Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem
Dai, A. Drought under global warming: A review. Vo Lu Me 21, 2 (2011).
Google Scholar
Sirdaş, S. & Sen, Z. Spatio-temporal drought analysis in the Trakya region Turkey. Hydrol. Sci. J. 48, 809–820 (2003).Article
Google Scholar
Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).ADS
Article
Google Scholar
Zhang, L., Jiao, W., Zhang, H., Huang, C. & Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 190, 96–106 (2017).ADS
Article
Google Scholar
Humphries, P. & Baldwin, D. S. Drought and aquatic ecosystems: An introduction: Drought and aquatic ecosystems. Freshw. Biol. 48, 1141–1146 (2003).Article
Google Scholar
Lake, P. S. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshw. Biol. 48, 1161–1172 (2003).Article
Google Scholar
Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. & Luo, Z. Drought-induced tree mortality: Ecological consequences, causes, and modeling. Environ. Rev. 20, 109–121 (2012).Article
Google Scholar
Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article
Google Scholar
Trzcinski, M. K., Srivastava, D. S., Corbara, B. & De, O. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 14, 2 (2016).
Google Scholar
Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
Google Scholar
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS
Article
Google Scholar
Bartout, P. & Touchart, L. A New Approach to Inventorying Bodies of Water, from Local to Global Scale (Gesellschaft für Erdkunde zu, 2015).
Google Scholar
Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).Article
Google Scholar
Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39 (2017).Article
Google Scholar
Bonhomme, C. et al. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13392 (2020).Article
PubMed
Google Scholar
Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshw. Biol. 52, 357–369 (2007).CAS
Article
Google Scholar
Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw. Biol. 60, 1917–1929 (2015).Article
Google Scholar
Wang, Y., Yu, S. & Wang, J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol. Lett. 10, 401–410 (2007).PubMed
Article
Google Scholar
Pallarés, S., Velasco, J., Millán, A., Bilton, D. T. & Arribas, P. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4, e2382 (2016).PubMed
PubMed Central
Article
Google Scholar
Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).Article
Google Scholar
Atkinson, C. L., Julian, J. P. & Vaughn, C. C. Species and function lost: Role of drought in structuring stream communities. Biol. Conserv. 176, 30–38 (2014).Article
Google Scholar
Bogan, M. T., Boersma, K. S. & Lytle, D. A. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Biol. 60, 2547–2558 (2015).Article
Google Scholar
Srivastava, D. S. et al. Ecological response to altered rainfall differs across the Neotropics. Ecology 101, 15 (2020).Article
Google Scholar
Amundrud, S. L. & Srivastava, D. S. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 97, 1475–1483 (2016).PubMed
Article
Google Scholar
Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2014).ADS
Article
Google Scholar
Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).PubMed
Article
Google Scholar
Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems: Functional diversity in bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).Article
Google Scholar
Petermann, J. S. et al. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96, 428–439 (2015).PubMed
Article
Google Scholar
Romero, G. Q., Piccoli, G. C. O., de Omena, P. M. & Gonçalves-Souza, T. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97, 2705–2715 (2016).PubMed
Article
Google Scholar
Srivastava, D. S. & Bell, T. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol. Lett. 12, 1016–1028 (2009).PubMed
Article
Google Scholar
Carrias, J.-F. et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol. Ecol. 96, 45 (2020).Article
CAS
Google Scholar
Romero, G. Q. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat. Commun. 11, 3215 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hairston, N. G. & Hairston, N. G. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142, 379–411 (1993).Article
Google Scholar
Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article
Google Scholar
Dézerald, O. et al. Tank bromeliads sustain high secondary production in neotropical forests. Aquat. Sci. 80, 14 (2018).Article
Google Scholar
Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context: modules and beyond. In Metacommunities: Spatial Dynamics and Ecological Communities 68–83 (University of Chicago Press, 2005).
Google Scholar
Srivastava, D. S., Trzcinski, M. K., Richardson, B. A. & Gilbert, B. Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am. Nat. 172, 761–771 (2008).CAS
PubMed
Article
Google Scholar
Amundrud, S. L. et al. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189, 733–744 (2019).ADS
PubMed
Article
Google Scholar
Adler, P. B. & Drake, J. M. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172, E186–E195 (2008).Article
Google Scholar
Anisiu, M.-C. Lotka Volterra and their model. Didact. Math. 32, 9–17 (2014).
Google Scholar
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS
Article
Google Scholar
Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 38, 119–125 (2002).Article
Google Scholar
Parkyn, S. M. & Collier, K. J. Interaction of press and pulse disturbance on crayfish populations: Flood impacts in pasture and forest streams. Hydrobiologia 527, 113–124 (2004).Article
Google Scholar
Rowe, L. & Richardson, J. S. Community responses to experimental food depletion: Resource tracking by stream invertebrates. Oecologia 129, 473–480 (2001).ADS
PubMed
Article
Google Scholar
McPeek, M. A. The growth/predation risk trade-off: So what is the mechanism?. Am. Nat. 163, E88–E111 (2004).PubMed
Article
Google Scholar
Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 2 (2019).Article
Google Scholar
Powers, J. S. et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).CAS
Article
Google Scholar
Pires, A. P. F. et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99, 1203–1213 (2018).PubMed
Article
Google Scholar
Rodríguez Pérez, H. et al. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 187, 267–279 (2018).ADS
PubMed
Article
Google Scholar
Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change Biol. 15, 2958–2971 (2009).ADS
Article
Google Scholar
Marino, N. A. C. et al. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Glob. Change Biol. 23, 673–685 (2017).ADS
Article
Google Scholar
Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).PubMed
Article
Google Scholar
Céréghino, R. et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct. Ecol. 32, 2435–2447 (2018).Article
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar More