More stories

  • in

    Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers

    Rook, G. A. W. Review series on helminths, immune modulation and the hygiene hypothesis: The broader implications of the hygiene hypothesis. Immunology 126, 3–11 (2009).CAS 
    Article 

    Google Scholar 
    Von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).Article 

    Google Scholar 
    Von Hertzen, L. & Haahtela, T. Disconnection of man and the soil: Reason for the asthma and atopy epidemic?. J. Allergy Clin. Immunol. 117, 334–344 (2006).Article 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. U. S. A. 109, 8334–8339 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Haahtela, T. et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy Eur. J. Allergy Clin. Immunol. https://doi.org/10.1111/all.14895 (2021).Article 

    Google Scholar 
    Rook, G. A. W. et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin. Immunopathol. 25, 237–255 (2004).CAS 
    Article 

    Google Scholar 
    Fyhrquist, N. et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J. Allergy Clin. Immunol. 134, 1301-1309.e11 (2014).CAS 
    Article 

    Google Scholar 
    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198-1206.e12 (2019).CAS 
    Article 

    Google Scholar 
    Nurminen, N. et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Fut. Microbiol. 13, 737–744 (2018). CAS 
    Article 

    Google Scholar 
    Shaffer, M. & Lozupone, C. Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems 3, 1–12 (2018).Article 

    Google Scholar 
    Grönroos, M. et al. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen https://doi.org/10.1002/mbo3.645 (2019).Article 

    Google Scholar 
    Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 7–105 (2020).Article 

    Google Scholar 
    Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 7008 (2021).Article 

    Google Scholar 
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science (80-.). 345, 1048–1052 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes-but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma.. Science 364, 701–709 (2011).CAS 

    Google Scholar 
    Li, H. et al. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci. Total Environ. 665, 61–68 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chase, J. et al. Geography and location are the primary drivers of office microbiome composition. mSystems 1, 1–18 (2016).
    Google Scholar 
    Danko, D. et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184, 3376-3393.e17 (2021).CAS 
    Article 

    Google Scholar 
    Hui, N. et al. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environ. Microbiol. 19, 1281–1295 (2017).Article 

    Google Scholar 
    Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Franzetti, A., Gandolfi, I., Gaspari, E., Ambrosini, R. & Bestetti, G. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl. Microbiol. Biotechnol. 90, 745–753 (2011).CAS 
    Article 

    Google Scholar 
    Mhuireach, G., Wilson, H. & Johnson, B. R. Urban aerobiomes are influenced by season, vegetation, and individual site characteristics. EcoHealth 18, 331–344 (2021).Article 

    Google Scholar 
    Mahnert, A., Moissl-Eichinger, C. & Berg, G. Microbiome interplay: Plants alter microbial abundance and diversity within the built environment. Front. Microbiol. 6, 1–11 (2015).Article 

    Google Scholar 
    Ruokolainen, L. et al. Green areas around homes reduce atopic sensitization in children. Allergy Eur. J. Allergy Clin. Immunol. 70, 195–202 (2015).CAS 
    Article 

    Google Scholar 
    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).CAS 
    Article 

    Google Scholar 
    Nurminen, N. et al. Land cover of early-life environment modulates the risk of type 1 diabetes. Diabetes Care 44, 1506–1514 (2021).Article 

    Google Scholar 
    Parajuli, A. et al. Yard vegetation is associated with gut microbiota composition. Sci. Total Environ. 713, 136707 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Köberl, M., Dita, M., Martinuz, A., Staver, C. & Berg, G. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    Delanghe, L. et al. The role of lactobacilli in inhibiting skin pathogens. Biochem. Soc. Trans. 5, 617–627. https://doi.org/10.1042/bst20200329 (2021).CAS 
    Article 

    Google Scholar 
    George, F. et al. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Front. Microbiol. 9, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    Yu, A. O., Leveau, J. H. J. & Marco, M. L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 12, 16–29 (2020).CAS 
    Article 

    Google Scholar 
    Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1405 (2018).Article 

    Google Scholar 
    Parajuli, A. et al. The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?. PLoS One 7, 1–18. https://doi.org/10.1371/journal.pone.0187852 (2017).CAS 
    Article 

    Google Scholar 
    Vari, H. K. et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere 265, 1559 (2021).Article 

    Google Scholar 
    Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 33, 695–720 (2013).Article 

    Google Scholar 
    Hui, N. et al. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front. Microbiol. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Puhakka, R. et al. Greening of daycare yards with biodiverse materials affords well-being, play and environmental relationships. Int. J. Environ. Res. Public Health 16, 2948 (2019).Article 

    Google Scholar 
    Burmeister, A. R. & Marriott, I. The interleukin-10 family of cytokines and their role in the CNS. Front. Cell. Neurosci. 12, 1–13 (2018).Article 

    Google Scholar 
    Opal, S. M. & DePalo, V. A. Anti-inflammatory cytokines. Chest 117, 1162–1172 (2000).CAS 
    Article 

    Google Scholar 
    Kuwabara, T., Ishikawa, F., Kondo, M. & Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017, 4598 (2017).Article 

    Google Scholar 
    Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. L. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).CAS 
    Article 

    Google Scholar 
    Prudhomme, G. J. & Piccirillo, C. A. The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases. J. Autoimmun. 14, 23–42 (2000).CAS 
    Article 

    Google Scholar 
    Esebanmen, G. E. & Langridge, W. H. R. The role of TGF-beta signaling in dendritic cell tolerance. Immunol. Res. 65, 987–994 (2017).CAS 
    Article 

    Google Scholar 
    Honkanen, J. et al. IL-17 immunity in human type 1 diabetes. J. Immunol. 185, 1959–1967 (2010).CAS 
    Article 

    Google Scholar 
    Torpy, F. et al. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Heal. 11, 163–170 (2018).CAS 
    Article 

    Google Scholar 
    Roslund, M. I. et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ. Int. 130, 104894 (2019).CAS 
    Article 

    Google Scholar 
    Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing Artifacts on 16s rRNA-based studies. PLoS One 6, 1789 (2011).
    Google Scholar 
    Kozich, J., Westcott, S., Baxter, N., Highlander, S. & Schloss, P. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Soininen, L., Grönroos, M., Roslund, M. I. & Sinkkonen, A. Long-term storage affects resource availability and occurrence of bacterial taxa linked to pollutant degradation and human health in landscaping materials. Urban For. Urban Green. 60, 1789 (2021).Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

    Google Scholar 
    Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. & Al, W. E. T. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Oksanen, J. et al. vegan: Community Ecology Package. (2019).Huang, F. L. Alternatives to multilevel modeling for the analysis of clustered data. J. Exp. Educ. 84, 175–196 (2016).Article 

    Google Scholar 
    Moen, E. L., Fricano-Kugler, C. J., Luikart, B. W. & O’Malley, A. J. Analyzing clustered data: Why and how to account for multiple observations nested within a study participant?. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    Twisk, J. et al. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 10, 80–85 (2018).Chapat, L., Chemin, K., Dubois, B., Bourdet-Sicard, R. & Kaiserlian, D. Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. Eur. J. Immunol. 34, 2520–2528 (2004).CAS 
    Article 

    Google Scholar 
    Kaur, K. & Rath, G. Formulation and evaluation of UV protective synbiotic skin care topical formulation. J. Cosmet. Laser Ther. 21, 332–342 (2019).Article 

    Google Scholar 
    Rong, J. et al. Skin resistance to UVB-induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS8-fermented milk supernatant. J. Appl. Microbiol. 123, 511–523 (2017).CAS 
    Article 

    Google Scholar 
    Yuan, J. et al. Microbial volatile compounds alter the soil microbial community. Environ. Sci. Pollut. Res. 24, 22485–22493 (2017).CAS 
    Article 

    Google Scholar 
    Abis, L. et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils. Sci. Rep. 10, 1–15 (2020).Article 

    Google Scholar 
    Duffy, E. & Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. TrAC Trends Anal. Chem. 111, 163–172 (2019).CAS 
    Article 

    Google Scholar 
    Lemfack, M. C. et al. Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Syst. Appl. Microbiol. 39, 503–515 (2016).CAS 
    Article 

    Google Scholar 
    Ahmed, M. & Gaffen, S. L. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev. 21, 449–453 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Tracing the path of carbon export in the ocean though DNA sequencing of individual sinking particles

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237.CAS 
    Article 

    Google Scholar 
    Volk T, Hoffert M. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophys Monogr Ser. 1985;32:99–110.
    Google Scholar 
    Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature. 2019;568:327–35.CAS 
    Article 

    Google Scholar 
    Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob Biogeochem Cycles. 2014;28:181–196.Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys Res Lett. 2011;38:L04606.Article 

    Google Scholar 
    Boyd PW, Trull TW. Understanding the export of biogenic particles in oceanic waters: is there consensus? Prog Oceanogr. 2007;72:276–312.Article 

    Google Scholar 
    Werdell PJ, Behrenfeld MJ, Bontempi PS, Boss E, Cairns B, Davis GT, et al. The plankton, aerosol, cloud, ocean ecosystem mission: status, science, advances. Bull Am Meteorol Soc. 2019;100:1775–94.Article 

    Google Scholar 
    Picheral M, Guidi L, Stemmann L, Karl DM, Iddaoud G, Gorsky G. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol Oceanogr-Methods. 2010;8:462–73.Article 

    Google Scholar 
    Olson RJ, Sosik HM. A submersible imaging-in-flow instrument to analyze nano-and microplankton: imaging FlowCytobot. Limnol Oceanogr Methods. 2007;5:195–203.Article 

    Google Scholar 
    de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.Scholin C, Birch J, Jensen S, Marin R III, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors: a 25-year history of the Environmental Sample Processor (ESP) as a case study. Oceanography. 2017;30:100–13.Article 

    Google Scholar 
    Cruz BN, Brozak S, Neuer S. Microscopy and DNA-based characterization of sinking particles at the Bermuda Atlantic Time-series Study station point to zooplankton mediation of particle flux. Limnol Oceanogr. 2021;66:3697–713.CAS 
    Article 

