More stories

  • in

    Effect of ionic liquid on formation of copolyimide ultrafiltration membranes with improved rejection of La3+

    Baker, R. W. Membrane Technology and Applications. 3rd edn. ISBN 9780470743720. (Wiley, 2012).Wang, L. K., Chen, J. P., Hung, Y.-T., Shammas, N. K. Membrane and Desalination Technologies. ISBN 978-1-58829-940-6. (Humana Press, 2011).Mahmoudi, E. et al. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9, 1216. https://doi.org/10.1038/s41598-018-38060-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Penkova, A. V., Dmitrenko, M. E., Ermakov, S. S., Toikka, A. M. & Roizard, D. Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation. Environ. Sci. Pollut. Res. 25, 20354–20362. https://doi.org/10.1007/s11356-017-9063-9 (2018).CAS 
    Article 

    Google Scholar 
    Atlaskin, A. A. et al. Comprehensive experimental study of membrane cascades type of “continuous membrane column” for gases high-purification. J. Membr. Sci. 572, 92–101. https://doi.org/10.1016/j.memsci.2018.10.079 (2019).CAS 
    Article 

    Google Scholar 
    Koyuncu, I., Sengur, R., Turken, T., Guclu, S., & Pasaoglu, M.E. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. in Advances in Membrane Technologies for Water Treatment (eds. Basile, A., Cassano, A., Rastogi, N. K.). 83–128. (Elsevier, 2015).Van der Bruggen, B. Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis in Fundamental Modelling of Membrane Systems, Membrane and Process Performance (ed. Luis, P.). 25–70. (Elsevier, 2018).Al Aani, S., Mustafa, T. N. & Hilal, N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J. Water Process Eng. 35, 101241. https://doi.org/10.1016/j.jwpe.2020.101241 (2020).Article 

    Google Scholar 
    Polotskaya, G. A., Goikhman, M. Y., Podeshvo, I. V., Polotsky, A. E. & Cherkasov, A. N. Polybenzoxazinoneimides and their prepolymers as promising membrane materials. Desalination 200, 46–48 (2006).CAS 
    Article 

    Google Scholar 
    Ulbricht, M. Advanced functional polymer membranes. Polymer 47, 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084 (2006).CAS 
    Article 

    Google Scholar 
    Siagian, U. W. R. et al. High-performance ultrafiltration membrane: Recent progress and its application for wastewater treatment. Curr. Pollut. Rep. 7, 448–462. https://doi.org/10.1007/s40726-021-00204-5 (2021).CAS 
    Article 

    Google Scholar 
    Polotskaya, G. A., Meleshko, T. K., Gofman, I. V., Polotsky, A. E. & Cherkasov, A. N. Polyimide ultrafiltration membranes with high thermal stability and chemical durability. Sep. Sci. Technol. 44, 3814–3831. https://doi.org/10.1080/01496390903256166 (2009).CAS 
    Article 

    Google Scholar 
    Ohya, H., Kudryavtsev, V. V., & Semenova, S. I. Polyimide Membranes. Vol. 314. (Gordon & Breach Publishers, 1996).Liu, R., Qiao, X. & Chung, T.-S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686. https://doi.org/10.1016/j.ces.2005.05.066 (2005).CAS 
    Article 

    Google Scholar 
    Yang, C. et al. Preparation and characterization of acid and solvent resistant polyimide ultrafiltration membrane. Appl. Surf. Sci. 483, 278–284. https://doi.org/10.1016/j.apsusc.2019.03.226 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pulyalina, AYu., Polotskaya, G. A. & Toikka, A. M. Membrane materials based on polyheteroarylenes and their application for pervaporation. Russ. Chem. Rev. 85(1), 81–98 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Volgin, I. V. et al. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11, 1775. https://doi.org/10.3390/polym11111775 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Pulyalina, A. et al. Preparation and characterization of methanol selective membranes based on polyheteroarylene–Cu(I) complexes for purification of methyl tertiary butyl ether. Polym. Int. 66(12), 1873–1882. https://doi.org/10.1002/pi.5463 (2017).CAS 
    Article 

    Google Scholar 
    Pulyalina, A. et al. Sorption and transport of aqueous isopropanol solutions in polyimide-poly(aniline-co-anthranilic acid) composites. Russ. J. Appl. Chem. 84(5), 840–846. https://doi.org/10.1134/S107042721105017X (2011).CAS 
    Article 

    Google Scholar 
    Pulyalina, A. et al. Novel approach to determination of sorption in pervaporation process: A case study of isopropanol dehydration by polyamidoimide urea membranes. Sci. Rep. 7, 8415. https://doi.org/10.1038/s41598-017-08420-0 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helali, N., Shamaei, L., Rastgar, M. & Sadrzadeh, M. Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment. Sci. Rep. 11, 8098. https://doi.org/10.1038/s41598-021-87601-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polotskaya, G. et al. Asymmetric membranes based on copolyheteroarylenes with imide, biquinoline, and oxazinone units: Formation and characterization. Polymers 11(10), 1542. https://doi.org/10.3390/polym11101542 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Volgin, I. V. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11(11), 1775. https://doi.org/10.3390/polym11111775 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    White, L. S. Transport properties of a polyimide solvent resistant nanofiltration membrane. J. Membr. Sci. 205, 191–202 (2005).Article 

    Google Scholar 
    Barsema, J. N., Kapantaidakis, G. C., van der Vegt, N. F. A., Koops, G. H. & Wessling, M. Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J. Membr. Sci. 216, 195–205. https://doi.org/10.1016/S0376-7388(03)00071-1 (2003).CAS 
    Article 

    Google Scholar 
    Pulyalina, A., Polotskaya, G., Rostovtseva, V., Pientka, Z. & Toikka, A. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide. Polymers 10, 828. https://doi.org/10.3390/polym10080828 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Qiao, X. & Chung, T.-S. Fundamental characteristics of sorption, swelling, and permeation of P84 co-polyimide membranes for pervaporation dehydration of alcohols. Ind. Eng. Chem. Res. 44, 8938–8943. https://doi.org/10.1021/ie050836g (2005).CAS 
    Article 

    Google Scholar 
    Mangindaan, D. W., Shi, G. M. & Chung, T.-S. Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking. J. Membr. Sci. 458, 76–85 (2014).CAS 
    Article 

    Google Scholar 
    Hua, D., Ong, Y. K., Wang, Y., Yang, T. & Chung, T.-S. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 453, 155–167. https://doi.org/10.1016/j.memsci.2013.10.059 (2014).CAS 
    Article 

    Google Scholar 
    Pulyalina, AYu., Putintseva, M. N., Polotskaya, G. A., Rostovtseva, V. A. & Toikka, A. M. Pervaporation purification of oxygenate from an ethyl tert-butyl ether/ethanol azeotropic mixture. Membr. Membr. Technol. 1(2), 99–106. https://doi.org/10.1134/S2517751619020082 (2019).CAS 
    Article 

    Google Scholar 
    Ren, J. & Li, Z. Development of asymmetric BTDA-TDI/MDI (P84) copolyimide flat sheet and hollow fiber membranes for ultrafiltration: Morphology transition and membrane performance. Desalination 285, 336–344. https://doi.org/10.1016/j.desal.2011.10.024 (2012).CAS 
    Article 

    Google Scholar 
    Ren, J., Li, Z., Wong, F.-S. & Li, D. Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration: The influence of shear rate and approaching ratio on membrane morphology and performance. J. Membr. Sci. 248, 177–188. https://doi.org/10.1016/j.memsci.2004.09.031 (2005).CAS 
    Article 

    Google Scholar 
    Yusoff, I. I. et al. Durable pressure filtration membranes based on polyaniline-polyimide P84 blends. Polym. Eng. Sci. 5(S1), E82–E92 (2019).Article 

    Google Scholar 
    Grosso, V. et al. Polymeric and mixed matrix polyimide membranes. Sep. Purif. Technol. 132, 684–696 (2014).CAS 
    Article 

    Google Scholar 
    Renner, R. Ionic liquids: An industrial cleanup solution. Environ. Sci. Technol. 35, 410a–413a (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Wanga, H. H. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 574, 44–54 (2019).Article 

    Google Scholar 
    Lessan, F. & Foudazi, R. Effect of [EMIM][BF4] ionic liquid on the properties of ultrafiltration membranes. Polymer 210, 122977 (2020).CAS 
    Article 

    Google Scholar 
    Xing, D. Y., Peng, N. & Chung, T.-S. Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, as the solvent. Ind. Eng. Chem. Res. 49, 8761–8769 (2010).CAS 
    Article 

    Google Scholar 
    Durmaz, E. N. & Çulfaz-Emecen, P. Z. Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent. Chem. Eng. Sci. 178, 93–103 (2018).CAS 
    Article 

    Google Scholar 
    Grekov, K. B. Electronic Waste and Safety Problems (in Rus.). ISBN 9785891601796. (SUT, 2018).Svittsov, A. A. & Abylgaziev, TZh. Micellarly enhanced (reagent) ultrafiltration. Russ. Chem. Rev. 60(11), 1280–1283 (1991).ADS 
    Article 

