of the Congo Basin peatlands.Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011). This is a comprehensive assessment of the extent, volume and carbon stocks of peatlands across the tropics, highlighting their importance in the global carbon cycle and key uncertainties.Article 

    Google Scholar 
    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).Article 

    Google Scholar 
    Olsson, L. et al. Climate change and land (eds Shukla, P. R. et al.) 345–436 (IPCC, 2019).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).Article 

    Google Scholar 
    Smith, P. et al. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 811–922 (Cambridge Univ. Press, 2014).Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020). This study evaluates ecosystems on the basis of the size of carbon stocks that are vulnerable to release upon land-use conversion and not recoverable on timescales relevant to avoiding dangerous climate impacts; it emphasizes the high density of irrecoverable carbon in tropical peatlands.Article 

    Google Scholar 
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).Article 

    Google Scholar 
    Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).Article 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate change and land (IPCC, 2019).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    Page, S., Wüst, R. & Banks, C. Past and present carbon accumulation and loss in Southeast Asian peatlands. PAGES News 18, 25–27 (2010).Article 

    Google Scholar 
    Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).Article 

    Google Scholar 
    Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011). This is a comprehensive assessment of peatland development in Southeast Asia, exploring regional differences in rates of peat formation and carbon accumulation.Article 

    Google Scholar 
    Ruwaimana, M., Anshari, G. Z., Silva, L. C. R. & Gavin, D. G. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47,000 years. Environ. Res. Lett. 15, 114027 (2020). This study compares the development of coastal and inland peatlands in West Kalimantan, Indonesia, and provides a description of the oldest known peat deposit in Southeast Asia.Article 

    Google Scholar 
    Anshari, G., Kershaw, A. P., Kaars, S. V. D. & Jacobsen, G. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J. Quat. Sci. 19, 637–655 (2004).Article 

    Google Scholar 
    Dommain, R., Couwenberg, J. & Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration Mires Peat 6, 1–17 2010).
    Google Scholar 
    Jones, M. B. & Muthuri, F. M. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. J. Trop. Ecol. 13, 347–356 (1997).Article 

    Google Scholar 
    Saunders, M. J., Jones, M. B. & Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetl. Ecol. Manag. 15, 489–498 (2007).Article 

    Google Scholar 
    Burrough, S. L., Thomas, D. S. G., Orijemie, E. A. & Willis, K. J. Landscape sensitivity and ecological change in western Zambia: the long-term perspective from dambo cut-and-fill sediments. J. Quat. Sci. 30, 44–58 (2015).Article 

    Google Scholar 
    Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).Article 

    Google Scholar 
    Alsdorf, D. et al. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 54, 378–409 (2016).Article 

    Google Scholar 
    Biddulph, G. E. et al. Current knowledge on the Cuvette Centrale peatland complex and future research directions. Bois For. Trop. 350, 3–14 (2021).Article 

    Google Scholar 
    Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza–Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).Article 

    Google Scholar 
    Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).Article 

    Google Scholar 
    Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014). Using a combination of remote sensing and field data, this study provides an assessment of the distribution of above- and belowground peatland carbon stocks in the Pastaza–Marañon foreland basin in Peruvian Amazonia.Article 

    Google Scholar 
    Phillips, S., Rouse, G. E. & Bustin, R. M. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128, 301–338 (1997).Article 

    Google Scholar 
    Sjögersten, S. et al. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403, 115173 (2021).Article 

    Google Scholar 
    Joosten, H. in Tropical Peatland Ecosystems (eds Osaki, M. & Tsuji, N.) 33–48 (Springer, 2016).Anderson, J. A. R. in Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 191–199 (Elsevier, 1983).Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).Article 

    Google Scholar 
    Anderson, J. A. R. Ecology and Forest Types of The Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. Thesis, Univ. Edinburgh (1961).Freund, C. A., Harsanto, F. A., Purwanto, A., Takahashi, H. & Harrison, M. E. Microtopographic specialization and flexibility in tropical peat swamp forest tree species. Biotropica 50, 208–214 (2018).Article 

    Google Scholar 
    Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. CATENA 139, 127–136 (2016).Article 

    Google Scholar 
    Miyamoto, K. et al. Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. J. Trop. Ecol. 19, 43–54 (2003).Article 

    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).Article 

    Google Scholar 
    Wijedasa, L. S. et al. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Glob. Change Biol. 24, 4598–4613 (2018).Article 

    Google Scholar 
    Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Phil. Trans. R. Soc. B 371, 20150176.(2016).Article 

    Google Scholar 
    Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manag. 393, 63–73 (2017).Article 

    Google Scholar 
    Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).Article 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).Article 

    Google Scholar 
    Grundling, P.-L. & Grootjans, A. P. in The Wetland Book. II: Distribution, Description, and Conservation (eds Finlayson, M., Milton, G., Prentice, R. & Davidson, N.) (Springer, 2018).Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).Article 

    Google Scholar 
    Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017). This study finds that the permeability of ombrotrophic tropical peat is higher than expected, resulting in deep water tables in ditched tropical peatlands and associated high rates of peat oxidation.Article 

    Google Scholar 
    Kelly, T. J. et al. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol. Process. 28, 3373–3387 (2014).Article 

    Google Scholar 
    Tonks, A. J. et al. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289, 36–45 (2017).Article 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article 

    Google Scholar 
    Laurén, A. et al. Nutrient balance as a tool for maintaining yield and mitigating environmental impacts of Acacia plantation in drained tropical peatland — description of plantation simulator. Forests 12, 312 (2021).Article 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article 

    Google Scholar 
    Anshari, G. Z., Gusmayanti, E. & Novita, N. The use of subsidence to estimate carbon loss from deforested and drained tropical peatlands in Indonesia. Forests 12, 732 (2021).Article 

    Google Scholar 
    Evans, C. D. et al. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. Front. Environ. Sci. 9, 33 (2021).
    Google Scholar 
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).Article 

    Google Scholar 
    Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020). Using remote sensing, this study quantifies the rate of peat subsidence and carbon loss across peatlands in Southeast Asia.Article 

    Google Scholar 
    Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).Article 

    Google Scholar 
    Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in central Kalimantan, Indonesia. CATENA 114, 11–20 (2014).Article 

    Google Scholar 
    Hooijer, A., Vernimmen, R., Visser, M. & Mawdsley, N. Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia (Deltares, 2015).Sumarga, E., Hein, L., Hooijer, A. & Vernimmen, R. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecol. Soc. 21, 52 (2016).Article 

    Google Scholar 
    Evers, S., Yule, C. M., Padfield, R., O’Reilly, P. & Varkkey, H. Keep wetlands wet: the myth of sustainable development of tropical peatlands — implications for policies and management. Glob. Change Biol. 23, 534–549 (2017). This study reviews the ecosystem services provided by Southeast Asian peatlands and discusses key policy challenges for peatland management.Article 

    Google Scholar 
    Tan, Z. D., Lupascu, M. & Wijedasa, L. S. Paludiculture as a sustainable land use alternative for tropical peatlands: a review. Sci. Total Environ. 753, 142111 (2021). This study evaluates the current understanding of and opportunities for paludiculture in the context of tropical peatlands, emphasizing that tropical paludiculture will be heavily influenced by socioeconomic considerations.Article 

    Google Scholar 
    Haraguchi, A. in Tropical Peatland Ecosystems (Osaki, M. & Tsuji, N.) 297–311 (Springer, 2016).Wösten, J. H. M., Ismail, A. B. & van Wijk, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78, 25–36 (1997).Article 

    Google Scholar 
    Grealish, G. J. & Fitzpatrick, R. W. Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil. Use Manag. 29, 432–444 (2013).Article 

    Google Scholar 
    Klepper, O., Chairuddin, G. T., Iriansyah & Rijksen, H. D. Water quality and the distribution of some fishes in an area of acid sulphate soils, Kalimantan, Indonesia. Hydrobiol. Bull. 25, 217–224 (1992).Article 

    Google Scholar 
    Shamshuddin, J. & Muhrizal, S. Chemical pollution in acid sulfate soils. Proc. Geol. Soc. Malaysia Annu. Geol.Conf. 2000, 231–234 (2000).
    Google Scholar 
    Suwardi. Utilization and improvement of marginal soils for agricultural development in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 383, 012047 (2019).Article 

    Google Scholar 
    Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).Article 

    Google Scholar 
    Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, 1996).Billett, M. F., Garnett, M. H. & Dinsmore, K. J. Should aquatic CO evasion be included in contemporary carbon budgets for peatland ecosystems? Ecosystems 18, 471–480 (2015).Article 

    Google Scholar 
    Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl. Ecol. Manag. 13, 671–684 (2005).Article 

    Google Scholar 
    Hoyos-Santillan, J. et al. Getting to the root of the problem: litter decomposition and peat formation in lowland neotropical peatlands. Biogeochemistry 126, 115–129 (2015).Article 

    Google Scholar 
    Könönen, M. et al. Land use increases the recalcitrance of tropical peat. Wetl. Ecol. Manag. 24, 717–731 (2016).Article 

    Google Scholar 
    Sangok, F. E., Maie, N., Melling, L. & Watanabe, A. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sci. Total Environ. 587–588, 381–388 (2017).Article 

    Google Scholar 
    Yule, C. M., Lim, Y. Y. & Lim, T. Y. Degradation of tropical Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa. Front. Earth Sci. 4, 1–9 (2016).Article 

    Google Scholar 
    Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).Article 