    Google Scholar 
    Amacher J, Neuer S, Lomas M. DNA-based molecular fingerprinting of eukaryotic protists and cyanobacteria contributing to sinking particle flux at the Bermuda Atlantic time-series study. Deep Sea Res Part II Top Stud Oceanogr. 2013;93:71–83.CAS 
    Article 

    Google Scholar 
    Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:469.Article 

    Google Scholar 
    Preston CM, Durkin CA, Yamahara KM DNA metabarcoding reveals organisms contributing to particulate matter flux to abyssal depths in the North East Pacific ocean. Deep Sea Res Part II Top Stud Oceanogr. 2019;173:104708.Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.CAS 
    Article 

    Google Scholar 
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci. 2019;116:11824.CAS 
    Article 

    Google Scholar 
    Silver MW, Gowing MM. The “particle” flux: Origins and biological components. Prog Oceanogr. 1991;26:75–113.Article 

    Google Scholar 
    Ebersbach F, Assmy P, Martin P, Schulz I, Wolzenburg S, Nöthig E-M. Particle flux characterisation and sedimentation patterns of protistan plankton during the iron fertilisation experiment LOHAFEX in the Southern Ocean. Deep Sea Res Part Oceanogr Res Pap. 2014;89:94–103.CAS 
    Article 

    Google Scholar 
    Waite A, Bienfang PK, Harrison PJ. Spring bloom sedimentation in a subarctic ecosystem. II. Succession and sedimentation. Mar Biol. 1992;114:131–8.Article 

    Google Scholar 
    Venrick E, Lange C, Reid F, Dever EP. Temporal patterns of species composition of siliceous phytoplankton flux in the Santa Barbara Basin. J Plankton Res. 2007;30:283–97.Article 

    Google Scholar 
    Waite AM, Safi KA, Hall JA, Nodder SD. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol Oceanogr. 2000;45:87–97.Article 

    Google Scholar 
    Valencia B, Stukel MR, Allen AE, McCrow JP, Rabines A, Palenik B, et al. Relating sinking and suspended microbial communities in the California Current Ecosystem: digestion resistance and the contributions of phytoplankton taxa to export. Environ Microbiol. 2021;23:6743–8.Article 

    Google Scholar 
    Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol Prog Ser. 1999;182:55–67.Article 

    Google Scholar 
    Beaulieu S. Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol Annu Rev. 2002;40:171–232.
    Google Scholar 
    Ikenoue T, Kimoto K, Okazaki Y, Sato M, Honda MC, Takahashi K, et al. Phaeodaria: an important carrier of particulate organic carbon in the mesopelagic twilight zone of the North Pacific Ocean. Glob Biogeochem Cycles. 2019;33:1146–60.CAS 
    Article 

    Google Scholar 
    Smith KL, Ruhl HA, Huffard CL, Messié M, Kahru M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc Natl Acad Sci. 2018;115:12235.CAS 
    Article 

    Google Scholar 
    Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP, Omand M. A visual tour of carbon export by sinking particles. Glob Biogeochem Cycles. 2021;35:e2021GB006985.CAS 
    Article 

    Google Scholar 
    Estapa ML, Valdes J, Tradd K, Sugar J, Omand M, Buesseler K. The neutrally buoyant sediment trap: two decades of progress. J Atmospheric Ocean Technol. 2020;37:957–973.Rainville L, Pinkel R. Wirewalker: An autonomous wave-powered vertical profiler. J Atmos Ocean Technol. 2001;18:1048–51.Article 

    Google Scholar 
    Durkin CA, Estapa ML, Buesseler KO. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar Chem. 2015;175:72–81.CAS 
    Article 

    Google Scholar 
    Malmstrom R RNAlater Recipe. protocols.io. https://doi.org/10.17504/protocols.io.c56y9d. Accessed 2 Oct 2018.Mackey MD, Mackey DJ, Higgins HW, Wright SW. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser. 1996;144:265–83.CAS 
    Article 

    Google Scholar 
    Massana R, Murray AE, Preston CM, DeLong EF. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997;63:50.CAS 
    Article 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones M, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    Article 

    Google Scholar 
    Penna A, Casabianca S, Guerra A, Vernesi C, Scardi M. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Mar Genomics. 2017;36:49–55.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–D604.Article 

    Google Scholar 
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.Article 

    Google Scholar 
    Tomas CR. Identifying marine phytoplankton. Elsevier; 1997.Hasle GR, Syvertsen EE. Marine diatoms. In: Tomas CR (ed). Identifying marine phytoplankton. San Diego, CA, USA: Academic Press; 1997. pp 5–385.Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol. 2008;74:7174–82.CAS 
    Article 

    Google Scholar 
    Smayda TJ. The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev. 1970;8:353–414.
    Google Scholar 
    Sancetta C, Villareal T, Falkowski P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol Oceanogr. 1991;36:1452–7.Article 

    Google Scholar 
    Goldman JC. Potential role of large oceanic diatoms in new primary production. Deep Sea Res Part Oceanogr Res Pap. 1993;40:159–68.Article 

    Google Scholar 
    Kemp AE, Pike J, Pearce RB, Lange CB. The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep Sea Res Part II Top Stud Oceanogr. 2000;47:2129–54.Article 

    Google Scholar 
    Villareal TA, Woods S, Moore JK, CulverRymsza K. Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre. J Plankton Res. 1996;18:1103–21.Article 

    Google Scholar 
    Smayda TJ. Normal and accelerated sinking of phytoplankton in the sea. Mar Geol. 1971;11:105–22.Article 

    Google Scholar 
    Shiozaki T, Itoh F, Hirose Y, Onodera J, Kuwata A, Harada NA. DNA metabarcoding approach for recovering plankton communities from archived samples fixed in formalin. PLOS ONE. 2021;16:e0245936.CAS 
    Article 

    Google Scholar 
    Omand MM, Govindarajan R, He J, Mahadevan A. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci Rep. 2020;10:5582.CAS 
    Article 

    Google Scholar 
    DeVries T, Liang J-H, Deutsch C. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences. 2014;11:5381–98.Article 

    Google Scholar 
    Siegel DA, Buesseler KO, Behrenfeld MJ, Benitez-Nelson CR, Boss E, Brzezinski MA, et al. Prediction of the export and fate of global ocean net primary production: the EXPORTS science plan. Front Mar Sci. 2016;3:22.Article 

    Google Scholar 
    NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 mapped chlorophyll data version R2018.0. 2017. NASA Ocean Biology DAAC. https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018. More

  • in

    Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle

    Brierley AS, Kingsford MJ. Impacts of climate change on marine organisms and ecosystems. Curr Biol. 2009;19:R602–14.CAS 
    Article 

    Google Scholar 
    Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355:eaaai9214.Article 

    Google Scholar 
    Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, et al. Coral reefs in the Anthropocene. Nature. 2017;546:82–90.CAS 
    Article 

    Google Scholar 
    Feeley KJ, Rehm EM, Machovina B. perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Front Biogeogr. 2012;4:69–84.Article 

    Google Scholar 
    Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.CAS 
    Article 

    Google Scholar 
    Voolstra CR, Ziegler M. Adapting with microbial help: Microbiome flexibility facilitates rapid responses to environmental change. BioEssays. 2017;42:2000004.Article 

    Google Scholar 
    Webster NS, Reusch TBH. Microbial contributions to the persistence of coral reefs. ISME J. 2017;11:2167–74.Article 

    Google Scholar 
    Wilkes Walburn J, Wemheuer B, Thomas T, Copeland E, O’Connor W, Booth M, et al. Diet and diet-associated bacteria shape early microbiome development in Yellowtail Kingfish (Seriola lalandi). Micro Biotechnol. 2019;12:275–88.CAS 
    Article 

    Google Scholar 
    Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2016;11:186–200.Article 

    Google Scholar 
    Dubé CE, Ziegler M, Mercière A, Boissin E, Planes S, Bourmaud CA-F, et al. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat Commun. 2021;12:640.Article 

    Google Scholar 
    Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B: Biol Sci. 2015;282:20152257.Article 

    Google Scholar 
    Manzano-Marı NA, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.Article 

    Google Scholar 
    Neave MJ, Michell CT, Apprill A, Voolstra CR. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep. 2017;7:40579.CAS 
    Article 

    Google Scholar 
    Ding JY, Shiu JH, Chen WM, Chiang YR, Tang SL. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host. Front Microbiol. 2016;7:251.
    Google Scholar 
    Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, Villela HDM, et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci Adv. 2021;7:eabg3088.CAS 
    Article 

    Google Scholar 
    Cavalcanti G, Alker A, Delherbe N, Malter KE, Shikuma NJ. The influence of bacteria on animal metamorphosis. Ann Rev Microbiol. 2020;74:137–58.CAS 
    Article 

    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.Article 

    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.Article 

    Google Scholar 
    Raina JB, Clode PL, Cheong S, Bougoure J, Kilburn MR, Reeder A, et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. Elife. 2017;6:e23008.Article 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 2021;16:1110–8.Article 

    Google Scholar 
    Pogoreutz C, Voolstra CR, Rädecker N, Weis V. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020. pp. 91–118.Xiang N, Hassenrück C, Pogoreutz C, Rädecker N, Simancas-Giraldo SM, Voolstra CR, et al. Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol. 2021;88:e01886–21.
    Google Scholar 
    Nissimov J, Rosenberg E, Munn CB. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett. 2009;292:210–5.CAS 
    Article 

    Google Scholar 
    Pereira LB, Palermo BRZ, Carlos C, Ottoboni LMM. Diversity and antimicrobial activity of bacteria isolated from different Brazilian coral species. FEMS Microbiol Lett. 2017;364:fnx164.Article 

    Google Scholar 
    Dungan AM, Bulach D, Lin H, van Oppen MJH, Blackall LL. Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians. Micro Biotechnol. 2021;14:2025–40.CAS 
    Article 