    Google Scholar 
    Petrov, S. & Stoichev, P. A. Reagent ultrafiltration purification of water contaminated with reactive dyes. Filtr. Sep. https://doi.org/10.1016/S0015-1882(02)80229-4 (2002).Article 

    Google Scholar 
    Leonard, M. A. & West, T. S. Chelating reactions of 1,2-dihydroxyanthraquinon-3-ylmethyl-amine-NN-diacetic acid with metal cations in aqueous media. J. Chem. Soc. 866, 4477–4486. https://doi.org/10.1039/jr9600004477 (1960).Article 

    Google Scholar 
    Marczenko, Z., & Balcerzak, M. Fluorine. in Separation, Preconcentration and Spectrophotometry in Inorganic Analysis (ed. Kloczko, E.). 189–197. (Elsevier, 2000).Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620. https://doi.org/10.1039/B810189B (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Inc., 2010).Ochterski, J. W. Thermochemistry in Gaussian. https://gaussian.com/thermo/ (2000).Cherkasov, A. N. A rapid analysis of ultrafiltration membrane structure. Sep. Sci. Tech. 40, 2775–2801. https://doi.org/10.1080/01496390500333111 (2005).CAS 
    Article 

    Google Scholar 
    Zheng, Q.-Z. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Membr. Sci. 286, 7–11 (2006).CAS 
    Article 

    Google Scholar 
    Barton, A. F. M. CRC Handbook of Solubility Parameter. Vol. 768. (CRC Press, 1991).Tan, X. & Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers 11, 1160 (2019).Article 

    Google Scholar 
    Mulder, M. H. V. Phase Inversion Membranes. Membrane Preparation. Vol. 3331. (Academic Press, 2000).Quijada-Maldonado, E. Pilot plant study on the extractive distillation of toluene–methylcyclohexane mixtures using NMP and the ionic liquid [hmim][TCB] as solvents. Sep. Purif. Technol. 166, 196–204 (2016).CAS 
    Article 

    Google Scholar 
    Polotskaya, G. A. et al. Aromatic copolyamides with anthrazoline units in the backbone: Synthesis, characterization, pervaporation application. Polymers 8(10), 362. https://doi.org/10.3390/polym8100362 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Mao, J. X. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study. J. Mol. Struct. 1038, 12–18 (2013).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east Pacific) based on distribution models predicted with random forest

    Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).CAS 
    Article 

    Google Scholar 
    Kaiser, S., Smith, C. R. & MartínezArbizu, P. Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Mar. Biodivers. 47, 259–264 (2017).Article 

    Google Scholar 
    Bluhm, H. Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific Ocean in association with commercial deep-sea mining. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 187–201 (1994).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog. Oceanogr. 170, 119–133 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013).Article 

    Google Scholar 
    Kuhn, T., Wegorzewski, A., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential Technical and Environmental Considerations (ed. Sharma, R.) 23–63 (Springer, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.Chapter 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    International Seabed Authority. Deep Seabed Minerals Contractors. https://www.isa.org.jm/deep-seabed-minerals-contractors?qt-contractors_tabs_alt=0#qt-contractors_tabs_alt (2020).Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 53 (2018).ADS 
    Article 

    Google Scholar 
    Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & MartínezArbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats (eds Harris, P. T. & Baker, E.) 933–947 (Elsevier, 2020).Chapter 

    Google Scholar 
    Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci. Rep. 6, 30492 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lodge, M. et al. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone: A partnership approach. Mar. Policy 49, 66–72 (2014).Article 

    Google Scholar 
    Cuvelier, D. et al. Are seamounts refuge areas for fauna from polymetallic nodule fields?. Biogeosciences 17, 2657–2680 (2020).ADS 
    Article 

    Google Scholar 
    Wedding, L. M. et al. Managing mining of the deep seabed. Science 349, 144–145 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    International Seabed Authority. Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on the Prospecting and Exploration for Polymetallic Nodules in the Area and related matters. (2013).International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. (2020).Jones, D. O. B., Ardron, J. A., Colaço, A. & Durden, J. M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy 118, 103312 (2020).Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 57, 1210–1221 (2020).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Ostmann, A. & Martínez Arbizu, P. Predictive models using random forest regression for distribution patterns of meiofauna in Icelandic waters. Mar. Biodivers. 48, 719–735 (2018).Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T., Gillard, B. & Martínez Arbizu, P. Meiofauna in a potential deep-sea mining area: Influence of temporal and spatial variability on small scale abundance models. Diversity 13, 3 (2021).CAS 
    Article 

    Google Scholar 
    Gazis, I.-Z., Schoening, T., Alevizos, E. & Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 15, 7347–7377 (2018).ADS 
    Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 40, 1–15 (2010).Article 

    Google Scholar 
    Miljutin, D., Miljutina, M. & Messié, M. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep Sea Res. Oceanogr. Res. Pap. 106, 126–135 (2015).ADS 
    Article 

    Google Scholar 
    Pape, E., Bezerra, T. N., Hauquier, F. & Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 4, 205 (2017).Article 

    Google Scholar 
    Hauquier, F. et al. Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 16, 3475–3489 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Meiofauna abundance and distribution predicted with random forest regression in the German exploration area for polymetallic nodule mining, Clarion Clipperton Fracture Zone, Pacific. (2020).Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Thiel, H. et al. The large-scale environmental impact experiment DISCOL: Reflection and foresight. Deep Sea Res. 48, 3869–3882 (2001).ADS 
    Article 

    Google Scholar 
    Brown, A., Wright, R., Mevenkamp, L. & Hauton, C. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquat. Toxicol. 191, 10–16 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClain, C. R. Seamounts: identity crisis or split personality?. J. Biogeogr. 34, 2001–2008 (2007).Article 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 years on. In Advances in Marine Biology Vol. 79 (ed. Sheppard, C.) 137–224 (Academic Press, 2018).
    Google Scholar 
    Durden, J. M., Bett, B. J., Jones, D. O. B., Huvenne, V. A. I. & Ruhl, H. A. Abyssal hills–hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Prog. Oceanogr. 137, 209–218 (2015).ADS 
    Article 

    Google Scholar 
    Durden, J. M. et al. Megafaunal ecology of the western Clarion Clipperton Zone. Front. Mar. Sci. 8, 671062 (2021).ADS 
    Article 

    Google Scholar 
    Jones, D. O. B. et al. Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific). Prog. Oceanogr. 197, 102653 (2021).Article 

    Google Scholar 
    Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Volz, J. B. et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone. Pacific Ocean. Deep Sea Res. 140, 159–172 (2018).CAS 
    Article 

    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).PubMed 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).ADS 
    Article 

    Google Scholar 
    Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).Article 

    Google Scholar 
    Smith, C. R. et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep Sea Res. 44, 2295–2317 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuhn, T. & Rühlemann, C. Exploration of polymetallic nodules and resource assessment: A case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 11, 618 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).Article 

    Google Scholar 
    Wiedicke-Hombach, M. & Shipboard Scientific Party. Campaign “MANGAN 2008” with R/V Kilo Moana. (2009).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2017).Kaufman, L. & Rousseeuw, P. J. Clustering Large Applications (Program CLARA). in Finding Groups in Data 126–163 (Wiley, 1990). https://doi.org/10.1002/9780470316801.ch3.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster. (2019).Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0: Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 605 (2019).Article 

    Google Scholar 
    Amon, D. J. et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers. Data J. 5, e14598 (2017).Article 

    Google Scholar 
    Molodtsova, T. N. & Opresko, D. M. Black corals (Anthozoa: Antipatharia) of the Clarion-Clipperton Fracture Zone. Mar. Biodivers. 47, 349–365 (2017).Article 

    Google Scholar 
    Kersken, D., Janussen, D. & MartínezArbizu, P. Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II—Hexasterophora. Mar. Biodivers. 49, 947–987 (2019).Article 

    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Hughes, J. A. & Gooday, A. J. Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep Sea Res. 51, 1741–1758 (2004).Article 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by random Forest. R News 2, 18–22 (2002).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2019).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Garnier, S. viridisLite: Default Color Maps from ‘matplotlib’ (Lite Version). (2018).Rabosky, A. R. D. et al. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Smith, M. R. Ternary: An R package for creating ternary plots. Zenodo https://doi.org/10.5281/zenodo.1068996 (2017). More