    Google Scholar 
    Lähteenoja, O., Ruokolainen, K., Schulman, L. & Oinonen, M. Amazonian peatlands: an ignored C sink and potential source. Glob. Change Biol. 15, 2311–2320 (2009).Article 

    Google Scholar 
    Garneau, M. et al. Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. Holocene 24, 1043–1053 (2014).Article 

    Google Scholar 
    Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).Article 

    Google Scholar 
    Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, GB3002 (2004).Article 

    Google Scholar 
    Yu, Z. C. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).Article 

    Google Scholar 
    Poulter, B. et al. in Wetland Carbon And Environmental Management (eds Krauss, K. W., Zhu, Z. & Stagg, C. L.) 1–20 (American Geophysical Union, 2021).Honorio Coronado, E. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).Article 

    Google Scholar 
    Sjögersten, S. et al. Tropical wetlands: a missing link in the global carbon cycle? Carbon cycling in tropical wetlands. Glob. Biogeochem. Cycles 28, 1371–1386 (2014).Article 

    Google Scholar 
    Griffis, T. J. et al. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agric. For. Meteorol. 295, 108167 (2020).Article 

    Google Scholar 
    Kiew, F. et al. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agric. For. Meteorol. 248, 494–501 (2018).Article 

    Google Scholar 
    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Change Biol. 18, 3410–3422 (2012).Article 

    Google Scholar 
    Tang, A. C. I. et al. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere. Glob. Change Biol. 26, 6931–6944 (2020).Article 

    Google Scholar 
    Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021). This study presented measurements of CO2 and CH4 fluxes obtained using the eddy covariance method from both intact and degraded peat swamp forest in Sumatra, Indonesia, during the 2019 ENSO drought.Article 

    Google Scholar 
    Kiew, F. et al. Carbon dioxide balance of an oil palm plantation established on tropical peat. Agric. For. Meteorol. 295, 108189 (2020).Article 

    Google Scholar 
    McCalmont, J. et al. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Glob. Change Biol. 27, 2361–2376 (2021).Article 

    Google Scholar 
    Germer, J. & Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716 (2008).Article 

    Google Scholar 
    Lewis, K. et al. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods. Sci. Rep. 10, 2230 (2020).Article 

    Google Scholar 
    Wijedasa, L. S. Peat Swamp Forest Conservation in Southeast Asia. Thesis, National Univ. Singapore (2019).Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).Article 

    Google Scholar 
    Cook, S. et al. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences 15, 7435–7450 (2018).Article 

    Google Scholar 
    Waldron, S. et al. C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur. Sci. Rep. 9, 11429 (2019).Article 

    Google Scholar 
    Brady, M. A. Organic Matter Dynamics of Coastal Peat Deposits in Sumatra, Indonesia. Thesis, Univ. British Columbia (1997).Jauhiainen, J., Limin, S., Silvennoinen, H. & Vasander, H. Carbon dioxide and methane fluxes in drained tropical peat before and after hhydrological restoration. Ecology 89, 3503–3514 (2008).Article 

    Google Scholar 
    Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J. & Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Change Biol. 11, 1788–1797 (2005).Article 

    Google Scholar 
    Yule, C. M. & Gomez, L. N. Leaf litter decomposition in a tropical peat swamp forest in peninsular Malaysia. Wetl. Ecol. Manag. 17, 231–241 (2009).Article 

    Google Scholar 
    Swails, E., Hertanti, D., Hergoualc’h, K., Verchot, L. & Lawrence, D. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 142, 37–51 (2019).Article 

    Google Scholar 
    Ishikura, K. et al. Carbon dioxide and methane emissions from peat soil in an undrained tropical peat swamp forest. Ecosystems 22, 1852–1868 (2019).Article 

    Google Scholar 
    Melling, L., Tan, C. Y., Goh, K. J. & Hatano, R. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. J. Oil Palm. Res. 25, 44–57 (2013).
    Google Scholar 
    Cooper, H. V. et al. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nat. Commun. 11, 407 (2020).Article 

    Google Scholar 
    Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Root-derived CO2 flux from a tropical peatland. Wetl. Ecol. Manag. 26, 985–991 (2018).Article 

    Google Scholar 
    Dhandapani, S., Ritz, K., Evers, S., Yule, C. M. & Sjögersten, S. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in peninsular Malaysia. Sci. Total Environ. 655, 220–231 (2019).Article 

    Google Scholar 
    Dhandapani, S. et al. Land-use changes associated with oil palm plantations impact PLFA microbial phenotypic community structure throughout the depth of tropical peats. Wetlands 40, 2351–2366 (2020).Article 

    Google Scholar 
    Mishra, S. et al. Microbial and metabolic profiling reveal strong influence of water table and land-use patterns on classification of degraded tropical peatlands. Biogeosciences 11, 1727–1741 (2014).Article 

    Google Scholar 
    Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021). This paper reviews current understanding of intact and degraded peatlands in Southeast Asia and proposes an approach for peatland management and restoration involving explicit consideration of interacting ecological factors and the involvement of local communities.Article 

    Google Scholar 
    Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).Article 

    Google Scholar 
    Carlson, K. M. et al. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl Acad. Sci. USA 109, 7559–7564 (2012).Article 

    Google Scholar 
    Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021). Using data for CO2 and CH4 fluxes from all major peatland biomes, this paper demonstrates that greenhouse gas emissions from drained agricultural peatlands could be greatly reduced by raising water levels closer to the peat surface while maintaining productive agricultural use.
    Google Scholar 
    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).Article 

    Google Scholar 
    Hiraishi, T. et al. (eds) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature — a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).Article 

    Google Scholar 
    Manning, F. C., Kho, L. K., Hill, T. C., Cornulier, T. & Teh, Y. A. Carbon emissions from oil palm plantations on peat soil. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00037 (2019).Article 

    Google Scholar 
    Deshmukh, C. S. et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Change Biol. 26, 2477–2495 (2020).Article 

    Google Scholar 
    Wong, G. X. et al. How do land use practices affect methane emissions from tropical peat ecosystems? Agric. For. Meteorol. 282–283, 107869 (2020).Article 

    Google Scholar 
    Pangala, S. R. et al. Large emissions from floodplain trees close the Amazon methane budget. Nature 552, 230–234 (2017).Article 

    Google Scholar 
    Pangala, S. R., Moore, S., Hornibrook, E. R. C. & Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. N. Phytol. 197, 524–531 (2013).Article 

    Google Scholar 
    Hergoualc’h, K. et al. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Glob. Change Biol. 26, 7198–7216 (2020).Article 

    Google Scholar 
    Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).Article 

    Google Scholar 
    Hoyos-Santillan, J. et al. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 688, 1193–1204 (2019).Article 

    Google Scholar 
    van Haren, J. et al. A versatile gas flux chamber reveals high tree stem CH4 emissions in Amazonian peatland. Agric. For. Meteorol. 307, 108504 (2021).Article 

    Google Scholar 
    Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).Article 

    Google Scholar 
    Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).Article 

    Google Scholar 
    Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil. Biol. Biochem. 127, 280–285 (2018).Article 

    Google Scholar 
    Girkin, N. T., Vane, C. H., Turner, B. L., Ostle, N. J. & Sjögersten, S. Root oxygen mitigates methane fluxes in tropical peatlands. Environ. Res. Lett. 15, 064013 (2020).Article 

    Google Scholar 
    Jauhiainen, J., Silvennoinen, H., Könönen, M., Limin, S. & Vasander, H. Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry 129, 115–132 (2016).Article 

    Google Scholar 
    Wright, E. L. et al. Contribution of subsurface peat to CO2 and CH fluxes in a neotropical peatland. Glob. Change Biol. 17, 2867–2881 (2011).Article 

    Google Scholar 
    Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).Article 

    Google Scholar 
    Peacock, M. et al. Global importance of methane emissions from drainage ditches and canals. Environ. Res. Lett. 16, 044010 (2021).Article 

    Google Scholar 
    Chuang, P.-C. et al. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. J. Geophys. Res. Biogeosci. 122, 1156–1174 (2017).Article 

    Google Scholar 
    Jauhiainen, J. & Silvennoinen, H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suoseura 63, 93–105 (2012).
    Google Scholar 
    Yupi, H. M., Inoue, T. & Bathgate, J. Concentrations, loads and yields of organic carbon from two tropical peat swamp forest streams in Riau Province, Sumatra, Indonesia. Mires Peat 18, 1–15 (2016).
    Google Scholar 
    Zhou, Y., Evans, C. D., Chen, Y., Chang, K. Y. W. & Martin, P. Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia. J. Geophys. Res. Ocean. 126, e2021JC017292 (2021).
    Google Scholar 
    Alkhatib, M., Jennerjahn, T. C. & Samiaji, J. Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical black-water river. Limnol. Oceanogr. 52, 2410–2417 (2007).Article 

    Google Scholar 
    Gandois, L. et al. From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia. Biogeosciences 17, 1897–1909 (2020).Article 

    Google Scholar 
    Rixen, T. et al. The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochemistry 90, 129–140 (2008).Article 

    Google Scholar 
    Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).Article 

    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021).Article 

    Google Scholar 
    Boysen, L. R. et al. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst. Dyn. 5, 309–319 (2014).Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 

    Google Scholar 
    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).Article 

    Google Scholar 
    Naidu, D. G. T. & Bagchi, S. Greening of the Earth does not compensate for rising soil heterotrophic respiration under climate change. Glob. Change Biol. 27, 2029–2038 (2021).Article 