    Google Scholar 
    Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol. 2016;100:8315–24.CAS 
    Article 

    Google Scholar 
    Meyer JL, Paul VJ, Teplitski M. Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One. 2014;9:e100316.Article 

    Google Scholar 
    Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 2014;9:894–908.Article 

    Google Scholar 
    Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol Ecol. 2015;24:3501–11.Article 

    Google Scholar 
    Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10:e3092.Article 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol. 2018;8:2240–52.Article 

    Google Scholar 
    Tandon K, Lu C-Y, Chiang P-W, Wada N, Yang S-H, Chan Y-F, et al. Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J. 2020;14:1290–303.CAS 
    Article 

    Google Scholar 
    Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, et al. Insights into the cultured bacterial fraction of corals. mSystems. 2021;6:e0124920.Article 

    Google Scholar 
    Ngugi DK, Ziegler M, Duarte CM, Voolstra CR. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience. 2020;23:101120.CAS 
    Article 

    Google Scholar 
    Weber L, Gonzalez-Díaz P, Armenteros M, Apprill A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr. 2019;64:2373–88.CAS 
    Article 

    Google Scholar 
    Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges. Extremophiles. 2009;13:583–94.Article 

    Google Scholar 
    Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat Microbiol. 2019;4:2090–2100.Article 

    Google Scholar 
    Katharios P, Seth-Smith HMB, Fehr A, Mateos JM, Qi W, Richter D, et al. Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp. Sci Rep. 2015;5:17609.CAS 
    Article 

    Google Scholar 
    Keller-Costa T, Eriksson D, Gonçalves JMS, Gomes NCM, Lago-Lestón A, Costa R. The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol Ecol. 2017;93. https://doi.org/10.1093/femsec/fix143.Neave MJ, Michell CT, Apprill A, Voolstra CR. Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Announc. 2014;2:e00802–14.Article 

    Google Scholar 
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3:e2836.Article 

    Google Scholar 
    Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. App Environ Microbiol. 2013;79:4759–62.CAS 
    Article 

    Google Scholar 
    Pogoreutz C, Gore MA, Perna G, Millar C, Nestler R, Ormond RF, et al. Similar bacterial communities on healthy and injured skin of black tip reef sharks. Anim Microbiome. 2019;1:9.Article 

    Google Scholar 
    Pogoreutz C, Voolstra CR. Isolation, culturing, and cryopreservation of Endozoicomonas (Gammaproteobacteria: Oceanospirillales: Endozoicomonadaceae) from reef-building corals. 2018. https://doi.org/10.17504/protocols.io.t2aeqae.Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: John Wiley & Sons; 1991. pp. 115–75.Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    Article 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.CAS 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–14.CAS 
    Article 

    Google Scholar 
    Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.Article 

    Google Scholar 
    Sheu S-Y, Lin K-R, Hsu M-Y, Sheu D-S, Tang S-L, Chen W-M. Endozoicomonas acroporae sp. nov., isolated from Acropora coral. Int J Syst Evol Microbiol. 2017;67:3791–7.CAS 
    Article 

    Google Scholar 
    Appolinario LR, Tschoeke DA, Rua CPJ, Venas T, Campeão ME, Amaral GRS, et al. Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie Van Leeuwenhoek. 2016;109:431–8.Article 

    Google Scholar 
    Hyun DW, Shin NR, Kim MS, Oh SJ, Kim PS, Whon TW, et al. Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. Int J Syst Evol Microbiol. 2014;64:2312–8.CAS 
    Article 

    Google Scholar 
    Schreiber L, Kjeldsen KU, Funch P, Jensen J, Obst M, López-Legentil S, et al. Endozoicomonas are specific, facultative symbionts of sea squirts. Front Microbiol. 2016;7:1042.Article 

    Google Scholar 
    Miller IJ, Weyna TR, Fong SS, Lim-Fong GE, Kwan JC. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci Rep. 2016;6:34362.CAS 
    Article 

    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.Article 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ. 2016; 4:e1900v1.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Rambaut, A FigTree. Tree Figure Drawing Tool. http://tree.bio.ed.ac.uk/software/figtree/ 2009.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    Article 

    Google Scholar 
    Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    Article 

    Google Scholar 
    UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515.Article 

    Google Scholar 
    Cook CB, Davy SK. Are free amino acids responsible for the ‘host factor’ effects on symbiotic zooxanthellae in extracts of host tissue? Hydrobiologia. 2001;461:71–78.Article 

    Google Scholar 
    Davy S, Cook C. The relationship between nutritional status and carbon flux in the zooxanthellate sea anemone Aiptasia pallida. Mar Biol. 2001;139:999–1005.CAS 
    Article 

    Google Scholar 
    Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009;8:5674–8.Article 

    Google Scholar 
    Tyanova S, Mann M, Cox J. MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol Biol. 2014;1188:351–64.Article 

    Google Scholar 
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    Article 

    Google Scholar 
    Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S. FastQC. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Bushnell B. BBTools software package. 2014;578:579. https://sourceforge.net/projects/bbmap/.Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.CAS 
    Article 

    Google Scholar 
    Love M, Anders S, Huber W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014;15:10–1186.Article 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CAS 
    Article 

    Google Scholar 
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.CAS 
    Article 

    Google Scholar 
    Schwämmle V, Hagensen CE, Rogowska-Wrzesinska A, Jensen ON. PolySTest: robust statistical testing of proteomics data with missing values improves detection of biologically relevant features. Mol Cell Proteom. 2020;19:1396–408.Article 

    Google Scholar 
    Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450.CAS 
    Article 

    Google Scholar 
    Alexa A, Rahnenfuhrer J. Others. topGO: enrichment analysis for gene ontology. R package version. 2010;2:2010.
    Google Scholar 
    Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4.CAS 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    Article 

    Google Scholar 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R, Ettema TJG, et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 2016;18:2326–42.CAS 
    Article 

    Google Scholar 
    Klinges JG, Rosales SM, McMinds R, Shaver EC. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 2019;13:2938–53.Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.Article 

    Google Scholar 
    Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One. 2013;8:e76096.CAS 
    Article 

    Google Scholar 
    Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn L-J, et al. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front Microbiol. 2019;10:1277.Article 

    Google Scholar 
    Nie L, Wu G, Culley DE, Scholten JCM, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol. 2007;27:63–75.CAS 
    Article 

    Google Scholar 
    Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics. 2019;20:358.Article 

    Google Scholar 
    Masuda T, Saito N, Tomita M, Ishihama Y. Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol Cell Proteom. 2009;8:2770–7.CAS 
    Article 

    Google Scholar 
    Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin Cell Dev Biol. 2015;46:91–103.CAS 
    Article 

    Google Scholar 
    Gao C, Garren M, Penn K, Fernandez VI, Seymour JR, Thompson JR, et al. Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. ISME J. 2021;15:3668–82.CAS 
    Article 

    Google Scholar 
    Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.CAS 
    Article 

    Google Scholar 
    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L, et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–.e5.CAS 
    Article 

    Google Scholar 
    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.CAS 
    Article 

    Google Scholar 
    Pitulescu ME, Adams RH. Eph/ephrin molecules–a hub for signaling and endocytosis. Genes Dev. 2010;24:2480–92.CAS 
    Article 

    Google Scholar 
    Toth J, Cutforth T, Gelinas AD, Bethoney KA, Bard J, Harrison CJ. Crystal structure of an ephrin ectodomain. Dev Cell. 2001;1:83–92.CAS 
    Article 

    Google Scholar 
    Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3:475–86.CAS 
    Article 

    Google Scholar 
    Duboux S, Golliard M, Muller JA, Bergonzelli G, Bolten CJ, Mercenier A, et al. Carbohydrate-controlled serine protease inhibitor (serpin) production in Bifidobacterium longum subsp. longum. Sci Rep. 2021;11:7236.CAS 
    Article 

    Google Scholar 
    Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ. 2018;6:e4557.Article 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.Article 

    Google Scholar 
    Curson AR, Todd JD, Sullivan MJ, Johnston AW. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Reviews Microbiol. 2011;9:849–59.CAS 
    Article 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.Article 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.Article 

    Google Scholar 
    Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.Article 

    Google Scholar 
    Muscatine L, Cernichiari E. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull. 1969;137:506–23.CAS 
    Article 

    Google Scholar 
    Sutton DC, Hoegh-Guldberg O. Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull. 1990;178:175–86.CAS 
    Article 

    Google Scholar 
    Wang JT, Douglas AE. Essential amino acid synthesis and nitrogen recycling in an alga–invertebrate symbiosis. Mar Biol. 1999;135:219–22.CAS 
    Article 

    Google Scholar 
    Lipschultz F, Cook C. Uptake and assimilation of 15N-ammonium by the symbiotic sea anemones Bartholomea annulata and Aiptasia pallida: conservation versus recycling of nitrogen. Mar Biol. 2002;140:489–502.CAS 
    Article 

    Google Scholar 
    Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, et al. Partner switching and metabolic flux in a model cnidarian–dinoflagellate symbiosis. Proc R Soc B: Biol Sci. 2018;285:20182336.CAS 
    Article 

    Google Scholar 
    Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS, Garren M, et al. Chemotaxis by natural populations of coral reef bacteria. ISME J. 2015;9:1764–77.Article 

    Google Scholar 
    Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.CAS 
    Article 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.CAS 
    Article 

    Google Scholar 
    Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc Natl Acad Sci USA. 2010;107:20756–61.CAS 
    Article 

    Google Scholar 
    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B: Biol Sci. 2014;281:20141838.Article 

    Google Scholar 
    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.Article 

    Google Scholar 
    Agostini S, Suzuki Y, Casareto BE, Nakano Y, Michio H, Badrun N. Coral symbiotic complex: Hypothesis through vitamin B12 for a new evaluation. Galaxea J Coral Reef Stud. 2009;11:1–11.Article 

    Google Scholar 
    Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J Biol Chem. 2020;295:12002–13.CAS 
    Article 