  • in

    Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau

    Study areaWith an area of about 2.33 × 105 km2, the Western Sichuan Plateau (27.11°–34.31°N and 97.36°–104.62°E) is located in the transition zone between the Qinghai-Tibet Plateau and the Sichuan Basin, including all of Garze Prefecture and Aba Prefecture, and parts of Liangshan Yi Autonomous Prefecture28 (Fig. 1). With an altitude of 780–7556 m, this area is dominated by mountain and ravine areas and high mountain and plateau areas, and the terrain is high in the west and low in the east. The climate belongs to the subtropical plateau monsoon climate, with large temperature difference between day and night and abundant sunshine. The annual average temperature is about 9.01–10.5 °C, and the precipitation is about 556.8–730 mm28. The study area is rich in water resources, including the Yalong River, Minjiang River and other important river systems in the upper reaches of the Yangtze River, and the Baihe River, Heihe river and other river systems of the Yellow River. The main types of soil are plateau meadow soil dark brown soil, brown soil, cold frozen soil and cinnamon soil, and the main vegetation types are alpine meadow and scrub. With rich and diverse soil vegetation types and distinctive vertical zonal distribution characteristics, it is one of the global biodiversity conservation hotspots29.Figure 1Location of the study area. The map is created in the support of ArcGIS 10.2 (ESRI). The China map and Western Sichuan Plateau boundary data were collected from Resources and Environmental Science and Data Center (http://www.resdc.cn/). The Qinghai-Tibetan Plateau boundary data were collected from the Global Change Research Data Publishing & Repository (http://www.geodoi.ac.cn/WebCn/Default.aspx).Full size imageData source and processingMultisource archival data were used in this study (Table 1). The land use remote sensing monitoring data, administrative boundary data and geological disaster vector data were obtained from Resources and Environmental Science and Data Center. The spatial resolution of land use remote sensing monitoring data is 30 × 30 m, including 6 first-level classification and 26s-level classification. The first-level classification includes cropland, woodland, grassland, water body, built-up land, and unused land. The accuracy of remote sensing classification is not less than 95% for cropland and built-up land, not less than 90% for grassland, woodland, and water body, and not less than 85% for unused land, which meets the need of the research. Landsat remote sensing monitoring data is used as the main information resources, among which Landsat-TM/ETM remote sensing monitoring data is used in 2000, 2005, 2010 and Landsat 8 remote sensing monitoring data is used in 2015 and 2020. In light of actual conditions and the implementation of policies and philosophies including the natural forest protection project, return of farmland to forest, land remediation, ecological civilization, the period from 2000 to 2020 is selected as the study period, and the land use data of each period is cropped using ArcGIS 10.2 to reclassify the 26 secondary classifications into cropland, woodland, grassland, water body, built-up land and unused land.Table 1 Characteristics of data used for the study.Full size tableThe DEM data were obtained from SRTM (Shuttle Radar Topography Mission) of Resources and Environmental Science and Data Center, the spatial resolution of 30 × 30 m, absolute horizontal accuracy ± 20 m, absolute elevation accuracy ± 16 m, elevation and slope are extracted from the downloaded DEM. The Qinghai-Tibetan Plateau boundary data were collected from the Global Change Research Data Publishing & Repository. Data of carbon density of different land types were obtained from Chinese Ecosystem Research Network Data Center (http://www.nesdc.org.cn/).A total of 29,284 evaluation units were collected for spatial grid processing of the Western Sichuan Plateau according to 3 km × 3 km by ArcGIS 10.2. The impact factors obtained in this study include grid data per kilometer of GDP spatial distribution, grid data per kilometer of population spatial distribution, annual mean temperature spatial interpolation data, annual mean rainfall spatial interpolation data, long-term normalized difference vegetation index (NDVI) comes from Resources and Environmental Science and Data Center with a resolution of 1 km × 1 km. The Human Active Index (HAI), with a resolution of 30 m × 30 m, can be calculated by formula30,31, and the factors are discretized into the data type required for the geodetector by the natural breakpoint method.MethodsThe InVEST modelThe InVEST model was developed by Stanford University, the University of Minnesota, the Nature Conservancy and the World Wide Fund for Nature (WWF). The model’s terrestrial ecosystem services assessment includes four modules: soil conservation, water retention, carbon storage and biodiversity assessment, and provides an overall measurement of regional ecosystem services32. The carbon storage model of the InVEST model divides the carbon storage of the ecosystem into 4 basic carbon pools, namely above-ground carbon, underground carbon, soil carbon, dead organic matter carbon7.The calculation formula of total carbon storage in the Western Sichuan Plateau is as follows7:$$C_{total} = C_{above} + C_{below} + C_{soil} + C_{dead}$$
    (1)
    In formula (1), Ctotal is the total carbon storage; Cabove is the above-ground carbon storage; Cbelow is the underground carbon storage; Csoil is the soil carbon storage, and Cdead is the dead organic matter carbon storage.Based on the carbon density and land use data of different land use type, the carbon storage of each land use type in the Western Sichuan Plateau is calculated by the formula7:$$C_{{text{total}}i} = (C_{{text{above}}i} + C_{{text{below}}i} + C_{{text{soil}}i} + C_{{text{dead}}i}) times A_{i}$$
    (2)
    In formula (2), i is the average carbon density of each land use, and Ai is the area of this land used.The carbon density data of different land use types in this study were obtained from the shared date of the National Ecological Science Data Center and some documents33,34,35,36,37. Since the carbon density data were collected from the results of studies in different parts of China, the selected documents should be close to or similar to the study area as far as possible to avoid excessive data gap. At the same time, the carbon density varies with climate, soil properties and land use38, so the carbon density should be modified according to the climate characteristics and land use types of the Western Sichuan Plateau. Existing research results show that the carbon density is positively correlated with annual precipitation and weakly correlated with annual average temperature. The quantitative expression of the relationship between carbon density and temperature and precipitation is as follows39,40,41,42:$$C_{SP} = 3.3968 times P + 3996.1;;left( {{text{R}}^{{2}} = 0.{11}} right)$$
    (3)
    $$C_{BP} = 6.7981e^{0.00541p};;;left( {{text{R}}^{{2}} = 0.{7}0} right)$$
    (4)
    $$C_{BT} = 28 times {text{T}} + 398;;left( {{text{R}}^{{2}} = 0.{47,};{text{P}} < 0.0{1}} right)$$ (5) In these formula, CSP is the soil carbon density (kg m−2) based on the annual precipitation; CBP is the biomass carbon density (kg m−2) based on the annual precipitation; CBT is the biomass carbon density (kg m−2) based on annual average temperature; P is the average annual precipitation (mm), and T is the annual average temperature (°C). According to the data of China Meteorological Data Service Centre (http://data.cma.cn/), in the past 20 years, the average annual temperature of China and the Western Sichuan Plateau was 9.0 °C and 6.3 °C, and the average annual precipitation was 643.50 mm and 812.65 mm respectively.The modified formula of carbon density in the Western Sichuan Plateau is as follows7:$$K_{BP} = frac{C^{prime}{_{BP}}}{{C^{primeprime}{_{BP}}}}$$ (6) $$K_{BT} = frac{C^{prime}{_{BT}}}{{C^{primeprime}{_{BT}}}}$$ (7) $$C_{BT} = 28 times T + 398;;left( {{text{R}}^{{2}} = 0.{47,};{text{P}} < 0.0{1}} right)$$ (8) $$K_{S} = frac{C^{prime}{_{SP}}}{{C^{primeprime}{_{SP}}}}$$ (9) In these formula, KBP is the modified indices of precipitation factor in biomass carbon density; KBT is the modified indices of temperature factor; C'BP and C''BP are the biomass carbon density obtained from annual precipitation in the Western Sichuan Plateau and the whole country respectively. C'BT and C''BT are the biomass carbon density obtained from annual average temperature; C'SP and C''SP are the soil carbon density data obtained from annual average temperature; KB and KS are the biomass carbon density modified indices and soil carbon density modified indices respectively. The carbon density values of each land use type after modified in the Western Sichuan Plateau are shown in Table 2.Table 2 Carbon density values of different land use types in the Western Sichuan plateau (t hm−2).Full size tableExploratory spatial analysis methodGlobal spatial autocorrelationGlobal Moran’s I was used to describe the spatial differentiation characteristics of carbon storage in the study area, and the expression formula is as follows43:$$I = frac{{nsumnolimits_{i = 1}^{n} {sumnolimits_{j = 1}^{n} {w_{i,j} left( {x_{i} - overline{x} } right)left( {x_{j} - overline{x} } right)} } }}{{sumnolimits_{i = 1}^{n} {sumnolimits_{j = 1}^{n} {omega_{ij} } } sumnolimits_{i = 1}^{n} {left( {x_{i} - overline{x} } right)^{2} } }}$$ (10) wij is the spatial weight; x is the attribute mean; xi and xj are the attribute values of elements i, j, respectively; n is the number of cells, and the correlation is considered significant when |Z|  > 1.96.Local indications of spatial association (LISA)LISA reveals the local cluster characteristics of spatial unit attributes by analyzing the difference and significance between spatial units and surrounding units, and the expression formula is as follows42:$$I_{i} (d) = frac{{n(x_{i} – overline{x} )sumnolimits_{j = 1}^{n} {w_{ij} (x_{j} – overline{x} )} }}{{sumnolimits_{i = 1}^{n} {(x_{j} – overline{x} )^{2} } }}$$
    (11)
    Correlation analysisIn order to evaluate the influence of natural factors and socioeconomic factors on carbon storage in the study area, the correlation coefficients of temperature, rainfall, NDVI, GDP, population density (PD), HAI and carbon storage were calculated according to the Pearson correlation coefficient method. The calculation formula is as follows44:$$r_{xy} = frac{{sumnolimits_{i = 1}^{n} {(M_{i} – overline{x} )(y_{i} – overline{y} )} }}{{sqrt {sumnolimits_{i = 1}^{n} {(M_{i} – overline{x} )^{2} sumnolimits_{i = 1}^{n} {(y_{i} – overline{y} )} } } }}$$
    (12)
    rxy represents the correlation coefficient between x and y; Mi represents the carbon storage in the ith year; yi represents the value of the impact factor Y in the ith year, and ({overline{text{x}}}) and ({overline{text{y}}}) respectively represents the average value of carbon storage and impact factor in the research period over several years.Human influence index analysis methodLand use is significantly spatially clustered in the study area31, and LUCC changes will have a certain impact on the structure and process of the ecosystem. HAI has the characteristics of spatial variability, which can reflect the impact of human activities on land use and landscape composition changes. In this study, Human Influence Index Analysis Method (HAI) index was used to analyze the correlation between carbon storage and human interference intensity in the Western Sichuan Plateau. The calculation formula is as follows30,$$HAI = sumlimits_{i = 1}^{n} {left( {A_{i} P_{i} /TA} right)}$$
    (13)
    HAI is Human Active Index; Ai is the total area of the ith land use type; Pi The intensity parameter of human impact reflected by type i land use type; TA is the total final surface area of land use type in evaluation unit; n is the number of land use types. Combined with the land use type of this study, Pi is assigned by Delphi method, in which cropland is 0.67, woodland is 0.13, grassland is 0.12, water body is 0.10, built-up land is 0.96, and unused land is 0.0530,45.GeodetectorGeodetector is an algorithm that uses spatial heterogeneity principle to detect driving factors of carbon storage, which can quantitatively detect the influence of impact factors on carbon storage and explore the interaction between driving factors. Geodetector includes factor detection, risk detection, interaction detection and ecological detection46.Differentiation and factor detection: the influence factors were discretized, and then the significance test of the difference in the mean values of the impact factors was conducted to detect the relative importance among the factors. The statistical quantity q is used to measure the explanatory power of impact factors on the carbon storage spatial differentiation and the value range of q is between 0 and 1. The larger the value, the stronger the explanatory power of the factor47.$$q = 1{ – }frac{{sumnolimits_{h = 1}^{L} {N_{h} sigma_{h}^{2} } }}{{Nsigma^{2} }}$$
    (14)
    In this formula, h = 1, 2…, L is the classification or partition of variable (Y) or factor (X); Nh and N are layer h and regional number units respectively; and (sigma_{h}^{2}) and (sigma_{{}}^{2}) are the variance of the layer h and regional value Y respectively.The variance of the regional value Y is calculated as follows,$$sigma^{2} = frac{{sumnolimits_{i = 1}^{n} {(Y_{i} – overline{Y} )^{2} } }}{N – 1}$$
    (15)
    where, Yi and (overline{Y}) are the mean value of sample j and the region Y, respectively.$$sigma^{2} = frac{{sumnolimits_{i = 1}^{{n_{h} }} {(Y_{h,i} – overline{{Y_{h} }} )^{2} } }}{{N_{h} – 1}}$$
    (16)
    where, Y and (overline{Y}) are the value and mean value of sample i in layer h, respectively.Interaction detection: it is used to identify the interaction between different impact factors Xs, that is, to evaluate whether the combined action of X1 and X2 will increase or weaken the explanatory power of vegetation coverage Y, or the influence of these factors on Y is independent of each other. The evaluation method is to first calculate the value q of the two factors X1 and X2 for Y respectively: q(X1) and q(X2), and calculate the value q of their interaction (the new polygon distribution formed by the tangent of the two layers of the superimposed variables X1 and X2) : q(X1 ∩ X2) and compare q(X1) and q(X2) with q(X1 ∩ X2)46. More