    Google Scholar 
    Li, W. et al. Future precipitation changes and their implications for tropical peatlands. Geophys. Res. Lett. 34, 01403 (2007).Article 

    Google Scholar 
    Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).Article 

    Google Scholar 
    Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. 6, 228 (2018).Article 

    Google Scholar 
    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).Article 

    Google Scholar 
    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).Article 

    Google Scholar 
    Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).Article 

    Google Scholar 
    Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2020).Article 

    Google Scholar 
    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 103, 16–30 (2015).Article 

    Google Scholar 
    Weiss, D. et al. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim. Cosmochim. Acta 66, 2307–2323 (2002).Article 

    Google Scholar 
    Lähteenoja, O. & Page, S. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. 116, G02025 (2011).
    Google Scholar 
    Roucoux, K. H. et al. Vegetation development in an Amazonian peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 242–255 (2013).Article 

    Google Scholar 
    Lampela, M., Jauhiainen, J. & Vasander, H. Surface peat structure and chemistry in a tropical peat swamp forest. Plant. Soil. 382, 329–347 (2014).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O., Shotyk, Ø. W. & Weiss, D. Interdependence of peat and vegetation in a tropical peat swamp forest. Phil. Trans. R. Soc. Lond. B 354, 1885–1897 (1999).Article 

    Google Scholar 
    Sjögersten, S., Cheesman, A. W., Lopez, O. & Turner, B. L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011).Article 

    Google Scholar 
    Yule, C. M. Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodivers. Conserv. 19, 393–409 (2010).Article 

    Google Scholar 
    Basilier, K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia 5, 84–88 (1979).
    Google Scholar 
    Ong, C. S. P., Juan, J. C. & Yule, C. M. Litterfall production and chemistry of Koompassia malaccensis and Shorea uliginosa in a tropical peat swamp forest: plant nutrient regulation and climate relationships. Trees 29, 527–537 (2015).Article 

    Google Scholar 
    Wüst, R. A. J. & Bustin, R. M. Opaline and Al–Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chem. Geol. 200, 267–292 (2003).Article 

    Google Scholar 
    Neuzil, S. G., Cecil, C. B., Kane, J. S. & Soedjono, K. in Modern and Ancient Coal-Forming Environments Vol. 286 (Geological Society of America, 1993).Too, C. C., Keller, A., Sickel, W., Lee, S. M. & Yule, C. M. Microbial community structure in a Malaysian tropical peat swamp forest: the influence of tree species and depth. Front. Microbiol. 9, 2859 (2018).Article 

    Google Scholar 
    Sulistiyanto, Y. Nutrient Dynamics in Different Sub-types of Peat Swamp Forest in Central Kalimantan, Indonesia. Thesis, Univ. Nottingham (2005).Hoyos Santillán, J. Controls of Carbon Turnover in Tropical Peatlands. Thesis, Univ. Nottingham (2014).Damman, A. W. H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30, 480–495 (1978).Article 

    Google Scholar 
    Laiho, R. & Laine, J. Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand. J. For. Res. 9, 251–260 (1994).Article 

    Google Scholar 
    Wang, M., Moore, T. R., Talbot, J. & Riley, J. L. The stoichiometry of carbon and nutrients in peat formation. Glob. Biogeochem. Cycles 29, 113–121 (2015).Article 

    Google Scholar 
    Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).Article 

    Google Scholar 
    Jackson, C. R., Liew, K. C. & Yule, C. M. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb. Ecol. 57, 402–412 (2009).Article 

    Google Scholar 
    Kolb, S. & Horn, M. A. Microbial CH4 and NO consumption in acidic wetlands. Front. Microbiol. 3, 78 (2012).Article 

    Google Scholar 
    Golovchenko, A. V., Tikhonova, E. Y. & Zvyagintsev, D. G. Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands. Microbiology 76, 630–637 (2007).Article 

    Google Scholar 
    Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993).Article 

    Google Scholar 
    Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50, 667 (2000).Article 

    Google Scholar 
    Rubol, S., Silver, W. L. & Bellin, A. Hydrologic control on redox and nitrogen dynamics in a peatland soil. Sci. Total Environ. 432, 37–46 (2012).Article 

    Google Scholar 
    Jauhiainen, J. et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 9, 1337–1350 (2012).Article 

    Google Scholar 
    Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. & Vasander, H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16, 1–13 (2015).
    Google Scholar 
    Chotimah, H., Jaya, A., Suparto, H., Saraswati, D. & Nawansyah, W. Utilizing organic fertilizers on two types of soil to improve growth and yield of Bawang Dayak (Eleutherine americana Merr). Agrivita J. Agric. Sci. 43, 164–173 (2021).
    Google Scholar 
    Mohidin, H. et al. Optimum levels of N, P, and K nutrition for oil palm seedlings grown in tropical peat soil. J. Plant. Nutr. 42, 1461–1471 (2019).Article 

    Google Scholar 
    Mutert, E., Fairhurst, T. H. & Von Uexküll, H. R. Agronomic management of oil palms on deep peat. Better. Crop. Int. 13, 22–27 (1999).
    Google Scholar 
    Hashim, S. A., Teh, C. B. S. & Ahmed, O. H. Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malays. J. Soil. Sci. 23, 13–30 (2019).
    Google Scholar 
    Oktarita, S., Hergoualc’h, K., Anwar, S. & Verchot, L. V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 12, 104007 (2017).Article 

    Google Scholar 
    Hoyos-Santillan, J. et al. Root oxygen loss from Raphia taedigera palms mediates greenhouse gas emissions in lowland neotropical peatlands. Plant. Soil. 404, 47–60 (2016).Article 

    Google Scholar 
    Hatano, R. Impact of land use change on greenhouse gases emissions in peatland: a review. Int. Agrophys. 33, 167–173 (2019). This study reviews the impacts of changes in water-table level and nitrogen inputs on greenhouse gas emissions in tropical and northern peatlands and evaluates the optimal water-table level for minimizing emissions.Article 

    Google Scholar 
    Zawawi, N. Z. et al. The effect of nitrogen fertiliser on nitrous oxide emission in oil palm plantation. Proc. 15th Int. Peat Congress 355, 515–518 (2016).
    Google Scholar 
    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015). This paper reviews peatland vulnerability to burning, fire-driven carbon emissions and current and future risks of peatland fires.Article 

    Google Scholar 
    Hu, Y. et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).Article 

    Google Scholar 
    Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).Article 

    Google Scholar 
    Smith, T. E. L., Evers, S., Yule, C. M. & Gan, J. Y. In situ tropical peatland fire emission factors and their variability, as determined by field measurements in peninsula Malaysia. Glob. Biogeochem. Cycles 32, 18–31 (2018).Article 

    Google Scholar 
    Stockwell, C. E. et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 16, 11711–11732 (2016).Article 

    Google Scholar 
    Betha, R. et al. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 122, 571–578 (2013).Article 

    Google Scholar 
    Breulmann, G. et al. Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia. Sci. Total Environ. 285, 107–115 (2002).Article 

    Google Scholar 
    Othman, M. & Latif, M. T. Dust and gas emissions from small-scale peat combustion. Aerosol Air Qual. Res. 13, 1045–1059 (2013).Article 

    Google Scholar 
    See, S. W., Balasubramanian, R. & Wang, W. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J. Geophys. Res. 111, D10S08 (2006).
    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Env. 1, 65 (2020).Article 

    Google Scholar 
    Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).Article 

    Google Scholar 
    Astiani, D., Taherzadeh, M. J., Gusmayanti, E., Widiastuti, T. & Burhanuddin, B. Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in west Kalimantan peatland, Indonesia. Biodiversiitas J. Biol. Divers. 20, 725–731 (2019).Article 

    Google Scholar 
    Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Change 39, 205–219 (2016).Article 

    Google Scholar 
    Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article 

    Google Scholar 
    Field, R. D. & Shen, S. S. P. Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113, G04024 (2008).Article 

    Google Scholar 
    Sloan, S., Locatelli, B., Wooster, M. J. & Gaveau, D. L. A. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47, 95–109 (2017).Article 

    Google Scholar 
    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).Article 

    Google Scholar 
    World Bank. The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis (World Bank, 2016).Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article 

    Google Scholar 
    Lupascu, M., Akhtar, H., Smith, T. E. L. & Sukri, R. S. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH4 flux. Glob. Change Biol. 26, 5125–5145 (2020).Article 

    Google Scholar 
    Milner, L. E. Influence of Fire on Peat Organic Matter from Indonesian Tropical Peatlands. Thesis, Univ. Leicester (2013).Saharjo, B. H. & Nurhayati, A. D. Changes in chemical and physical properties of hemic peat under fire-based shifting cultivation. Tropics 14, 263–269 (2005).Article 

    Google Scholar 
    Dhandapani, S. & Evers, S. Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Sci. Total Environ. 742, 140648 (2020).Article 

    Google Scholar 
    Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Change Biol. 22, 1469–1480 (2016).Article 

    Google Scholar 
    Akhtar, H. et al. Significant sedge-mediated methane emissions from degraded tropical peatlands. Environ. Res. Lett. 16, 014002 (2020).
    Google Scholar 
    Rein, G. in Fire Phenomena and the Earth System (ed. Belcher, C. M.) 15–33 (Wiley, 2013).Graham, L. L. B. & Page, S. E. A limited seed bank in both natural and degraded tropical peat swamp forest: the implications for restoration. Mires Peat 22, 02 (2018).
    Google Scholar 
    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
    Google Scholar 
    Page, S. et al. Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12, 888–905 (2009).Article 

