More stories

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More

  • in

    Exposure of domestic dogs and cats to ticks (Acari: Ixodida) and selected tick-borne diseases in urban and recreational areas in southern Poland

    Siński, E. & Welc-Falęciak, R. Risk of Infections Transmitted by Ticks in Forest Ecosystems of Poland. (Zarządzanie Ochroną Przyrody w Lasach 6, 2012).Kantar Public. Zwierzęta w polskich domach, 2017. http://www.tnsglobal.pl/archiwumraportow/files/2017/05/K.021_Zwierzeta_domowe_O04a-17.pdf.Maia, C. et al. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit. Vectors. 7, 115. https://doi.org/10.1186/1756-3305-7-115 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maia, C. et al. Bacterial and protozoal agents of canine vector-borne diseases in the blood of domestic and stray dogs from southern Portugal. Parasit. Vectors. 23(8), 138. https://doi.org/10.1186/s13071-015-0759-8 (2015).Article 

    Google Scholar 
    Baturo, I.M. Parki narodowe i krajobrazowe, rezerwaty przyrody. (Departament Turystyki, Sportu, Promocji Urzędu Marszłkowskiego Województwa Małopolskiego, 2010).Dulias, R. & Hibszer, A. Województwo śląskie—przyroda, gospodarka, dziedzictwo kulturowe (Wydawnictwo Kubajak, 2004).
    Google Scholar 
    Siuda, K. Kleszcze Polski Acari Ixodida). Część II. Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, 1993).
    Google Scholar 
    Nowak-Chmura, M. Fauna kleszczy (Ixodida) Europy Środkowej (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 2013).
    Google Scholar 
    Rijpkema, S., Golubić, D., Molkenboer, M., Verbeek-De Kruif, N. & Schellekens, J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp. Appl. Acarol. 20, 23–30 (1996).CAS 
    Article 

    Google Scholar 
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin makroregion. Ann. Agric. Environ. Med. 16(1), 151–158 (2009).PubMed 

    Google Scholar 
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36(4), 1090–1095 (1998).CAS 
    Article 

    Google Scholar 
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).CAS 
    Article 

    Google Scholar 
    Sroka, J., Szymańska, J. & Wójcik-Fatla, A. The occurence of Toxoplasma gondii and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from east Poland with the use of PCR. Ann. Agric. Environ. Med. 16(2), 313–319 (2009).PubMed 

    Google Scholar 
    Siuda, K., Nowak, M., Gierczak, M., Wierzbowska, I. & Faber, M. Kleszcze (Acari: Ixodida) pasożytujące na psach i kotach domowych w Polsce. Wiad. Parazytol. 53, 155 (2007).
    Google Scholar 
    Zajkowska, P. Ticks (Acari:Ixodida) attacking domestic dogs in the Malopolska voivodeship, Poland. In Arthropods: In the contemporary world (eds Buczek, A. & Błaszak, C. Z.) 87–99 (Koliber, 2015).Chapter 

    Google Scholar 
    Szymański, S. Przypadek masowego rozwoju kleszcza Rhipicephalus sanguineus (Latreile, 1806) w warszawskim mieszkaniu. Wiad. Parazytol. 25, 453–458 (1979).PubMed 

    Google Scholar 
    Król, N., Obiegala, A., Pfeffer, M., Lonc, E. & Kiewra, D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration South-West Poland. Parasit. Vectors. 9(1), 351. https://doi.org/10.1186/s13071-016-1632-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kocoń, A., Nowak-Chmura, M., Kłyś, M. & Siuda, K. Ticks (Acari: Ixodida) attacking domestic cats (Felis catus L.) in southern Poland. In Arthropods in Urban and Suburban Environments (eds Buczek, A. & Błaszak, C.) 51–61 (Koliber, 2017).
    Google Scholar 
    Roczeń-Karczmarz, M. et al. Comparison of the occurrence of tick-borne diseases in ticks collected from vegetation and animals in the same area. Med. Weter. 74(8), 484–488. https://doi.org/10.21521/mw.6107 (2018).Article 

    Google Scholar 
    Cuber, P., Asman, M., Solarz, K., Szilman, E. & Szilman, P. Pierwsze stwierdzenia obecności wybranych patogenów chorób transmisyjnych w kleszczach Ixodes ricinus (Acari: Ixididae) zebranych w okolicach zbiorników wodnych w Rogoźniku (województwo śląskie) in Stawonogi. Ekologiczne i patologiczne aspekty układu pasożyt – żywiciel (eds. Buczek, C. & Błaszak, Cz.). 155-164 (Akapit, Lublin, 2010).Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and co-infections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59(1), 13–19 (2013).PubMed 

    Google Scholar 
    Pawełczyk, O. et al. The PCR detection of Anaplasma phagocytophilum, Babesia microti and Borrelia burgdorferi sensu lato in ticks and fleas collected from pets in the Będzin district area (Upper Silesia, Poland) – the preliminary studies in Stawonogi: zagrożenie zdrowia człowieka i zwierząt (eds. Buczek, C. & Błaszak, Cz.). 111–119 (Koliber, Lublin, 2014).Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60(4), 666–674. https://doi.org/10.1515/ap-2015-0095 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zygner, W. & Wędrychowicz, H. Occurrence of hard ticks in dogs from Warsaw area. Ann. Agric. Environ. Med. 13(2), 355–359 (2006).PubMed 

    Google Scholar 
    Kilar, P. Ticks attacking domestic dogs in the area of the Rymanów district, Subcarpathian province Poland. Wiad. Parazytol. 57(3), 189–1991 (2011).PubMed 

    Google Scholar 
    Claerebout, E. et al. Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit. Vectors. 6, 183. https://doi.org/10.1186/1756-3305-6-183 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schreiber, C. et al. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit. Vectors. 7, 535. https://doi.org/10.1186/s13071-014-0535-1 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eichenberger, R. M., Deplazes, P. & Mathis, A. Ticks on dogs and cats: A pet owner-based survey in a rural town in northeastern Switzerland. Ticks Tick-borne Dis. 6, 267–271. https://doi.org/10.1016/j.ttbdis.2015.01.007 (2015).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M. Skład gatunkowy kleszczy psów (Acari: Ixodida) z terenu aglomeracji miejskiej w cyklu wieloletnim. Med. Weter. 73(11), 698–701 (2017).
    Google Scholar 
    Geurden, T. et al. Detection of tick-borne pathogens in ticks from dogs and cats in different European countries. Ticks. Tick. Borne. Dis. 9(6), 1431–1436. https://doi.org/10.1016/j.ttbdis.2018.06.013 (2018).Article 
    PubMed 

    Google Scholar 
    Namina, A. et al. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011–2016. BMC Vet. Res. 15, 398. https://doi.org/10.1186/s12917-019-2149-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhide, M., Travnicek, M., Curlik, J. & Stefancikova, A. The importance of dogs in eco-epidemiology of Lyme borreliosis: a review. Vet. Med. Czech 49(4), 135–142 (2004).Article 

    Google Scholar 
    Burgess, E. C. Experimentally induced infection of cats with Borrelia burgdorferi. Am. J. Vet. Res. 53, 1507–1511 (1992).CAS 
    PubMed 

    Google Scholar 
    Skotarczak, B. & Wodecka, B. Identification of Borrelia burgdorferi genospecies inducing Lyme disease in dogs from western Poland. Acta Vet. Hung. 53(1), 13–21 (2005).Article 

    Google Scholar 
    Skotarczak, B. et al. Prevalence of DNA and antibodies to Borrelia burgdorferi sensu lato in dogs suspected of borreliosis. Ann. Agric. Environm. Med. 12(2), 199–205 (2005).CAS 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S., Kutrzeba, J., Puchalski, A. & Dębiak, P. Przypadki boreliozy u psow na Lubelszczyźnie. Życie Wet. 83, 311–313 (2008).
    Google Scholar 
    Hovius, K. E. Borreliosis. In Arthropod-borne Infectious Diseases of the Dog and Cat (eds Shaw, S. E. & Day, M. J.) 100–109 (Manson Publishing, 2005).Chapter 

    Google Scholar 
    Zygner, W., Jaros, S. & Wędrychowicz, H. Prevalence of Babesia canis, Borrelia afzelii, and Anaplasma phagocytophilum infection in hard ticks removed from dogs in Warsaw (central Poland). Vet. Parasitol. 153, 139–142. https://doi.org/10.1016/j.vetpar.2008.01.036 (2008).Article 
    PubMed 

    Google Scholar 
    Welc-Falęciak, R., Rodo, A., Siński, E. & Bajer, A. Babesia canis and other tick-borne infections in dogs in Central Poland. Vet. Parasitol. 166(3–4), 191–198. https://doi.org/10.1016/j.vetpar.2009.09.038 (2009).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M., Kubiak, K., Szczotko, M., Chajęcka, M. & Dmitryjuk, M. Molecular Detection of Borrelia burgdorferi Sensu Lato and Anaplasma phagocytophilum in Ticks Collected from Dogs in Urban Areas of North-Eastern Poland. Pathogens. 9(6), 455. https://doi.org/10.3390/pathogens9060455 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Nijhof, A. M. et al. Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector. Borne. Zoonot. Dis. 7, 585–595. https://doi.org/10.1089/vbz.2007.0130 (2007).Article 