  • in

    Oyster reef restoration facilitates the recovery of macroinvertebrate abundance, diversity, and composition in estuarine communities

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Lotze, H. K. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, J. & Kidd, I. M. Identifying major stressors: The essential precursor to restoring cultural ecosystem services in a degraded estuary. Estuar. Coast. 35, 1007–1017 (2012).Article 

    Google Scholar 
    Copeland, B. Effects of decreased river flow on estuarine ecology. J. Water Pollut. Control Fed. 66, 1831–1839 (1966).
    Google Scholar 
    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. https://doi.org/10.3897/BDJ.5.e11764 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    McAfee, D. & Connell, S. D. The global fall and rise of oyster reefs. Front. Ecol. Environ. 19, 118–125 (2021).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).ADS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).Article 

    Google Scholar 
    Goldewijk, K. K. Estimating global land use change over the past 300 years: The HYDE database. Glob. Biogeochem. 15, 417–433 (2001).ADS 
    Article 

    Google Scholar 
    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).ADS 
    Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).ADS 
    Article 

    Google Scholar 
    Elliott, M., Burdon, D., Hemingway, K. L. & Apitz, S. E. Estuarine, coastal and marine ecosystem restoration: Confusing management and science—A revision of concepts. Estuar. Coast. Shelf Sci. 74, 349–366 (2007).ADS 
    Article 

    Google Scholar 
    Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325, 1121–1124 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Hobbs, R. J. & Norton, D. A. Towards a conceptual framework for restoration ecology. Restor. Ecol. 4, 93–110 (1996).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as Ecosystem Engineers in Ecosystem Management 130–147 (Springer, 1994).Tolley, S. G. & Volety, A. K. The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. J. Shellf. Res. 24, 1007–1012 (2005).Article 

    Google Scholar 
    Carroll, J. M., Keller, D. A., Furman, B. T. & Stubler, A. D. Rough around the edges: Lessons learned and future directions in marine edge effects studies. Curr. Landsc. Ecol. Rep. 4, 91–102 (2019).Article 

    Google Scholar 
    Harwell, H. D., Posey, M. H. & Alphin, T. D. Landscape aspects of oyster reefs: Effects of fragmentation on habitat utilization. J. Exp. Mar. Biol. Ecol. 409, 30–41 (2011).Article 

    Google Scholar 
    Shervette, V. R. & Gelwick, F. Seasonal and spatial variations in fish and macroinvertebrate communities of oyster and adjacent habitats in a Mississippi estuary. Estuar. Coast. 31, 584–596 (2008).Article 

    Google Scholar 
    Gain, I. E. et al. Macrofauna using intertidal oyster reef varies in relation to position within the estuarine habitat mosaic. Mar. Biol. 164, 1–16 (2017).MathSciNet 
    Article 

    Google Scholar 
    Wong, M., Peterson, C. & Piehler, M. Evaluating estuarine habitats using secondary production as a proxy for food web support. Mar. Ecol. Prog. Ser. 440, 11–25 (2011).ADS 
    Article 

    Google Scholar 
    Meyer, D. L. Habitat partitioning between the xanthid crabs Panopeus herbstii and Eurypanopeus depressus on intertidal oyster reefs (Crassostrea virginica) in southeastern North Carolina. Estuaries 17, 674–679 (1994).Article 

    Google Scholar 
    McDonald, J. Divergent life history patterns in the co-occurring intertidal crabs Panopeus herbstii and Eurypanopeus depressus (Crustacea: Brachyura: Xanthidae). Mar. Ecol. Prog. Ser. 8, 173–180 (1982).ADS 
    Article 

    Google Scholar 
    Grabowski, J. H. & Peterson, C. H. Restoring oyster reefs to recover ecosystem services in Theoretical Ecology Series vol. 4 281–298 (Elsevier, 2007).Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116 (2011).Article 

    Google Scholar 
    Reeves, S. E. et al. Facilitating better outcomes: how positive species interactions can improve oyster reef restoration. Front. Mar. Sci. 7, 656 (2020).Article 

    Google Scholar 
    Jud, Z. R. & Layman, C. A. Changes in motile benthic faunal community structure following large-scale oyster reef restoration in a subtropical estuary. Food Webs 25, e00177 (2020).Article 

    Google Scholar 
    Pinnell, C. M., Ayala, G. S., Patten, M. V. & Boyer, K. E. Seagrass and oyster reef restoration in living shorelines: effects of habitat configuration on invertebrate community assembly. Diversity 13, 246 (2021).Article 

    Google Scholar 
    La Peyre, M. K., Humphries, A. T., Casas, S. M. & La Peyre, J. F. Temporal variation in development of ecosystem services from oyster reef restoration. Ecol. Eng. 63, 34–44 (2014).Article 

    Google Scholar 
    Geraldi, N. R., Powers, S. P., Heck, K. L. & Cebrian, J. Can habitat restoration be redundant? Response of mobile fishes and crustaceans to oyster reef restoration in marsh tidal creeks. Mar. Ecol. Prog. Ser. 389, 171–180 (2009).ADS 
    Article 

    Google Scholar 
    Humphries, A. T. & La Peyre, M. K. Oyster reef restoration supports increased nekton biomass and potential commercial fishery value. PeerJ 3, e1111 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ziegler, S. L., Grabowski, J. H., Baillie, C. J. & Fodrie, F. Effects of landscape setting on oyster reef structure and function largely persist more than a decade post-restoration. Restor. Ecol. 26, 933–942 (2018).Article 