    Google Scholar 
    Sazawa, K. et al. Impact of peat fire on the soil and export of dissolved organic carbon in tropical peat soil, Central Kalimantan, Indonesia. ACS Earth Space Chem. 2, 692–701 (2018).Article 

    Google Scholar 
    Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).Article 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Env. 1, 590–605 (2020).Article 

    Google Scholar 
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article 

    Google Scholar 
    Giesen, W. & Sari, E. N. N. Tropical peatland restoration report: the Indonesian case. MCA Indonesia https://doi.org/10.13140/RG.2.2.30049.40808 (2018).Article 

    Google Scholar 
    Dohong, A., Abdul Aziz, A. & Dargusch, P. A review of techniques for effective tropical peatland restoration. Wetlands 38, 275–292 (2018).Article 

    Google Scholar 
    Shell. Redd+ Katingan Mentaya, Indonesia. Shell https://www.shell.co.uk/motorist/make-the-change-drive-carbon-neutral/redd-plus-katingan-mentaya-indonesia.html (2021).Uda, S. K., Hein, L. & Sumarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 25, 683–701 (2017).Article 

    Google Scholar 
    Wichtmann, W., Tanneberger, F., Wichmann, S. & Joosten, H. Paludiculture is paludifuture: climate, biodiversity and economic benefits from agriculture and forestry on rewetted peatland. Peatl. Int. 1, 48–51 (2010).
    Google Scholar 
    Giesen, W. in Tropical Peatland Eco-Management (eds Osaki, M., Tsuji, N., Foead, N. & Rieley, J.) 411–441 (Springer, 2021).Shurpali, N. J. et al. Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2, 130–138 (2010).
    Google Scholar 
    Lawson, I. T. et al. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl. Ecol. Manag. 23, 327–346 (2015).Article 

    Google Scholar 
    Anda, M. et al. Revisiting tropical peatlands in Indonesia: semi-detailed mapping, extent and depth distribution assessment. Geoderma 402, 115235 (2021).Article 

    Google Scholar 
    Saxon, E. C., Neuzil, S. G., Biladi, D. B. C., Kinser, J. & Sheppard, S. M. 3D mapping of lowland coastal peat domes in Indonesia. Mires Peat 27, 1–18 (2021).
    Google Scholar 
    Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).Article 

    Google Scholar 
    Vernimmen, R. et al. Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Manag. 15, 4 (2020).Article 

    Google Scholar 
    Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: a review. Soil. Biol. Biochem. 57, 979–994 (2013).Article 

    Google Scholar 
    Morrison, E. S. et al. Characterization of bacterial and fungal communities reveals novel consortia in tropical oligotrophic peatlands. Microb. Ecol. 82, 188–201 (2020).Article 

    Google Scholar 
    Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza–Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).Article 

    Google Scholar 
    Troxler, T. G. et al. Patterns of soil bacteria and canopy community structure related to tropical peatland development. Wetlands 32, 769–782 (2012).Article 

    Google Scholar 
    Tripathi, B. M. et al. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front. Microbiol. 7, 376 (2016).Article 

    Google Scholar 
    Kwon, M. J., Haraguchi, A. & Kang, H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil. Biol. Biochem. 60, 33–44 (2013).Article 

    Google Scholar 
    Hadi, A. et al. Effects of land-use change in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes Env. 16, 79–86 (2001).Article 

    Google Scholar 
    Kusai, N. A., Ayob, Z., Maidin, M. S. T., Safari, S. & Ahmad Ali, S. R. Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. Rendiconti Lincei Sci. Fis. E 29, 469–482 (2018).Article 

    Google Scholar 
    Shuhada, S. N., Salim, S., Nobilly, F., Zubaid, A. & Azhar, B. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. Ecol. Evol. 7, 7187–7200 (2017).Article 

    Google Scholar 
    Liu, B. et al. The microbial diversity and structure in peatland forest in Indonesia. Soil. Use Manag. 36, 123–138 (2020).Article 

    Google Scholar 
    Moyersoen, B., Becker, P. & Alexander, I. J. Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? N. Phytol. 150, 591–599 (2001).Article 

    Google Scholar 
    Muliyani, R. B., Sastrahidayat, I. R., Abdai, A. L. & Djauhari, S. Exploring ectomycorrhiza in peat swamp forest of Nyaru Menteng Palangka Raya Central Borneo. J. Biodivers. Environ. Sci. 5, 133–145 (2014).
    Google Scholar 
    Turjaman, M. et al. Improvement of early growth of two tropical peat-swamp forest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungi under greenhouse conditions. New Forests 36, 1–12 (2008).Article 

    Google Scholar 
    Tawaraya, K. et al. Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For. Ecol. Manag. 182, 381–386 (2003).Article 

    Google Scholar 
    Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).Article 

    Google Scholar 
    Yuwati, T. W. & Putri, W. S. Diversity of arbuscular mycorrhiza spores under Shorea balangeran (Korth.) Burck. plantation as bioindicator for the revegetation success. J. Galam 1, 15–26 (2020).Article 

    Google Scholar 
    Graham, L. L. B., Turjaman, M. & Page, S. E. Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: effects of mycorrhizae and level of disturbance. Wetl. Ecol. Manag. 21, 307–321 (2013).Article 

    Google Scholar  More

  • in

    Changing surface ocean circulation caused the local demise of echinoid Scaphechinus mirabilis in Taiwan during the Pleistocene–Holocene transition

    Hu, C.-H. in Introduction to Roadside Geology of Ten Field Geology Excursion Routes in Northern Taiwan (ed Taiwan Normal University Department of Earth Science) 63–100 (Taiwan Normal University, 1987).Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene), Longgang area, Miaoli County. Atlas Fossil Mollusca Taiwan 2, 689–754 (1992).
    Google Scholar 
    Hu, C.-H. Fossil molluscs of Tongxiao Formation (Pleistocene) in Baishatun and Touwo, Tongxiao village, Miaoli County. Atlas Fossil Mollusca Taiwan 1, 175–314 (1991).
    Google Scholar 
    Hayasaka, I. & Morishita, A. Notes on some fossil echinoids of Taiwan, II. Acta Geol. Taiwan. 1, 93–110 (1947).
    Google Scholar 
    Lin, Y.-J., Fang, J.-N., Chang, C.-C., Cheng, C.-C. & Lin, J. P. Stereomic microstructure of Clypeasteroida in thin section based on new material from Pleistocene strata in Taiwan. Terr. Atmos. Ocean. Sci. J. https://doi.org/10.3319/TAO.2021.07.28.01 (2021).Article 

    Google Scholar 
    Morishita, A. in Contributions to Celebrate Prof. Ichiro Hayasaka’s 76th Birthday 109–116 (1967).Wang, C.-C., Lin, C.-F. & Li, L.-C. Measurements on Late Pleistocene sand dollar Scaphechinus mirabilis from northern Taiwan. Annu. Rep. Central Geol. Surv. 72, 49–56 (1984).
    Google Scholar 
    Nisiyama, S. The echinoid fauna from Japan and adjacent regions. Part 2. Palaeontol. Soc. Jpn. Spec. Pap. 13, 1–491 (1968).
    Google Scholar 
    Kashenko, S. D. Effects of extreme changes of sea water temperature and salinity on the development of the sand dollar Scaphechinus mirabilis. Russ. J. Mar. Biol. 35, 422–430. https://doi.org/10.1134/s1063074009050083 (2009).Article 

    Google Scholar 
    Davies, A. J. & John, C. M. The clumped (13C–18O) isotope composition of echinoid calcite: Further evidence for “vital effects” in the clumped isotope proxy. Geochim. Cosmochim. Acta 245, 172–189. https://doi.org/10.1016/j.gca.2018.07.038 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, W.-S., Yeh, J.-J. & Syu, S.-J. Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics 750, 56–69. https://doi.org/10.1016/j.tecto.2018.09.003 (2019).ADS 
    Article 

    Google Scholar 
    Peng, T.-R., Wang, C.-H. & Chen, C. T. A. Oxygen and carbon isotopic studies of fossil Mollusca in the Kuokang Shell Bed, Paishatung, Miaoli. Spec. Publ. Central Geol. Surv. 4, 307–322 (1990).
    Google Scholar 
    Lee, C.-L. Biostratigraphy and sedimentary environments of Toukoshan Formation in Baishatun area, Miaoli MS thesis, National Central University (2000).Locarnini, R. A. et al. World Ocean Atlas 2018, Volume 1: Temperature. 1–52 (NOAA, 2019).Liew, P.-M. Quaternary stratigraphy in western Taiwan: Palynological correlation. Proc. Geol. Soc. China 31, 169–180 (1988).
    Google Scholar 
    Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook. Rev. Geophys. https://doi.org/10.1029/2007rg000226 (2008).Article 

    Google Scholar 
    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026011 (2006).Article 

    Google Scholar 
    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic formainifera isotopic records. Quatern. Sci. Rev. 21, 295–305 (2002).ADS 
    Article 

    Google Scholar 
    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am. 64, 1315–1326 (1963).Article 

    Google Scholar 
    Weber, J. N. & Raup, D. M. Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms—the Echinoidea. Part II. Environmental and genetic factors. Geochim. Cosmochim. Acta 30, 705–736 (1966).ADS 
    CAS 
    Article 