    Google Scholar 
    Adaszek, Ł, Martinez, A. C. & Winiarczyk, S. The factors affecting the distribution of babesiosis in dogs in Poland. Vet. Parasitol. 181, 160–165. https://doi.org/10.1016/j.vetpar.2011.03.059 (2011).Article 
    PubMed 

    Google Scholar 
    Adaszek, Ł, Łukaszewska, J., Winiarczyk, S. & Kunkel, M. Pierwszy przypadek babeszjozy u kota w Polsce. Życie Wet. 83(8), 668–670 (2008).
    Google Scholar 
    Kocoń, A. et al. Molecular detection of tick-borne pathogens in ticks collected from pets in selected mountainous areas of Tatra County (Tatra Mountains, Poland). Sci. Rep. 10, 15865. https://doi.org/10.1038/s41598-020-72981-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22(1), 80–83. https://doi.org/10.5604/12321966.1141373 (2015).Article 
    PubMed 

    Google Scholar 
    Stensvold, C. R. et al. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasit. Vectors. 8(8), 262. https://doi.org/10.1186/s13071-015-0843-0 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, S., Helps, C., Tasker, S., Newbury, H. & Wall, R. Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the UK. Med. Vet. Entomol. 32(1), 14–22. https://doi.org/10.1111/mve.12257 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjoersdorff, A., Svendenius, L., Owens, J. H. & Massung, R. F. Feline granulocytic ehrlichiosis– a report of a new clinical entity and characterisation of the infectious agent. J. Small. Anim. Pract. 40(1), 20–24. https://doi.org/10.1111/j.1748-5827.1999.tb03249 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lappin, M. R. et al. Molecular and serologic evidence of Anaplasma phagocytophilum infection in cats in North America. J. Am. Vet. Med. Assoc. 225(6), 893–896. https://doi.org/10.2460/javma.2004.225.893 (2004).Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Molecular evidence of tick-transmitted infections in dogs and cats in the United Kingdom. Vet. Rec. 157(21), 645–648. https://doi.org/10.1136/vr.157.21.645 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tarello, W. Microscopic and clinical evidence for Anaplasma (Ehrlichia) phagocytophilum infection in Italian cats. Vet. Rec. 156(24), 772–774. https://doi.org/10.1136/vr.156.24.772 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schaarschmidt-Kiener, D., Graf, F., von Loewenich, F. D. & Muller, W. Anaplasma phagocytophilum infection in a cat in Switzerland. Schweiz. Arch. Tierheilkd. 151(7), 336–341. https://doi.org/10.1024/0036-7281.151.7.336 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Heikkila, H. M., Bondarenko, A., Mihalkov, A., Pfister, K. & Spillmann, T. Anaplasma phagocytophilum infection in a domestic cat in Finland. Acta. Vet. Scand. 52(1), 62. https://doi.org/10.1186/1751-0147-52-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, D., Bondarenko, A., Silaghi, C., Nolte, I. & Pfister, K. Seroprevalence and bacteremia of Anaplasma phagocytophilum in cats from Bavaria and Lower Saxony (Germany). Berl. Munch. Tierarztl. Wochenschr. 125(3–4), 163–167 (2012).PubMed 

    Google Scholar 
    Morgenthal, D. et al. Prevalence of haemotropic Mycoplasma spp., Bartonella spp. and Anaplasma phagocytophilum in cats in Berlin/Brandenburg (Northeast Germany). Berl. Munch Tierarztl. Wochenschr. 125(9–10), 418–427 (2012).PubMed 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S. & Łukaszewska, J. A first case of ehrlichiosis in a horse in Poland. Dtsch. Tierarztl. Wchschr. 116(9), 330–334 (2009).
    Google Scholar 
    Adaszek, Ł, Policht, K., Gorna, M., Kutrzuba, J. & Winiarczyk, S. Pierwszy w Polsce przypadek anaplazmozy (erlichiozy) granulocytarnej u kota. Życie Wet. 86, 132–135 (2011).
    Google Scholar 
    Adaszek, Ł, Kotowicz, W., Klimiuk, P., Gorna, M. & Winiarczyk, S. Ostry przebieg anaplazmozy granulocytarnej u psa—przypadek własny. Wet. w Praktyce 9, 59–62 (2011).
    Google Scholar 
    Adaszek, Ł et al. Three clinical cases of Anaplasma phagocytophilum infection in cats in Poland. J. Feline Med. Surg. 15, 333–337. https://doi.org/10.1177/1098612X12466552 (2013).Article 
    PubMed 

    Google Scholar 
    Pusterla, N. et al. Seroprevalence of Ehrlichia canis and of canine granulocytic ehrlichia infection in dogs in Switzerland. J. Clin. Microbiol. 36, 3460–3462. https://doi.org/10.1128/JCM.36.12.3460-3462.1998 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egenvall, A. et al. Detection of granulocytic Ehrlichia species DNA by PCR in persistently infected dogs. Vet. Rec. 146(7), 186–190. https://doi.org/10.1136/vr.146.7.186 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Review of exotic infectious dise-ases in small animals entering the United Kingdom from abroad diagnosed by PCR. Vet. Rec. 152(6), 176–177. https://doi.org/10.1136/vr.152.6.176 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Skotarczak, B., Adamska, M. & Supron, M. Blood DNA analysis for Ehrlichia (Anaplasma) phagocytophila and Babesia spp in dogs from Northern Poland. Acta Vet. Brno. 73, 347–351. https://doi.org/10.1136/vr.152.6.176 (2004).Article 

    Google Scholar 
    Adaszek, Ł. Wybrane Aspekty Epidemiologii Babeszjozy, Boreliozy i Erlichiozy Psów (Praca doktorska, 2007).
    Google Scholar 
    Kybicová, K. et al. Detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs in the Czech Republic. Vec. Born Zoon Dis. 9(6), 655–661. https://doi.org/10.1089/vbz.2008.0127 (2009).Article 

    Google Scholar  More

  • in

    Understanding the diversity and biogeography of Colombian edible plants

    Carvalho, A. M. & Barata, A. M. The consumption of wild edible plants. In Wild plants, mushrooms and nuts: functional food properties and applications (eds Isabel, C. F. R. et al.) (John Wiley & Sons, New York City, 2017).
    Google Scholar 
    Diazgranados, M. et al. World checklist of useful plant species. Royal Botanic Gardens, Kew. (Richmond, UK, 2020).
    Google Scholar 
    Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 12(5), 421–445 (2020).Article 

    Google Scholar 
    Shaheen, S., Ahmad, M., Haroon, N. Edible wild plants: a solution to overcome food insecurity. In: Edible Wild Plants: An alternative approach to food security (eds Shaheen, S., et al.) 41–57. Springer, Cham. https://doi.org/10.1007/978-3-319-63037-3_2 (2017).Chapter 

    Google Scholar 
    Food and Agriculture Organization. World programme for the census of agriculture 2020, Vol. 1. FAO, (Rome, Italy, 2015).
    Google Scholar 
    Wolff, F. Legal factors driving agrobiodiversity loss. Environ. Law Netw. Int. 1, 1–11 (2004).
    Google Scholar 
    Padulosi, S., Heywood, V., Hunter, D. & Jarvis, A. Underutilized species and climate change: current status and outlook. In Crop Adaptation to Climate Change (eds Shyam, S. Y. et al.) 507–517 (Blackwell Publishers, 2011).Chapter 

    Google Scholar 
    Kalamandeen, M., Gloor, E. & Mitchard, E. Pervasive raise of small-scale deforestation in Amazonia. Sci. Rep. 8(1600), 1–10 (2018).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean community of South America. Ambio 50, 1681–1697 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogueira, S. & Nogueira-Filho, S. Wildlife farming: an alternative to unsustainable hunting and deforestation in neotropical forests?. Biodivers. Consrv. 20, 1385–1397 (2011).Article 

    Google Scholar 
    Pilgrim, S. E., Cullen, L. C., Smith, D. J. & Pretty, J. Ecological knowledge is lost in wealthier communities and countries. Environ. Sci. Technol. 42(4), 1004–1009 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Cuervo, A. M. & Mitchell-Aide, T. Consequences of the armed conflict forced human displacement, and land abandonment on forest cover change in Colombia: a multi-scaled analysis. Ecosystems 16, 1052–1070 (2013).Article 

    Google Scholar 
    Rodriguez-Eraso, N., Armenteras-Pascual, D. & Retana-Alumbreros, J. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J. Land Use Sci. 8(2), 154–174 (2013).Article 

    Google Scholar 
    Food and Agriculture Organization. in The State of the World’s biodiversity for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments (eds Bélanger, J., Pilling, D.). (FAO, Rome, Italy, 2019).Borelli, T. et al. Local solutions for sustainable food systems: the contribution of orphan crops and wild edible species. Agronomy 10(2), 231–256 (2020).CAS 
    Article 