    Google Scholar 
    Rodriguez, A. B. et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Change 4, 493–497 (2014).ADS 
    Article 

    Google Scholar 
    Hanke, M. H., Posey, M. H. & Alphin, T. D. The influence of habitat characteristics on intertidal oyster Crassostrea virginica populations. Mar. Ecol. Prog. Ser. 571, 121–138 (2017).ADS 
    Article 

    Google Scholar 
    Barber, A., Walters, L. & Birch, A. Potential for restoring biodiversity of macroflora and macrofauna on oyster reefs in Mosquito Lagoon, Florida. Fla. Sci. 66, 47–62 (2010).
    Google Scholar 
    Boudreaux, M. L., Stiner, J. L. & Walters, L. J. Biodiversity of sessile and motile macrofauna on intertidal oyster reefs in Mosquito Lagoon, Florida. J. Shellf. Res. 25, 1079–1089 (2006).Article 

    Google Scholar 
    Desmond, J. S., Deutschman, D. H. & Zedler, J. B. Spatial and temporal variation in estuarine fish and invertebrate assemblages: Analysis of an 11-year data set. Estuaries 25, 552–569 (2002).Article 

    Google Scholar 
    Xu, Y., Xian, W. & Li, W. Spatial and temporal variations of invertebrate community in the Yangtze River Estuary and its adjacent waters. Biodivers. Sci. 22, 311 (2014).Article 

    Google Scholar 
    Nichols, F. H. Abundance fluctuations among benthic invertebrates in two pacific estuaries. Estuaries 8, 136 (1985).Article 

    Google Scholar 
    Van Horn, J. & Tolley, S. G. Patterns of distribution along a salinity gradient in the flatback mud crab Eurypanopeus depressus. Gulf Mex. Sci. 26, 66 (2008).
    Google Scholar 
    Costlow, J. D., Bookhout, C. G. & Monroe, R. Salinity-temperature effects on the larval development of the crab, Panopeus herbstii Milne-Edwards, reared in the laboratory. Physiol. Zool. 35, 79–93 (1962).Article 

    Google Scholar 
    Sulkin, S., Heukelem, W. & Kelly, P. Behavioral basis for depth regulation in the hatching and post larval stages of the mud crab Eurypanopeus depresus. Mar. Ecol. Prog. Ser. 11, 157–164 (1983).ADS 
    Article 

    Google Scholar 
    Phlips, E. J., Badylak, S. & Grosskopf, T. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuar. Coast. Shelf. Sci. 55, 385–402 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Menendez, R. J. Vertical zonation of the xanthid mud crabs Panopeus obesus and Panopeus simpsoni on oyster reefs. Bull. Mar. Sci. 40, 73–77 (1987).
    Google Scholar 
    Barshaw, D. E. & Lavalli, K. L. Predation upon postlarval lobsters Homarus americanus by cunners Tautogolabrus adspersus and mud crabs Neopanope sayi on three different substrates: Eelgrass, mud and rocks. Mar. Ecol. Prog. Ser. 48, 119–123 (1988).ADS 
    Article 

    Google Scholar 
    Key, P. B., Wirth, E. F. & Fulton, M. H. A review of grass shrimp, Palaemonetes spp., as a bioindicator of anthropogenic impacts. Environ. Bioindic. 1, 115–128 (2006).CAS 
    Article 

    Google Scholar 
    Kneib, R. T. & Weeks, C. A. Intertidal distribution and feeding habits of the mud crab, Eurytium limosum. Estuaries 13, 462 (1990).Article 

    Google Scholar 
    Hsueh, P.-W., McClintock, J. B. & Hopkins, T. S. Comparative study of the diets of the blue crabs Callinectes similis and C. sapidus from a mud-bottom habitat in Mobile Bay, Alabama. J. Crust. Biol. 12, 615–619 (1992).Article 

    Google Scholar 
    King, S. P. & Sheridan, P. Nekton of new seagrass habitats colonizing a subsided salt marsh in Galveston Bay, Texas. Estuar. Coast. 29, 286–296 (2006).Article 

    Google Scholar 
    Zupo, V. & Nelson, W. Factors influencing the association patterns of Hippolyte zostericola and Palaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida. Mar. Biol. 134, 181–190 (1999).Article 

    Google Scholar 
    Weber, J. C. & Epifanio, C. E. Response of mud crab (Panopeus herbstii) megalopae to cues from adult habitat. Mar. Biol. 126, 655–661 (1996).Article 

    Google Scholar 
    Harris, K. P. Oyster Reef Restoration: Impacts on Infaunal Communities in a Shallow Water Estuary. Honors Thesis. University of Central Florida (2018).Shaffer, M., Donnelly, M. & Walters, L. Does intertidal oyster reef restoration affect avian community structure and behavior in a shallow estuarine system? A post-restoration analysis. Fla. Field Nat. 47, 37–59 (2019).
    Google Scholar 
    Puckett, B. J. et al. Integrating larval dispersal, permitting, and logistical factors within a validated habitat suitability index for oyster restoration. Front. Mar. Sci. 5, 76 (2018).Article 

    Google Scholar 
    Kim, C., Park, K. & Powers, S. P. Establishing restoration strategy of eastern oyster via a coupled biophysical transport model. Restor. Ecol. 21, 353–362 (2013).Article 

    Google Scholar 
    Rodriguez-Perez, A., James, M. A. & Sanderson, W. G. A small step or a giant leap: Accounting for settlement delay and dispersal in restoration planning. PLoS ONE 16, e0256369 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeager, L. A. & Layman, C. A. Energy flow to two abundant consumers in a subtropical oyster reef food web. Aquat. Ecol. 45, 267–277 (2011).Article 

    Google Scholar 
    Rodney, W. S. & Paynter, K. T. Comparisons of macrofaunal assemblages on restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay in Maryland. J. Exp. Mar. Biol. Ecol. 335, 39–51 (2006).Article 

    Google Scholar 
    Macreadie, P. I., Geraldi, N. R. & Peterson, C. H. Preference for feeding at habitat edges declines among juvenile blue crabs as oyster reef patchiness increases and predation risk grows. Mar. Ecol. Prog. Ser. 466, 145–153 (2012).ADS 
    Article 

    Google Scholar 
    Fodrie, F. J. et al. Measuring individuality in habitat use across complex landscapes: Approaches, constraints, and implications for assessing resource specialization. Oecologia 178, 75–87 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Grabowski, J. H. et al. Regional environmental variation and local species interactions influence biogeographic structure on oyster reefs. Ecology 101, e02921 (2020).PubMed 
    Article 

    Google Scholar 
    Peterson, C., Grabowski, J. & Powers, S. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Mar. Ecol. Prog. Ser. 264, 249–264 (2003).ADS 
    Article 

    Google Scholar 
    Garvis, S. K., Sacks, P. E. & Walters, L. J. Formation, movement, and restoration of dead intertidal oyster reefs in Canaveral National Seashore and Mosquito Lagoon, Florida. J. Shellf. Res. 34, 251–258 (2015).Article 

    Google Scholar 
    Gilmore, G. R. Environmental and biogeographic factors influencing ichthyofaunal diversity: Indian River Lagoon. Bull. Mar. Sci. 57, 153–170 (1995).
    Google Scholar 
    Swain, H. M. Reconciling rarity and representation: A review of listed species in the Indian River Lagoon. Bull. Mar. Sci. 57, 252–266 (1995).ADS 

    Google Scholar 
    Tremain, D. M. & Adams, D. H. Seasonal variations in species diversity, abundance, and composition of fish communities in the northern Indian River Lagoon, Florida. Bull. Mar. Sci. 57, 171–192 (1995).
    Google Scholar 
    Paperno, R., Mille, K. & Kadison, E. Patterns in species composition of fish and selected invertebrate assemblages in estuarine subregions near Ponce de Leon Inlet, Florida. Estuar. Coast. Shelf. Sci. 52, 117–130 (2001).ADS 
    Article 

    Google Scholar 
    Smithsonian Marine Station (SMS) at Fort Pierce. Indian River Lagoon Species Inventory https://naturalhistory2.si.edu/smsfp/irlspec/Walters, L. J. et al. A negative association between recruitment of the eastern oyster Crassostrea virginica and the brown tide Aureoumbra lagunensis in Mosquito Lagoon, Florida. Fla. Sci. 84, 81–91 (2021).
    Google Scholar 
    Walters, L. J., Sacks, P. E. & Campbell, D. E. Boating impacts and boat-wake resilient restoration of the eastern oyster Crassostrea virginica in Mosquito Lagoon, Florida, USA. Fla. Sci. 84, 173–199 (2021).
    Google Scholar 
    Hanke, M. H., Posey, M. H. & Alphin, T. D. The effects of intertidal oyster reef habitat characteristics on faunal utilization. Mar. Ecol. Prog. Ser. 581, 57–70 (2017).ADS 
    Article 

