More stories

  • in

    Impact of disabled circadian clock on yellow fever mosquito Aedes aegypti fitness and behaviors

    Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S. & Hardin, P. E. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Drug Discov. 4, 121–130 (2005).Article 
    CAS 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.): The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, M. D. R. The programming of circadian flight-activity in relation to mating and the gonotrophic cycle in the mosquito. Physiol. Entomol. 6, 307–313 (1981).Article 

    Google Scholar 
    Lee, H., Yang, Y., Liu, Y., Teng, H. & Sauman, I. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. Physiol. Entomol. 56, 1219–1223 (2010).
    Google Scholar 
    Ptitsyn, A. A. et al. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genom. 12, 153 (2011).CAS 
    Article 

    Google Scholar 
    Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duf, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 108, 419–444 (2011).Article 

    Google Scholar 
    Rund, S. S. C., Gentile, J. E. & Duffield, G. E. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genom. 14, 218 (2013).CAS 
    Article 

    Google Scholar 
    Leming, M. T., Rund, S. S. C., Behura, S. K., Duffield, G. E. & O’Tousa, J. E. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC Genom. 15, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araujo, M. S., Guo, F. & Rosbash, M. Video recording can conveniently assay mosquito locomotor activity. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Lima-Camara, T. N. et al. Dengue infection increases the locomotor activity of Aedes aegypti females. PLoS ONE 6, 1–5 (2011).Article 
    CAS 

    Google Scholar 
    Das, S. & Dimopoulos, G. Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC Physiol. 19, 1–19 (2008).
    Google Scholar 
    Gentile, C. et al. Circadian clock of Aedes aegypti: Effects of blood-feeding, insemination and RNA interference. Mem. Inst. Oswaldo Cruz 108, 80–87 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meireles-filho, A. C. A. & Kyriacou, C. P. Circadian rhythms in insect disease vectors. Mem. Inst. Oswaldo Cruz 108, 48–58 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gentile, C., Rivas, G. B. S., Meireles-Filho, A. C. A., Lima, J. B. P. & Peixoto, A. A. Circadian expression of clock genes in two mosquito disease vectors: Cry2 is different. J. Biol. Rhythms 24, 444–451 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl. Acad. Sci. USA. 114, E7516–E7525 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylies, M. K., Bargiello, T. A., Jackson, F. R. & Young, M. W. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 48, 1986–1988 (1987).
    Google Scholar 
    Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E., Maltseva, O. & Rosbash, M. The timSL mutant affects a restricted portion of the drosophila melanogaster circadian cycle. J. Biol. Rhythms 13, 380–392 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 1–9 (2013).Article 

    Google Scholar 
    Meireles-Filho, A. C. A. et al. The biological clock of an hematophagous insect: Locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Lett. 580, 2–8 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. FEBS Lett. https://doi.org/10.1038/s41598-018-36550-6 (2019).Article 

    Google Scholar 
    Hug, N., Longman, D. & Cáceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495 (2015).Article 

    Google Scholar 
    Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 147 (2011).
    Google Scholar 
    Tauber, E., Roe, H., Costa, R., Hennessy, J. M. & Kyriacou, C. P. Temporal mating isolation driven by a behavioral gene in Drosophila. Curr. Biol. 13, 140–145 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E. et al. Cycle is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, F.-J., Song, W., Meyer-Bernstein, E., Naidoo, N. & Sehgal, A. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 21, 7287–7294 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yadav, P., Thandapani, M. & Sharma, V. K. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev. Biol. 14, 1–12 (2014).Article 
    CAS 

    Google Scholar 
    Jones, M. & Reiter, P. Entrainment of the pupation and adult activity rhythms during development in the mosquito Anopheles gambiae. Nature 254, 242–244 (1968).ADS 
    Article 

    Google Scholar 
    Nayar, J. K. The pupation rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic timing, rate of development, and endogenous diurnal rhythm of pupation. Ann. Entomol. Soc. Am. 60, 946–971 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nijhout, H. F. et al. The developmental control of size in insects. Wiley Interdiscip. Rev. Dev. Biol. 3, 113–134 (2014).PubMed 
    Article 

    Google Scholar 
    Kaneko, M., Hamblen, M. J. & Hall, J. C. Involvement of the period gene in developmental time-memory: Effect of the per(Short) mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms 15, 13–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M., James, A., Varma, V., Sharma, V. K. & Sheeba, V. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence. BMC Dev. Biol. 18, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Menon, A., Varma, V. & Sharma, V. K. Rhythmic egg-laying behaviour in virgin females of fruit flies Drosophila melanogaster. Chronobiol. Int. 31, 433–441 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Oldroyd, M., Wood, J., Sharp, M. & Hill, M. Clock mutations alter developmental timing in drosophila. Heredity 64, 395–401 (1990).PubMed 
    Article 

    Google Scholar 
    Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605–624 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima-Camara, T. N., Lima, J. B. P., Bruno, R. V. & Peixoto, A. A. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions. Parasit. Vectors 7, 1–8 (2014).Article 

    Google Scholar 
    Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delventhal, R. et al. Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. Elife 8, 48305 (2019).Article 

    Google Scholar 
    Nayar, J. K. & Sauerman, D. M. The effect of light regimes on the circadian rhythm of flight activity in the mosquito Aedes taeniorhynchus. J. Exp. Biol. 54, 745–756 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Granados-Fuentes, D., Tseng, A. & Herzog, E. D. A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci. 26, 12219–12225 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eilerts, D. F., Vandergiessen, M., Bose, E. A. & Broxton, K. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).PubMed Central 
    Article 

    Google Scholar 
    Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr. Biol. 14, 638–649 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sakai, T. & Ishida, N. Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc. Natl. Acad. Sci. USA. 98, 9221–9225 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petersen, G., Hall, J. C. & Rosbash, M. The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 7, 3939–3947 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 23, 1–10 (2007).PubMed 
    Article 

    Google Scholar 
    Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, 401–407 (2014).Article 
    CAS 

    Google Scholar 
    Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220–228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, 730 (2005).Article 
    CAS 

    Google Scholar 
    McDonald, M. J., Rosbash, M. & Emery, P. Wild-type circadian rhythmicity is dependent on closely spaced e boxes in the Drosophila timeless promoter. Mol. Cell. Biol. 21, 1207–1217 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chang, D. C. & Reppert, S. M. A novel c-terminal domain of drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription. Curr. Biol. 13, 654–658 (2003).Article 
    CAS 

    Google Scholar  More

  • in

    Mammal extinction facilitated biome shift and human population change during the last glacial termination in East-Central Europe

    Vörös, I. Large mammal remains from the Upper Palaeolithic site at Esztergom-Gyurgyalag. Acta Archaeol. Hung. 43, 261–263 (1991).
    Google Scholar 
    Jánossy, D. Pleistocene Vertebrate Faunas of Hungary. Journal of Chemical Information and Modeling (Akadémiai Kiadó, 1986).
    Google Scholar 
    Kordos, L. A sketch of the vertebrata biostratigraphy of the Hungarian Holocene. Földrajzi Közlemények 101, 144–160 (1978).
    Google Scholar 
    Sümegi, P., Rudner, E. & Törőcsik, T. Environmental and chronological reconstruction problems during the Pleistocene/Holocene transition in Hungary (Magyarország pleisztocén végi és kora holocén környezeti változások kronológiai, tér és időbeli rekonstrukciós problémái). In Őskoros Kutatók IV. Összejövetelének Konferenciakötete (ed. Kolozsi, B.) 279–298 (Hajdú-Bihar Megyei Múzeumok Igazgatósága, 2012).
    Google Scholar 
    Bösken, J. et al. Investigating the last glacial Gravettian site ‘Ságvár Lyukas Hill’ (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 509, 77–90 (2018).Article 

    Google Scholar 
    Wilczyński, J. et al. Mammoth hunting strategies during the Late Gravettian in Central Europe as determined from case studies of Milovice I (Czech Republic) and Kraków Spadzista (Poland). Quat. Sci. Rev. 223, 105919 (2019).Article 