    Google Scholar 
    Padulosi, S., Thompson, J. & Rudebjer, P. Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward (Bioversity International, 2013).
    Google Scholar 
    Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brehmy, J. M., Maxted, N., Martin-Louçao, M. A. & Frod-Lloyd, B. V. New approaches for establishing conservation priorities for socio-economically important plant species. Biodivers. Conserv. 19(9), 2715–2740 (2010).Article 

    Google Scholar 
    N’Danikou, S., Achigan-Dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in Southern Benin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).Article 

    Google Scholar 
    Dulloo, M. E. et al. Conserving agricultural biodiversity for use in sustainable food systems. (2017).de Oliveira Beltrame, D. M. et al. Brazilian underutilised species to promote dietary diversity, local food procurement, and biodiversity conservation: a food composition gap analysis. Lancet Planet. Health. 2, S22. (2018).Article 

    Google Scholar 
    Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6(37), 1–5 (2020).Article 

    Google Scholar 
    Renjifo, L. M., Amaya-Villareal, A. M. & Butchart, S. H. M. Tracking extinction risk trends and patterns in a mega-diverse country: a red list index for birds in Colombia. PLoSONE 15(1), 1–19 (2020).Article 

    Google Scholar 
    Clerici, N., Salazar, C., Pardo-Díaz, C., Jiggins, C. D. & Linares, M. Peace in Colombia is a critical moment for neotropical connectivity and conservation: save the northern Andes-Amazon biodiversity bridge. Conserv. Lett. 12, 1–7 (2019).Article 

    Google Scholar 
    Hurtado-Bermudez, L. J., Vélez-Torres, I. & Méndez, F. No land for food: prevalence of food insecurity in ethnic communities enclosed by sugarcane monocrop in Colombia. Int. J. Public Health 65, 1087–1096 (2020).PubMed 
    Article 

    Google Scholar 
    Boron, V., Payan, E., McMillan, D. & Tzanopulos, J. Achieving sustainable development in rural areas in Colombia: future scenarios for biodiversity conservation under land use change. Land Use Policy 59, 27–37 (2016).Article 

    Google Scholar 
    Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13(2), 1–16 (2008).Article 

    Google Scholar 
    Rivas Abadía, X., Pazos, S. C., Castillo, S. K. & Pachón, H. Indigenous foods of the indigenous and Afro-descendant communities of Colombia (International Center for Tropical Agriculture (CIAT), Cali, 2010) ((In Spanish, English summary)).
    Google Scholar 
    López Diago, D. & García, N. Wild edible fruits of Colombia: diversity and use prospects. Biota Colomb. 22(2), 16–55 (2021).Article 

    Google Scholar 
    Pieroni, A., Pawera, L. & Shah, G. M. Gastronomic ethnobiology. In Introduction to Ethnobiology (eds Albuquerque, U. P. & Alves, R. N.) 53–62 (Springer, 2016).Chapter 

    Google Scholar 
    Castañeda, R. R. Frutas silvestres de Colombia. Instituto Colombiano de Cultura Hispánica. (1991).Medina, C. I., Martínez, E. & López, C. A. Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Revista Facultad Nacional de Agronomía Medellín 72(3), 8897–8908 (2019).Article 

    Google Scholar 
    Asprilla-Perea, J. & Díaz-Puente, J. M. Traditional use of wild edible food in rural territories within tropical forest zones: a case study from the northwestern Colombia. New Trends Issues Proc. Humanit. Soc. Sci. 5(1), 162–181 (2018).
    Google Scholar 
    López Estupiñán, L. Potatoes and land in Boyacá: ethnobotanical and ethnohistorical research of one of the main products of Colombian food. Boletín de Antropología Universidad de Antioquia 30(50), 170–190 (2015) ((In Spanish)).
    Google Scholar 
    Marín Santamaría, C.M. Potential for food use for human consumption of wild fruits in Encenillo Biological Reserve, Guasca, Cundinamarca. Thesis in Biological Sciences. Pontificia Universidad Javeriana. Bogotá, Colombia. (2010) (In Spanish).Molina Samacá, J. R. Ancestral Food Plant Heritage: Construction of the Baseline in the Province of Sumapaz. Master thesis in Agricultural Sciences. University of Cundinamarca, Colombia (2019) (In Spanish).Pasquini, M. W., Sánchez-Ospina, C. & Mendoza, J. S. Traditional food plant knowledge and use in three afro-descendant communities in the Colombian Caribbean Coast: Part II drivers of change. Econ. Bot. 72(3), 295–310 (2018).Article 

    Google Scholar 
    Villa Villegas, M. Análisis del conocimiento asociado al uso de la flora alimenticia y medicinal en la comunidad de San Francisco, Acandí (Chocó. Pontificia Universidad Javeriana, 2020).
    Google Scholar 
    Cook, E. M. F. Economic botany data collection standard (Royal Botanic Gardens, Kew, Richmond, 1995).
    Google Scholar 
    Diazgranados, M. & Kor, L. Notes on the biogeographic distribution of the useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 147–161. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).Diazgranados, M. et al. Annotated checklist of useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 165–473. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org/. (2021)POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved on 14 April, 2021, from: http://www.plantsoftheworldonline.org/ (2021).Missouri Botanical Gardens. Tropicos.org. Retrieved on 10 April 2021, https://tropicos.org (2021)Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40(1), 1–29 (2011).Article 

    Google Scholar 
    Wickham, H., Francois, R. Dplyr: A Grammar of Data Manipulation. R Package Version 0.4.3 (2021).GBIF Sectretaria. GBIF backbone taxonomy. Retrieved on 22 April 2021, from: https://www.gbif.org/ (2021)Food and Agriculture Organization. The second report on the State of The World’s plant genetic resources for food and agriculture. (FAO, Rome, Italy, 2015).Bystriakova, N. et al. Colombia’s bioregions as a source of useful plants. PLoS One 16(8), 1–19 (2021).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11), 933–938 (2001).Article 

    Google Scholar 
    Chamberlain, S., Oldoni, D., Barve, V., Desmet, P., Geffert, L., Mcglinn, D., Ram, K. Rgbif: interface to the global “Biodiversity” information facility API. R Package Version 3.6.0. (2021)Ondo, I. et al. ShinyCCleaner: an interactive app for cleaning species occurrence records. Unpublished (2021).Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Summer, M., Hijmans, R., Baston, D., Rouault, E., et al. Rgdal: bindings for the “Geospatial” data abstraction library. R Package Version 1.5-23. Retrieved from: https://cran.r-project.org/web/packages/rgdal/index.html (2021)Hijmans, R. J., van Etten, J. Raster: geographic analysis and modeling with raster data. R package version 2.0-12. Available at: http://CRAN.R-project.org/package=raster (2012)Bivand, R.S., Pebesma, E., Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. Springer, NY. Available at: https://asdar-book.org/ (2013)Brown, J. L., Bennett, J. & French, C. M. SDMtoolbox: the next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DANE. Indigenous population of Colombia. In: Results of the national population and housing census 2018 (eds DANE). (Bogotá, Colombia, 2019) (In Spanish).Minority Rights Home Minorities and indigenous peoples in Colombia. Retrieved on 20 October, 2021, from: Colombia – World Directory of Minorities & Indigenous Peoples (minorityrights.org) (2021).Maffi, L. & Woodley, E. Biocultural diversity conservation: a global sourcebook 304 (Routledge, 2012).Book 

    Google Scholar 
    van Zonnevelda, M. et al. Human diets drive range expansion of megafauna-dispersed fruit species. PNAS 115(13), 3326–3331 (2018).Article 

    Google Scholar 
    Diazgranados, M., Mendoza, J. E., Peñuela, M., Ramírez, W. Comida, identidad, paisaje… ¿articulación o antagonismo? Universitas Humanistica pp. 119–127. ISSN-0120-4807 (1997).Rojas, T.M., Cortés, C., Pizano, M.N., Ulian, T., Diazgranados, M. Evaluación del estado de los desarrollos bioeconómicos colombianos en plantas y hongos. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt (2020).Departamento Administrativo de la Función Pública. Decree 690 of 2021, Article 10. Bogotá, Colombia (2021).Ahoyo, C. C. et al. A quantitative ethnobotanical approach toward biodiversity conservation of useful woody species in Wari-Maro forest reserve (Benin, West Africa). Environ. Dev. Sustain. https://doi.org/10.1007/s10668-017-9990-0 (2017).Article 