    Google Scholar 
    Crabtree, R. E. & Dean, J. M. The structure of two South Carolina estuarine tide pool fish assemblages. Estuaries 5, 2–9 (1982).Article 

    Google Scholar 
    Baggett, L. P. et al. Guidelines for evaluating performance of oyster habitat restoration: Evaluating performance of oyster restoration. Restor. Ecol. 23, 737–745 (2015).Article 

    Google Scholar 
    Chambers, L. G. et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon?. Estuar. Coast. 41, 784–799 (2018).Article 

    Google Scholar 
    Shannon, C. & Wiener, W. The Mathematical Theory of Communication (Illinois Press, 1963).
    Google Scholar 
    Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 22, 175–186 (2002).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2021).Hulbert, J. Pseudoreplication and the design of field experiments in ecology. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Wang, Z. & Goonewardene, L. A. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 84, 1–11 (2004).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Mixed-Effects Models Using the lme4 Package in R (2008).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021).Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).Article 

    Google Scholar 
    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).Article 

    Google Scholar 
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).Article 

    Google Scholar 
    Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (Primer-E Ltd, 2014).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). More

  • in

    From the archive: wildlife landscapes, and retaliation against rats

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Functional susceptibility of tropical forests to climate change

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).Article 

    Google Scholar 
    ter Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 29549 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. The regional variation of aboveground live biomass in old‐growth Amazonian forests. Glob. Change Biol. 12, 1107–1138 (2006).Article 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seager, R. et al. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).Article 

    Google Scholar 
    Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large‐scale hydrological refugia from drought?. New Phytol. https://doi.org/10.1111/nph.17914 (2022).Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 12, 023001 (2017).Article 

    Google Scholar 
    Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    Aguirre‐Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett. 22, 855–865 (2019).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48.5, 1079–1087 (2011).Article 

    Google Scholar 
    Aguirre‐Gutiérrez, J. et al. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 26, 1126–1137 (2017).Article 

    Google Scholar 
    Arruda Almeida, B. et al. Comparing species richness, functional diversity and functional composition of waterbird communities along environmental gradients in the neotropics. PLoS ONE 13, e0200959 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Correia, D. L. P., Raulier, F., Bouchard, M. & Filotas, É. Response diversity, functional redundancy, and post‐logging productivity in northern temperate and boreal forests. Ecol. Appl. 28, 1282–1291 (2018).PubMed 
    Article 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).PubMed 
    Article 

    Google Scholar 
    Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).PubMed 
    Article 

    Google Scholar 
    Jucker, T. et al. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).PubMed 
    Article 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fauset, S. et al. Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).PubMed 
    Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).Article 

    Google Scholar 
    Quesada, C. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 

    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P.R. et al.) (IPCC, 2019).Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).PubMed 
    Article 

    Google Scholar 
    Petchey, O. L. On the statistical significance of functional diversity effects. Funct. Ecol. 18, 297–303 (2004).Article 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Raes, N. et al. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180–192 (2009).Article 

    Google Scholar 
    Shenkin, A. et al. The influence of ecosystem and phylogeny on tropical tree crown size and shape. Front. For. Glob. Change 3, 501757 (2020).Article 

    Google Scholar 
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grossman, J. J., Cavender‐Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early‐successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    Article 

    Google Scholar 
    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).PubMed 
    Article 

    Google Scholar 
    Hutchison, C., Gravel, D., Guichard, F. & Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 8, 15443 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    González-M, R. et al. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol. Lett. 24, 451–463 (2021).PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).de la Riva, E. G. et al. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 10, 281–293 (2017).
    Google Scholar 
    Reich, P. B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L. & Meinzer, F. C. in Functional and Ecological Xylem Anatomy (ed Hacke, U.) Ch. 9 (Springer, 2015).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Pratt, R., Jacobsen, A., Ewers, F. & Davis, S. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787–798 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).PubMed 
    Article 

    Google Scholar 
    Bucci, S. J. et al. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought‐induced embolism by leaves and roots. Plant Cell Environ. 36, 2163–2174 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meinzer, F. C. et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156, 31–41 (2008).PubMed 
    Article 

    Google Scholar 
    Scholz F. G., Phillips N. G., Bucci S. J., Meinzer F. C. & Goldstein G. in Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer F. C. C. et al.) 341–361 (Springer, 2011).Mitchell, P. J. et al. Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158, 385–397 (2008).PubMed 
    Article 

    Google Scholar 
    Villagra, Mariana et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 33, 1308–1318 (2013).PubMed 
    Article 

    Google Scholar 
    Ishida, Atsushi et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156, 193–202 (2008).PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).Article 

    Google Scholar 
    Martin, R. E. et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci. 10, 1810 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J. et al. Assessing trait‐based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).Article 

    Google Scholar 
    Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol. 221, 1853–1865 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00018 (2020).Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112122 (2021).Article 

    Google Scholar 
    Pavoine, S. adiv: an R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).Article 

    Google Scholar 
    Pavoine, S. & Ricotta, C. A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol. Ind. 101, 552–561 (2019).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    van der Plas, F., Van Klink, R., Manning, P., Olff, H. & Fischer, M. Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol. 8, 1072–1080 (2017).Article 

    Google Scholar 
    Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).Article 

    Google Scholar 
    Simpson, E. H. Measurement of diversity. Nature https://doi.org/10.1038/163688a0 (1949).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fan, Y. Groundwater in the earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).Article 

    Google Scholar 
    Moulatlet, G. M. et al. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: problems and prospects. Ecol. Evol. 7, 8463–8477 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. S. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2014). More

  • in

    Ecological modelling approaches for predicting emergent properties in microbial communities

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shi, Z. Gut microbiota: an important link between Western diet and chronic diseases. Nutrients 11, 2287 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Glowacki, R. W. P. & Martens, E. C. In sickness and health: effects of gut microbial metabolites on human physiology. PLoS Pathog. 16, e1008370 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Konopka, A. What is microbial community ecology? ISME J. 3, 1223–1230 (2009).PubMed 
    Article 

    Google Scholar 
    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Hoek, M. J. A. & Merks, R. M. H. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst. Biol. 11, 56 (2017).Article 
    CAS 

    Google Scholar 
    Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, J., Yoshinaga, M. & Rosen, B. P. The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol. Microbiol. 111, 487–494 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol. Syst. Biol. 17, e10189 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Park, H. et al. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartzman, J. A. et al. Bacterial growth in multicellular aggregates leads to the emergence of complex lifecycles. Preprint at bioRxiv https://doi.org/10.1101/2021.11.01.466752 (2021).Levins, R. & Lewontin, R. The Dialectical Biologist (Harvard Univ. Press, 1985).Diaz, P. I. & Valm, A. M. Microbial interactions in oral communities mediate emergent biofilm properties. J. Dent. Res. 99, 18–25 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buerger, A. N. et al. Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): altered microbial diversity, functionality, and network connectivity. Environ. Pollut. 265, 114496 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, M. K., Ingremeau, F., Zhao, A., Bassler, B. L. & Stone, H. A. Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).Article 

    Google Scholar 
    Falconer, R. E. et al. Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation. PLoS ONE 10, e0123774 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 160081 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F. & Schloss, P. D. Mathematical modeling of primary succession of murine intestinal microbiota. Proc. Natl Acad. Sci. USA 111, 439–444 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. The role of sensitivity analysis in ecological modelling. Ecol. Modell. 203, 167–182 (2007).Article 

    Google Scholar 
    Oreskes, N., Shrader-Frechette, K. & Belitz, K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 263, 641–646 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol. 18, 731–743 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. 26, 46–57 (2021).Article 

    Google Scholar 
    García-Jiménez, B., Torres-Bacete, J. & Nogales, J. Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J. 19, 226–246 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Frioux, C., Singh, D., Korcsmaros, T. & Hildebrand, F. From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. Comput. Struct. Biotechnol. J. 18, 1722–1734 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, J. et al. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiol. Ecol. 96, fiaa030 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Madeo, D., Comolli, L. R. & Mocenni, C. Emergence of microbial networks as response to hostile environments. Front. Microbiol. 5, 407 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang, B. & Allison, S. D. Emergent properties of organic matter decomposition by soil enzymes. Soil Biol. Biochem. 136, 107522 (2019).CAS 
    Article 

    Google Scholar 
    Walsh, A. M. et al. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems 1, e00052-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, E. R. in Some Mathematical Problems in Biology (ed. Gerstenhaber, M.) 1–61 (American Mathematical Society, 1968).Nedorezov, L. The dynamics of the lynx–hare system: an application of the Lotka–Volterra model. Biophys. 61, 149–154 (2016).CAS 
    Article 

    Google Scholar 
    Mühlbauer, L. K., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: simple methods for fitting Lotka–Volterra models describing Gause’s “struggle for existence”. Ecol. Evol. 10, 13275–13283 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belovsky, G. E. Moose and snowshoe hare competition and a mechanistic explanation from foraging theory. Oecologia 61, 150–159 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    May, R. M. Limit cycles in predator–prey communities. Science 177, 900–902 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).PubMed 
    Article 