    Google Scholar 
    Lengyel, G. Reassessing the middle and late upper palaeolithic in Hungary. Acta Archaeol. Carpathica 51, 47–66 (2016).
    Google Scholar 
    Béres, S. et al. Zöld cave and the late epigravettian in eastern central Europe. Quat. Int. 587–588, 158–171 (2021).Article 

    Google Scholar 
    Feurdean, A. et al. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat. Sci. Rev. 45, 111–125 (2012).Article 
    ADS 

    Google Scholar 
    Kuneš, P. et al. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J. Biogeogr. 35, 2223–2236 (2008).Article 

    Google Scholar 
    Pazonyi, P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 295–314 (2004).Article 

    Google Scholar 
    Sümegi, P. et al. Climatic fluctuations inferred for the middle and late pleniglacial (MIS 2) based on high-resolution (∼ca. 20 y) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard (Hungary). Cent. Eur. Geol. 55, 329–345 (2012).Article 

    Google Scholar 
    Magyari, E. K. et al. Vegetation and environmental responses to climate forcing during the last glacial maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quat. Sci. Rev. 106, 278–298 (2014).Article 
    ADS 

    Google Scholar 
    Feurdean, A. et al. Climate variability and associated vegetation response throughout central and eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 106, 206–224 (2014).Article 
    ADS 

    Google Scholar 
    Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl. Acad. Sci. U. S. A. 112, 14301–14306 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 35, 116–130 (2012).Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quat. Sci. Rev. 225, 105980 (2019).Article 

    Google Scholar 
    Sümegi, P., Magyari, E., Dániel, P., Molnár, M. & Törocsik, T. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quat. Int. 293, 34–50 (2013).Article 

    Google Scholar 
    Hillebrand, J. Paleolithic History (Az őskőkor Története) (Magyar Szemle Társaság, 1934).
    Google Scholar 
    Vértes, L., Kretzoi, M. & Herrmann, M. Neuere Forschungen in der Jankovich-Höhle. Folia Archaeol. 9, 3–23 (1957).
    Google Scholar 
    Jánossy, D. Preliminary results of the paleontological investigations of a yet unknown rock shelter in the Bükk Mountains (A Bükk-hegység eddig ismeretlen kőfülkéjében végzett őslénytani ásatás előzetes eredménye, Répáshuta, Rejtek). Karszt- és Barlkut. Tájékoztató 72 (1963).Jánossy, D. & Kordos, L. Pleistocene-Holocene Mollusc and Vertebrate Fauna of two caves in Hungary. Ann. Hist. Musei Natl. Hungarici 68, 5–29 (1976).
    Google Scholar 
    Vértes, L. Paleolithic and Mesolithic Remains in Hungary (Az Őskőkor és az Átmeneti Kőkor Emlékei Magyarországon) (Akadémiai Kiadó, 1965).
    Google Scholar 
    Stieber, J. Oberpleistozäne Vegetationsgeschichte Ungarns im Spiegel anthrakotomischer Ergebnisse (bis 1957) (A magyarországi felsőpleisztocén vegetáció-története az anthrakotómiai eredmények (1957-ig) tükrében). Földtani Közlöny 97, 305–317 (1967).
    Google Scholar 
    Jánossy, D. Vorläufige Ergebnisse der Ausgrabungen in der Felsnische Rejtek I. (Bükkgebirge, Gem. Répáshuta). Karszt- és Barlangkutatás 3, 49–58 (1961).
    Google Scholar 
    Kovács, J. Radiocarbon chronology of late Pleistocene large mammal faunas from the Pannonian basin (Hungary). Bull. Geosci. 87, 13–19 (2012).Article 

    Google Scholar 
    Willis, K. J., Braun, M., Sümegi, P. & Tóth, A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78, 740–750 (1997).Article 

    Google Scholar 
    Magyari, E. Holocene biogeography of Fagus sylvatica L. and Carpinus betulus L. in the Carpathian-Alpine Region. Folia Hist. Musei Matra. 26, 15–35 (2002).
    Google Scholar 
    Magri, D. Persistence of tree taxa in Europe and quaternary climate changes. Quat. Int. 219, 145–151 (2010).Article 

    Google Scholar 
    Füköh, L. Biostratigraphical investigation of the mollusc fauna of Rejtek I. rock-niche and Petényi Cave: Bükk Mountains, Hungary (Rejtek kőfülke és a Petényi-barlang (Bükk-hegység) Mollusca faunájának malakosztratigráfiai vizsgálata). Folia Hist. Musei Matra. 12, 9–13 (1987).
    Google Scholar 
    Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).CAS 
    Article 

    Google Scholar 
    Bradshaw, C. J. A., Cooper, A., Turney, C. S. M. & Brook, B. W. Robust estimates of extinction time in the geological record. Quat. Sci. Rev. 33, 14–19 (2012).Article 
    ADS 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 
    ADS 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Katona, L., Kovács, J., Kordos, L., Szappanos, B. & Linkai, I. The Csajág mammoths (Mammuthus primigenius): late Pleniglacial finds from Hungary and their chronological significance. Quat. Int. 255, 130–138 (2012).Article 

    Google Scholar 
    Buczkó, K. et al. Responses of diatoms to the Younger Dryas climatic reversal in a South Carpathian mountain lake (Romania). J. Paleolimnol. 48, 417–431 (2012).Article 
    ADS 

    Google Scholar 
    Tóth, M. et al. A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania). Quat. Res. 77, 122–131 (2012).Article 
    CAS 

    Google Scholar 
    Sümegi, P. et al. Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central Great Hungarian Plain (Central Europe) during the last 25,000 years. Radiocarbon 53, 85–97 (2011).Article 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Feurdean, A. et al. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17, 1213–1230 (2020).Article 
    ADS 

    Google Scholar 
    Sümegi, P. et al. Radiocarbon dated complex paleoecological and geoarcheological analyses at the Bodrogkeresztúr—Henye Gravettian site (Ne Hungary). Archeometriai Műhely 13, 31–41 (2016).
    Google Scholar 
    Herrmann, M., Jánossy, D., Stieber, J. & Vértes, L. Ausgrabungen in der Petényi- und Pesko-Höhle (Bükk-Gebirge). Folia Archaeol. 8, 3–22 (1956).
    Google Scholar 
    Royer, A. How complex is the evolution of small mammal communities during the Late Glacial in southwest France?. Quat. Int. 414, 23–33 (2016).Article 

    Google Scholar 
    Crégut-Bonnoure, E. et al. The karst of the Vaucluse, an exceptional record for the last glacial maximum (LGM) and the Late-glacial period palaeoenvironment of southeastern France. Quat. Int. 339–340, 41–61 (2014).Article 

    Google Scholar 
    Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). J. Archaeol. Sci. 36, 947–955 (2009).Article 

    Google Scholar 
    Kovalchuk, O. et al. Living in a time of change: late Pleistocene/Holocene transitional vertebrate fauna of Grot Skeliastyi (Crimea, Ukraine). Hist. Biol. https://doi.org/10.1080/08912963.2020.1769094 (2020).Article 

    Google Scholar 
    Puzachenko, A. Y. & Markova, A. K. Evolution of mammal species composition and species richness during the Late Pleistocene—Holocene transition in Europe: a general view at the regional scale. Quat. Int. 530–531, 88–106 (2019).Article 

    Google Scholar 
    Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern Central Europe. In Relict Species: Phylogeography and Conservation Biology (eds Habel, J. C. & Assmann, T.) 57–87 (Springer Berlin Heidelberg, 2010).Chapter 

    Google Scholar 
    Magyari, E. K. et al. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37, 915–935 (2010).Article 

    Google Scholar 
    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).Article 

    Google Scholar 
    Lister, A. M. & Sher, A. V. Ice cores and mammoth extinction. Nature 378, 23–24 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Owen-Smith, N. R. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).Book 