    Google Scholar 
    Bertrand EM, Allen AE. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton. Front Microbiol. 2012;3:375.CAS 
    Article 

    Google Scholar 
    Bourne D, Iida Y, Uthicke S, Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008;2:350–63.CAS 
    Article 

    Google Scholar 
    Court SJ, Waclaw B, Allen RJ. Lower glycolysis carries a higher flux than any biochemically possible alternative. Nat Commun. 2015;6:8427.CAS 
    Article 

    Google Scholar 
    Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun. 2017;8:14213.CAS 
    Article 

    Google Scholar 
    Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, Voolstra CR, et al. Coral probiotics: premise, promise, prospects. Annu Rev Anim Biosci. 2021;9:265–88.Article 

    Google Scholar 
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.Article 

    Google Scholar 
    Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.Article 

    Google Scholar  More

  • in

    Metabolic plasticity can amplify ecosystem responses to global warming

    Study system & organismsThe study was conducted in the Hengill valley, Iceland13,14,15,16,17,18 (N 64°03; W 21°18), which contains many streams of different temperature due to geothermal heating of the bedrock or soils surrounding the springs (Supplementary Fig. 1). The streams have been heated in this way for centuries33 and are otherwise similar in their physical and chemical properties13,18, providing an ideal space-for-time substitution in which to measure species responses after chronic exposure to different temperatures6,34. Fieldwork was performed in the summers of 2015–2018, between May and July. Stream temperatures were logged every 4 h using Maxim Integrated DS1921G Thermochron iButtons submerged in each stream (Supplementary Fig. 2). The average stream temperature over this study period was used as a measure of chronic temperature exposure, encompassing at least the lifetime of every invertebrate species under investigation (and potentially multiple generations6,35).Invertebrates were collected from nine streams spanning a temperature gradient of 5–20 °C across the entire study system (Supplementary Figs. 1–2). The streams exhibit some differences in the annual variability of their thermal regimes, but there are examples of both cold and warm streams that have high (IS12 and IS2) and low (IS13 and IS8) variability throughout the year. Our main finding is also robust to the inclusion of stream temperature variability as a random effect in our modelling framework (Supplementary Table 4; Supplementary Fig. 7). Note that we present temperature data from 15 streams in Supplementary Fig. 2, but it was not logistically feasible to study acute thermal responses of invertebrates collected from all of them, thus we focused on a subset of nine streams that best spanned the temperature gradient. The remaining six streams were included in other studies from the system, quantifying the biomass of all the constituent species17, describing food web structure18, and measuring whole-stream respiration15 (described in detail below).Individual organisms were stored in containers within their ‘home stream’ until the end of each collection day, when they were transported within 1 h to the University of Iceland and then transferred into 2 L aquaria filled with water from the main river in Hengill, the Hengladalsá. The water was passed through a 125 µm sieve to ensure no organisms or filamentous algae entered the aquaria, and thus limiting the potential food available to the study organisms. The aquaria were continuously aerated in temperature-controlled chambers set to the home stream temperature of the organisms during sampling, which were maintained without food for at least 24 h to standardise their digestive state prior to metabolic measurements36. While we did not observe any cannibalism or organisms feeding on dead bodies in the laboratory, we cannot rule out the possibility that organisms fed on fine algal or detrital particles in the water, thus increasing variability in our metabolic measurements due to differences in digestive state.Quantifying metabolic ratesExperiments were carried out to determine the effects of body mass, acute temperature exposure (5, 10, 15, 20 and 25 °C), and chronic temperature exposure (i.e., average stream temperature) on oxygen consumption rates as a measure of metabolic rate3,12. Before each experiment, individual organisms were confined in glass chambers in a temperature-controlled water bath and slowly adjusted to the (acute) experimental temperature over a 15 min period to avoid a shock response. Glass chambers ranged in volume from 0.8–5 ml and scaled with the size of the organism. The glass chambers were filled with water from the Hengladalsá, which was filtered through a 0.45 µm Whatman membrane after aeration to 100% oxygen saturation. A magnetic stir bar was placed at the bottom of each chamber and separated from the organism by a mesh screen. In each experiment, one individual organism was placed in each of seven chambers and the eighth chamber was used as an animal-free control to correct for potential sensor drift. The chambers were sealed with gas-tight stoppers after the 15 min acclimatisation period, ensuring there was no headspace or air bubbles.Oxygen consumption by individual organisms was measured using an oxygen microelectrode (MicroRespiration, Unisense, Denmark), fitted through a capillary in the gas-tight stopper of each chamber37. A total of 330 s measurement periods were recorded for each individual, where dissolved oxygen was measured every second. Oxygen consumption rate was calculated as the slope of the linear regression through all the data points from a single chamber, corrected for differences in chamber volume and the background rate measured from the control chamber (which was never >5% of the measured metabolic rates). We converted the units of this rate (µmol O2 h−1) to energetic equivalents (J h−1) using atomic weight (1 mol O2 = 31.9988 g), density (1.429 g L−1), and a standard conversion38 (1 ml O2 = 20.1 J). Organisms generally exhibited some activity during experiments, thus these measurements can be classified as routine metabolic rates12, which are more reflective of energy expenditure in field conditions. Nevertheless, activity levels were minimal due to the space constraints of the chambers (volume equal to 5–100 times the mass of the measured organism), indicating that the measured rates were likely to be closer to resting metabolic rates. Oxygen concentrations were never allowed to decline below 70% to minimise stress and avoid oxygen limitation. The system was cleaned with bleach at the end of each measurement day to avoid accumulation of microbial organisms on the insides of glass chambers and the water bath. In total, oxygen consumption rates were measured for 1819 individuals, none of which were ever reused in another experiment, thus every data point in the analysis corresponds to a single new individual (see below for details of how this dataset was curated to the final analysed subset of 1359 individuals based on quality-control procedures).Following each experiment, individuals were preserved in 70% ethanol and later identified to species level under a dissecting microscope, except for Chironomidae, which were identified by examining head capsules under a compound microscope39. A linear dimension was precisely measured for every individual using an eyepiece graticule and converted to dry body mass using established length-weight relationships (Supplementary Table 1).Statistical analysisAll statistical analyses were conducted in R 4.0.2 (see the Supplementary Note for full details of statistical R code). According to the Metabolic Theory of Ecology3 (MTE), metabolic rate, I, depends on body mass and temperature as:$$I={I}_{0}{M}^{b}{e}^{{E}_{A}{T}_{A}},$$
    (1)
    where I0 is the intercept, M is dry body mass (mg), b is an allometric exponent, EA is the activation energy (eV), and TA is a standardised Arrhenius temperature:$${T}_{A}=frac{{T}_{{acute}}-{T}_{0}}{k{T}_{{acute}}{T}_{0}}.$$
    (2)
    Here, Tacute is an acute temperature exposure (K), T0 sets the intercept of the relationship at 283.15 K (i.e., 10 °C), and k is the Boltzmann constant (8.618 × 10−5 eV K−1). We performed a multiple linear regression (‘lm’ function in the ‘stats’ package) on the natural logarithm of Eq. (1) to explore the main effects of temperature and body mass on the metabolic rate of each population (i.e., species × stream combination) in our dataset3. Following these analyses, we excluded populations where n < 10 individuals, r2  0.05 for any term in the model (see Supplementary Table 5, Supplementary Figs. 8–9). This excluded any poor quality species-level data and resulted in 1359 individuals from 44 populations for further analysis. Note that we find the same overall conclusion if we analyse the entire dataset (Supplementary Table 6, Supplementary Fig. 10).To determine whether chronic temperature exposure alters the size- and acute temperature-dependence of metabolic rate, we added a term for chronic temperature exposure to Eq. 1. We began our analysis by considering the natural logarithm of all possible combinations of the main and interactive effects in this model:$${ln}I= {ln}{I}_{0}+b{ln}M+{E}_{A}{T}_{A}+{E}_{C}{T}_{C}+{b}_{A}{ln}M{T}_{A}+{b}_{C}{ln}M{T}_{C}+{E}_{{AC}}{T}_{A}{T}_{C}\ +{b}_{{AC}}{ln}M{T}_{A}{T}_{C}.$$ (3) Here, TC is a standardised Arrhenius temperature with Tchronic as a chronic temperature exposure (K) substituted for Tacute in Eq. (2). To determine the optimal random effects structure for this model, we compared a generalised least squares model of Eq. 3 with linear mixed-effects models (‘gls’ and ‘lme’ functions in the ‘nlme’ package) containing all possible subsets of the following random effects structure40:$${random}={sim} 1+{ln},M+{T}_{A}+{T}_{C}|{species}.$$ (4) Here, we are accounting for the possibility that metabolic rate could be different for each species (i.e., a random intercept) and that the effect of body mass, acute temperature exposure, or chronic temperature exposure on metabolic rate could also be different for each species (i.e., random slopes).The full random structure (Eq. 4) was identified as the best model using Akaike Information Criterion (ΔAIC > 31.2; see Supplementary Table 7). We used this random structure in subsequent analyses, set ‘method = ‘ML’’ in the ‘lme’ function, and performed AIC comparison on all possible combinations of the fixed-effect structure40 (i.e., Equation 3). The optimal model was identified as follows:$${ln}I={ln}{I}_{0}+b{ln},M+{E}_{A}{T}_{A}+{E}_{C}{T}_{C}+{b}_{C}{ln}M{T}_{C}+{E}_{{AC}}{T}_{A}{T}_{C}.$$
    (5)
    Note that while the model with an additional interaction between ln(M) and TA performed similarly (ΔAIC = 0.2; see Supplementary Table 8), that term was not significant (t = −1.645; p = 0.1002). We set ‘method = ‘REML’’ before extracting model summaries and partial residuals from the best-fitting model40. Note that the models were always fitted to the raw metabolic rate data, with residuals only extracted for a visual representation of the best-fitting models, excluding the noise explained by the random effect of species identity (see R code in the Supplementary Note).Exploration of spatial autocorrelationA Mantel test (‘mantel’ function in the ‘vegan’ R package) was used to test for spatial autocorrelation in the temperature gradient, by comparing pairwise temperature difference between streams to the pairwise distance between streams. Pairwise distances were calculated from GPS coordinates taken at the confluence of each stream with the main river and the ‘earth.dist’ function in the ‘fossil’ R package. This analysis revealed no significant relationship between pairwise temperature and pairwise distance between sites (Mantel r = −0.1293, p = 0.780).In addition, we explored for spatial autocorrelation in the residuals of our optimal model (Table 1a) by generating an empirical semivariogram cloud, illustrating the squared difference between all pairwise residual data points as a function of the distance between the two points. We also calculated Moran’s I as a measure of spatial autocorrelation in the model residuals. The semivariogram indicated no clear patterns in the residuals as a function of the distance between data points (Supplementary Fig. 3) and there was no statistical evidence for spatial autocorrelation in the model residuals (Moran’s I = 0.1187, p = 0.453).Exploration of phylogenetic structureTo examine the influence of evolutionary relatedness on metabolic rate measurements, we reconstructed a time-calibrated phylogeny of the 16 species in our final dataset (Supplementary Table 1). To this end, we combined: (i) nucleotide sequences of the 5′ region of the cytochrome c oxidase subunit I gene (COI-5P) from the