    Google Scholar 
    Eiler, J. M. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quatern. Sci. Rev. 30, 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001 (2011).ADS 
    Article 

    Google Scholar 
    Takeda, S. Mechanism maintaining dense beds of the sand dollar Scaphechinus mirabilis in northern Japan. J. Exp. Mar. Biol. Ecol. 363, 21–27. https://doi.org/10.1016/j.jembe.2008.06.010 (2008).Article 

    Google Scholar 
    Takatsu, T., Nakatani, T., Miyamoto, T., Kooka, K. & Takahashi, T. Spatial distribution and feeding habits of Pacific cod (Gadus macrocephalus) larvae in Mutsu Bay, Japan. Fish. Oceanogr. 11, 90–101 (2002).Article 

    Google Scholar 
    Zhao, M., Huang, C.-Y. & Wei, K.-Y. A 28,000 year U37 K’ sea-surface temperature record of ODP Site 1202B, the southern Okinawa Trough. TAO 16, 45–56 (2005).ADS 
    Article 

    Google Scholar 
    Jan, S., Tseng, Y.-H. & Dietrich, D. E. Sources of water in the Taiwan Strait. J. Oceanogr. 66, 211–221 (2010).Article 

    Google Scholar 
    Liao, E., Oey, L. Y., Yan, X.-H., Li, L. & Jiang, Y. The deflection of the China Coastal Current over the Taiwan Bank in winter. J. Phys. Oceanogr. 48, 1433–1450. https://doi.org/10.1175/jpo-d-17-0037.1 (2018).ADS 
    Article 

    Google Scholar 
    Hu, J., Kawamura, H., Li, C., Hong, H. & Jiang, Y. Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr. 66, 591–610 (2010).Article 

    Google Scholar 
    Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quatern. Sci. Rev. 152, 72–79. https://doi.org/10.1016/j.quascirev.2016.09.012 (2016).ADS 
    Article 

    Google Scholar 
    Klein, R. T., Lohmann, K. C. & Kennedy, G. L. Elemental and isotopic proxies of paleotemperature and paleosalinity: Climate reconstruction of the marginal northeast Pacific ca. 80 ka. Geology 25, 363–366 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Jarvis, I., Trabucho-Alexandre, J., Gröcke, D. R., Uličný, D. & Laurin, J. Intercontinental correlation of organic carbon and carbonate stable isotope records: Evidence of climate and sea-level change during the Turonian (Cretaceous). Depos. Rec. 1, 53–90. https://doi.org/10.1002/dep2.6 (2016).Article 

    Google Scholar 
    Chen, P. S. M. A study of the stratigraphy and molluscan fossils of the Tunghsiao area, Miaoli, Taiwan, R.O.C.. Bull. Malacol. Republic of China 4, 63–78 (1977).
    Google Scholar 
    Chen, W.-S. & Hsu, W.-J. The Pleistocene paleoenvironmental significance of the unearthed megafauna strata in Taiwan. Bull. Central Geol. Surv. 23, 137–163 (2010).
    Google Scholar 
    Chang, C. H. et al. The first archaic Homo from Taiwan. Nat. Commun. 6, 6037. https://doi.org/10.1038/ncomms7037 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cai, B.-Q. Fossil human humerus of Late Pleistocene from the Taiwan Straits. Acta Antrhopologica Sinica 20, 178–185 (2001).
    Google Scholar 
    Tong, H. & Patou-Mathis, M. Mammoth and other proboscideans in China during the Late Pleistocene. Deinsea 9, 421–428 (2003).
    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 (2006).Article 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. PNAS 99, 14624–14627 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Ugan, A. & Byers, D. A global perspective on the spatiotemporal pattern of the Late Pleistocene human and woolly mammoth radiocarbon record. Quatern. Int. 191, 69–81. https://doi.org/10.1016/j.quaint.2007.09.035 (2008).Article 

    Google Scholar 
    Adlan, Q., Davies, A. J. & John, C. M. Effects of oxygen plasma ashing treatment on carbonate clumped isotopes. Rapid Commun. Mass Spectrom. 34, e8802. https://doi.org/10.1002/rcm.8802 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    John, C. M. & Bowen, D. Community software for challenging isotope analysis: First applications of “Easotope” to clumped isotopes. Rapid Commun. Mass Spectrom. 30, 2285–2300 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bernasconi, S. M. et al. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 27, 603–612. https://doi.org/10.1002/rcm.6490 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bernasconi, S. M. et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22, e2020GC009588. https://doi.org/10.1029/2020GC009588 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, N. T. et al. Unified clumped isotope thermometer calibration (0.5–1,100°C) using carbonate-based standardization. Geophys. Res. Lett. 48, e2020GL092069 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Lee, H. et al. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in western Taiwan. Quatern. Int. 528, 120–129 (2019).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    Infected food web and ecological stability

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. The community ecology of pathogens: Coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).Article 

    Google Scholar 
    French, R. K. & Holmes, E. C. An ecosystems perspective on virus evolution and emergence. Trends Microbiol. 28, 165–175 (2020).CAS 
    Article 

    Google Scholar 
    Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites?. Trends Ecol. Evol. 21, 381–385 (2006).Article 

    Google Scholar 
    Raffel, T. R., Martin, L. B. & Rohr, J. R. Parasites as predators: Unifying natural enemy ecology. Trends Ecol. Evol. 23, 610–618 (2008).Article 

    Google Scholar 
    Johnson, P. T. J. et al. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).Article 

    Google Scholar 
    Frainer, A., McKie, B. G., Amundsen, P. A., Knudsen, R. & Lafferty, K. D. parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260–268 (2018).Article 

    Google Scholar 
    Jephcott, T. G., Sime-Ngando, T., Gleason, F. H. & Macarthur, D. J. Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs 6, 1–8 (2016).Article 

    Google Scholar 
    Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).Article 

    Google Scholar 
    Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).Article 

    Google Scholar 
    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325 (1997).CAS 
    Article 

    Google Scholar 
    Chen, H.-W. et al. Network position of hosts in food webs and their parasite diversity. Oikos 117, 1847–1855 (2008).Article 

    Google Scholar 
    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103, 11211–11216 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).Article 

    Google Scholar 
    Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics (eds Pascual, M. & Dunne, J. A.) 27–28 (Oxford University Press, 2005).
    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. The Ecology of Wildlife Diseases. (Oxford University Press, Oxford, 2002).
    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).
    Google Scholar 
    McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995).CAS 
    Article 

    Google Scholar 
    De Castro, F. & Bolker, B. M. Parasite establishment and host extinction in model communities. Oikos 111, 501–513 (2005).Article 

    Google Scholar 
    McQuaid, C. F. & Britton, N. F. Parasite species richness and its effect on persistence in food webs. J. Theor. Biol. 364, 377–382 (2015).ADS 
    Article 

    Google Scholar 
    Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G. & Schauber, E. M. Parasite establishment in host communities. Ecol. Lett. 6, 837–842 (2003).
    Article 

    Google Scholar 
    Hatcher, M. J. & Dunn, A. M. Parasites in Ecological Communities: From Interactions to Ecosystems (Cambridge University Press, 2011).Book 

    Google Scholar 
    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004).Article 

    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka–Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).CAS 
    Article 

    Google Scholar 
    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).MathSciNet 
    Article 

    Google Scholar 
    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Hethcote, H. W., Wang, W., Han, L. & Ma, Z. A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004).Article 

    Google Scholar 
    Kooi, B. W., van Voorn, G. A. K. & Das, K. P. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease. Ecol. Complex. 8, 113–122 (2011).Article 

    Google Scholar 
    Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).Article 

    Google Scholar 
    Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).ADS 
    Article 

    Google Scholar 
    Wootton, J. T. Estimates and tests of per capita interaction strength: Diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).Article 

    Google Scholar 
    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory (Springer, 1990).Book 

    Google Scholar 
    Mougi, A. Diversity of biological rhythm and food web stability. Biol. Lett. 17, 20200673 (2021).Article 

    Google Scholar  More

  • in

    Exceptional longevity in northern peripheral populations of Wels catfish (Siluris glanis)

    Roff, D. A. The Evolution of Life Histories (Chapman & Hall, 1992).
    Google Scholar 
    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    Tibblin, P. et al. Evolutionary divergence of adult body size and juvenile growth in sympatric subpopulations of a top predator in aquatic ecosystems. Am. Nat. 186, 98–110 (2015).PubMed 

    Google Scholar 
    Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107 (2011).PubMed 

    Google Scholar 
    Longhurst, A. Murphy’s law revisited: Longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).
    Google Scholar 
    Schaffer, W. M. Optimal reproductive effort in fluctuating environments. Am. Nat. 108, 783–790 (1974).
    Google Scholar 
    Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).ADS 

    Google Scholar 
    Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Inness, C. L. W. & Metcalfe, N. B. The impact of dietary restriction, intermittent feeding and compensatory growth on reproductive investment and lifespan in a short-lived fish. Proc. R. Soc. Lond. B Biol. Sci. 275, 1703–1708 (2008).
    Google Scholar 
    Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, Cynolebias adloffi. Nature 212, 1277–1278 (1966).ADS 

    Google Scholar 
    Trip, E. D., Clements, K. D., Raubenheimer, D. & Choat, J. H. Temperature-related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. J. Anim. Ecol. 83, 866–875 (2014).PubMed 