    Google Scholar 
    Guthrie, R. D. Frozen Fauna of the Mammoth Steppe: The story of Blue Babe (The University of Chicago Press, 1990).Book 

    Google Scholar 
    Huntley, B. et al. Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLoS One 8, e61963 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Vörös, I. Large mammalian faunal changes during the Late Upper Pleistocene and Early Holocene times in the Carpathian Basin. In Pleistocene Environment in Hungary (ed. Pécsi, M.) 81–102 (Geographical Research Institute HAS, 1987).
    Google Scholar 
    Németh, A. et al. Holocene mammal extinctions in the Carpathian Basin: a review. Mamm. Rev. 47, 38–52 (2017).Article 

    Google Scholar 
    Marchant, R., Brewer, S., Webb, T. I. & Turvey, S. T. Holocenedeforestation: a history of human–environmental interactions, climate change, and extinction. In Holocene Extinctions (ed. Turvey, S. T.) 213–234 (Oxford University Press, 2009).Chapter 

    Google Scholar 
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Herre, W. Rangifer tarandus—Ren, Rentier. In Handbuch der Saugetiere Europas 2/II Paarhufer—Artiodactyla (eds Niethammer, J. & Krapp, F.) 198–216 (Aula Publisher, 1986).
    Google Scholar 
    Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljegren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306 (2014).Article 

    Google Scholar 
    Lengyel, G. & Wilczyński, J. (2018) The Gravettian and the Epigravettian chronology in eastern central Europe: a comment on Bösken et al. (2017). Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 265–269 (2018).Article 

    Google Scholar 
    Sommer, R. S. Late Pleistocene and Holocene history of mammals in Europe. Handb. Mamm. Eur. https://doi.org/10.1007/978-3-319-65038-8_3-1 (2020).Article 

    Google Scholar 
    Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 280, 20131910 (2013).Article 

    Google Scholar 
    Spötl, C., Reimer, P. J. & Göhlich, U. B. Mammoths inside the Alps during the last glacial period: radiocarbon constraints from Austria and palaeoenvironmental implications. Quat. Sci. Rev. 190, 11–19 (2018).Article 
    ADS 

    Google Scholar 
    Sümegi, P. Loess and Upper Paleolithic Environment in Hungary: An Introduction to the Environmental History of Hungary (Aurea, 2005).
    Google Scholar 
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. U. S. A. 114, E10632–E10638 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Haynes, G. Extinctions in North America’s late glacial landscapes. Quat. Int. 285, 89–98 (2013).Article 

    Google Scholar 
    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lengyel, G. et al. The Epigravettian chronology and the human population of eastern Central Europe during MIS2. Quat. Sci. Rev. 271, 107187 (2021).Article 

    Google Scholar 
    Sajó, I. E. et al. Core-shell processing of natural pigment: upper Palaeolithic red ochre from Lovas, Hungary. PLoS One 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Horváth, T. & Ilon, G. Mezőlak-Szélmező-peatbog: an unusual prehistoric site (Mezőlak-szélmező-tőzegtelep: egy nem hétköznapi őskori lelőhely). Archeometriai Műhely 14, 143–183 (2017).
    Google Scholar 
    Zalai-Gaál, I. Possibilites of the social-archaeological studies of the Neolithic. Antaeus 27, 449–471 (2004).
    Google Scholar 
    Reade, H. et al. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-020-01254-4 (2021).Article 
    PubMed 

    Google Scholar 
    Łanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biała 1 open-air site (Podhale Region, southern Poland). Quat. Int. 512, 113–132 (2019).Article 

    Google Scholar 
    Mészáros, G. & Vértes, L. A paint mine from the early Upper Palaeolithic age near Lovas (Hungary, county Veszprém). Acta Archaeol. Acad. Sci. Hung. 5, 5–34 (1955).
    Google Scholar 
    Pathou-Mathis, M. Nouvelle analyse du metérial osseux du site de Lovas. Praehistoria 3, 161–175 (2002).
    Google Scholar 
    Sobkowiak-Tabaka, I. & Diachenko, A. Approaching daily life at Late Palaeolithic camps: the case of Lubrza 10, Western Poland. Prahistorische Z. 95, 311–333 (2020).Article 

    Google Scholar 
    Molnár, M. et al. EnvironMICADAS : a mini 14C AMS with enhanced gas ion source. Radiocarbon 55, 338–344 (2013).Article 

    Google Scholar 
    Major, I. et al. Assessment and development of bone preparation for radiocarbon dating at HEKAL. Radiocarbon 61, 1551–1561 (2019).CAS 
    Article 

    Google Scholar 
    Rinyu, L. et al. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 270–275 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    Molnár, M. et al. Status report of the new AMS 14 C sample preparation lab of the Hertelendi laboratory of environmental studies (Debrecen, Hungary). Radiocarbon 55, 665–676 (2013).Article 

    Google Scholar 
    Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evol. 3, 31–38 (2019).PubMed 
    Article 

    Google Scholar 
    Davis, B. A. S. et al. The European modern pollen database (EMPD) project. Veg. Hist. Archaeobot. 22, 521–530 (2013).Article 

    Google Scholar 
    ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Line, J. M., Juggings, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).ADS 

    Google Scholar 
    Prentice, I. C. Multidimensional scaling as a research tool in quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31, 71–104 (1980).Article 

    Google Scholar 
    van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 25, 313–323 (1994).Article 

    Google Scholar 
    Birks, H. J. B. Quantitative palaeoenvironmental reconstructions from holocene biological data. Glob. Change Holocene https://doi.org/10.4324/9780203785027 (2003).Article 

    Google Scholar 
    Rioja, J. S. Analysis of Quaternary Science Data, R package version (0.8-5). (2012).Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).Article 
    ADS 

    Google Scholar 
    Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).Article 

    Google Scholar 
    Birks, H. J. B. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 292–304 (2012).Article 

    Google Scholar 
    Kordos, L. Climatostratigraphy of Upper Pleistocene vertebrates and the conditions of loess formation in Hungary. GeoJournal 15, 163–166 (1987).Article 

    Google Scholar 
    Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).Article 

    Google Scholar 
    Tarasov, P. E. et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 25, 1029–1053 (1998).Article 

    Google Scholar 
    Allen, J. R. M., Watts, W. A. & Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quat. Int. 73–74, 91–110 (2000).Article 

    Google Scholar  More

  • in

    Africans and Europeans differ in their facial perception of dominance and sex-typicality: a multidimensional Bayesian approach

    de Waal-Andrews, W., Gregg, A. P. & Lammers, J. When status is grabbed and when status is granted: Getting ahead in dominance and prestige hierarchies. Br. J. Soc. Psychol. 54, 445–464 (2015).PubMed 

    Google Scholar 
    Mileva, V. R., Cowan, M. L., Cobey, K. D., Knowles, K. K. & Little, A. C. In the face of dominance: Self-perceived and other-perceived dominance are positively associated with facial-width-to-height ratio in men. Pers. Individ. Dif. 69, 115–118 (2014).
    Google Scholar 
    Quist, M. C., Watkins, C. D., Smith, F. G., DeBruine, L. M. & Jones, B. C. Facial masculinity is a cue to women’s dominance. Pers. Individ. Dif. 50, 1089–1093 (2011).
    Google Scholar 
    Gallup, A. C., O’Brien, D. T., White, D. D. & Wilson, D. S. Handgrip strength and socially dominant behavior in male adolescents. Evol. Psychol. 8, 229–243 (2010).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W. & Sell, A. N. Judgments of dominance from the face track physical strength. Evol. Psychol. 12, 1–18 (2014).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W., Dotsch, R., Falvello, V. & Todorov, A. Physical strength as a cue to dominance: A data-driven approach. Personal. Soc. Psychol. Bull. 42, 1603–1616 (2016).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., van Vugt, M. & Penke, L. Honest signals of status: Facial and bodily dominance are related to success in physical but not nonphysical competition. Evol. Psychol. 17, 147470491986316 (2019).
    Google Scholar 
    Han, C. et al. Interrelationships among men’s threat potential, facial dominance, and vocal dominance. Evol. Psychol. 15, 1–4 (2017).
    Google Scholar 
    Sell, A. et al. Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proc. R. Soc. B Biol. Sci. 276, 575–584 (2009).
    Google Scholar 
    Kleisner, K., Kočnar, T., Rubešová, A. & Flegr, J. Eye color predicts but does not directly influence perceived dominance in men. Pers. Individ. Dif. 49, 59–64 (2010).
    Google Scholar 
    Windhager, S., Schaefer, K. & Fink, B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am. J. Hum. Biol. 23, 805–814 (2011).PubMed 