Barcode of Life Data System database41; (ii) tree topology information from the Open Tree of Life42 (OTL; v. 13.4); and (iii) previously reported divergence time estimates between pairs of genera from the TimeTree database43. More precisely, we were able to obtain COI-5P nucleotide sequences for 15 out of 16 species (Supplementary Table 2), which we aligned using the G-INS-i algorithm of MAFFT44 (v. 7.490). To constrain the topology of our phylogeny based on the results of previous studies, we queried the OTL via the ‘rotl’ R package45 (v. 3.0.11). This yielded topological information for all 16 species. Finally, we manually queried the TimeTree database to obtain node age estimates. We only used three such estimates that (a) were based on more than five previous studies and (b) did not force any tree branches to have a length of zero.We next used MrBayes46 (v. 3.2.7a) to obtain a time-calibrated phylogeny based on the sequence alignment, the OTL topology, and the node ages from TimeTree. For this, we first determined the most appropriate nucleotide substitution model using ModelTest-NG47 (v. 0.1.7). This was the General Time-Reversible model with Gamma-distributed rate variation across sites and a proportion of invariant sites. To allow branches of the phylogeny to differ in their rate of sequence evolution, we specified the Independent Gamma Rates model48 and used a normal distribution with a mean of 0.00003 and a standard deviation of 0.00001 as the prior for the mean clock rate. Finally, we executed four MrBayes runs with two chains per run for 100 million generations, sampling from the posterior distribution every 500 generations. Samples from the first ten million generations were treated as burn-in and were discarded. We examined the remaining samples to ensure that the four MrBayes runs had converged on statistically indistinguishable posterior distributions (i.e., all potential scale reduction factor values were below 1.1) and the parameter space was sufficiently explored (i.e., all effective sample size values were higher than 200). We summarised the sampled trees into a single time-calibrated phylogeny by calculating the median age estimate for each node (Supplementary Fig. 4).To investigate the influence of evolutionary and acclimatory processes on metabolic rate, we first estimated the phylogenetic heritability of metabolic rate, i.e., the extent to which closely related species have more similar trait values than species chosen at random49. This metric takes values from 0 (trait values are independent of the phylogeny) to 1 (trait values evolve similarly to a random walk in the parameter space), with intermediate values indicating deviations from a pure random walk. To estimate phylogenetic heritability, we fitted a generalised linear mixed-effects model using the ‘MCMCglmm’ R package50 (v. 2.32). We set the natural logarithm of metabolic rate as the response variable and only an intercept as a fixed effect. We also specified a phylogenetic species-level random effect on the intercept, using the phylogenetic variance-covariance matrix obtained from our time-calibrated phylogeny. We used the default (normal) prior for the fixed effect, an uninformative Cauchy prior for the random effect, and an uninformative inverse Gamma prior for the residual variance. We then executed four independent runs for 500,000 MCMC generations each, with parameter samples being obtained every 50 generations after the first 50,000. We verified that sufficient convergence was reached, based on potential scale reduction factor and effective sample size values, as described earlier. Phylogenetic heritability was calculated as the ratio of the variance captured by the species-level random effect to the sum of the random and residual variances. The mean posterior phylogenetic heritability estimate of the natural logarithm of metabolic rate was 0.48. This means that nearly half (48%) of the variation can be explained by the evolution of metabolic rate along the phylogeny (Supplementary Fig. 4), with the other half arising from other sources including (but not necessarily limited to) acclimation and measurement error.To describe the remaining unexplained variation, we fitted a series of models using MCMCglmm in R with all possible combinations of log body mass, acute temperature exposure, and chronic temperature exposure (fixed effects, as in Eq. (3) of the main text) and species-level random effects on the intercept and slopes (as in Eq. (4) of the main text). Furthermore, we specified both phylogenetic and non-phylogenetic variants of each model to understand if such a correction is warranted when the fixed effects are included. We determined the most appropriate model based on the Deviance Information Criterion51 (DIC). The optimal model (ΔDIC > 19; Supplementary Table 3; Supplementary Fig. 5) was found to include the full random effects structure (Eq. 4), the main effects of log body mass, acute temperature exposure, and chronic temperature exposure, the interaction between log body mass and chronic temperature exposure, and the interaction between acute temperature exposure and chronic temperature exposure (as for Eq. 5 in the main text), i.e., the same optimal model as that containing only species-level, rather than phylogenetic, information (Table 1a; Fig. 1). We calculated the marginal and conditional coefficients of determination to report the amounts of variance explained by the fixed and random effects, or left unexplained52. We found that the unexplained variation dropped from 52% to 8%, indicating that metabolic rate is strongly influenced by acclimatory processes in addition to evolutionary processes (see above).It should be noted, however, that a definitive empirical quantification of the relative strength of evolutionary and acclimatory processes would require population genetics (to determine evolutionary divergent populations among streams), transcriptomics (to identify the expression of genes associated with thermal adaptation), and exhaustive common garden experiments (to disentangle acclimation from adaptation in all populations). Such an undertaking was logistically unfeasible in this study, but should be a focus for follow-up research on this topic.Modelling ecosystem-level energy fluxesWe used a recently proposed approach for inferring energy fluxes through trophic links25 to predict the effects of climate warming on ecosystem-level energy fluxes. We began by assuming that each stream ecosystem is at energetic steady state, i.e., for all n consumer species in the system:$${G}_{i},=,{L}_{i},,i,=,1,,2,,ldots ,,n,$$
    (6)
    where Gi and Li are the energy gain and loss rates [J h−1], respectively, of the ith species in that stream. All basal species are implicitly assumed to be at energy balance. The two terms in Eq. (6) can be specified in a general way as$${G}_{i}=mathop{sum}limits_{k,in ,{{{{{{rm{R}}}}}}}_{i}}{e}_{{ki}}{w}_{{ki}}{F}_{{ki}},{{{{{rm{and}}}}}}$$
    (7)
    $${L}_{i}={Z}_{i}+mathop{sum}limits_{j,in ,{{{{{{rm{C}}}}}}}_{i}}{w}_{{ij}}{F}_{{ij}}.$$
    (8)
    Here, for the ith species, Ri and Ci are the sets of its resource and consumer species respectively, and Zi is its population-level energy loss rate stemming from mortality and metabolic expenditure on various activities realised over the timescale of the system’s dynamics. For the jth species feeding on the ith species, Fij is the maximum population-level feeding rate, eij is the assimilation efficiency (expressed as a proportion), and wij is the consumer’s preference for that species (all preferences for a given consumer sum to 1). Thus, the effective flux through a trophic link is ({e}_{{ki}}{w}_{{ki}}{F}_{{ki}}). Next, assuming the energy balance condition in Eq. 6 holds for all species, there are n linear equations (corresponding to the n consumer species) of the form:$${G}_{i}-{L}_{i}=mathop{sum}limits_{kin {{{{{{rm{R}}}}}}}_{i}}{e}_{{ki}}{w}_{{ki}}{F}_{{ki}}-left({Z}_{i}+mathop{sum}limits_{jin {{{{{{rm{C}}}}}}}_{i}}{w}_{{ij}}{F}_{{ij}}right)=0,$$
    (9)
    which can be solved iteratively to obtain the unknown fluxes ({F}_{{ij},{i}ne j}) of all consumer species, provided all the Zi’s, eij’s, and wij’s are known.For this, we used the ‘fluxing’ function in the ‘fluxweb’ R package, parameterised with: (1) binary predation matrices for 14 stream food webs, characterised by 49,324 directly observed feeding interactions18; (2) biomasses for every species in each food web, characterised by 13,185 individual body mass measurements17; (3) assimilation efficiencies (eij’s) based on an established temperature-dependence and resource type (i.e., plant, detritus, or invertebrate)53; (4) preferences (wij’s) depending on resource biomasses; and (5) metabolic rates estimated using Eqs. (1) and (5) (assuming that I approximates Z). We treated TA in Eqs. (1) and (5) as the short-term temperature of the streams during food web sampling17,18 and TC in Eq. (5) as the long-term average temperature of the streams measured over the current study (Supplementary Fig. 2). It is important to note that the energy balance assumption (Eq. 6) implies that Zi in Eq. (8) is a combination of basal, routine, and active metabolic rates, stemming from the combination of activities realised over the timescale of the system’s dynamics. Therefore, our use of routine metabolic rate I is an underestimate of Z, which in turn means that the fluxes (which must balance the losses) are an underestimate.Biomass and food web data were sampled in August 2008, with extensive protocols described in previous publications17,18. Briefly, this involved three stone scrapes per stream for benthic diatoms, five Surber samples per stream for macroinvertebrates, and three-run depletion electrofishing for fish. All individuals in the samples were identified to species level where possible and counted. Linear dimensions were measured for at least ten individuals of each species in each stream, with body masses estimated from length-weight relationships17. The population biomass of each species in each stream was calculated as the total abundance [individuals m−2] multiplied by the mean body mass [mg dry weight]. Food web links were largely assembled from gut content analysis of individual organisms collected from the streams ( >87% of all links in the database), but additional links were added from the literature when yield-effort curves indicated that the diet of a consumer species was incomplete18.Validation of the ecosystem flux model using field dataTo test whether our model of energy fluxes through trophic links was empirically meaningful, we calculated the sum of all energy fluxes through each stream food web to get the total energy flux, F (i.e., the sum of all ({e}_{{ki}}{w}_{{ki}}{F}_{{ki}})’s in Eq. 7). This quantity is a measure of multitrophic functioning and is expected to be positively correlated with the total respiration of each stream25. To evaluate this, we compared F to whole-ecosystem respiration rates measured in the same study streams15. The ecosystem respiration estimates were based on a modified open-system oxygen change method using two stations corrected for lateral inflows54,55. Essentially, this was an in-stream mass balance of oxygen inflows and outflows along stream reaches (17–51 m long). Oxygen concentrations were measured during 24- to 48 h periods from 6th to 16th August 2008, i.e., the exact same time period during which biomass and food web data were sampled to parameterise the energy flux model15. Dissolved oxygen concentrations were measured every minute with optic oxygen sensors (TROLL9500 Professional, In-Situ Inc. and Universal Controller SC100, Hach Lange GMBF). Hourly ecosystem respiration was calculated from the net metabolism at night, i.e., when no primary production occurs due to lack of sunlight.Modelling the consequences of metabolic plasticity for global warming impacts on ecosystem-level energy fluxIn addition to total energy flux, F, we also calculated a modified total energy flux, F*, for each food web after considering a global warming scenario, where we added 2 °C to TA in Eq. (1) and to both TA and TC in Eq. (5). We calculated the change in total energy flux as a result of the global warming scenario as ΔF = F* – F. We tested whether the (statistically optimal) model with metabolic plasticity (Eq. 5) predicted a greater ΔF across the 14 empirical stream food webs from the Hengill system than the model without metabolic plasticity using paired Wilcoxon tests (since the data did not conform to homogeneity of variance). To determine whether our results were consistent for all major trophic groupings in the system, we repeated the analysis after calculating the change in energy flux to herbivores (ΔFH = FH* – FH), detritivores (ΔFD = FD* – FD), and predators (ΔFP = FP* – FP) in each stream.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams

    Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. in Global Change and River Ecosystems—Implications for Structure, Function and EcosystemServices (eds. Stevenson, R. J. & Sabater, S.) 107–121 (Springer Netherlands, 2010).Battin, T. J., Wille, A., Psenner, R. & Richter, A. Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1, 159–171 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuhn, M. The nutrient cycle through snow and ice, a review. Aquat. Sci. 63, 150–167 (2001).CAS 
    Article 

    Google Scholar 
    Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. U. S. A. 114, 9770–9778 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tockner, K., Malard, F., Uehlinger, U. & Ward, J. V. Nutrients and organic matter in a glacial river-floodplain system (Val Roseg, Switzerland). Limnol. Oceanogr. 47, 266–277 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).Article 

    Google Scholar 
    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).Article 

    Google Scholar 
    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).ADS 
    Article 

    Google Scholar 
    Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. WIREs Water 6, e1390 (2019).Article 

    Google Scholar 
    Hoyle, J. T., Kilroy, C., Hicks, D. M. & Brown, L. The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshw. Biol. 62, 258–273 (2017).Article 

    Google Scholar 
    Canadell, M. B. et al. Regimes of primary production and their drivers in Alpine streams. Freshwater Biol. https://doi.org/10.1111/fwb.13730 (2021).Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. Bioscience 67, 897–911 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13, 291–314 (1982).Article 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kaplan, L. A. & Bott, T. L. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34, 718–733 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Vincent, W. F., Downes, M. T., Castenholz, R. W. & Howard-Williams, C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur. J. Phycol. 28, 213–221 (1993).Article 

    Google Scholar 
    Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. Sci. Total Environ. 717, 137101 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Risse‐Buhl, U. et al. Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms. Limnol. Oceanogr. 65, 2261–2277 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, M. A., Swan, C. M., Nelson, K., Silver, P. & Alvestad, R. Streambed landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landsc. Ecol. 15, 563–576 (2000).Article 

    Google Scholar 
    Battin, T. J. et al. Microbial landscapes: new paths to biofilm research. Nat. Rev. Microbiol. 5, 76–81 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dzubakova, K. et al. Environmental heterogeneity promotes spatial resilience of phototrophic biofilms in streambeds. Biol. Lett. 14, 20180432 (2018).Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).Article 
    PubMed 

    Google Scholar 
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol 1, 16048 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chaudhari, N. M., Overholt, W. A. & Figueroa-Gonzalez, P. A. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. bioRxiv. 16, 1–8 (2021).Vigneron, A. et al. Ultra‐small and abundant: candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol. Oceanogr. Lett. 5, 212–220 (2020).Article 

    Google Scholar 
    Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cai, M. et al. Ecological features and global distribution of Asgard archaea. Sci. Total Environ. 758, 143581 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: The enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018).Article 

    Google Scholar 
    Payne, A. T. et al. Widespread cryptic viral infections in lotic biofilms. Biofilms 2, 100016 (2020).Article 

    Google Scholar 
    Anesio, A. M., Mindl, B., Laybourn-Parry, J., Hodson, A. J. & Sattler, B. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112, (2007).Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Q. et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J. 15, 1844–1857 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klawonn, I. et al. Characterizing the ‘fungal shunt’: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Chróst, R. J. Microbial Enzymes in Aquatic Environments. (Springer-Verlag, 1991).Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: a pan-arctic review. Front. Mar. Sci. 5, 292 (2018).Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 45 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avcı, B., Krüger, K., Fuchs, B. M., Teeling, H. & Amann, R. I. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 14, 1369–1383 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol 5, 1026–1039 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, J., Lyu, Y., Richlen, M., Anderson, D. M. & Cai, Z. Quorum sensing is a language of chemical signals and plays an ecological role in algal–bacterial interactions. CRC Crit. Rev. Plant Sci. 35, 81–105 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Grossman, A. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol.: CB vol. 26, R319–R321 (2016).CAS 
    Article 

    Google Scholar 
    Segev, E. et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife 5, e17473 (2016).Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Fellman, J. B. et al. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol. Oceanogr. 60, 1118–1128 (2015).ADS 
    Article 

    Google Scholar 
    Singer, G. A. et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi‐chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tranter, M., Mills, R. & Raiswell, R. Chemical weathering reactions in Alpine glacial meltwaters. in International symposium on water-rock interaction. 687–690 (1989).Tranter, M., Brown, G., Raiswell, R., Sharp, M. & Gurnell, A. A conceptual model of solute acquisition by Alpine glacial meltwaters. J. Glaciol. 39, 573–581 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    St Pierre, K. A. et al. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proc. Natl Acad. Sci. U. S. A. 116, 17690–17695 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E. & Boyd, E. S. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Hernández, M. et al. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the Class Ktedonobacteria. Microorganisms 8, 1880 (2020).Quick, A. M. et al. Nitrous oxide from streams and rivers: a review of primary biogeochemical pathways and environmental variables. Earth-Sci. Rev. 191, 224–262 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gooseff, M. N., McKnight, D. M., Runkel, R. L. & Duff, J. H. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 49, 1884–1895 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 55, 1901–1911 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alves, R. J. E. et al. Ammonia oxidation by the Arctic terrestrial thaumarchaeote candidatus nitrosocosmicus arcticus is stimulated by increasing temperatures. Front. Microbiol. 10, 1571 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Könneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. U. S. A. 111, 8239–8244 (2014).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Battin, T. J., Kaplan, L. A., Denis Newbold, J. & Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cockell, C. S. et al. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. J. Photochem. Photobiol. B 68, 23–32 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sommaruga, R. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B 62, 35–42 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Maayer, P., Anderson, D., Cary, C. & Cowan, D. A. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15, 508–517 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tribelli, P. M. & López, N. I. Reporting key features in cold-adapted bacteria. Life 8, 8 (2018).Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alonso-Sáez, L. et al. Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front. Microbiol. 5, 425 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hornung, C. et al. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 8, e55045 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maillot, N. J., Honoré, F. A., Byrne, D., Méjean, V. & Genest, O. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun. Biol. 2, 323 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konings, W. N., Albers, S.-V., Koning, S. & Driessen, A. J. M. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van. Leeuwenhoek 81, 61–72 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Methé, B. A. et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl Acad. Sci. U. S. A. 102, 10913–10918 (2005).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayala-del-Río, H. L. et al. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76, 2304–2312 (2010).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mykytczuk, N. C. S. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ting, L. et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ. Microbiol 12, 2658–2676 (2010).CAS 
    PubMed 

    Google Scholar 
    Tribelli, P. M. et al. Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 10, e0145353 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blagojevic, D. P., Grubor-Lajsic, G. N. & Spasic, M. B. Cold defence responses: the role of oxidative stress. Front. Biosci. 3, 416–427 (2011).Article 