    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl. Acad. Sci. U.S.A. 106, 13860–13864 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Britton, J. R., Pegg, J., Sedgwick, R. & Page, R. Investigating the catch returns and growth rate of wels catfish, Silurus glanis, using mark-recapture. Fish. Man. Ecol. 14, 263–268 (2007).
    Google Scholar 
    Hamel, M. J. et al. Range-wide age and growth characteristics of shovelnose sturgeon from mark–recapture data: Implications for conservation and management. Can. J. Fish. Aquat. Sci. 72, 71–82 (2015).
    Google Scholar 
    Hamel, M. J. et al. Using mark–recapture information to validate and assess age and growth of long-lived fish species. Can. J. Fish. Aquat. Sci. 71, 559–566 (2014).
    Google Scholar 
    Casale, P., Mazaris, A. D., Freggi, D., Vallini, C. & Argano, R. Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, estimated through capture-mark-recapture records. Sci. Mar. 73, 589–595 (2009).
    Google Scholar 
    IUCN (International Union for Conservation of Nature) 2008. Siluris glanis. The IUCN Red List of Threatened Species. Version 2021-3 (2010). https://www.iucnredlist.org. (Accessed 25 February 2021).Copp, G. H. et al. Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish. Fish. 10, 252–282 (2009).
    Google Scholar 
    Palm, S., Vinterstare, J., Nathanson, J. E., Triantafyllidis, A. & Petersson, E. Reduced genetic diversity and low effective size in peripheral northern European catfish Silurus glanis populations. J. Fish. Biol. 95, 1407–1421 (2019).PubMed 

    Google Scholar 
    Jensen, A., Lillie, M., Bergstrom, K., Larsson, P. & Hoglund, J. Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish. Heredity 127, 79–91 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cucherousset, J. et al. Ecology, behaviour and management of the European catfish. Rev. Fish. Biol. Fish. 28, 177–190 (2017).
    Google Scholar 
    Kuzishchin, K. V., Gruzdeva, M. A. & Pavlov, D. S. Traits of biology of European Wels Catfish Silurus glanis from the Volga-Ahtuba water system, the Lower Volga. J. Ichthyol. 58, 833–844 (2019).
    Google Scholar 
    Alp, A., Kara, C., Üçkardeş, F., Carol, J. & García-Berthou, E. Age and growth of the European catfish (Silurus glanis) in a Turkish Reservoir and comparison with introduced populations. Rev. Fish. Biol. Fish. 21, 283–294 (2010).
    Google Scholar 
    Carol, J., Benejam, L. B. & García-Berthou, E. Growth and diet of European catfish (Silurus glanis) in early and late invasion stages. Fund. Appl. Limnol. 174, 317–328 (2009).
    Google Scholar 
    Severov, Y. A. Size–age structure, growth rate, and fishery of European Catfish Silurus glanis in the lower Kama Reservoir. J. Ichthyol. 60, 118–121 (2020).
    Google Scholar 
    Lessmark, O. Malprovfiske i Möckeln 2006. Länsstyrelsens rapportserie (2006).Lessmark, O. Malprovfiske i Möckeln 2007. Länsstyrelsens rapportserie (2007).Harka, A. Studies on the growth of the sheatfish (Silurus glanis L.) in River Tisza. Aquac. Hung. (Szarvas) 4, 135–144 (1984).
    Google Scholar 
    Edwards, J. E. et al. Advancing research for the management of long-lived species: A case study on the Greenland shark. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00087 (2019).Article 

    Google Scholar 
    Pikitch, E. K., Doukakis, P., Lauck, L., Chakrabarty, P. & Erickson, D. L. Status, trends and management of sturgeon and paddlefish fisheries. Fish. Fish. 6, 233–265 (2005).
    Google Scholar 
    Pironon, S. et al. Geographic variation in genetic and demographic performance: New insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).PubMed 

    Google Scholar 
    Antonovics, J., McKane, A. J. & Newman, T. J. Spatiotemporal dynamics in marginal populations. Am. Nat. 167, 16–27 (2006).CAS 
    PubMed 

    Google Scholar 
    Alp, A., Kara, C. & Büyükcapar, H. M. Reproductive biology in a Native European Catfish, Siluris glanis L., 1758, population in Menzelet Resevoir. Turk. J. Vet. Ani. Sci. 28, 613 (2004).
    Google Scholar 
    Boulêtreau, S. & Santoul, F. The end of the mythical giant catfish. Ecosphere 7(11), e01606. https://doi.org/10.1002/ecs2.1606 (2016).Article 

    Google Scholar 
    Bergmann, C. Ober die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    Blanck, A. & Lamouroux, N. Large-scale intraspecific variation in life-history traits of European freshwater fish. J. Biogeogr. 34, 862–875 (2007).
    Google Scholar 
    Charnov, E. L., Turner, T. F. & Winemiller, K. O. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl. Acad. Sci. U.S.A. 98, 9460–9464 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ricklefs, R. E. Embryo development and ageing in birds and mammals. Proc. R. Soc. B 273, 2077–2082 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Lee, W. S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate-lifespan trade-off. Proc. R. Soc. B 280, 20122370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Rennie, M. D., Kraft, C., Sprules, W. G. & Johnson, T. B. Factors affecting the growth and condition of lake whitefish (Coregonus clupeaformis). Can. J. Fish. Aquat. Sci. 66, 2096–2108 (2009).
    Google Scholar 
    Prats, J., Val, R., Armengol, J. & Dolz, J. Temporal variability in the thermal regime of the lower Ebro River (Spain) and alteration due to anthropogenic factors. J. Hydrol. 387, 105–118 (2010).ADS 

    Google Scholar 
    Kale, S. & Sönmez, A. Y. Climate change effects on annual streamflow of Filyos River (Turkey). J. Water Clim. Change 11, 420–433 (2020).
    Google Scholar 
    Britton, J. R., Cucherousset, J., Davies, G. D., Godard, M. J. & Copp, G. H. Non-native fishes and climate change: Predicting species responses to warming temperatures in a temperate region. Freshw. Biol. 55, 1130–1141 (2010).
    Google Scholar 
    Garcia, V. B., Lucifora, L. O. & Myers, R. A. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    Kuparinen, A. & Merilä, J. Detecting and managing fisheries-induced evolution. TREE 22, 652–659 (2007).PubMed 

    Google Scholar 
    Swedish University of Agricultural Sciences (SLU). National Data Host Lakes and Watercourses, and National Data Host Agricultural Land (Swedish University of Agricultural Sciences, 2021).
    Google Scholar 
    Emåförbundet. Vattenflöden och Nivåer (n.d.). http://www.eman.se/sv/vattenhushallning/vattenfloden-och-nivaer/historik/. (Accessed 12 May 2021)Fabens, A. J. Properties and fitting of the Von Bertalanffy growth curve. Growth 29, 265–289 (1965).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. (Accessed 13 April 2021)Bokor, Z. et al. Survival and growth rates of wels catfish (Siluris glanis Linnaeus, 1758) larvae originating from fertilization with cryopreserved or fresh sperm. J. Appl. Ichthyol. 31, 164–168 (2015).
    Google Scholar 
    du Sert, N. P. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).
    Google Scholar 
    Horoszewicz, L. & Backiel, T. Growth of Wels (Silurus glanis L.) in the Vistula river and the Zegrzyñski reservoir. Arch. Polish Fish. 11, 115–121 (2003).
    Google Scholar  More

  • in

    Island biogeography and human practices drive ecological connectivity in mosquito species richness in the Lakshadweep Archipelago

    MacArthur, R. H. & Wilson, E. O. The theory of island biogeography (Princeton University Press, 1967).
    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1968).
    Google Scholar 
    Caraballo, H. Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16(5), 1–2 (2014).MathSciNet 
    PubMed 

    Google Scholar 
    Rejmánková, E., Grieco, J., Achee, N., Roberts, DR. Ecology of larval habitats. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors 9th. InTech; Rijeka: pp. 397–446. (2013).Sharma, M., Quader, S., Guttal, V. & Isvaran, K. The enemy of my enemy: multiple interacting selection pressures lead to unexpected anti-predator responses. Oecologia 192(1), 1–12 (2020).ADS 
    PubMed 

    Google Scholar 
    Yee, D. A., Kesavaraju, B. & Juliano, S. A. Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Ann. Entomol. Soc. Am. 97, 720–728 (2006).
    Google Scholar 
    Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Day, J. F. Mosquito oviposition behavior and vector control. Insects 7(4), 65 (2016).PubMed Central 