    Google Scholar 
    Suwardi, A. B., Navia, Z. I., Harmawan, T. & Syamsuardi, E. Ethnobotany and conservation of indigenous edible fruit plants in South Aceh, Indonesia. Biodiversitas 12(5), 1850–1860 (2020).
    Google Scholar 
    Pei, S., Alan, H. & Wang, Y. Vital roles for ethnobotany in conservation and sustainable development. Plant Divers. 42(6), 399 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bernal, M. H. Y. & Correa, Q. J. E. Erythrina edulis. In Promising plant species from countries of the Convenio Andrés Bello Vol. 8 (eds Bernal, M. H. Y. & Correa, Q. J. E.) 231–278 (Editora Guadalupe Ltda, Bogotá, 1992) ((In Spanish)).
    Google Scholar 
    Bernal, M.H.Y., Correa, Q.J.E. Food plants of Colombia. in Promising plant species from the Andrés Bello Convention countries (andean countries). First edition. (eds Bernal M.H.Y., Correa, Q.J.E.) Editora Guadalupe Ltda. Bogotá, D.C., Colombia. Volume I, p. 547; Volume II, 462; Volume III, 485; Volume IV, 489; Volume V, 569; Volume VI, 507; Volume VII, p. 684; Volume VIII, p. 547; Volume IX, p. 482; Volume X, 549; Volume XI, p. 516 and Volume XII, p. 621 (1989–1998) (In Spanish).Bernal, M.H.Y., Farfán, M.M. Guide for the cultivation and use of the “chachafruto” or “balú” (Erythrina edulis Triana ex Micheli). Bogotá: Editoria Guadalupe Ltda. 50 p. (1996) (In Spanish).Bernal, M.H.Y., Jiménez, L.C. The “Creole bean” Canavalia ensiformis (Linnaeus) De Candolle (Fabaceae-Faboideae). Bogotá: Editoria Guadalupe Ltda. 533 p. (1990) (In Spanish).Jiménez, B.L.C., Bernal, M.H.Y. The “inchi” Caryodendron orinocense Karsten (Euphorbiaceae). Bogotá: Editora Guadalupe Ltda. p. 429 (1992) (In Spanish).Melgarejo, L.M., Hernández, M.S., Barrera, J.A., Carrillo, M. Offers and potential of a germplasm bank of the genus Theobroma for the enrichment of Amazonian systems. Instituto de Investigaciones Científicas Sinchi. Universidad Nacional de Colombia. Bogotá, Colombia. p. 225 (2006) (In Spanish).Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., Gutiérrez, M. Nombres Comunes de las Plantas de Colombia. Retrieved 15 June, 2021, from: http://www.biovirtual.unal.edu.co/nombrescomunes/ (2017)Food Plants International. Retrieved on 14 March 2021 at Articles & Books – Food Plants International (2021).Lorenzi, H., Bacher, L., Lacerda, M. & Sartori, S. Brazilian fruits and cultivated exotics (Instituto Plantarum De Estudos Da Flora LTDA, Nova Odessa, 2000).
    Google Scholar 
    Martín, F.W., Campbell, C.W., Ruberté, R.M. Perennial Edible Fruits of the Tropics: An Inventory. U.S. Department of Agriculture, Agricultural Research Service. (1987)Marrugo, S. L. Como Pepa’e Guama: Lo que no sabías acerca de la vida de los guamos (Royal Botanic Gardens Kew, Richmond, 2019).
    Google Scholar 
    Leon, J. Central American and West Indian Species of Inga (Leguminosae). Ann. Mo. Bot. Gard. 53(3), 265–359 (1966).Article 

    Google Scholar 
    Blombery, A. & Rodd, T. Palms of the world (Angus and Robertson, 1992).
    Google Scholar 
    Wickens, G. E. Edible nuts: non-wood forest products, handbook 5 (FAO, 1995).
    Google Scholar 
    Chízmar, C. Plantas comestibles de Centroamérica. Santo Domingo de Heredia, Costa Rica: Editorial INBio. p. 358 (2009)Rodríguez, L. M. G. Growth and fruit production study of Bactris guineesis (güiscoyol) in Agroforestry Systems as development potential in the Chorotega Region (Universidad Técnica Nacional Investigación y transferencia, 2019).
    Google Scholar 
    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).PubMed 
    Article 

    Google Scholar 
    Noh, J. K. et al. Warning about conservation status of forest ecosystems in tropical Andes: National assessment based on IUCN criteria. PLoS One 15(8), e0237877 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, M. T. et al. Habitat loss and extinction in the hotspots of biodiversity. Biodivers. Conserv. 16(4), 909–923 (2002).
    Google Scholar 
    Ocampo, J. Diversidad y distribución de las Passifloraceae en el departamento del Huila en Colombia. Acta biologica Colombiana 18(3), 511–516 (2013).
    Google Scholar 
    Durán-Izquierdo, M. & Olivero-Verbel, J. Vulnerability assessment of Sierra Nevada de Santa Marta Colombia World’s most irreplaceable nature reserve. Glob. Ecol. Conserv. 28, e01592 (2021).Article 

    Google Scholar 
    Cabrera Gaviria, L.D., Gil Pereira, L.F. Comparative analysis of the loss of natural coverage in the protected areas Nukak and Puinawai and their effects on the ecosystems present in the period between the years 2000–2020. Thesis in Environmental and Sanitary Engineering. Universidad de La Salle, Bogotá. Available at: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1943 (2021) (In Spanish).Castillo, H. M. N. A story of the indigenous struggle against mining: the creation of the Yaigojé-Apaporis National Natural Park in the Colombian Amazon (Universidade Federal De Minas Gerais, 2018) ((In Portuguese)).
    Google Scholar 
    Walsh, J. & Sanchez, G. The spreading of illicit crops in Colombia (Instituto de Estudios para el Desarrollo y la Paz, Bogotá, 2008).
    Google Scholar 
    MAPS, OPS, ICBF. Encuesta Nacional de la Situacion Nutricional-ENSIN. Retrieved on 12 October, 2-21, from: http://www.ensin.gov.co/Documents/Documento-metodologico-ENSIN-2015.pdf (2015)Correa-García, E., Vélez-Correa, J., Zapata-Caldas, E., Vélez-Torres, I. & Figueroa-Casas, A. Territorial transformations produced by the sugarcane agroindustry in the ethnic communities of López Adentro and El Tiple, Colombia. Land Use Policy 76, 847–860 (2018).Article 

    Google Scholar 
    Hurtado, D. & Vélez-Torres, I. Toxic dispossession: on the social impacts of the aerial use of glyphosate by the sugarcane agroindustry in Colombia. Crit. Criminol. 28, 557–576 (2020).Article 

    Google Scholar 
    Vélez-Torres, I., Varela-Corredor, D., Rátiva-Gaona, S., Salcedo-Fidalgo, A. Agroindustry and extractivism in the Alto Cauca: impact on the livelihood systems of Afro-descendent Farmers and Resistance (1950–2011). CS, 12: 157–188. (2013) (In Spanish, English summary).Fernández Lucero, M. Protocol for the use of Guáimaro (Brosimum alicastrum Sw.) seeds in Montes de María and Serranía del Perijá, Colombian Caribbean. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (2021) (In Spanish).Santillán-Fernández, A. et al. Brosimum alicastrum Swartz as an alternative for the productive reconversion of agrosilvopastoral areas in Campeche. Revista Mexicana de Ciencias Forestales 11(61), 51–69 (2020).Article 

    Google Scholar 
    Subiria-Cueto, R. et al. Brosimum alicastrum Sw. (Ramón): an alternative to improve the nutritional properties and functional potential of the wheat flour tortilla. Foods 8(12), 613 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Quiñones-Hoyos, C., Rengifo-Fernández, A., Bernal-Galeano, S., Peña, R., Fernández, M., Tatiana Rojas, M., Diazgranados, M. A look at useful plants and fungi in three biodiverse areas of Colombia. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia (2021) (In Spanish)Royal Botanic Gardens, Kew. Discovering the Guáimaro trails: promote a market for native species. Retrieved on 18 February 2022 from https://storymaps.arcgis.com/stories/f540b764fc6c47db886b38515560852f (2022)Gottesch, B. et al. Extinction risk of Mesoamerican crop wild relatives. Plants People Planet 3, 775–795 (2021).Article 

    Google Scholar 
    French, B. Food plants international database of edible plants of the world, a free resource for all. Acta Hort. 1241, 1–6 (2019).
    Google Scholar 
    Meyers, N., Mittermeier, R., Mittermeier, C. G. & Kent, J. Biodiversity hotspot for conservation priority. Nature 403(6772), 853–858 (2000).Article 

    Google Scholar  More

  • in

    Age-based spatial distribution of workers is resilient to worker loss in a subterranean termite

    Gordon, D. M. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 70, 1101–1108 (2016).PubMed 
    Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).CAS 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 1565–1569 (1996).Article 

    Google Scholar 
    Pankiw, T. & Page, R. E. Jr. The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 185, 207–213 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Sobkowski, A., Theraulaz, G. & Deneubourg, J.-L. Adaptive task allocation inspired by a model of division of labor in social insects. In BCEC 36–45 (1997).Robinson, G. E. & Page, R. E. J. Genetic basis for division of labor in an insect society. In The Genetics of Social Evolution (ed. Breed, R. P.) 61–80 (Westview Press, 1989).
    Google Scholar 
    Hogeweg, P. & Hesper, B. The ontogeny of the interaction structure in bumble bee colonies: A MIRROR model. Behav. Ecol. Sociobiol. 12, 271–283 (1983).Article 