    Google Scholar 
    Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. https://doi.org/10.1038/s41396-021-01106-6 (2021).Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Vegetation Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gautreau, I. E7805 NEBNext® UltraTM II FS DNA Library Prep Kit for Illumina® Protocol for use with Inputs ≤ 100 ng. https://www.protocols.io/view/e7805-nebnext-ultra-ii-fs-dna-library-prep-kit-for-k8tczwn (2020).Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol 2, 16180 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. bioRxiv 2021.12.22.473795 https://doi.org/10.1101/2021.12.22.473795. (2021).Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol 3, 836–843 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz848 (2019).Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zablocki, O., Jang, H. B., Bolduc, B. & Sullivan, M. B. vConTACT 2: A tool to automate genome-based prokaryotic viral taxonomy. in Plant and Animal Genome XXVII Conference (January 12-16, 2019) (PAG, 2019).Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krinos, A. I., Hu, S. K., Cohen, N. R. & Alexander, H. EUKulele: Taxonomic annotation of the unsung eukaryotic microbes. arXiv [q-bio.PE] (2020).Queirós, P., Delogu, F., Hickl, O., May, P. & Wilmes, P. Mantis: flexible and consensus-driven genome annotation. bioRxiv (2020).Zhou, Z. et al. METABOLIC: High-throughput profiling of microbial genomes for functional traits, biogeochemistry, and community-scale metabolic networks. bioRxiv 761643. https://doi.org/10.1101/761643 (2020).McDaniel, E. A., Anantharaman, K. & McMahon, K. D. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv 2019.12.20.884627. https://doi.org/10.1101/2019.12.20.884627 (2019).Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. https://www.osti.gov/biblio/1241166 (2014).Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. CONCOCT: Clustering cONtigs on COverage and ComposiTion. arXiv [q-bio.GN] (2013).Levy Karin, E., Mirdita, M. & Söding, J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Inferring Correlation Networks from Genomic Survey Data. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002687.Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst. 1695, 1–9 (2006).
    Google Scholar 
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tange, O. GNU Parallel 2018. (Lulu.com, 2018).Team, R. C. & Others. R: A language and environment for statistical computing. (2013).Kahle, D. & Wickham, H. Ggmap: spatial visualization with ggplot2. R. J. 5, 144 (2013).Article 

    Google Scholar 
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).kevinblighe/EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano.Wickham, H. ggplot2: ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).MATH 
    Article 

    Google Scholar 
    Bah, T. Inkscape: guide to a vector drawing program. (Prentice Hall Press, 2007).Varrette, S., Bouvry, P., Cartiaux, H. & Georgatos, F. Management of an academic HPC cluster: The UL experience. In 2014 International Conference on High Performance Computing Simulation (HPCS) 959–967 (2014). More

  • in

    Farm-scale differentiation of active microbial colonizers

    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.CAS 
    Article 

    Google Scholar 
    Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881.CAS 
    Article 

    Google Scholar 
    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    Article 

    Google Scholar 
    Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:2770.Article 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.Article 

    Google Scholar 
    Sorensen JW, Shade A. Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philos Trans R Soc B Biolog Sci. 2020;375:20190255.CAS 
    Article 

    Google Scholar 
    Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.CAS 
    Article 

    Google Scholar 
    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS 
    Article 

    Google Scholar 
    Lauber Christian L, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.CAS 
    Article 

    Google Scholar 
    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.Article 

    Google Scholar 
    Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.Article 

    Google Scholar 
    Barberan A, Ladau J, Leff JW, Pollard KS, Menninger HL, Dunn RR, et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc Natl Acad Sci USA. 2015;112:5756–61.CAS 
    Article 

    Google Scholar 
    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.Article 

    Google Scholar 
    Eisenlord SD, Zak DR, Upchurch RA. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence. Ecol Evol. 2012;2:538–49.Article 

    Google Scholar 
    Glassman SI, Lubetkin KC, Chung JA, Bruns TD. The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere. 2017;8:e01677.Article 

    Google Scholar 
    Whitaker Rachel J, Grogan Dennis W, Taylor John W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.CAS 
    Article 

    Google Scholar 
    Amor DR, Ratzke C, Gore J. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci Adv. 2020;6:eaay8676.CAS 
    Article 

    Google Scholar 
    Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–45.Article 

    Google Scholar 
    Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci USA. 2007;104:10282.CAS 
    Article 

    Google Scholar 
    Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol. 2012;18:1918–27.Article 

    Google Scholar 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967.CAS 
    Article 

    Google Scholar 
    Chambers CA, Smith SE, Smith FA. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 1980;85:47–62.CAS 
    Article 

    Google Scholar 
    van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems. 2010;13:683–95.Article 

    Google Scholar 
    Young IM, Ritz K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000;53:201–13.Article 

    Google Scholar 
    Kabir Z. Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci. 2005;85:23–29.Article 

    Google Scholar 
    Bell T, Tylianakis JM. Microbes in the anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc R Soc B Biol Sci. 2016;283;20160896.Article 

    Google Scholar 
    Dang K, Gong X, Zhao G, Wang H, Ivanistau A, Feng B, Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield. Front Microbiol. 2020;11;601054.Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.Article 

    Google Scholar 
    Mummey DL, Rillig MC. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol. 2008;64:260–70.CAS 
    Article 

    Google Scholar 
    Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–60.Article 

    Google Scholar 
    Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.Article 

    Google Scholar 
    Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.CAS 
    Article 

    Google Scholar 
    Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.CAS 
    Article 

    Google Scholar 
    Castaño C, Bonet JA, Oliva J, Farré G, Martínez de Aragón J, Parladé J, et al. Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. Fungal Ecol. 2019;41:279–88.Article 

    Google Scholar 
    Garbelotto M, Smith T, Schweigkofler W. Variation in rates of spore deposition of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month-period at two locations in Northern California. Phytopathology®. 2007;98:137–43.Article 

    Google Scholar 
    Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol. 2013;47:12097–106.CAS 
    Article 

    Google Scholar 
    Trexler RV, Bell TH. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol Lett. 2019;366:fnz228.CAS 
    Article 

    Google Scholar 
    King, WL, Kaminsky LM, Gannett M, Thompson GL, Kao-Kniffin J, Bell TH. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance. New Phytol. 2021. https://doi.org/10.1111/nph.17774. Advance online publication.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Apprill A, McNally S, Parsons RJ, Weber LK. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    Article 

    Google Scholar 
    Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005;5:28.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    Article 

    Google Scholar 
    Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.Article 

    Google Scholar 
    R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2012;Vienna;AustriaMcMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. Vegan: community ecology package. R Package Version 2.2-1. 2015;2:1–2. https://cran.r-project.org/web/packages/vegan/index.html.Ogle, DH, Wheeler P, Dinno A. FSA: fisheries stock analysis; 2020. https://cran.r-project.org/web/packages/FSA/index.htmlLahti L, Shetty S. Tools for microbiome analysis in R. Microbiome package. Bioconductor; 2017. https://microbiome.github.io/tutorials/Bell T. Experimental tests of the bacterial distance–decay relationship. ISME J. 2010;4:1357–65.Article 

    Google Scholar 
    Boynton PJ, Peterson CN, Pringle A. Superior dispersal ability can lead to persistent ecological dominance throughout succession. Appl Environ Microbiol. 2019;85:e02421–18.CAS 
    Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Dickie A, N IA, Reich PB. Ectomycorrhizal fungal communities at forest edges. J Ecol. 2005;93:244–55.Article 

    Google Scholar 
    Vannette, RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. Fungi are more dispersal limited than bacteria among flowers. https://www.biorxiv.org/content/10.1101/2020.05.19.104968v2. 2021.Zhang G, Wei G, Wei F, Chen Z, He M, Jiao S, et al., Dispersal limitation plays stronger role in the community assembly of fungi relative to bacteria in rhizosphere across the arable area of medicinal plant. Front Microbiol. 2021;12;713523.Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett. 2010;13:675–84.Article 

    Google Scholar 
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.Article 

    Google Scholar 
    Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.Article 

    Google Scholar 
    Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE. 2017;12:e0180442.Article 

    Google Scholar 
    Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants. 2020;6:483–91.CAS 
    Article 

    Google Scholar 
    Riedo, J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ Sci Technol. 2021;55;2919–2928.Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, et al., Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol. 2019;10;648.Article 

    Google Scholar  More

  • in

    Protected areas have a mixed impact on waterbirds, but management helps

    High Ambition Coalition for Nature and People. 50 Countries Announce Bold Commitment to Protect at Least 30% of the World’s Land and Ocean by 2030 (Campaign for Nature, 2021).Waldron A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23223 (2019).CAS 
    Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Protected Area Effectiveness in Reducing Tropical Deforestation (The World Bank, 2009).Scharlemann, J. P. W. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).Article 

    Google Scholar 
    Feng, Y. et al. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 130, 108078 (2021).Article 

    Google Scholar 
    Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).CAS 
    Article 

    Google Scholar 
    Terraube, J., Van doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).CAS 
    Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).CAS 
    Article 

    Google Scholar 
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).CAS 
    Article 

    Google Scholar 
    Kleijn, D., Cherkaoui, I., Goedhart, P. W., van der Hout, J. & Lammertsma, D. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).Article 

    Google Scholar 
    Reyes-Arriagada, R. et al. Population trends of a mixed-species colony of Humboldt and Magellanic Penguins in Southern Chile after establishing a protected area. Avian Conserv. Ecol. 8, 13 (2013).
    Google Scholar 
    Bukart, K. Motion 101 passes at IUCN, calls for protecting 50% of Earth’s lands and seas. One Earth https://www.oneearth.org/motion-101-passes-at-iucn-calls-for-protecting-50-of-earths-lands-and-seas/ (2021).Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat, Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).CAS 
    Article 

    Google Scholar 
    Redford, K. H. The empty forest. BioScience 42, 412–422 (1992).Article 

    Google Scholar 
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. N. Direct. Eval. 2009, 75–84 (2009).Article 

    Google Scholar 
    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 

    Google Scholar 
    Kingsford, R. T., Roshier, D. A. & Porter, J. L. Australian waterbirds time and space travellers in dynamic desert landscapes. Mar. Freshw. Res. 61, 875–884 (2010).CAS 
    Article 

    Google Scholar 
    The Ramsar Convention Secretariat. Managing Ramsar Sites. ramsar.org https://www.ramsar.org/sites-countries/managing-ramsar-sites (2014).European Commission. The Birds Directive. https://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm (accessed 3 April 2022).Zhang, W., Sheldon, B. C., Grenyer, R. & Gaston, K. J. Habitat change and biased sampling influence estimation of diversity trends. Curr. Biol. 31, 3656–3662.e3 (2021).CAS 
    Article 