    Google Scholar 
    Albert, G., Wells, E., Arnocky, S., Liu, C. H. & Hodges-Simeon, C. R. Observers use facial masculinity to make physical dominance assessments following 100-ms exposure. Aggress. Behav. https://doi.org/10.1002/ab.21941 (2020).Article 
    PubMed 

    Google Scholar 
    Batres, C., Re, D. E. & Perrett, D. I. Influence of perceived height, masculinity, and age on each other and on perceptions of dominance in male faces. Perception 44, 1293–1309 (2015).PubMed 

    Google Scholar 
    Boothroyd, L. G., Jones, B. C., Burt, D. M. & Perrett, D. I. Partner characteristics associated with masculinity, health and maturity in male faces. Pers. Individ. Dif. 43, 1161–1173 (2007).
    Google Scholar 
    Main, J. C., Jones, B. C., DeBruine, L. M. & Little, A. C. Integrating gaze direction and sexual dimorphism of face shape when perceiving the dominance of others. Perception 38, 1275–1283 (2009).PubMed 

    Google Scholar 
    Van Dongen, S. & Sprengers, E. Hand grip strength in relation to morphological measures of masculinity, fluctuating asymmetry and sexual behaviour in males and females. Sex Horm. https://doi.org/10.5772/25880 (2012).Article 

    Google Scholar 
    Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).PubMed 

    Google Scholar 
    Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 26, 1470–1475 (2015).
    Google Scholar 
    Law, S. M. J. et al. Facial appearance is a cue to oestrogen levels in women. Proc. Biol. Sci. 273, 135–140 (2006).
    Google Scholar 
    Probst, F., Bobst, C. & Lobmaier, J. S. Testosterone-to-estradiol ratio is associated with female facial attractiveness. Q. J. Exp. Psychol. 69, 89–99 (2016).
    Google Scholar 
    Marečková, K. et al. Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Horm. Behav. 60, 681–690 (2011).PubMed 

    Google Scholar 
    Whitehouse, A. J. O. et al. Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proc. R. Soc. B Biol. Sci. 282, 78–94 (2015).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., Pita, S. R., Jünger, J. & Penke, L. Further evidence that facial width-to-height ratio and global facial masculinity are not positively associated with testosterone levels. Adapt. Hum. Behav. Physiol. 5, 117–130 (2019).
    Google Scholar 
    Chiu, H. T., Shih, M. T. & Chen, W. L. Examining the association between grip strength and testosterone. Aging Male 3, 1–8 (2019).
    Google Scholar 
    Hirschberg, A. L. et al. Effects of moderately increased testosterone concentration on physical performance in young women: A double blind, randomised, placebo controlled study. Br. J. Sports Med. 3, 1–7. https://doi.org/10.1136/bjsports-2018-100525 (2019).Article 

    Google Scholar 
    Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).PubMed 

    Google Scholar 
    Carré, J. M. & Olmstead, N. A. Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience 286, 171–186 (2015).PubMed 

    Google Scholar 
    Lefevre, C. E., Etchells, P. J., Howell, E. C., Clark, A. P. & Penton-Voak, I. S. Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. Biol. Lett. 10, 20140729 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Alrajih, S. & Ward, J. Increased facial width-to-height ratio and perceived dominance in the faces of the UK’s leading business leaders. Br. J. Psychol. 105, 153–161 (2014).PubMed 

    Google Scholar 
    Watkins, C. D., Jones, B. C. & DeBruine, L. M. Individual differences in dominance perception: Dominant men are less sensitive to facial cues of male dominance. Pers. Individ. Dif. 49, 967–971 (2010).
    Google Scholar 
    Wang, X., Guinote, A. & Krumhuber, E. G. Dominance biases in the perception and memory for the faces of powerholders, with consequences for social inferences. J. Exp. Soc. Psychol. 78, 23–33 (2018).
    Google Scholar 
    de Carrito, M. L. et al. The role of sexually dimorphic skin colour and shape in attractiveness of male faces. Evol. Hum. Behav. 37, 125–133 (2016).
    Google Scholar 
    Stephen, I. D., Oldham, F. H., Perrett, D. I. & Barton, R. A. Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evol. Psychol. 10, 562–572 (2012).PubMed 

    Google Scholar 
    Stephen, I. D. & Perrett, D. I. Color and face perception. in Handbook of Color Psychology (eds. Elliot, A. J., Fairchild, M. D. & Franklin, A.) 585–602 (Cambridge University Press, 2016). https://doi.org/10.1017/cbo9781107337930.029.Carrito, M. L. & Semin, G. R. When we don’t know what we know–Sex and skin color. Cognition 191, 103972 (2019).PubMed 

    Google Scholar 
    Said, C. P. & Todorov, A. A statistical model of facial attractiveness. Psychol. Sci. 22, 1183–1190 (2011).PubMed 

    Google Scholar 
    Mitteroecker, P., Windhager, S., Møller, G. B. & Schaefer, K. The morphometrics of ‘masculinity’ in human faces. PLoS One 10, e0118374 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Pages, S., Rodriguez-Ruiz, C. & Turiegano, E. Facial masculinity: How the choice of measurement method enables to detect its influence on behaviour. PLoS One 9, 10078 (2014).
    Google Scholar 
    Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P. & Penton-Voak, I. S. Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS One 5, e13585 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rennels, J. L., Bronstad, P. M. & Langlois, J. H. Are attractive men’s faces masculine or feminine ? The importance of type of facial stimuli. J. Exp. Psychol. Hum. Percept. Perform. 34, 884–893 (2008).PubMed 

    Google Scholar 
    Swaddle, J. P. & Reierson, G. W. Testosterone increases perceived dominance but not attractiveness in human males. Proc. R. Soc. B Biol. Sci. 269, 2285–2289 (2002).CAS 

    Google Scholar 
    Hester, N., Jones, B. C. & Hehman, E. Perceived femininity and masculinity contribute independently to facial impressions. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000989 (2020).Article 
    PubMed 

    Google Scholar 
    Howansky, K., Albuja, A. & Cole, S. Seeing Gender: Perceptual Representations of Transgender Individuals. Soc. Psychol. Personal. Sci. 11, 474–482 (2020).
    Google Scholar 
    Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world. Sci. Rep. 7, 10048 (2021).
    Google Scholar 
    Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
    Google Scholar 
    Strom, M. A., Zebrowitz, L. A., Zhang, S., Bronstad, P. M. & Lee, H. K. Skin and bones: The contribution of skin tone and facial structure to racial prototypicality ratings. PLoS One 7, e41193 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS One 9, 1700 (2014).
    Google Scholar 
    Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal length affects depicted shape and perception of facial images. PLoS One 11, e0149313 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nábělková, M. Closely-related languages in contact: Czech, Slovak, “Czechoslovak”. Int. J. Soc. Lang. 183, 53–73 (2007).
    Google Scholar 
    Dixson, B. J. Facial width to height ratio and dominance. Encycl. Evol. Psychol. Sci. https://doi.org/10.1007/978-3-319-16999-6 (2017).Article 

    Google Scholar 
    Geniole, S. N. & McCormick, C. M. Facing our ancestors: Judgements of aggression are consistent and related to the facial width-to-height ratio in men irrespective of beards. Evol. Hum. Behav. 36, 279–285 (2015).
    Google Scholar 
    Třebický, V. et al. Further evidence for links between facial width-to-height ratio and fighting success: Commentary on Zilioli et al. (2014). Aggress. Behav. 41, 331–334 (2015).PubMed 