    Google Scholar 
    Theraulaz, G., Bonabeau, E. & Denuebourg, J. N. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    Robinson, G. E. Labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (WW Norton & Company, 2009).
    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Complexity 8, 43–46 (2002).Article 

    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Robinson, E. J. H., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B Biol. Sci. 276, 4373–4380 (2009).Article 

    Google Scholar 
    Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants?. Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    Ishii, Y. & Hasgeawa, E. The mechanism underlying the regulation of work-related behaviors in the monomorphic ant, Myrmica kotokui. J. Ethol. 31, 61–69 (2013).Article 

    Google Scholar 
    Baudier, K. M. et al. Changing of the guard: Mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav. Ecol. 30, 1041–1049 (2019).Article 

    Google Scholar 
    Schmid-Hempel, P. & Schmid-Hempel, R. Life duration and turnover of foragers in the antcataglyphis bicolor (hymenoptera, formicidae). Insectes Soc. 31, 345–360 (1984).Article 

    Google Scholar 
    O’Donnell, S. & Jeanne, R. L. Lifelong patterns of forager behaviour in a tropical swarm-founding wasp: Effects of specialization and activity level on longevity. Anim. Behav. 44, 1021–1027 (1992).Article 

    Google Scholar 
    Calabi, P. Behavioral flexibility in Hymenoptera: a re-examination of the concept of caste. In Advances in Myrmecology (ed. J. C. Trager) 237–258 (Leiden,1988).Gordon, D. M. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).Article 

    Google Scholar 
    Giray, T. & Robinson, G. E. Effects of intracolony variability in behavioral development on plasticity of division of labor in honey bee colonies. Behav. Ecol. Sociobiol. 35, 13–20 (1994).Article 

    Google Scholar 
    Cartar, R. V. Adjustment of foraging effort and task switching in energy-manipulated wild bumblebee colonies. Anim. Behav. 44, 75–87 (1992).Article 

    Google Scholar 
    Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article 

    Google Scholar 
    Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article 

    Google Scholar 
    Wilson, E. O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 47–54 (1983).Article 

    Google Scholar 
    Middleton, E. J. T. & Latty, T. Resilience in social insect infrastructure systems. J. R. Soc. Interface 13, 20151022 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    McMahan, E. A. Mound repair and foraging polyethism in workers of Nasutitermes exitiosus (Hill):(Isoptera: Termitidae). Insectes Soc. 24, 225–232 (1977).Article 

    Google Scholar 
    Watson, J. A. L. & McMahan, E. A. Polyethism in the Australian harvester Termite Drepanotermes (Isoptera, Termitinae). Insectes Soc. 25, 53–62 (1978).Article 

    Google Scholar 
    Du, H., Chouvenc, T. & Su, N.-Y. Development of age polyethism with colony maturity in Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ. Entomol. 46, 311–318 (2017).PubMed 

    Google Scholar 
    Gerber, C., Badertscher, S. & Leuthold, R. H. Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc. 35, 226–240 (1988).Article 

    Google Scholar 
    Rosengaus, R. B. & Traniello, J. F. A. Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: A single multiage caste. J. Insect Behav. 6, 237–252 (1993).Article 

    Google Scholar 
    Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, T. & Matsumoto, T. Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Soc. 45, 17–32 (1998).Article 

    Google Scholar 
    Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc. 46, 392–397 (1999).Article 

    Google Scholar 
    Konate, S., Leuthold, R., Hari, M. & Veivers, P. Colour variation and polyethism of the soldier caste in the termite Macrotermes bellicosus. Entomol. Exp. Appl. 94, 51–55 (2000).Article 

    Google Scholar 
    Yang, R.-L., Su, N.-Y. & Bardunias, P. Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102, 906–910 (2009).Article 

    Google Scholar 
    Yanagihara, S., Suehiro, W., Mitaka, Y. & Matsuura, K. Age-based soldier polyethism: Old termite soldiers take more risks than young soldiers. Biol. Lett. 14, 20180025 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Su, N. & Scheffrahn, R. H. Foraging population and territory of the Formosan subterranean termite (Isoptera, Rhinotermitidae) in an urban-environment. Sociobiology 14, 353–360 (1988).
    Google Scholar 
    King, E. G. & Spink, W. T. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann. Entomol. Soc. Am. 62, 536–542 (1969).Article 

    Google Scholar 
    Abe, T. Evolution of life types in termites. In Evolution and Coadaptation in Biotic Communities (eds. J.H. Connell and J. Hidaka) 125-148 (University of Tokyo Press, 1987)Shellman-Reeve, J. S. The Spectrum of Eusociality in Termites. The Evolution of Social Behavior in Insects and Arachnids (Cambridge University Press, 1997).
    Google Scholar 
    Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48, 615–627 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N. Y. Heterogeneous distribution of castes/instars and behaviors in the nest of Coptotermes formosanus Shiraki. Insectes Soc. 64, 103–112 (2017).Article 

    Google Scholar 
    Su, N. Y., Osbrink, W., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).PubMed 
    Article 

    Google Scholar 
    Osbrink, W. L. A., Cornelius, M. L. & Lax, A. R. Effects of flooding on field populations of Formosan subterranean termites (Isoptera: Rhinotermitidae) in New Orleans, Louisiana. J. Econ. Entomol. 101, 1367–1372 (2008).PubMed 
    Article 

    Google Scholar 
    Tuma, J., Eggleton, P. & Fayle, T. M. Ant-termite interactions: An important but under-explored ecological linkage. Biol. Rev. 95, 555–572 (2020).PubMed 
    Article 

    Google Scholar 
    Rust, M. K. & Su, N.-Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beverly, B. D., McLendon, H., Nacu, S., Holmes, S. & Gordon, D. M. How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav. Ecol. 20, 633–638 (2009).Article 

    Google Scholar 
    Tenczar, P., Lutz, C. C., Rao, V. D., Goldenfeld, N. & Robinson, G. E. Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim. Behav. 95, 41–48 (2014).Article 

    Google Scholar 
    O’Donnell, S. Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135, 173–193 (1998).Article 

    Google Scholar 
    Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1–13 (2018).Article 

    Google Scholar 
    Charbonneau, D. & Dornhaus, A. When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J. Bioeconomics 17, 217–242 (2015).Article 

    Google Scholar 
    Gordon, D. M. The regulation of foraging activity in red harvester ant colonies. Am. Nat. 159, 509–518 (2002).PubMed 
    Article 

    Google Scholar 
    O’Donnell, S. Polybia wasp biting interactions recruit foragers following experimental worker removals. Anim. Behav. 71, 709–715 (2006).Article 

    Google Scholar 
    Gentry, J. B. Response to predation by colonies of the Florida harvester ant, Pogonomyrmex badius. Ecology 55, 1328–1338 (1974).Article 

    Google Scholar 
    Schafer, R. J., Holmes, S. & Gordon, D. M. Forager activation and food availability in harvester ants. Anim. Behav. 71, 815–822 (2006).Article 

    Google Scholar 
    Tschinkel, W. R. Biomantling and bioturbation by colonies of the Florida harvester ant, Pogonomyrmex badius. PLoS ONE 10, e0120407 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwapich, C. L. & Tschinkel, W. R. Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 67, 2011–2027 (2013).Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl. Acad. Sci. 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vance, J. T., Williams, J. B., Elekonich, M. M. & Roberts, S. P. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J. Exp. Biol. 212, 2604–2611 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).Article 

    Google Scholar 
    Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).Article 

    Google Scholar 
    Robinson, G. E., Page, R. E. Jr. & Huang, Z. Y. Temporal polyethism in social insects is a developmental process. Anim. Behav. 48, 467–469 (1994).Article 

    Google Scholar 
    Kakkar, G., Chouvenc, T., Osbrink, W. & Su, N. Y. Temporal assessment of molting in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 2175–2181 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kakkar, G., Osbrink, W., Mullins, A. & Su, N. Y. Molting site fidelity in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. https://doi.org/10.1093/jee/tox246 (2017).Article 
    PubMed 

    Google Scholar 
    Raina, A., Park, Y. I. & Gelman, D. Molting in workers of the Formosan subterranean termite Coptotermes formosanus. J. Insect Physiol. 54, 155–161 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. Differential time allocation of foraging workers in the subterranean termite. Front. Zool. 18, 1–8 (2021).Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. A reproductives excluder for subterranean termites in laboratory experiments. J. Econ. Entomol. 112, 2882–2887 (2019).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2022). More

  • in

    Want to prevent pandemics? Stop spillovers

    Spillover events, in which a pathogen that originates in animals jumps into people, have probably triggered every viral pandemic that’s occurred since the start of the twentieth century1. What’s more, an August 2021 analysis of disease outbreaks over the past four centuries indicates that the yearly probability of pandemics could increase several-fold in the coming decades, largely because of human-induced environmental changes2.Fortunately, for around US$20 billion per year, the likelihood of spillover could be greatly reduced3. This is the amount needed to halve global deforestation in hotspots for emerging infectious diseases; drastically curtail and regulate trade in wildlife; and greatly improve the ability to detect and control infectious diseases in farmed animals.That is a small investment compared with the millions of lives lost and trillions of dollars spent in the COVID-19 pandemic. The cost is also one-twentieth of the statistical value of the lives lost each year to viral diseases that have spilled over from animals since 1918 (see ‘Spillovers: a growing threat’), and less than one-tenth of the economic productivity erased per year1.