    Google Scholar 
    McBride, C. S. Genes and odors underlying the recent evolution of mosquito preference for humans. Curr. Biol. 26, R41–R46 (2016).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Southerst, R. W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17, 136–173 (2004).
    Google Scholar 
    Vitousek, P. M. Nutrient cycling and limitation: Hawai‘i as a model system (Princeton University Press, 2004).
    Google Scholar 
    Grant, P. R. & Grant, B. R. How and why species multiply: the radiation of darwin’s finches (Princeton University Press, 2011).
    Google Scholar 
    Cliff, A. D. & Haggett, P. The epidemiological significance of islands. Health Place. 1, 199–209 (1995).
    Google Scholar 
    Arrhenius, O. Species and area. J. Ecol. 9(1), 95–99 (1921).
    Google Scholar 
    Preston, F. W. Time and space and the variation of species. Ecology 41(4), 611–627 (1960).
    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, 1995).
    Google Scholar 
    Drakare, S. et al. The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol. Lett. 9: 215 227. (2006).Kotiaho, J., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. Proc. Natl. Acad. Sci. USA 102, 1963–1967 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bataille, A. et al. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc. Nat. Acad. Sci. 106(25), 10230–10235 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sinka, M. E. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Nat. Acad. Sci. 117(40), 24900–24908 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, J.R. Genetic variation in insect vectors: death of typology? Insects. 11;9(4):139. (2018).Whittaker, R. H. Communities and ecosystems (Macmillan, 1975).
    Google Scholar 
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Google Scholar 
    Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Horner-Devine, M. C., Lage, M. & Hughes, J. B. Bohannan BJ A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martiny, J, B. H., Eisen, J.A., Penn, K., Allison, S.D., Horner-Devine, M.C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl. Acad. Sci. USA 108(19):7850−4. (2011).Segre, H., Ron, R., de Malach, N., Henkin, Z., Mandel, M., Kadmon, R. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett., 17(11):1400−8. (2014).Ishtiaq, F. et al. Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J. Biogeogr. 37, 120–132 (2010).
    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan. Puerto Rico. PLoS Negl. Trop. Dis. 5(12), e1378. https://doi.org/10.1371/journal.pntd.0001378 (2011).Article 
    PubMed 

    Google Scholar 
    Campbell, K. M., Lin, C. D., Iamsirithaworn, S. & Scott, T. W. The complex relationship between weather and dengue virus transmission in Thailand. Am. J. Trop. Med. Hyg. 89, 1066–1080. https://doi.org/10.4269/ajtmh.13-0321 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in Urban Areas. Am. J. Trop. Med. Hyg. 101(2), 362–370 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mustak, M. S. et al. The peopling of Lakshadweep Archipelago. Sci. Rep. 9, 6968 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S. K. & Hamzakoya, K. K. Geographical spread of Anopheles stephensi, vector of urban malaria, Aedes aegypti vector of Dengue/DHF, in the Arabian sea islands of Lakshadweep. India. Dengue Bull. 25, 88–91 (2001).
    Google Scholar 
    Sharma RS, Ali, MKS, Dhillon GPS. Epidemiological and entomological aspects of an outbreak of chikungunya in Lakshadweep islands, India, during 2007. Dengue Bull., 178–185 (2008).Subramaniam, H., Ramoo, H. & Sumanam, S. D. Filariasis survey in the Laccadive, minicoy and amindivi Islands. Madras state. Indian J. Malariol. 12, 115–127 (1958).CAS 
    PubMed 

    Google Scholar 
    Roy, R. G., Joy, C. T., Hussain, C. M. & Mohamed, I. K. Malaria in Lakshadweep Islands. Indian J. Med. Res. 67, 924–925 (1978).CAS 
    PubMed 

    Google Scholar 
    Ali, S. M. K. et al. Study on the ecoepidemiology of chikungunya in UT of Lakshadweep. J. Commun. Dis. 41(2), 81–92 (2009).
    Google Scholar 
    Samuel, P. P., Krishnamoorthi, R., Hamzakoya, K. K. & Aggarwal, C. S. Entomo-epidemiological investigations on chikungunya outbreak in the Lakshadweep Islands. Indian Ocean. Indian J. Med. Res. 129(4), 442–445 (2009).PubMed 

    Google Scholar 
    Jayalakshmi, K. & Mathiarasan, L. Prevalence of disease vectors in Lakshadweep Islands during post-monsoon season. J. Vector Borne Dis. 55, 189–196 (2018).
    Google Scholar 
    Su, C. L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Muslim, A. et al. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur. Peninsular Malaysia. Parasites Vectors 6, 219 (2013).PubMed 

    Google Scholar 
    Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lum, J. K., Kaneko, A., Taleo, G., Amos, M. & Reiff, D. M. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu. inferred malaria dispersal and implications for malaria control. Acta Trop. 103, 102–107 (2007).CAS 
    PubMed 

    Google Scholar 
    Marques, T. C. et al. Mosquito (Diptera: Culicidae) assemblages associated with Nidularium and Vriesea bromeliads in Serra do Mar, Atlantic Forest, Brazil. Parasites Vectors 5, 41 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Laporta, G. Z. & Sallum, M. A. M. Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecol. 14, 30 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. & Takken, W. Cannibalism and predation among larvae of the Anopheles gambiae complex. Med. Vet. Entomol. 17(1), 61–66 (2003).CAS 
    PubMed 

    Google Scholar 
    Chathuranga, W. G. D., Karunaratne, S. H. P. P., Priyanka, W. A. & De Silva, P. Predator–prey interactions and the cannibalism of larvae of Armigeres subalbatus (Diptera: Culicidae). J. Asia-Pac. Entomol. 23, 124–131 (2020).
    Google Scholar 
    Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56(2), 159–167 (1997).CAS 
    PubMed 

    Google Scholar 
    Lounibos, L. P., Bargielowski, I., Carrasquilla, M. C. & Nishimura, N. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida two decades after competitive displacements. J. Med. Entomol. 53, 1385–1390 (2016).PubMed 

    Google Scholar 
    Juliano, S. A. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu. Rev. Entomol. 54, 37–56 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bargielowski, I.E., Lounibos, L.P., Carrasquilla, M.C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl. Acad. Sci. 19:110(8):2888–92. (2013).Chadee, D. D. Dengue cases and Aedes aegypti indices in Trinidad. West Indies. Acta Trop. 112(2), 174–180 (2009).CAS 
    PubMed 

    Google Scholar 
    XX. https://www.census2011.co.in/census/state/lakshadweep.htmlChristophers, S. R. The fauna of British India, including Ceylon and Burma; Diptera: Family Culicidae; Tribe Anophelini Vol. 4 (Taylor & Francis, 1933).
    Google Scholar 
    Barraud, P.J. The fauna of British India, including Ceylon and Burma. Diptera V. Family Culicidae. Tribes Megarhinini and Culicini. London: Taylor and Francis p. 463. (1934).Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).CAS 
    PubMed 

    Google Scholar 
    Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. R Package Version 2(10), 2013 (2015).
    Google Scholar 
    R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).McFadden, D. Conditional logit analysis of qualitative choice behavior. Front. Econ. 1, 105–142 (1974).
    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 27, 325–349 (1957).
    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research 3rd edn. (Freeman, 1995).MATH 

    Google Scholar 
    Fortin, M. J. & Dale, M. R. T. Spatial analysis: a guide for ecologists 1–30 (Cambridge University Press, 2005).
    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. http://florianhartig.github.io/DHARMa/. (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    World Health Organization, Guidelines for dengue surveillance and mosquito control. Western Pacific Education in Action Series No.8 (WHO, Geneva, 1995) More

  • in

    A species diversity dataset of beetles by three passive acquisition methods in Tei Tong Tsai (Hong Kong)