    Google Scholar 
    McLaren, K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J. Soc. Dye. Colour. 92, 338–341 (1976).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V. et al. African perceptions of female attractiveness. PLoS ONE 7, 3–8 (2012).
    Google Scholar 
    Webster, M. & Sheets, H. D. A practical introduction to landmark-based geometric morphometrics. Paleontol. Soc. Pap. 16, 163–188 (2010).Kleisner, K., Pokorný, Š & Saribay, S. A. Toward a new approach to cross-cultural distinctiveness and typicality of human faces: The cross-group typicality/ distinctiveness metric. Front. Psychol. 10, 124 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bookstein, F. L. Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol. 58, 313–365 (1996).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 1–4 (2015).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Revelle, W. psych: Procedures for Personality and Psychological Research. (2018).Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).CAS 
    PubMed 

    Google Scholar 
    McElreath, R. rethinking: Statistical Rethinking book package. R package version 2.13. (2020).Stan Development Team. RStan: The R interface to Stan. R package version 2.21.2. (2020).Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).PubMed 

    Google Scholar 
    Voegeli, R. et al. Cross-cultural perception of female facial appearance: A multi-ethnic and multi-centre study. PLoS ONE 16, 8–12 (2021).
    Google Scholar 
    Kočnar, T., Adil Saribay, S. & Kleisner, K. Perceived attractiveness of Czech faces across 10 cultures: Associations with sexual shape dimorphism, averageness, fluctuating asymmetry, and eye color. PLoS One 14, e0225549 (2019).Pavlovič, O., Fiala, V. & Kleisner, K. Environmental convergence in facial preferences: A cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Gonzalez-Santoyo, I. et al. The face of female dominance: Women with dominant faces have lower cortisol. Horm. Behav. 71, 16–21 (2015).CAS 
    PubMed 

    Google Scholar 
    Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saribay, S. A. et al. The Bogazici face database: Standardized photographs of Turkish faces with supporting materials. PLoS One 13, 10058 (2018).
    Google Scholar 
    Alharbi, S. A. H., Holzleitner, I. J., Lee, A. J., Saribay, S. A. & Jones, B. C. Women’s preferences for sexual dimorphism in faces: Data from a sample of arab women. Evol. Psychol. Sci. 6, 328–334 (2020).
    Google Scholar 
    Jones, B. C. et al. To which world regions does the valence–dominance model of social perception apply?. Nat. Hum. Behav. 5, 159–169 (2021).PubMed 

    Google Scholar 
    Sutherland, C. A. M. et al. Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers’ unconstrained facial impressions. Personal. Soc. Psychol. Bull. 44, 521–537 (2017).
    Google Scholar 
    Marcinkowska, U. M. et al. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biol. Lett. 10, 4–7 (2014).
    Google Scholar 
    Marcinkowska, U. M. et al. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annu. Rev. Psychol. 66, 519–545 (2015).PubMed 

    Google Scholar 
    Little, A. C., Jones, B. C. & Debruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1638–1659 (2011).Foo, Y. Z., Simmons, L. W. & Rhodes, G. Predictors of facial attractiveness and health in humans. Sci. Rep. 7, 39731 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dion, K., Berscheid, E. & Walster, E. What is beautiful is good. J. Pers. Soc. Psychol. 24, 285–290 (1972).CAS 
    PubMed 

    Google Scholar 
    Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: Evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013).PubMed 

    Google Scholar 
    van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?. Ethn. Racial Stud. 9, 87–113 (1986).
    Google Scholar 
    Fink, B. et al. Colour homogeneity and visual perception of age, health and attractiveness of male facial skin. J. Eur. Acad. Dermatology Venereol. 26, 1486–1492 (2012).CAS 

    Google Scholar 
    Gallagher, N. M. & Bodenhausen, G. V. Gender essentialism and the mental representation of transgender women and men: A multimethod investigation of stereotype content. Cognition 217, 104887 (2021).Fiala, V. et al. Facial attractiveness and preference of sexual dimorphism: A comparison across five populations. Evol. Hum. Sci. 3, e38 (2021). More

  • in

    Role of trade agreements in the global cereal market and implications for virtual water flows