    Source: Ref. 1

    Yet many of the international efforts to better defend the world from future outbreaks, prompted by the COVID-19 pandemic, still fail to prioritize the prevention of spillover. Take, for example, the Independent Panel for Pandemic Preparedness and Response, established by the World Health Organization (WHO). The panel was convened in September 2020, in part to ensure that any future infectious-disease outbreak does not become another pandemic. In its 86-page report released last May, wildlife is mentioned twice; deforestation once.We urge the decision-makers currently developing three landmark international endeavours to make the prevention of spillover central to each.First, the G20 group of the world’s 20 largest economies provisionally agreed last month to create a global fund for pandemics. If realized, this could provide funding at levels that infectious-disease experts have been recommending for decades — around $5 per person per year globally (see go.nature.com/3yjitwx). Second, an agreement to improve global approaches to pandemics is under discussion by the World Health Assembly (WHA), the decision-making body of the WHO. Third, a draft framework for biodiversity conservation — the post-2020 global biodiversity framework — is being negotiated by parties to the Convention on Biological Diversity.Designed in the right way, these three international endeavours could foster a more proactive global approach to infectious diseases. This opportunity — to finally address the factors that drive major disease outbreaks, many of which also contribute to climate change and biodiversity loss — might not present itself again until the world faces another pandemic.Four actions The risk of spillover is greater when there are more opportunities for animals and humans to make contact, for instance in the trade of wildlife, in animal farming or when forests are cleared for mining, farming or roads. It is also more likely to happen under conditions that increase the likelihood of infected animals shedding viruses – when they are housed in cramped conditions, say, or not fed properly.Decades of research from epidemiology, ecology and genetics suggest that an effective global strategy to reduce the risk of spillover should focus on four actions1,3.First, tropical and subtropical forests must be protected. Various studies show that changes in the way land is used, particularly tropical and subtropical forests, might be the largest driver of emerging infectious diseases of zoonotic origin globally4. Wildlife that survives forest clearance or degradation tends to include species that can live alongside people, and that often host pathogens capable of infecting humans5. For example, in Bangladesh, bats that carry Nipah virus — which can kill 40–75% of people infected — now roost in areas of high human population density because their forest habitat has been almost entirely cleared6.Furthermore, the loss of forests is driving climate change. This could in itself aid spillover by pushing animals, such as bats, out of regions that have become inhospitable and into areas where many people live7.Yet forests can be protected even while agricultural productivity is increased — as long as there is enough political will and resources8. This was demonstrated by the 70% reduction in deforestation in the Amazon during 2004–12, largely through better monitoring, law enforcement and the provision of financial incentives to farmers. (Deforestation rates began increasing in 2013 due to changes in environmental legislation, and have risen sharply since 2019 during Jair Bolsonaro’s presidency.)Second, commercial markets and trade of live wild animals that pose a public-health risk must be banned or strictly regulated, both domestically and internationally.Doing this would be consistent with the call made by the WHO and other organizations in 2021 for countries to temporarily suspend the trade in live caught wild mammals, and to close sections of markets selling such animals. Several countries have already acted along these lines. In China, the trade and consumption of most terrestrial wildlife has been banned in response to COVID-19. Similarly, Gabon has prohibited the sale of certain mammal species as food in markets.

    A worker in a crowded chicken farm in Anhui province, China.Credit: Jianan Yu/Reuters

    Restrictions on urban and peri-urban commercial markets and trade must not infringe on the rights and needs of Indigenous peoples and local communities, who often rely on wildlife for food security, livelihoods and cultural practices. There are already different rules for hunting depending on the community in many countries, including Brazil, Canada and the United States.Third, biosecurity must be improved when dealing with farmed animals. Among other measures, this could be achieved through better veterinary care, enhanced surveillance for animal disease, improvements to feeding and housing animals, and quarantines to limit pathogen spread.Poor health among farmed animals increases their risk of becoming infected with pathogens — and of spreading them. And nearly 80% of livestock pathogens can infect multiple host species, including wildlife and humans9.Fourth, particularly in hotspots for the emergence of infectious diseases, people’s health and economic security should be improved.People in poor health — such as those who have malnutrition or uncontrolled HIV infection — can be more susceptible to zoonotic pathogens. And, particularly in immunosuppressed individuals such as these, pathogens can mutate before being passed on to others10.What’s more, some communities — especially those in rural areas — use natural resources to produce commodities or generate income in a way that brings them into contact with wildlife or wildlife by-products. In Bangladesh, for example, date palm sap, which is consumed as a drink in various forms, is often collected in pots attached to palm trees. These can become contaminated with bodily substances from bats. A 2016 investigation linked this practice to 14 Nipah virus infections in humans that caused 8 deaths11.Providing communities with both education and tools to reduce the risk of harm is crucial. Tools can be something as simple as pot covers to prevent contamination of date palm sap, in the case of the Bangladesh example.In fact, providing educational opportunities alongside health-care services and training in alternative livelihood skills, such as organic agriculture, can help both people and the environment. For instance, the non-governmental organization Health in Harmony in Portland, Oregon, has invested in community-designed interventions in Indonesian Borneo. During 2007–17, these contributed to a 90% reduction in the number of households that were reliant on illegal logging for their main livelihood. This, in turn, reduced local rainforest loss by 70%. Infant mortality also fell by 67% in the programme’s catchment area12.Systems-oriented interventions of this type need to be better understood, and the most effective ones scaled up.Wise investmentSuch strategies to prevent spillover would reduce our dependence on containment measures, such as human disease surveillance, contact tracing, lockdowns, vaccines and therapeutics. These interventions are crucial, but are often expensive and implemented too late — in short, they are insufficient when used alone to deal with emerging infectious diseases.The COVID-19 pandemic has exposed the real-world limitations of these reactive measures — particularly in an age of disinformation and rising populism. For example, despite the US federal government spending more than $3.7 trillion on its pandemic response as of the end of March, nearly one million people in the United States — or around one in 330 — have died from COVID-19 (see go.nature.com/39jtdfh and go.nature.com/38urqvc). Globally, between 15 million and 21 million lives are estimated to have been lost during the COVID-19 pandemic beyond what would be expected under non-pandemic conditions (known as excess deaths; see Nature https://doi.org/htd6; 2022). And a 2021 model indicates that, by 2025, $157 billion will have been spent on COVID-19 vaccines alone (see go.nature.com/3jqds76).

    A farmer in Myanmar gathers sap from a palm tree to make wine. Contamination of the collection pots with excretions from bats can spread diseases to humans.Credit: Wolfgang Kaehler/LightRocket via Getty