    Google Scholar 
    Voit, E. O., Davis, J. D. & Olivença, D. V. Inference and validation of the structure of Lotka–Volterra models. Preprint at bioXriv https://doi.org/10.1101/2021.08.14.456346 (2021).Bucci, V. & Xavier, J. B. Towards predictive models of the human gut microbiome. J. Mol. Biol. 426, 3907–3916 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gao, X., Huynh, B.-T., Guillemot, D., Glaser, P. & Opatowski, L. Inference of significant microbial interactions from longitudinal metagenomics data. Front. Microbiol. 9, 2319 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, C. et al. An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome 7, 118 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joseph, T. A., Shenhav, L., Xavier, J. B., Halperin, E. & Pe’er, I. Compositional Lotka–Volterra describes microbial dynamics in the simplex. PLoS Comput. Biol. 16, e1007917 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosoda, S., Fukunaga, T. & Hamada, M. Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model. Bioinformatics 37, i16–i24 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Remien, C. H., Eckwright, M. J. & Ridenhour, B. J. Structural identifiability of the generalized Lotka–Volterra model for microbiome studies. R. Soc. Open Sci. 8, 201378 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White, J. R. Novel Methods for Metagenomic Analysis. PhD thesis, Univ. of Maryland (2010).Sousa, A., Frazão, N., Ramiro, R. S. & Gordo, I. Evolution of commensal bacteria in the intestinal tract of mice. Curr. Opin. Microbiol. 38, 114–121 (2017).PubMed 
    Article 

    Google Scholar 
    Mounier, J. et al. Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 74, 172–181 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Momeni, B., Xie, L. & Shou, W. Lotka–Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. eLife 6, e25051 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mai, T. S. N. Impact of Metabolic Plasticity on Microbial Community Diversity and Stability. MSc thesis, Univ. of Groningen (2021).Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mickalide, H. & Kuehn, S. Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533.e10 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, X. & Boedicker, J. Q. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLoS Comput. Biol. 12, e1005079 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zomorrodi, A. R. & Segrè, D. Synthetic ecology of microbes: mathematical models and applications. J. Mol. Biol. 428, 837–861 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, H. S., Cannon, W. R., Beliaev, A. S. & Konopka, A. Mathematical modeling of microbial community dynamics: a methodological review. Processes 2, 711–752 (2014).Article 

    Google Scholar 
    Descheemaeker, L., Grilli, J. & de Buyl, S. Heavy-tailed abundance distributions from stochastic Lotka–Volterra models. Phys. Rev. E 104, 034404 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, B., Herrgård, M. J. & Nielsen, J. Microbial community dynamics revisited. Nat. Comput. Sci. 1, 640–641 (2021).Article 

    Google Scholar 
    Abreu, C. I., Anderen Woltz, V. L., Friedman, J. & Gore, J. Microbial communities display alternative stable states in a fluctuating environment. PLoS Comput. Biol. 16, e1007934 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, L., Xu, X., Kong, D., Gu, H. & Kenney T. Stochastic generalized Lotka–Volterra model with an application to learning microbial community structures. Preprint at arXiv https://doi.org/10.48550/arXiv.2009.10922 (2020).Brunner, J. D. & Chia, N. Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more effectively than species–species modelling. J. R. Soc. Interface 16, 20190423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).CAS 
    PubMed 

    Google Scholar 
    Chesson, P. MacArthur’s consumer-resource model. Theor. Popul. Biol. 37, 26–38 (1990).Article 

    Google Scholar 
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R.3rd et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R.3rd, Cui, W. & Mehta, P. A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10, 3308 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrela, S., Sanchez-Gorostiaga, A., Vila, J. C. & Sanchez, A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife 10, e65948 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cui, W., Marsland, R. & Mehta, P. Diverse communities behave like typical random ecosystems. Phys. Rev. E 104, 034416 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haygood, R. Coexistence in MacArthur-style consumer–resource models. Theor. Popul. Biol. 61, 215–223 (2002).PubMed 
    Article 

    Google Scholar 
    Dubinkina, V., Fridman, Y., Pandey, P. P. & Maslov, S. Multistability and regime shifts in microbial communities explained by competition for essential nutrients. eLife 8, e49720 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crowther, T. W. et al. Untangling the fungal niche: the trait-based approach. Front. Microbiol. 5, 579 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pacciani-Mori, L., Suweis, S., Maritan, A. & Giometto, A. Constrained proteome allocation affects coexistence in models of competitive microbial communities. ISME J. 15, 1458–1477 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R. et al. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obadia, B. et al. Probabilistic invasion underlies natural gut microbiome stability. Curr. Biol. 27, 1999–2006.e8 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Andrea, R., Gibbs, T. & O’Dwyer, J. P. Emergent neutrality in consumer-resource dynamics. PLoS Comput. Biol. 16, e1008102 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mancuso, C. P., Lee, H., Abreu, C. I., Gore, J. & Khalil, A. S. Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community. eLife 10, e67175 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Trait-based modelling in ecology: a review of two decades of research. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar 
    Merico, A., Brandt, G., Lan Smith, S. L. & Oliver, M. Sustaining diversity in trait-based models of phytoplankton communities. Front. Ecol. Evol. 2, 59 (2014).Grigoratou, M. et al. A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences 16, 1469–1492 (2019).Article 

    Google Scholar 
    Muscarella, M. E., Howey, X. M. & Lennon, J. T. Trait-based approach to bacterial growth efficiency. Environ. Microbiol. 22, 3494–3504 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 153, 108112 (2021).CAS 
    Article 

    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Le Roux, X. et al. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front. Microbiol. 7, 628 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bouskill, N. J., Tang, J., Riley, W. J. & Brodie, E. L. Trait-based representation of biological nitrification: model development, testing, and predicted community composition. Front. Microbiol. 3, 364 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kyker-Snowman, E., Wieder, W. R., Frey, S. D. & Grandy, A. S. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci. Model Dev. 13, 4413–4434 (2020).CAS 
    Article 

    Google Scholar 
    Kruk, C. et al. A trait-based approach predicting community assembly and dominance of microbial invasive species. Oikos 130, 571–586 (2021).Article 

    Google Scholar 
    Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484 (2013).Article 

    Google Scholar 
    Garcia, C. A. et al. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190254 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A. & Martiny, A. C. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2. Biogeosciences 15, 2761–2779 (2018).CAS 
    Article 

    Google Scholar 
    Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    Bradford, M. A. et al. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).Article 

    Google Scholar 
    Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).CAS 
    Article 

    Google Scholar 
    Zwart, J. A., Solomon, C. T. & Jones, S. E. Phytoplankton traits predict ecosystem function in a global set of lakes. Ecology 96, 2257–2264 (2015).PubMed 
    Article 

    Google Scholar 
    Nemergut, D. R., Shade, A. & Violle, C. When, where and how does microbial community composition matter. Front. Microbiol. 5, 497 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Severin, I., Östman, Ö. & Lindström, E. S. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLoS ONE 8, e80825 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Worden, L. Conservation of community functional structure across changes in composition in consumer-resource models. J. Theor. Biol. 493, 110239 (2020).PubMed 
    Article 

    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 

    Google Scholar 
    Song, H.-S. et al. Regulation-structured dynamic metabolic model provides a potential mechanism for delayed enzyme response in denitrification process. Front. Microbiol. 8, 1866 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemelrijk, C. K. & Hildenbrandt, H. Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2, 726–737 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M. & Kreft, J.-U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14, 461–471 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griesemer, M. & Sindi, S. S. Rules of engagement: a guide to developing agent-based models. Methods Mol. Biol. 2349, 367–380 (2022).PubMed 
    Article 

    Google Scholar 
    Jayathilake, P. G. et al. A mechanistic individual-based model of microbial communities. PLoS ONE 12, e0181965 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).Article 

    Google Scholar 
    Nadell, C. D. et al. Cutting through the complexity of cell collectives. Proc. Biol. Sci. 280, 20122770 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. eLife 2, e01169 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abs, E., Leman, H. & Ferrière, R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Commun. Biol. 3, 520 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kreft, J.-U. et al. Mighty small: observing and modeling individual microbes becomes big science. Proc. Natl Acad. Sci. USA 110, 18027–18028 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parise, F., Lygeros, J. & Ruess, J. Bayesian inference for stochastic individual-based models of ecological systems: a pest control simulation study. Front. Environ. Sci. 3, https://doi.org/10.3389/fenvs.2015.00042 (2015).Allison, S. D. & Goulden, M. L. Consequences of drought tolerance traits for microbial decomposition in the DEMENT model. Soil Biol. Biochem. 107, 104–113 (2017).CAS 
    Article 

    Google Scholar 
    Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doloman, A., Varghese, H., Miller, C. D. & Flann, N. S. Modeling de novo granulation of anaerobic sludge. BMC Syst. Biol. 11, 69 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gogulancea, V. et al. Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth. Front. Microbiol. 10, 1871 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutierrez, M. & Rodriguez-Paton, A. Simulating multicell populations with an accelerated gro simulator. In Proc. ECAL 2017, Fourteenth European Conf. on Artificial Life, 186–188 (2017).Gutiérrez, M. et al. A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kreft, J.-U., Booth, G. & Wimpenny, J. W. T. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Picioreanu, C., Van Loosdrecht, M. C. & Heijnen, J. J. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol. Bioeng. 69, 504–515 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Environ. Microbiol. 13, 2416–2434 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chacón, J. M., Möbius, W. & Harcombe, W. R. The spatial and metabolic basis of colony size variation. ISME J. 12, 669–680 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oyebamiji, O. K. et al. Gaussian process emulation of an individual-based model simulation of microbial communities. J. Comput. Sci. 22, 69–84 (2017).Article 