    Link activationContingency tables corresponding to the three cases described in the “Methods” section are shown in Table 1. This Table is quite revealing in several ways. The most interesting aspect is that the highest probability of link establishment occurs when an agreement is activated (Operational Activation in t).Table 1 Contingency tables.Full size tableIn this case, the probability of activation of a new link is 8.8%—namely, the ratio of new activation 7.3% to the total number of links that were not active at year t-1 (82.6%)—which is significantly higher than in the case of links not covered by a commercial agreement (No Trade Agreement), amounting to 1.4%.Therefore, the findings show that operational activation is associated with creating new trade relations between two particular countries. The third set, which considers links where a trade agreement exists in both years (t-1) and t (Trade Agreement in t-1 and t), also shows a consistent activation probability of 6%. This result confirms the assumption that the coverage of a commercial agreement, and not only its implementation, encourages the genesis of new links.Moreover, Table 1 suggests some interesting considerations on trade persistence. To establish these probabilities, we focus on the row totals in which a trade relationship is present at year (t-1), i.e., 28.8% in the case Trade Agreement in t-1 and t. The presence of an agreement influences in a positive way the probability of maintaining a trade relationship. In fact, when a trade agreement is present in both years, (t-1) and t, the probability of preserving the trade relationship is 87.1% ((frac{25.1}{28.8}times {100})), while when a trade agreement is activated at year t, the probability slightly decreases to 81.6%. In cases where trade agreements are missing (No Trade Agreement in t) we observe the probability of retaining a relationship decreases to 77.3%.Another interesting aspect concerns the probability of link deactivation. Once more, the coverage of a trade agreement favors a lower likelihood of deactivation of existing links. The ratio of the percentage of links that were active at year (t-1) and are no more active at year t to the total is 22.7% ((frac{1}{4.4}times {100})) in the case of a lack of agreement. This probability decreases to 18.4% ((frac{3.2}{17.4}times {100})) if we consider only the year of activation of the agreement (Operational Activation), and drops to 12.8% ((frac{3.7}{28.8}times {100})) when looking at agreements present in both years.Together, these results provide insights into the role of trade agreements in the network topology of cereal trade. While the establishment of a trade agreement promotes the potential for new trade links, the presence of the agreement in two consecutive years allows both to maintain an existing relationship and reduce the likelihood of link shutdowns.Flow variationsIn this second part, we study the impact of trade agreements on existing trade flows, analyzing the relationship between the flows at time t and the flows at time (t-1) in each of the three cases described in the “Methods” section—i.e., No trade agreements, Operational Activation in t, and Trade agreement in t-1 and t—measured in US$, Kcal and m(^3) of virtual water.Figure 3Kernel Density scatterplot between trade flows of cereals at time t (on the y-axis) and time (t-1) (on the x-axis) for the three different sets: No trade agreements (column a), Operational Activation in t (b), and Trade agreement in (t-1) and t (c). Panels in the first, second and third row refer to flows in US$, Kcal, and virtual water (m(^3)), respectively. Flow values are shown on a logarithmic scale. The color bar indicates probability densities, and the bisector is highlighted. Notice (i) the higher volumes in the case of flows covered by trade agreement and (ii) a a less relevant increase in volume when the flows are seen in the virtual water lens.Full size imageFigure 3 shows three different scatterplots for each unit of measure (US$ and Kcal and m(^3)). The scatterplots are colored by Kernel Density Estimation (KDE), a non-parametric technique for probability density functions. KDE aims to take a finite sample of data and infer the underlying probability density function. Figure 3 relates the flows at time (t-1) with the flows at time t, both reported on a logarithmic scale since the quantities span several orders of magnitude. Let’s start focusing on flows in terms of dollars and kilocalories. What stands out from the figure is the displacement of the flows toward higher values when they are covered by trade agreements (Trade Agreement in t-1 and t), compared to the case where flows have no trade agreement.We have quantitative evidence of this result by looking at Table 2 where the average flows in both years are shown. The average values of flows in both US$ and Kcal are much higher when there is a trade agreement over time (Trade agreement in t-1 and t). Flows have an average value of (6.13times 10^{7})$, larger than the mean of (3.05times 10^{7})$ achieved by flows not covered by a trade agreement. By comparing the distributions of the two distinct sets with different dimensions by applying the non-parametric Mann-Whitney test, we stand to evaluate this result as extremely significant (p-value approximately 0).Table 2 Average values of trade flows and flow variation index (rho _{ij}) for each of the three sets, in US$ (a), Kcal (b), and Virtual water (VW, m(^3)). The bar indicates the average operator.Full size tableAlso, while operational activation plays a crucial role in creating new links in the global cereal trade, it does not appear to hold central importance in driving flow increases. The average value of flows in both years (t-1) and t are, in fact, smaller than those not covered by trade agreements.The view appears slightly different when we look at the values in terms of virtual water (VW, m(^3)), i.e., the sum of the blue and green components. Flows with a commercial agreement show higher averages values than those not covered by agreements (see panel (c) of Table 2), but the increase is significantly lower than the one recorded in the other two units (US$ and Kcal). The increase recorded in dollars is about 100%, while in terms of virtual water this increase is less than 30%. In the next subsection, we will focus on this peculiar behavior, which reveals a different water content of the goods traded along links covered or not by agreements.Another significant result that emerges from Fig. 3 is the smaller amplitude (around the bisector) of the cloud in the case of link covered by agreements in both years (t-1) and t. This is confirmed by comparing the weighted average of the absolute value of the inter-annual flow variation index (overline{rho _{ij}}_{w}) (weights are the flows traded in the year (t-1)). The index (rho _{ij}) is used to highlight cases where the activation or the presence of the agreement generates a significant flow increase.Larger (rho _{ij}) values correspond to larger average variations from year (t-1) to year t. Accordingly, we observe that in the presence of trade agreement at time (t-1) and t a smaller (rho _{ij}) value of 24.79 percentage points (p.p) is found (see panel (a) of Table 2).Considering all the units (US$, Kcal, and m(^3)), this value is about half of the average inter-annual variation that occurs when there is no trade agreement. Hence, the presence of a commercial agreement over time reduces large fluctuations, stabilizing the year-to-year variations.To shed light on the response of water flows to the occurrence of the agreement, we refer to water productivity (WP)34, both in economic and nutritional terms. Table 3 shows that the Nutritional WP for the total virtual water is, on average, 35% higher in the flows under a trade agreement than in flows that are not under any treaty, while the Economic WP is 62% higher. We also analyze the two virtual water components, blue and green, separately.Interestingly, for blue water in the presence of a trade agreement, the Nutritional WP and the Economic WP for the flows covered by trade agreement are, on average, 68% and 93% higher than for the flows not covered by agreements. In other words, for one cubic meter of water used for grain production, more kilo-calories and dollars are exchanged when an agreement is in place, and this difference is even more significant in terms of blue water.Table 3 Average of nutritional ((mathrm {kcal/m^3})) and economic ((mathrm {US$/m^3})) water productivity (WP) for the total, blue and green virtual water.Full size tableWe also investigate in detail which products contribute most to the imbalance between flows in terms of kcal or water. To this aim, Fig. 4 reports the nutritional WP for each grain item distinguishing whether or not there is a commercial agreement (similar results occur if the economic WP is considered).The figure highlights that the nutritional WP is generally higher in the case where flows are covered by trade agreements (green bars). The most noticeable cases are Maize and Wheat, which are also the most traded products: the value of nutritional WP increases from 1978 (mathrm {kcal/m^3}) (No trade agreement) to 2851 (mathrm {kcal/m^3}) in case of a trade agreement for Wheat, and from 4471 (mathrm {kcal/m^3}) to 5026 for Maize.Figure 4The bar chart shows the nutritional WP for each cereal product in the two sets of Trade agreement in t-1 and t (in green) and No trade agreement (in red). The number over the bars represents the percentage of kcal traded for each product compared to the total kcal of all cereals. Note that green bars are higher than the red ones in 80% of cases.Full size imageA few products have a higher nutritional WP value when the flows are not involved in any treaty, e.g., Rye. This behavior can be traced back to a few flows that dominate the market between countries not linked by trade agreements. For example, trade in Rye in 2014 is attributable to just two major flows in terms of caloric intake relative to water quantity (notably, one between Germany and Japan, the other between Russia and Turkey).Figure 4 clearly shows that grains characterized by greater water efficiency generally move along the links covered by agreements.Performance of trade agreements in increasing flowOur results show that links covered by agreements exhibit larger flows than links not covered by treaties. We also intend to obtain information about the possible flow increase under a specific agreement.As mentioned in the “Methods” section, we selected only those operating links when the agreement came into force to evaluate the variation index ((rho _a)) under a specific treaty. Consequently, since there are trade agreements that came into force before the time interval considered, these are excluded from this analysis. As a result, the total number of agreements selected for this analysis is 99, 61 of which show an increase (positive (rho _{a}) values), while the remaining 38 exhibits a decrease in the flux intensities compared to the overall global trend. We present in Table 5 the results for positive (rho _{a}) variations, while trade agreements with negative (rho _{a}) values are reported in Supplementary Material (5). We provide this analysis in terms of economic flows (US$), but very similar results are obtained if calories (kcal) or virtual water (m(^3)) are chosen as the unit of measure.Table 4 Flow values in millions of dollars in year t and percent changes (rho _{a}) from (t-1) to t for each trade agreement.Full size tableWhat stands out in Table 4 is that most of the positive percentage changes occur in Europe and Central Asia regions. This may be due to long-term commercial activities in Europe, which are supported by the geographical proximity of the countries, as well as the wide variety of political and economic treaties among them. Europe, in fact, is characterized by a fourfold increase in cereal production since the 1960s due to the adoption of the Common Agricultural Policy, which has intensified trade in Europe and towards external markets30.A closer inspection of Table 4 shows that among the agreements with the most significant flows that showed the greatest increases, we find EEA (European Economic Area) in Europe and Central Asia, Japan-ASEAN in East Asia and Pacific, and COMESA in Sub-Saharan Africa.With lower flow values but large increases ((rho _{a})) due to the entry into force of trade agreements, the India-Sri Lanka agreement in South Asia stands out above all others. Also, the treaty signed in 2013 between EU-Colombia and Peru shows significant variations in terms of the percentage of flow increase, but the volume of the corresponding flow is inferior when compared with other trade agreements. On the other hand, the North American Free Trade Agreement (NAFTA), which became effective in 1994, has a lower (rho _{a}) value, but the flows on which the variation is calculated are significantly higher. More

  • in

    Photophysiological response of Symbiodiniaceae single cells to temperature stress

    Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011;333:418–22.CAS 
    Article 

    Google Scholar 
    Baird AH, Marshall PA. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser. 2002;237:133–41.Article 

    Google Scholar 
    Lewis CL, Coffroth MA. The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science. 2004;304:1490–2.CAS 
    Article 

    Google Scholar 
    Matsuda SB, Chakravarti LJ, Cunning R, Huffmyer AS, Nelson CE, Gates RD, et al. Temperature mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. Glob Chang Biol. 2022;28:2006–25.Article 

    Google Scholar 
    Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 2017;26:2640–59.CAS 
    Article 

    Google Scholar 
    Diaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc R Soc B. 2017;284:20171767.Article 

    Google Scholar 
    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2012;2:116–20.Article 

    Google Scholar 
    Voolstra CR, Buitrago-Lopez C, Perna G, Cardenas A, Hume BCC, Radecker N, et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob Change Biol. 2020;26:4328–43.Article 

    Google Scholar 
    Behrendt L, Salek MM, Trampe EL, Fernandez VI, Lee KS, Kuhl M, et al. Phenochip: a single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci Adv. 2020;6:eabb2754.CAS 
    Article 