    Preventing spillover also protects people, domesticated animals and wildlife in the places that can least afford harm — making it more equitable than containment. For example, almost 18 months since COVID-19 vaccines first became publicly available, only 21% of the total population of Africa has received at least one dose. In the United States and Canada, the figure is nearly 80% (see go.nature.com/3vrdpfo). Meanwhile, Pfizer’s total drug sales rose from $43 billion in 2020 to $72 billion in 2021, largely because of the company’s COVID-19 vaccine, the best-selling drug of 202113.Lastly, unlike containment measures, actions to prevent spillover also help to stop spillback, in which zoonotic pathogens move back from humans to animals and then jump again into people. Selection pressures can differ across species, making such jumps a potential source of new variants that can evade existing immunity. Some researchers have suggested that spillback was possibly responsible for the emergence of the Omicron variant of SARS-CoV-2 (see Nature 602, 26–28; 2022).Seize the dayOver the past year, the administration of US President Joe Biden and two international panels (one established in 2020 by the WHO and the other in 2021 by the G20) have released guidance on how to improve approaches to pandemics. All recommendations released so far acknowledge spillover as the predominant cause of emerging infectious diseases. None adequately discusses how that risk might be mitigated. Likewise, a PubMed search for the spike protein of SARS-CoV-2 yields thousands of papers, yet only a handful of studies investigate coronavirus dynamics in bats, from which SARS-CoV-2 is likely to have originated14.Spillover prevention is probably being overlooked for several reasons. Upstream animal and environmental sources of pathogens might be being neglected by biomedical researchers and their funders because they are part of complex systems — research into which does not tend to lead to tangible, profitable outputs. Also, most people working in public health and biomedical sciences have limited training in ecology, wildlife biology, conservation and anthropology.There is growing recognition of the importance of cross-sectoral collaboration, including soaring advocacy for the ‘One Health’ approach — an integrated view of health that recognizes links between the environment, animals and humans. But, in general, this has yet to translate into action to prevent pandemics.Another challenge is that it can take decades to realize the benefits of preventing spillover, instead of weeks or months for containment measures. Benefits can be harder to quantify for spillover prevention, no matter how much time passes, because, if measures are successful, no outbreak occurs. Prevention also runs counter to individual, societal and political tendencies to wait for a catastrophe before taking action.The global pandemic fund, the WHA pandemic agreement and the post-2020 global biodiversity framework all present fresh chances to shift this mindset and put in place a coordinated global effort to reduce the risk of spillover alongside crucial pandemic preparedness efforts.Global fund for pandemicsFirst and foremost, a global fund for pandemics will be key to ensuring that the wealth of evidence on spillover prevention is translated into action. Funding for spillover prevention should not be folded into existing conservation funds, nor draw on any other existing funding streams.Investments must be targeted to those regions and practices where the risk of spillover is greatest, from southeast Asia and Central Africa to the Amazon Basin and beyond. Actions to prevent spillover in these areas, particularly by reducing deforestation, would also help to mitigate climate change and reduce loss of biodiversity. But conservation is itself drastically underfunded. As an example, natural solutions (such as conservation, restoration and improved management of forests, wetlands and grasslands) represent more than one-third of the climate mitigation needed by 2030 to stabilize warming to well below 2 °C15. Yet these approaches receive less than 2% of global funds for climate mitigation16. (Energy systems receive more than half.)In short, the decision-makers backing the global fund for pandemics must not assume that existing funds are dealing with the threat of spillover — they are not. The loss of primary tropical forest was 12% higher in 2020 than in 2019, despite the economic downturn triggered by COVID-19. This underscores the continuing threat to forests.Funding must be sustained for decades to ensure that efforts to reduce the risk of spillover are in place long enough to yield results.WHA pandemic agreementIn 2020, the president of the European Council, Charles Michel, called for a treaty to enable a more coordinated global response to major epidemics and pandemics. Last year, more than 20 world leaders began echoing this call, and the WHA launched the negotiation of an agreement (potentially, a treaty or other international instrument) to “strengthen pandemic prevention, preparedness, and response” at the end of 2021.Such a multilateral agreement could help to ensure more-equitable international action around the transfer of scientific knowledge, medical supplies, vaccines and therapeutics. It could also address some of the constraints currently imposed on the WHO, and define more clearly the conditions under which governments must notify others of a potential disease threat. The COVID-19 pandemic exposed the shortcomings of the International Health Regulations on many of these fronts17. (This legal framework defines countries’ rights and obligations in the handling of public-health events and emergencies that could cross borders.)We urge negotiators to ensure that the four actions to prevent spillover outlined here are prioritized in the WHA pandemic agreement. For instance, it could require countries to create national action plans for pandemics that include reducing deforestation and closing or strictly regulating live wildlife markets. A reporting mechanism should also be developed to evaluate progress in implementing the agreement. This could build on experience from existing schemes, such as the WHO Joint External Evaluation process (used to assess countries’ capacities to handle public-health risks) and the verification regime of the Chemical Weapons Convention.Commitments to expand pathogen surveillance at interfaces between humans, domesticated animals and wildlife — from US mink farms and Asian wet markets to areas of high deforestation in South America — should also be wrapped into the WHA agreement. Surveillance will not prevent spillover, but it could enable earlier detection and better control of zoonotic outbreaks, and provide a better understanding of the conditions that cause them. Disease surveillance would improve simply through investing in clinical care for both people and animals in emerging infectious-disease hotspots.Convention on Biological DiversityWe are in the midst of the sixth mass extinction, and activities that drive the loss of biodiversity, such as deforestation, also contribute to the emergence of infectious disease. Meanwhile, epidemics and pandemics resulting from the exploitation of nature can lead to further conservation setbacks — because of economic damage from lost tourism and staff shortages affecting management of protected areas, among other factors18. Also, pathogens that infect people can be transmitted to other animals and decimate those populations. For instance, an Ebola outbreak in the Republic of Congo in 2002–03 is thought to have killed 5,000 gorillas19.Yet the global biodiversity framework currently being negotiated by the Convention on Biological Diversity fails to explicitly address the negative feedback cycle between environmental degradation, wildlife exploitation and the emergence of pathogens. The first draft made no mention of pandemics. Text about spillover prevention was proposed in March, but it has yet to be agreed on.Again, this omission stems largely from the siloing of disciplines and expertise. Just as the specialists relied on for the WHA pandemic agreement tend to be those in the health sector, those informing the Convention on Biological Diversity tend to be specialists in environmental science and conservation.The global biodiversity framework, scheduled to be agreed at the Conference of the Parties later this year, must strongly reflect the environment–health connection. This means explicitly including spillover prevention in any text relating to the exploitation of wildlife and nature’s contributions to people. Failing to connect these dots weakens the ability of the convention to achieve its own objectives around conservation and the sustainable use of resources.Preventive health careA reactive response to catastrophe need not be the norm. In many countries, preventive health care for chronic diseases is widely embraced because of its obvious health and economic benefits. For instance, dozens of colorectal cancer deaths are averted for every 1,000 people screened using colonoscopies or other methods20. A preventive approach does not detract from the importance of treating diseases when they occur.With all the stressors now being placed on the biosphere — and the negative implications this has for human health — leaders urgently need to apply this way of thinking to pandemics. More

  • in

    Stop ignoring map uncertainty in biodiversity science and conservation policy

    WEF. The Global Risk Report 2021 (World Economic Forum, 2021).IPBES. The Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Unedited Draft Chapter 4: Plausible Futures of Nature, its Contributions to People and their Good Quality of Life (IPBES secretariat, 2019).Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Glob. Change Biol. 16, 1145–1157 (2010).Article 

    Google Scholar 
    Beale, C. M. & Lennon, J. J. Phil. Trans. R. Soc. Lond. B 367, 247–258 (2012).Article 

    Google Scholar 
    Porfirio, L. L. et al. PLoS ONE 9, e113749 (2014).Article 

    Google Scholar 
    Zurell, D. et al. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Rocchini, D. et al. Prog. Phys. Geogr. 35, 211–226 (2011).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    Barry, S. & Elith, J. J. Appl. Ecol. 43, 413–423 (2006).Article 

    Google Scholar 
    Stoklosa, J., Daly, C., Foster, S. D., Ashcroft, M. B. & Warton, D. I. Methods Ecol. Evol. 6, 412–423 (2015).Article 

    Google Scholar 
    Hill, N. et al. Methods Ecol. Evol. 11, 1258–1272 (2020).Article 

    Google Scholar 
    Lucchesi, L., Kuhnert, P. & Wikle, C. J. Open Source Softw. 6, 2409 (2021).Article 

    Google Scholar 
    Popov, V., Shah, P., Runting, R. K. & Rhodes, J. R. Methods Ecol. Evol. 13, 230–242 (2022).Article 

    Google Scholar 
    Costa, B., Kendall, M. & McKagan, S. PLoS ONE 13, e0204569 (2018).Article 

    Google Scholar  More

  • in

    We can have biodiversity and eat too

    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Pimm, S. L. et al. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    Chung, M. G. & Liu, J. Nat. Food https://doi.org/10.1038/s43016-022-00499-7 (2022).Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    A complex prairie ecosystem. National Park Service https://www.nps.gov/tapr/learn/nature/a-complex-prairie-ecosystem.htm (2022)Davalos, L. M. et al. Environ. Sci. Technol. 45, 1219–1227 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. PLoS ONE 11, e0159668 (2016).Article 

    Google Scholar 
    Liu, J. et al. Ecol. Soc. 18, 26 (2013).CAS 
    Article 

    Google Scholar 
    Liu, J. Consumption patterns and biodiversity. The Royal Society https://go.nature.com/3M19vup (2020).Xu, Z. et al. Nat. Sustain. 3, 964–971 (2020).Article 

    Google Scholar 
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. J. Geogr. Sci. 28, 1715–1732 (2018).Article 

    Google Scholar  More

  • in

    Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes

    Schindler, D. W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 54, 2349–2358 (2009).CAS 
    Article 

    Google Scholar 
    Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. AMBIO J. Hum. Environ. 36, 614–621 (2007).Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: The great acceleration. Anthropoc. Rev. 2, 81–98 (2015).Article 

    Google Scholar 
    Richardson, D. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2014). Water 9, 442 (2017).Article 

    Google Scholar 
    Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smol, J. P. Pollution of lakes and rivers: a paleoenvironmental perspective. (Blackwell Pub, 2008).Bennion, H., Simpson, G. L. & Goldsmith, B. J. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Front. Ecol. Evol. 3, (2015).Arseneau, K. M. A., Driscoll, C. T., Cummings, C. M., Pope, G. & Cumming, B. F. Adirondack (NY, USA) reference lakes show a pronounced shift in chrysophyte species composition since ca. 1900. J. Paleolimnol. 56, 349–364 (2016).Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 169 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl. Acad. Sci. 110, 8609–8614 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capo, E., Domaizon, I., Maier, D., Debroas, D. & Bigler, C. To what extent is the DNA of microbial eukaryotes modified during burying into lake sediments? A repeat-coring approach on annually laminated sediments. J. Paleolimnol. 58, 479–495 (2017).Article 

    Google Scholar 
    Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming: Long-term dynamics of microbial eukaryotes. Environ. Microbiol. 19, 2873–2892 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: New opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10, 3817–3838 (2013).Article 