    Google Scholar 
    Menon, R. & Korolev, K. S. Public good diffusion limits microbial mutualism. Phys. Rev. Lett. 114, 168102 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dobay, A., Bagheri, H. C., Messina, A., Kümmerli, R. & Rankin, D. J. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J. Evol. Biol. 27, 1869–1877 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canzian, L., Zhao, K., Wong, G. C. L. & van der Schaar, M. A dynamic network formation model for understanding bacterial self-organization into micro-colonies. IEEE Trans. Mol. Biol. Multiscale Commun. 1, 76–89 (2015).Article 

    Google Scholar 
    Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mendoza, S. N., Olivier, B. G., Molenaar, D. & Teusink, B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 20, 158 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Varahan, S., Sinha, V., Walvekar, A., Krishna, S. & Laxman, S. Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community. eLife 9, e57609 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angeles-Martinez, L. & Hatzimanikatis, V. Spatio-temporal modeling of the crowding conditions and metabolic variability in microbial communities. PLoS Comput. Biol. 17, e1009140 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borer, B., Ataman, M., Hatzimanikatis, V. & Or, D. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput. Biol. 15, e1007127 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labhsetwar, P., Cole, J. A., Roberts, E., Price, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, J. J. et al. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2, e00091-17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2020).Pacciani-Mori, L., Giometto, A., Suweis, S. & Maritan, A. Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities. PLoS Comput. Biol. 16, e1007896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A global inventory of animal diversity measured in different grazing treatments

    Synthesis and data extractionData were collected using a literature search of Web of Science for peer-reviewed journal articles published between 1970 and November 2019. We conducted two sets of searches to capture grazing with discrete comparisons (e.g., grazed/ungrazed, moderate vs. heavy intensity grazing) and a range of grazing intensities. The search terms used for each were as follows 1) (graz* OR livestock) AND (exclosure* OR exclusion OR exclude* OR ungrazed OR retire* OR fallow* OR fence* OR paddock*), 2) (“grazing intensity” OR “grazing gradient” OR “stocking rate” OR “rotation*grazing”). Our synthesis includes domesticated and wild grazer species, with the latter defined as an undomesticated species naturally occurring in the study area during the study. Wild grazers are typically native species to the region (e.g., the American bison in Western North America) but can include non-native species that are naturalized in the area (e.g., feral horses on Sable Island).We excluded any study that did not test the effect of grazing animals. A grazer was defined using the definition provided by the authors of the respective study to account for the proportion of forage types in a herbivore’s diet that varies between seasons and habitats. For example, we included animals where their diet is assumed to come from all (e.g., cattle, sheep), most (e.g., wapiti, kangaroos), or some (e.g., deer species) grass species. However, within the included studies, these animals were classified as grazers as most of their diet was grass for the duration of the study. For added clarity about the herbivore composition in each study, we extracted a list of any herbivores listed in the paper regardless of foraging type or if any data was provided.We only included studies that measured animal diversity or abundance as a response variable and included data we could extract or contact the author to obtain9. We included any study with a grazing treatment and included observations within these studies of any grazed and ungrazed sites. All studies with grazing included a comparison to either ungrazed sites, different grazing practices (e.g., cattle vs. sheep), and/or differences in intensities (e.g., heavy/light, extensive/intensive). Studies that only measured plants or soil biota were excluded because syntheses of grazing effects on these groups have already been conducted7,11,12, and our goal was to provide a robust inventory of animal diversity. However, if a study included plants, lichens, or fungi in addition to animals, we included this data. Studies discussing marine grazing or aquatic systems were also excluded. From these preliminary filters, we identified 3,489 published manuscripts. We reviewed these 3,489 published articles and found 245 studies that surveyed animals in grazed sites. In total, we extracted 16,105 observations for over 1,200 species.We extracted 28 variables that focus on management systems, assemblages of grazer species, ecosystem characteristics, and survey type (Table 1). The latitudes, longitudes, and elevations of each study were included when provided for use with geospatial data. In addition, we included variables about the study site’s disturbance history, including last time grazed, if a flood event or fire had occurred, if fertilization was used, if the area was open or fenced off, and if the area was publicly or privately owned. Furthermore, the timeline for the study (i.e., the years the authors initiated and completed the study) was also provided. Study initiation was described by the authors and could include when the grazing treatment started, another treatment was applied, and/or animal surveys began. These timeline columns can be useful in identifying long-term studies and differentiating single grazing events or multi-year experiments. Finally, we generalized the characteristics of the ecosystem of the sites used in each study based on the climate and dominant vegetation.Table 1 The attributes and description of the metadata.csv file that lists the general characteristics of each study.Full size tableWithin the grazing data, we included information about the grazer when provided, including any measurement of the intensity of grazing (e.g., animals per hectare, the height of residual vegetation). We also provided two columns that detailed whether the study tested grazing effects using a discrete comparison or gradient of intensities (Table 2). The value for the target specimens extracted may represent either a single observation or a summarized statistic (e.g., mean animals per site). We identify unique observations as “count” and summarized statistics by the metric used, such as mean, median, standard deviation (column stat in grazingData.csv). When possible, we also included any record of other grazers that co-occurred with the observed grazer species. The data for these variables were extracted from the papers by a single researcher who read through each paper and filled in available data on the mentioned variables.Table 2 The attributes and description of the grazingData.csv file that has the extracted data from each study.Full size tableWe extracted information about the target specimen, site, year, experimental replicate, and response estimate (Table 2). We included multiple categorizations of the target species to assist future users in synthesizing similar taxa (Table 2). When a species name or genus was provided, we conducted a search query (see detailedTaxa.r) through the global biodiversity information facility (GBIF.org) to determine the taxonomic classification of the species, including kingdom, phylum, order, class, and family. When a species name was not included, we provided the lowest taxonomic resolution available. We also included a broader classification of ‘higherTaxon’ to distinguish plants, fungi, vertebrates, and invertebrates. These columns may help group similar species together for community-level analyses. Lastly, we included the characteristic of the plant community (i.e., planted or self-assembled, tilled, and its vegetation class) when plant data was reported.Patterns among studiesMost of the studies took place in the United States (26%), Australia (9%), and the United Kingdom (7%) (Fig. 1). As expected, most studies were conducted in grasslands (n = 206), followed by forests (n = 92) and shrublands (n = 82) (Fig. 2). We included publications from the entire range of years (i.e., 1970–2019), but most were published after 2000 (76%). The number of sites in a study and the study duration showed a bimodal distribution with a long tail (Fig. 3). Most studies included one to eight different sites, and few were conducted longer than five years (Fig. 3). A few studies were highly replicated, while many were limited in their replication (Fig. 3).Fig. 1The locations of studies that measured the response of animals to domestic or wild grazing.Full size imageFig. 2The number of grazing studies conducted in ecosystems around the world. We generalized the characteristics of the ecosystem of the sites used in each study based on the climate and dominant vegetation community. We separated grassland communities into those that were (a) semi-natural without recent cultivation or seeding (self-assembled), (b) recently cultivated or had supplemental seeding (planted/cultivated), and (c) a combination of both. In most grasslands, the cultivation history was unclear.Full size imageFig. 3The number of independent sites surveyed and the duration of each study. Most studies were conducted at either a single site or with some replication (e.g., 6–8 sites). Similarly, most studies were either conducted in one year ( >30%) or over a few years (e.g., 3–6 years). Very few studies (32) or lasted longer than 15 years.Full size imageSite and management data were not reported in all studies, as found in other reviews of grazing impacts on ecological processes10. Of the studies that mentioned the ownership status of the land used, 46% were on private land, 42% were on public land, and 12% had a history of both public and private ownership. Most studies included binary comparisons (56%) of grazed vs. ungrazed plots or sites, though some also included a discrete (22%) or a continuous estimate of grazing intensities (18%).Of the studies that reported plant community origin, 76% were self-assembled, 17% were planted communities, and the remaining included sites were a combination of the two. Domesticated grazers as the focal herbivore made up 67% of the studies, with 12% of the studies having wild grazers as the focal herbivore, and 21% having both present. Domesticated livestock were the most frequently surveyed grazers including cattle (n = 164), sheep (n = 83), and horses (n = 21), but studies are included that examined wild grazers, such as kangaroos (n = 6), elephants (n = 5), and pronghorn (n = 5) (Fig. 4).Fig. 4The frequency in which a study reported herbivores. We included any mention of herbivores regardless of being a grazer, browser, granivore, or other class. This list was obtained by the text within the manuscript and is different than the representation of species in the database (i.e., the measured species).Full size image More