    Google Scholar 
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.Article 

    Google Scholar 
    Buerger P, Alvarez-Roa C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.CAS 
    Article 

    Google Scholar 
    Kavousi J, Denis V, Sharp V, Reimer JD, Nakamura T, Parkinson JE. Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Mar Biol. 2020;167:23.CAS 
    Article 

    Google Scholar 
    Parkinson JE, Baums IB. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol. 2014;5:445.Article 

    Google Scholar 
    Andersson M, Johansson S, Bergman H, Xiao L, Behrendt L, Tenje M. A microscopy-compatible temperature regulation system for single-cell phenotype analysis— demonstrated by thermoresponse mapping of microalgae. Lab Chip. 2021;21:1694–705.CAS 
    Article 

    Google Scholar 
    Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull. 2013;72:313–22.CAS 
    Article 

    Google Scholar 
    Karim W, Nakaema S, Hidaka M. Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. J Mar Sci Eng. 2015;3:368–81.Article 

    Google Scholar 
    Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR. Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol. 2013;161:477–85.CAS 
    Article 

    Google Scholar 
    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.CAS 
    Article 

    Google Scholar 
    Calabrese F, Voloshynoyska I, Musat F, Thullner M, Schlomann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.Article 

    Google Scholar 
    Martins BMC, Locke JOW. Microbial individuality: How single-cell heterogeneity enables population level strategies. Curr Opin Microbiol. 2015;24:104–12.CAS 
    Article 

    Google Scholar  More

  • in

    The EU needs a nutrient directive

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).Withers, P. J. A. & Haygarth, P. M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 23, 1–4 (2007).Article 

    Google Scholar 
    Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (IFA, 2008).Wassen, M. J., Schrader, J., van Dijk, J. & Eppinga, M. B. Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat. Ecol. Evol. 5, 67–73 (2021).Article 

    Google Scholar 
    Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol. 26, 1962–1985 (2020).Article 

    Google Scholar 
    Stokstad, E. Nitrogen crisis threatens Dutch environment — and economy. Science 366, 1180–1181 (2019).Article 

    Google Scholar 
    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).Article 

    Google Scholar 
    Garske, B., Stubenrauch, J. & Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. RECIEL 29, 107–117 (2020).Article 

    Google Scholar 
    A Farm to Fork Strategy for a Fair, Healthy and Environmentally-friendly Food System (COM(2020) 381 final: European Commission, 2020); https://knowledge4policy.ec.europa.eu/publication/communication-com2020381-farm-fork-strategy-fair-healthy-environmentally-friendly-food_en More

  • in

    Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients

    Speciation models, conditional and intrinsic stability constants and EDH model parametersThe complete set of analytical results for the Zn(II)/ligand systems, including conditional stability constants (logβ) for the formation of hydrolysed Zn(II)–ligand complexes, of zinc hydroxide complexes and of Zn(II)–ligand complexes as well as acidity constants for citrate and DFOB at different ionic strength in NaCl and T = 298.1 K are reported in Table 1 and SI Table 2. Also shown are the values for the optimised parameter C and the intrinsic association constants (logβ0). SI Table 1 lists all the reactions included in the speciation models used to fit the potentiometric titrations and SI Fig. 2 shows single crystal X-ray structures for some of the proposed structures including ZnH2Cit2, Zn2Cit2(H2O)2 and ZnCit22− taken from the Cambridge Crystallographic Data Base. Figure 3 displays the experimentally determined conditional Zn(II)–ligand stability constants and the corresponding EDH model from this study. Also shown are logb values from the literature for [Zn(HCit)] and [Zn(Cit)]− for the Zn(II)/Cit system and [Zn(H2DFOB)]+, [Zn(HDFOB)] and [Zn(DFOB)]− for the Zn(II)/DFOB system. Examples of titration curves and manually fitted models along with the speciation model considered and the experimental conditions are included in the supporting information (see SI Figs. 3 and 4). Only models that fitted the experimental data with sigma values below 5 were considered. Examples of Hyperquad files showing titrations and model fits for Zn(II)/Cit and Zn(II)/DFOB systems and of Excel calculation files for the application of the EDH model to the Zn(II)/DFOB experimental data set, including error calculation for C and logβ0 are uploaded to the Zenodo repository (https://doi.org/10.5281/zenodo.4548162). Errors reported for measured logβ and calculated (modelled) logβ0 and C values have no detectable effect on subsequent speciation calculations. The errors reported on C are slightly larger than in comparable studies22, however, a sensitivity analysis on the two Zn(II)–ligand species with the largest relative error on C found that logβ0 remains within its error range even when logβ0 was recalculated for the maximum and minimum possible C values. The stability constant we report for specific Zn(II)–L complexes at specific ion strengths are in line with literature reports (Fig. 3). For example, the logβ for the formation of [Zn(Cit)]− in 0.15 mol dm−3 NaCl shows good agreement with the value reported by Cigala and co-workers in 0.15 mol dm−3 NaCl; 4.79 vs. 4.7126. We note, however, also significant variations within reported conditional logβ values as seen Fig. 3, with published values for the formation of [Zn(HCit)] and [Zn(Cit)]− in different 1:1 electrolytes differing over two orders of magnitudes. This highlights the analytical challenges associated with accurate and precise logβ determinations of low affinity metal–ligand complexes, in low ion strength solutions33.Figure 3Experimental Zn(II)–ligand conditional stability constants (logβ) for (a) citrate and (b) DFOB at 0.05, 0.15, 0.3, 0.5 and 1 mol dm−3 in NaCl solution (open circles) determined using potentiometric titrations. For each species, the Extended Debye-Hückel (EDH) model has been parameterised using the experimental data (see Table 1 for C and logβ0) and the corresponding model is shown as a solid line. Literature data is included in the figure for comparison (closed circles) from Cigala et al. (2015, NaNO3 and NaCl), Capone et al. (1986, KNO3), Daniele et al. (1988, KNO3), Field et al. (1975, KNO3), Matsushima et al. (1963, NaCl) and Li et al. 1959, NaCl) for the Zn–H–Cit system and from Schijf et al. (2015, NaClO4), Farkas et al. (1997, KCl) and Hernlem et al. (1996, KNO3) for the Zn-H-DFOB system. Note the large variability reported for the Zn–Cit system at 0.1 and 0.15 mol dm−3. We find good agreement with the data published by Sammartano and co-workers26,69.Full size imageThe final speciation scheme with the best statistical fits and with chemically sensible species are given in Table 1. From the eight Zn-Cit species initially considered (SI Table 1), the inclusion of five species resulted in model fits with sigma values below 5. For the Zn(II)/Cit system, the dominant species are [Zn(Cit)]−, [Zn(HCit)], and [Zn2(Cit)2(OH)2]4−. We report also the presence of a [Zn(Cit)(OH)3]4− complex above pH 9 in significant amounts ( > 20%) and we confirm the presence of [Zn(Cit)2]4− if citrate is present in large excess26,31. The presence of [Zn(Cit)]−, [Zn(HCit)] and [Zn(Cit)2]4− were confirmed in pH 6 solutions by mass spectrometry. To confirm the presence of [Zn(Cit)(OH)3]4−, further investigations are warranted. SI Fig. 5 shows the species distributions in the Zn(II)–Cit system with different Zn:L molar ratios (1:1, 1:2 and 1:10) and different concentrations (between 10–6 and 10–3 for Zn and 10–5 and 10–3 for citrate). We find that [Zn(Cit)]− dominates (i.e., formation relative to total Zn is above 50%) between pH 5 and 7.5, [Zn2(Cit)2(OH)2]4− dominates between pH 7.5 and 10 and [Zn(Cit)(OH)3]4− dominates at pH values above 10. We find the formation of [Zn(Cit)2]4− only at Zn:Cit molar ratio of 1:10 and [Zn] and [L] concentrations of 10–4 and 10–3 mol dm−3, respectively. The species [Zn(Cit)(OH)]2− and Zn(Cit)(OH))2]3− possibly form at higher pH but were excluded from the final model. We noted that for titrations of solutions with Zn:Cit molar ratios below 1:3, it was not possible to refine the stepwise stability constant (logK) for [Zn(Cit)2]4− to within ± 0.09 log units, indicating that it is an unstable species that forms at negligible concentrations. The stability constants for zinc complexation with citrate decrease with increasing ionic strength. Table 1 shows that the most significant change is seen between 0.05 and 0.15 mol dm−3 NaCl, where there is approximately a 0.5 to 1.5 log unit change. In dilute solutions, stability constants are sensitive to small increases in ionic strength because changes in the effective concentration (activity) of ions are large.For the Zn(II)–DFOB system, all the stability constants measured during this study are in good agreement with those reported in the literature50,51,53. For example, the stability constant we report for [Zn(HDFOB)] in 0.5 mol dm−3 NaCl is 19.34. This is within ~ 0.5 log units of the stability constant reported by Schijf and co-workers in 0.7 mol dm−3 NaClO4 solutions53. The speciation scheme we report differs slightly from that predicted by Schijf based on a three-step model. Our model does not include the bidentate species [Zn(H3DFOB)]2+, the weakest and least stable Zn(II)–DFOB species. In Table 1, we report stability constants for hexadentate [Zn(DFOB)]− and [Zn(HDFOB)] and tetradentate [Zn(H2DFOB)]+. We observe that as the denticity of the complex increases, so does the strength of the stability constant. The stepwise stability constant (K) differs by approximately 2 log units between the formation of the three different DFOB:Zn:H species (7.75, 9.88, 11.67, see Table 1). DFOB complexation of Zn(II) shows the same pattern of ionic strength dependence as citrate, with the greatest decrease of logβ occurring between 0.05 and 0.15 mol dm−3 NaCl, the region of most importance to the rhizosphere.The absolute decrease in [ZnL] and [Zn(HL)] stability constants between 0.05 and 0.15 mol dm−3 is approximately equal for citrate and DFOB species, average 1.58 vs. 1.73, respectively. This is explained by the effect of ionic strength primarily depending on the charge of the ions involved and free citrate and DFOB having the same electrostatic charge (−3). The ionic strength dependent parameter C shows no systematic change for neither citrate nor DFOB species. The good agreement between literature50,51,52,54,68,69,70 and our speciation models as well as the conditional logβ and pKa values validates the use of a single analytical method for the determination of the LEP. We note that the proposed formation of the trihydroxy Zn(II) citrate complex at pH above 10, needs to be investigated in greater detail using supplementary techniques. However, the formation of this species is not relevant for the pH range of interest in our study. As discussed below the main prevailing species in solution are those of 1:1:0 and 2:2:−2 stoichiometry for Zn:Cit:H.Figure 4 shows intrinsic stability constants for the formation of [Zn(Cit)]− and [Zn(HCit)] determined (i) using the Davies equation and the conditional association constants determined at different ionic strengths and (ii) fitting the parameterised EDH equation to the full ionic strength dataset. We find statistically significant (p  More