    Study sitesThe sample site Tei Tong Tsai is located within the Island District (112°5’ E, 22°5’ N Hong Kong, China) and connected to Lantau Country Park. The rich woods in Tei Tong Tsai provide a suitable environment for insects to survive, with rich biodiversity. Weather records (Supplement 1) for May 2019 show that the highefst temperature was 27.2 °C, the lowest was 15.7 °C, the average was 21.7 °C; and the annual average rainfall was 297.8 mm. The suitable temperature and rainfall have created a suitable ecological environment and high biodiversity, establishing Tei Tong Tsai as a prime location for studying beetle diversity. In May 2019, a 13 sample sites were selected for beetle collection (Fig. 1). All latitude and longitude formats were converted to degrees, minutes, and seconds.Fig. 1Sampling points for the three passive acquisition methods used in the Tei Tong Tsai sampling site (indicated by red dots).Full size imageExperimental protocolIn this study, three passive collection methods were used for beetle collection. FIT is an efficient collecting method for insects with strong flying abilities and was first developed and used abroad14. MT and PT collect insects that are not strong flyers and live on the surface. A flight interception trap, a malaise trap, and 10 pitfall traps were set up to collect beetles in each sample site. Samples were selected to cover ecological environments at different longitudes, latitudes, altitudes, and distances from water sources. Reasonable sampling distances (depending on the terrain, with an interval between 100 and 200 m) were set up between sample sites to fully cover Tei Tong Tsai’s habitats. Due to the topography, the distance between the 10th and 11th sample points was about 350 m. The distance between two other close sample points were in the range of 100–200 m. All three traps were based on the original device to maximize the advantages and achieve better collection results.Collection devices. The flight interception trap (Fig. 2a) mainly comprises an interceptor screen (plastic net, PVC plastic glass, or plexiglas) and an insect specimen receiver (PVC), which is an efficient collection device for intercepting and collecting insects with strong flight ability. The detailed installation steps include the following: Firstly, punch two holes on the long side of the PVC screen with a hole puncher spaced about 30 cm apart; then, fix the screen to a bamboo pole with silk, install the specimen receiver, fix all three, bolt the rope, and fix it in the air with a thick rope (the sink is about 0.5–1 m from the ground). After installation, relevant drugs were placed inside the specimen receiver to poison the insects. The drugs used depend on the purpose of the study. For morphological studies, saline (5 mmol/L NaCl solution) or water with detergent is used. By contrast, DNA molecular studies use a mixture of 2% SDS (sodium dodecyl sulfate) and EDTA (ethylene diamine tetraacetic acid, 0.1 mol/L, PH = 8) or highly concentrated alcohol, which effectively controls the degradation of DNA. Currently, high-concentration alcohol, SDS and EDTA mixtures are commonly used. The device is widely applicable and can be installed in almost any habitat; however, it is best installed along the insects’ flight paths, including roads, rivers, or creeks between valleys. In this experiment, we improved this device by increasing the size of the water trough considering the actual situation of the sample site. Also, to properly conduct the molecular experiments, the reagents we used were a mixture of SDS and EDTA. Therefore, the improved device was more suitable for diverse habitats, and the insect species collected were abundant, reflecting good collection practices14.Fig. 2Three passive acquisition methods: (a) flight interception trap; (b) malaise trap; (c) pitfall trap.Full size imageMalaise traps (Fig. 2b) are large tent-like structures constructed from thin mesh. They are among the most commonly used static non-attractant insect traps and insect collection devices. Invented by Malaise (1937) and later improved upon by Townes and Sharkey, these traps are important tools for insect collection and monitoring worldwide15. The malaise trap used at the Tei Tong Tsai Country Park was the Townes type, which is generally set up in forest areas with rich habitats and relatively stable ground. The material is usually meshed mosquito netting fabricated into a tent-shaped insect interception field. The insects hit the net vertically, continue to fly upward, and are gradually led into the trap by the tilted top. The drug in the trap is usually anhydrous ethanol, which intercepts beetles with weak flying abilities16,17.The pitfall trap (Fig. 2c) is an effective method for capturing surface beetles; it is simple to use, easy to carry, and a common device for collection in the wild. The PT is created by digging a pit into the ground with the same depth as a wide-mouth plastic cup (20 cm high, 10 cm in diameter); The upper edge of the cup must be flushed with the soil surface, and a mixture of absolute ethanol is poured inside to collect flightless beetles14. About one-quarter of the way from the top, small holes are punched above the wide-mouth cup to prevent the loss of specimens from rainwater filling the cups. The 10 sets of traps in this experiment were not evenly distributed, but they were all in suitable habitats.Specimen samplingThe sampling site for this study was Tei Tong Tsai, and the sampling period was from 1st May to 28th May (2019). FIT, and PTs were collected once every two days. Due to the small number of beetles collected by MT, mt was collected only once. All beetles were picked out and arranged separately after collection, added to anhydrous ethanol, preserved, and labeled. The beetles collected by the three passive acquisition methods were picked according to morphological species.Specimen identificationThe taxonomic status for the family level of all samples was determined based on the relevant literature18,19,20,21. Relevant experts completed further identification (Supplement 2).All the specimens collected in this study are currently in the zoological museum of the Institute of Zoology, Chinese Academy of Sciences (Beijing, China).Specimen photographyBeetles were poured from the bottle and arranged separately according to the general species. Firstly, we used tweezers or a brush to place the beetles on unbreakable and unwrinkled paper (as far as possible with the backside upwards to keep them tight and neat, reducing the space left, and considering the label in the photograph). Simultaneously, we captured multiple photos according to the size and species of insect for the large specimens in the tube, adjusted the light near them to brighten the background, placed graph paper next to the beetles as a reference scale, then adjusted our Olympus camera settings to the appropriate photographing parameters. Finally, we inserted the photographed beetles and matching labels back into the tube and added anhydrous ethanol for preservation (Fig. 3). The labels were set in the photos as 2019 DTZ-FIT/MT/PTX-5XX-5XX (-N), in which 2019 represents the collection time, DTZ represents Tei Tong Tsai, FIT/MT/PT signifies the collection method, X represents the number of sampling points, 5XX-5XX represents sampling time, and N represents the photo number. If a sample site had many insects on the same date and required more than one photo, n was used to represent the number of photos. See the Supplement 3 for the complete document.Fig. 3Examples of beetles collected from three passive acquisition methods: overall photos of beetles collected by (a) FIT, (b) PT, and (c) MT. On the bottom right corner shows scale in each photo.Full size imageAfter the morphological data of the samples were collected, their Latin name and collection information were recorded in a table. Each passive acquisition method corresponded to a table, and each table was divided into 13 sheets according to 13 sampling points. The collection time was listed horizontally on each sheet, and the beetles’ species names were listed vertically (were named in the morphological species order as 1, 2, 3, …, N). The number of beetles was recorded in the corresponding position and the Supplement 4 file.Finally, data show the beetles’ biodiversity collected from each sampling site. Firstly, we summarized the data from each sampling point after completing the data statistics. Afterward, we counted the number of beetle individuals collected under the different passive acquisition methods at different points (Fig. 4). In Fig. 4, red, blue, and green represent the number of beetle individuals collected by MT, PT, and FIT, respectively. Fig. 4 shows that MT collected fewer beetles than FIT and PT. Secondly, the data of 13 sampling points in each collecting method were summarized to obtain the total number of families and species collected by each method (Fig. 5). A graph created in Excel 2016 displays the collection method as the horizontal coordinate and the number as the vertical coordinate. In the graph, red represents the number of families, and blue represents the number of species. Fig. 5 shows that FIT collected more beetle species and individuals than PT and MT, and MT collected the least. Thirdly, all data from the 13 sampling points and the three collection methods were summarized. The number of species collected in all families was counted. Families with more than ten species were selected (a total of 11 families) for data presentation (Fig. 6). Finally, a graphic was drawn in Excel 2016. Fig. 6 shows that the number of species in Staphylinidae, Curculionidae, and Chrysomelidae accounted for a large number, and the diversity was relatively high.Fig. 4Data table of numbers of individual beetles collected by different methods at 13 sampling points. The red, blue, and green columns represent the number of beetles collected by MT, PT, and FIT, respectively.Full size imageFig. 5The number of beetles collected by different passive acquisition methods. Horizontal coordinates represent collection methods. The red column and blue column represent the number of beetles collected on the family level and species level, respectively.Full size imageFig. 6Families with more than ten species (a total of 11 families) were selected for presentation. The sample sizes of each groups were also shown.Full size image More

  • in

    Ranking threats to biodiversity and why it doesn’t matter

    The difficulties inherent in ranking global threats are due to them being context-dependent, which result from conditions and the nature of the threats themselves differing among locations, habitats, and taxa (Fig. 1). Current high-risk hotspots from habitat loss and overexploitation are primarily located in the tropics, whereas Europe is documented as a threat hotspot for pollution6. On islands, biological invasions mainly threaten biodiversity in the Pacific and Atlantic Oceans, while islands in the Indian Ocean and near the coasts of Asia are mostly threatened by overexploitation and agriculture3. Climate change affects species more at higher latitudes and altitudes because species are constrained by the physical environment (geographic barriers and mountain tops) to follow their optimal isotherms.Fig. 1: Divergence of global threat rankings across different references and international agencies.IPBES, WWF, and IUCN established global rankings of the five threats responsible for the current biodiversity crisis (B: central, yellow panel). However, the relative importance of each threat depends on the taxon, system, species’ characteristics, time, and/or the metric considered, resulting in divergences. Global biodiversity threats are represented by colors and symbols, given in the top panel. This figure encapsulates results combined from different studies detailed in Supplementary Table 1 with their associated references.Full size imageThe relative importance of threats also depends on the taxon considered. At the global scale, vertebrates are primarily threatened by habitat loss, overexploitation, and then biological invasions. But even within the vertebrates rankings differ — birds and mammals are mainly affected by overexploitation, while amphibians have a higher probability of succumbing to habitat loss6. Because of species-specific traits and adaptations, some species are likely to respond differently to global threats even within a clade. Large-bodied vertebrates are more likely to be threatened by overexploitation, whereas small-bodied vertebrates are more prone to habitat loss or pollution (Fig. 1). Threat ranking also depends on the habitat under consideration. Marine mammals are more threatened by overexploitation and pollution than terrestrial mammals for which habitat loss is the primary threat (Fig. 1). On islands, habitat loss is secondary to the pressures of biological invasions in freshwater systems, but the former is more important for terrestrial vertebrates and plants3. Another source of uncertainty is that most studies examining threats are based on well-studied taxa such as terrestrial vertebrates, which only represent a small subset of the tree of life. For instance, only 0.2% of fungi, 1.7% of invertebrates, and 10% of described plants are assessed in the IUCN update of 20197, potentially underestimating the intensity of some threats and biasing conservation priorities for these groups. Similarly, there is a bias of research effort towards regions with high-income countries, while research from low or middle-income countries is generally underrepresented8. This may give the false impression of absence of threats in some regions of the world.Likewise, period-specific global threat ranks are subject to the vagaries of temporal dynamics (Fig. 1). However, distinguishing past, current, and future threats is essential for current or future conservation interventions. Historically, overexploitation caused most of the Pleistocene megafauna extinctions, likely exacerbated by climate change. As agricultural practices intensified, habitat loss played a major role in extinctions. As humans later colonized islands, biological invasions caused the extinction of hundreds of species worldwide3. In contrast, climate change is only predicted to become major in the near future9. In fact, the effects of recent threats might be masked by delayed species’ responses, especially in under-studied regions, resulting in a large extinction debt. For instance, the severity of biological invasions often causes native species to decline rapidly to local extinction, while other threats such as habitat loss might affect species more slowly. In both cases, the eventual extinctions are ultimately if similar magnitude. More