    Google Scholar 
    Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).CAS 
    Article 

    Google Scholar 
    Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).Article 

    Google Scholar 
    Rabinowitz, D. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (John Wiley & Sons, 1981).Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 

    Google Scholar 
    Hettiarachchi, M., Morrison, T. H. & McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Change 32, 57–66 (2015).Article 

    Google Scholar 
    Munishi, P., Chuwa, J., Kilungu, H., Moe, S. & Temu, R. Management effectiveness and conservation initiatives in the Kilombero Valley Flood Plains Ramsar Site, Tanzania. Tanzania J. For. Nat. Conserv. 81, 1–10 (2012).
    Google Scholar 
    Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in western North American National Parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).Article 

    Google Scholar 
    Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).Article 

    Google Scholar 
    Wetlands International. Asian Waterbird Census. https://south-asia.wetlands.org/our-approach/healthy-wetland-nature/asian-waterbird-census/ (accessed 3 April 2022).Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).Article 

    Google Scholar 
    Jia, Q., Wang, X., Zhang, Y., Cao, L. & Fox, A. D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 218, 240–246 (2018).Article 

    Google Scholar 
    Lehikoinen, A., Rintala, J., Lammi, E. & Pöysä, H. Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conserv. 19, 88–95 (2016).Article 

    Google Scholar 
    Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).Article 

    Google Scholar 
    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    Wauchope, H. et al. Quantifying the impact of protected areas on near-global waterbird population trends, a pre-analysis plan. Preprint at https://doi.org/10.7287/peerj.preprints.27741v2 (2019).Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).QGIS Geographic Information System (QGIS, 2021).Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME) www.protectedplanet.net (UNEP-WCMC and IUCN, 2019).Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) (NOAA, 2017).Coetzer, K. L., Witkowski, E. T. F. & Erasmus, B. F. N. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104 (2014).Article 

    Google Scholar 
    Ament, J. M. & Cumming, G. S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 30, 846–855 (2016).Article 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Salmerón Gómez, R., García, Pérez, J., López Martín, M. D. M. & García, C. G. Collinearity diagnostic applied in ridge estimation through the variance inflation factor. J. Appl. Stat. 43, 1831–1849 (2016).MathSciNet 
    Article 

    Google Scholar 
    Gu, X. S. & Rosenbaum, P. R. Comparison of multivariate matching methods: structures, distances, and algorithms. J. Comput. Graph. Stat. 2, 405–420 (1993).
    Google Scholar 
    Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).MathSciNet 
    Article 

    Google Scholar 
    King, G. & Nielsen, R. Why propensity scores should not be used for matching. Pol. Anal. 27, 435–454 (2019).Article 

    Google Scholar 
    Rosenbaum, P. R. DOS: design of observational studies. https://cran.r-project.org/web/packages/DOS/index.html (2018).Linden, A. A matching framework to improve causal inference in interrupted time-series analysis. J. Eval. Clin. Pract. 24, 408–415 (2018).Article 

    Google Scholar 
    Simmons, B. I., Hoeppke, C. & Sutherland, W. J. Beware greedy algorithms. J. Anim. Ecol. 88, 804–807 (2019).Article 

    Google Scholar 
    Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).MathSciNet 
    Article 

    Google Scholar 
    Rubin, D. B. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv. Outcomes Res. Methodol. 2, 169–188 (2001).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/index.html (2021).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).Article 

    Google Scholar 
    Christensen, R. Ordinal–regression models for ordinal data. https://cran.r-project.org/web/packages/ordinal/index.html (2019).Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Op. Source Softw. 3, 772 (2018).Article 

    Google Scholar 
    McKay, M. D., Beckman, R. J. & Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979).MathSciNet 

    Google Scholar 
    Carnell, R. lhs: latin hypercube samples. https://cran.r-project.org/web/packages/lhs/index.html (2020).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 17001 (2017).Article 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).CAS 
    Article 

    Google Scholar 
    Sandvik, B. World Borders Dataset. Thematic Mapping http://thematicmapping.org/downloads/world_borders.php (2009).BirdLife International. Species Distribution Data Download http://www.birdlife.org/datazone/info/spcdownload (accessed 25 February 2020).Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    WWF International. Management Effectiveness Tracking Tool https://wwfeu.awsassets.panda.org/downloads/mett2_final_version_july_2007.pdf (2007). More

  • in

    Catestatin selects for colonization of antimicrobial-resistant gut bacterial communities

    Kåhrström CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature 2016;535:47–47.Article 

    Google Scholar 
    El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–79.CAS 
    Article 

    Google Scholar 
    Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49:e338–e338.CAS 
    Article 

    Google Scholar 
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100:1623–33.CAS 
    Article 

    Google Scholar 
    Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, et al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci. 2005;62:377–85.CAS 
    Article 

    Google Scholar 
    Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745–53.CAS 
    Article 

    Google Scholar 
    Aslam R, Atindehou M, Lavaux T, Haïkel Y, Schneider F, Metz-Boutigue M-H. Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem. 2012;19:4115–23.CAS 
    Article 

    Google Scholar 
    El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Chromogranin A cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand J Gastroenterol. 2017;52:691–7.CAS 
    Article 

    Google Scholar 
    Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32:755–97.CAS 
    Article 

    Google Scholar 
    Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci. 2019;1455:34–58.CAS 
    Article 

    Google Scholar 
    Corti A, Marcucci F, Bachetti T. Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Archiv Eur J Physiol. 2018;470:199–210.Mahata SK, Mahata M, Fung MM, O’Connor DT. Catestatin: a multifunctional peptide from chromogranin A. Regul Pept. 2010;162:33–43.CAS 
    Article 

    Google Scholar 
    Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes. 2018;67:841–8.CAS 
    Article 

    Google Scholar 
    Mahata SK, Kiranmayi M, Mahapatra NR. Catestatin: a master regulator of cardiovascular functions. Curr Med Chem. 2018;25:1352–74.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, et al. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol. 2021;232:e13655.Rabbi MF, Munyaka PM, Eissa N, Metz-Boutigue MH, Khafipour E, Ghia JE. Human catestatin alters gut microbiota composition in mice. Front Microbiol. 2017;7:1–12.Article 

    Google Scholar 
    Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, et al. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol. 2008;128:1525–34.CAS 
    Article 

    Google Scholar 
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.CAS 
    Article 

    Google Scholar 
    Dupont A, Heinbockel L, Brandenburg K, Hornef MW. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes. 2014;5:761–5.Article 

    Google Scholar 
    Tsukuda N, Yahagi K, Hara T, Watanabe Y, Matsumoto H, Mori H, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 2021;15:2574–90.CAS 
    Article 

    Google Scholar 
    Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta Biomembr. 2015;1848:3089–100.CAS 
    Article 

    Google Scholar 
    Jakobsson HE, Rodríguez‐Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–77.CAS 
    Article 

    Google Scholar 
    Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: regulation, structure and immune response. J Mol Biol. 2020;432:5184–96.CAS 
    Article 

    Google Scholar 
    Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet. 1996;30:465–506.CAS 
    Article 

    Google Scholar 
    Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32:1–16.Article 

    Google Scholar 
    Nayfach S, Fischbach MA, Pollard KS. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics. 2015;31:3368–70.CAS 
    Article 

    Google Scholar 
    Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, et al. Immunosuppression of macrophages underlies the cardioprotective effects of CST (Catestatin). Hypertension. 2021;77:1670–82.CAS 
    Article 

    Google Scholar 
    Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1–16.Article 

    Google Scholar 
    Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501–9.Article 

    Google Scholar 
    Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7:1–10.
    Google Scholar 
    Herp S, Durai Raj AC, Salvado Silva M, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: causality in health and disease. Med Microbiol Immunol. 2021;210:173–9.Article 

    Google Scholar 
    Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:1–15.Article 

    Google Scholar 
    Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, et al. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol. 2020;11:1–14.Article 

    Google Scholar 
    McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Moual H LE, Coombes BK. Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn’s disease-associated adherent-invasive Escherichia coli. Infect Immun. 2014;82:3383–93.Article 

    Google Scholar 
    Xu Y, Wei W, Lei S, Lin J, Srinivas S, Feng Y. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. MBio. 2018;9:1–18.Article 

    Google Scholar 
    Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun. 2012;80:483–92.CAS 
    Article 

    Google Scholar 
    Desloges I, Taylor JA, Leclerc JM, Brannon JR, Portt A, Spencer JD, et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen. 2019;8:1–36.Article 

    Google Scholar 
    McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol. 2004;186:5919–25.CAS 
    Article 

    Google Scholar 
    Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res. 2015;181:1–7.CAS 
    Article 

    Google Scholar 
    Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol. 2018;9:2199.Santella RM. Approaches to DNA/RNA extraction and whole genome amplification: table 1. Cancer Epidemiol Biomark Prev. 2006;15:1585–7.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. https://www.r-project.org/.Lahti L, Shetty S. microbiome R package. http://microbiome.github.io.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.CAS 
    Article 

    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.Article 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    Article 

    Google Scholar 
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    Article 

    Google Scholar 
    Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP, et al. The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe. 2022;30:124–138.e8.CAS 
    Article 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.Article 

    Google Scholar 
    Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM, Rutaihwa LK, et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinforma. 2018;19:1–8.Article 

    Google Scholar 
    Haider SR, Reid HJ, Sharp BL. Tricine-SDS-PAGE. In: Kurien B., Scofield R. editors. Protein electrophoresis. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ: Humana Press; 2012. p. 81–91.Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22.Article 

    Google Scholar 
    Zoetendal EG, Booijink CCGM, Klaassens ES, Heilig HGHJ, Kleerebezem M, Smidt H, et al. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc. 2006;1:954–9.CAS 
    Article 

    Google Scholar 
    Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.CAS 
    Article 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS 
    Article 

    Google Scholar  More