  • in

    Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2) (2016). http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2.Donohue, M. J. et al. Evaluating exposure of northern fur seals, Callorhinus ursinus, to microplastic pollution through fecal analysis. Mar. Pollut. Bull. 138, 213–221 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752 (2019).ADS 
    Article 

    Google Scholar 
    Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bessa, F. et al. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 9, 14191 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ. Rev. 27, 304–317 (2019).Article 

    Google Scholar 
    Bucci, K., Bikker, J., Stevack, K., Watson-Leung, T. & Rochman, C. Impacts to larval fathead minnows vary between preconsumer and environmental microplastics. Environ. Toxicol. Chem. 41, 4 (2021).
    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    De-la-Torre, G. E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. 57, 1601–1608 (2020).Article 
    PubMed 

    Google Scholar 
    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 364, 2027–2045 (2009).CAS 
    Article 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    He, S. et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 1, 127286. https://doi.org/10.1016/j.jhazmat.2021.127286 (2021).CAS 
    Article 

    Google Scholar 
    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    World Health Organization. Safe Management of Shellfish and Harvest Waters (WHO, 2010).
    Google Scholar 
    Lindsay, D. S. & Dubey, J. P. Long-term survival of Toxoplasma gondii sporulated oocysts in seawater. J. Parasitol. 95, 1019–1020 (2009).Article 
    PubMed 

    Google Scholar 
    Tamburrini, A. & Pozio, E. Long-term survival of Cryptosporidium parvum oocysts in seawater and in experimentally infected mussels (Mytilus galloprovincialis). Int. J. Parasitol. 29, 711–715 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 
    PubMed 

    Google Scholar 
    Robertson, L. J. The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: A review. Int. J. Food Microbiol. 120, 201–216 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterb. Parasitol. 15, e00049 (2019).Article 

    Google Scholar 
    Miller, M. A., Shapiro, K., Murray, M. J., Haulena, M. J. & Raverty, S. Protozoan parasites of marine mammals. in CRC Handbook of Marine Mammal Medicine (2018).Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rose, J. B. Environmental ecology of cryptosporidium and public health implications. Annu. Rev. Public Health 18, 135–161 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robert-Gangneux, F. & Dardé, M.-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahia-Oliveira, L., Gomez-Marin, J. & Shapiro, K. Toxoplasma gondii. Global Water Pathogen Project. https://www.waterpathogens.org/book/toxoplasma-gondii (2015).Kreuder, C. et al. Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. J. Wildl. Dis. 39, 495–509 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Dual congenital transmission of Toxoplasma gondii and Sarcocystis neurona in a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis). Parasitology 143, 276–288 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbieri, M. M. et al. Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi. Dis. Aquat. Org. 121, 85–95 (2016).Article 

    Google Scholar 
    Roe, W. D., Howe, L., Baker, E. J., Burrows, L. & Hunter, S. A. An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet. Parasitol. 192, 67–74 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hernandez, E., Nowack, B. & Mitrano, D. M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ. Sci. Technol. 51, 7036–7046 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mason, S. A. et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 109, 230–235 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Desforges, J.-P.W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horn, D., Miller, M., Anderson, S. & Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 139, 231–237 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, X. et al. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613–614, 298–305 (2018).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Collicutt, B., Juanes, F. & Dudas, S. E. Microplastics in juvenile Chinook salmon and their nearshore environments on the east coast of Vancouver Island. Environ. Pollut. 244, 135–142 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davidson, K. & Dudas, S. E. Microplastic ingestion by wild and cultured manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol. 71, 147–156 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129, 179–185 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wootton, N., Reis-Santos, P. & Gillanders, B. M. Microplastic in fish: A global synthesis. Rev. Fish. Biol. Fish. 31, 753–771 (2021).Article 

    Google Scholar 
    De-la-Pinta, I. et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. 30, 77 (2019).
    Google Scholar 
    Rochman, C. M., Hoh, E., Hentschel, B. T. & Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ. Sci. Technol. 47, 1646–1654 (2013).CAS 
    PubMed 

    Google Scholar 
    Lindquist, H. D. A. et al. Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J. Parasitol. 89, 865–867 (2003).Article 
    PubMed 

    Google Scholar 
    Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I 40, 1131–1140 (1993).CAS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. R. Soc. B 281, 20141287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers: Assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).CAS 
    Article 

    Google Scholar 
    Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1211 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lusher, A., Hollman, P. C. H. & Mendoza-Hill, J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (Food and Agriculture Organization of the United Nations, 2017).
    Google Scholar 
    Tamburri, M. N. & Zimmer-Faust, R. K. Suspension feeding: Basic mechanisms controlling recognition and ingestion of larvae. Limnol. Oceanogr. 41, 1188–1197 (1996).ADS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol. 84, 103252 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saley, A. M. et al. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar. Pollut. Bull. 146, 54–59 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res. 44, 893–903 (2010).CAS 
    Article 
    PubMed 

    Google Scholar  More