    Google Scholar 
    Zhang, H. et al. Climate and nutrient-driven regime shifts of cyanobacterial communities in low-latitude plateau lakes. Environ. Sci. Technol. 55, 3408–3418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keck, F. et al. Assessing the response of micro-eukaryotic diversity to the Great acceleration using lake sedimentary DNA. Nat. Commun. 11, 3831 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cockrell, C. The value of microorganisms. Environ. Ethics 27, 375–390 (2005).Article 

    Google Scholar 
    Sagova-Mareckova, M. et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 191, 116767 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Likens, G. Plankton of Inland Waters a derivative of Encyclopedia of Inland Waters. in (Elsevier Science & Technology Books, 2010).Weisse, T. Functional diversity of aquatic ciliates. Eur. J. Protistol. 61, 331–358 (2017).PubMed 
    Article 

    Google Scholar 
    Finlay, B. J. & Esteban, G. F. Freshwater protozoa: Biodiversity and ecological function. Biodivers. Conserv. 7, 1163–1186 (1998).Article 

    Google Scholar 
    Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: A pan-arctic review. Front. Mar. Sci. 5, 292 (2018).Article 

    Google Scholar 
    Bick, H. Ciliated protozoa : an illustrated guide to the species used as biological indicators in freshwater biology. (World Health Organisation, 1972).Curds, C. R. An illustrated key to the British Freshwater Ciliated Protozoa commonly found in activated sludge. (Her Majesty’s Stationary Office, 1969).Pitsch, G. et al. Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts?. Front. Microbiol. 10, 248 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lynn, D. H. The Ciliated Protozoa. (Springer, 2010).Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibrahim, A. et al. Anthropogenic impact on the historical phytoplankton community of Lake Constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol. Ecol. 30, 3040–3056 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mosher, J. J. & Findlay, R. H. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams. Appl. Environ. Microbiol. 77, 7681–7688 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennion, H., Monteith, D. & Appleby, P. Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub)fossil diatoms and aquatic macrophytes. Freshw. Biol. 45, 394–412 (2000).Article 

    Google Scholar 
    Hornung, M. et al. The sensitivity of surface waters of Great Britain to acidification predicted from catchment characteristics. Environ. Pollut. 87, 207–214 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).PubMed 
    Article 

    Google Scholar 
    Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 

    Google Scholar 
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petsch, D. K. Causes and consequences of biotic homogenization in freshwater ecosystems: Biotic homogenization of freshwater systems. Internat. Rev. Hydrobiol. 101, 113–122 (2016).Article 

    Google Scholar 
    Perga, M.-E. et al. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming. Front. Ecol. Evol. 3, (2015).Rioual, P. Limnological characteristics of 25 lakes of the French Massif Central. Ann. Limnol. Int. J. Lim. 38, 311–327 (2002).Article 

    Google Scholar 
    Belle, S. et al. Increase in benthic trophic reliance on methane in 14 French lakes during the Anthropocene. Freshw. Biol. 61, 1105–1118 (2016).CAS 
    Article 

    Google Scholar 
    Télesphore, S.-N. Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat. Sci. 57, 91–105 (1995).Article 

    Google Scholar 
    Esteban, G. F., Fenchel, T. & Finlay, B. J. Mixotrophy in Ciliates. Protist 161, 621–641 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woelfl, S. & Geller, W. Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile). Freshw. Biol. 47, 231–242 (2002).Article 

    Google Scholar 
    Berninger, U.-G., Finlay, B. J. & Canter, H. M. The spatial distribution and ecology of Zoochlorellae-bearing ciliates in a productive pond. J. Protozool. 33, 557–563 (1986).Article 

    Google Scholar 
    Haraguchi, L., Jakobsen, H. H., Lundholm, N. & Carstensen, J. Phytoplankton community dynamic: A driver for ciliate trophic strategies. Front. Mar. Sci. 5, 272 (2018).Article 

    Google Scholar 
    Staehr, P. A., Testa, J. & Carstensen, J. Decadal changes in water quality and net productivity of a shallow danish estuary following significant nutrient reductions. Estuaries Coasts 40, 63–79 (2017).CAS 
    Article 

    Google Scholar 
    Jeppesen, E., Pierson, D. & Jennings, E. Effect of extreme climate events on lake ecosystems. Water 13, 282 (2021).Article 

    Google Scholar 
    Sonntag, B., Strüder-Kypke, M. C. & Summerer, M. Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes. Denisia 23, 279–288 (2008).Mitra, A. et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11, 995–1005 (2014).Article 

    Google Scholar 
    Munawar, M., Niblock, H., Fitzpatrick, M. & Lorimer, J. Ciliate ecology in the eutrophic Bay of Quinte, Lake Ontario: Community structure and feeding characteristics. Aquat. Ecosyst. Health Manage. 23, 35–44 (2020).Article 

    Google Scholar 
    Carrick, H. J. An under-appreciated component of biodiversity in plankton communities: The role of protozoa in Lake Michigan (a case study). Hydrobiologia 551, 17–32 (2005).Article 

    Google Scholar 
    Beaver, J. R. & Crisman, T. L. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin France. Aquat. Microb. Ecol. 24, 163–174 (2001).Article 

    Google Scholar 
    Sherr, E. B. & Sherr, B. F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81, 293–308 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Wichelen, J. et al. Planktonic ciliate community structure in shallow lakes of lowland Western Europe. Eur. J. Protistol. 49, 538–551 (2013).PubMed 
    Article 

    Google Scholar 
    Posch, T. et al. Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6, (2015).DeNicola, D. M. & Kelly, M. Role of periphyton in ecological assessment of lakes. Freshw. Sci. 33, 619–638 (2014).Article 

    Google Scholar 
    Hao, B. et al. Warming effects on periphyton community and abundance in different seasons are influenced by nutrient state and plant type: A shallow lake mesocosm study. Front. Plant Sci. 11, 404 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schindler, D. E. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl. Acad. Sci. USA 114, 9764–9765 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Millet, L. et al. Diagnostic fonctionnel des systèmes lacustres de Gérardmer, Longemer et RetournemerUne approche combinée limnologie/paléolimnologie. 38 (2015).Sabart, M. Projet DIVERSITOX (DIVERSIté des cyanoTOXines dans différents milieux aquatiques ligériens et relation avec la biodiversité microbienne). 28 (2018).Jenny, J.-P. et al. A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol. Oceanogr. 58, 1395–1408 (2013).CAS 
    Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, C. J. & Beman, J. M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA: Lake microbial ecology along an elevation gradient. Environ. Microbiol. 18, 1782–1791 (2016).PubMed 
    Article 

    Google Scholar 
    Catalan, J. et al. Global change revealed by palaeolimnological records from remote lakes: A review. J. Paleolimnol. 49, 513–535 (2013).Article 

    Google Scholar 
    Novotny, A., Zamora-Terol, S. & Winder, M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc. R. Soc. B. 288, 20210908 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lei, Y., Stumm, K., Wickham, S. A. & Berninger, U. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61, 493–508 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foissner, W. & Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 35, 375–482 (1996).Article 

    Google Scholar 
    Posch, T. et al. Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: A study from a continuous cultivation system. Microb. Ecol. 42, 217–227 (2001).PubMed 
    Article 

    Google Scholar 
    Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).PubMed 
    Article 

    Google Scholar 
    Ogram, Andrew., Sayler, G. S., Gustin, Denise. & Lewis, R. J. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. 7, 189 (2019).Article 

    Google Scholar 
    Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. B 370, 20130383 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epp, L. S. A global perspective for biodiversity history with ancient environmental DNA. Mol. Ecol. 28, 2456–2458 (2019).PubMed 
    Article 

    Google Scholar 
    Puitika, T., Kasahara, Y., Miyoshi, N., Sato, Y. & Shimano, S. A taxon-specific oligonucleotide primer set for PCR-based detection of soil ciliate. Microb. Environ. 22, 78–81 (2007).Article 

    Google Scholar 
    Dopheide, A., Lear, G., Stott, R. & Lewis, G. Molecular characterization of ciliate diversity in stream biofilms. Appl. Environ. Microbiol. 74, 1740–1747 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mangot, J.-F. et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ. Microbiol. 15, 1745–1758 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. AEM 75, 7537–7541 (2009).CAS 
    Article 

    Google Scholar 
    Vaulot, D. pr2database/pr2database: PR2 version 4.12.0. (Zenodo, 2019). 10.5281/ZENODO.3362765.Stoeck, T. et al. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16, 430–444 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, F. et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 6, 24874 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foissner, W., Chao, A. & Katz, L. A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17, 345–363 (2008).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Oksanen, J. et al. vegan: Community Ecology PackageJari. (2020).Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. (2019).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).Article 

    Google Scholar 
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 48, 907–911 (1952).MATH 
    Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User manual/tutorial. (PRIMER-E, 2006).QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2021).Wickham, H. ggplot2: elegant graphics for dada analysis. (Springer-Verlag, 2016).Pedersen, T. L. & Crameri, F. scico: colour palettes based on the scientific colour-maps. (2020).Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More