More stories

  • in

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 136, 856–868 (2010).ADS 
    Article 

    Google Scholar 
    Coumou, D., Capua, D. I., Vavrus, G., Wang, L. S. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017).Article 

    Google Scholar 
    Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, 1–6 (2012).
    Google Scholar 
    Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,910–989,997 (2016).Article 

    Google Scholar 
    Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 34037 (2013).Article 

    Google Scholar 
    Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 
    Article 

    Google Scholar 
    Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017).Article 

    Google Scholar 
    Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11, 3421–3435 (2014).ADS 
    Article 

    Google Scholar 
    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20, 5081–5099 (2007).ADS 
    Article 

    Google Scholar 
    Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).ADS 
    Article 

    Google Scholar 
    Rammig, A. et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12, 373–385 (2015).ADS 
    Article 

    Google Scholar 
    Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 3, 509–524 (2015).Article 

    Google Scholar 
    Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 143, 2960–2972 (2017).ADS 
    Article 

    Google Scholar 
    Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change 7, 557–562 (2017).Article 

    Google Scholar 
    Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).Article 

    Google Scholar 
    Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 
    Article 

    Google Scholar 
    Zweifel, R. & Sterck, F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change 1, 9 (2018).Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 221, 652–668 (2019).CAS 
    Article 

    Google Scholar 
    Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014).Article 

    Google Scholar 
    Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39 (2012).Drouard, M. & Woollings, T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 45, 12,040–12,048 (2018).Article 

    Google Scholar 
    Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 7, 10315 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 48, 1141–1160 (2017).Article 

    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).Article 

    Google Scholar 
    Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362–379 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Leuschner, C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 47, 125576 (2020).Article 

    Google Scholar 
    Muffler, L. et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 47, 1910–1921 (2020).Article 

    Google Scholar 
    Wang, F. et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees 35, 53–67 (2021).CAS 
    Article 

    Google Scholar 
    Hall, R. J., Jones, J. M., Hanna, E., Scaife, A. A. & Erdélyi, R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 48, 3869–3887 (2017).Article 

    Google Scholar 
    Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).ADS 
    Article 

    Google Scholar 
    Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 54002 (2019).Article 

    Google Scholar 
    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 74016 (2018).Article 

    Google Scholar 
    Matsueda, M. & Endo, H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 44, 5158–5166 (2017).ADS 
    Article 

    Google Scholar 
    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).Article 

    Google Scholar 
    Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020).ADS 
    Article 

    Google Scholar 
    de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 41, 2643–2654 (2013).Article 

    Google Scholar 
    Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 4, 287–300 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 24, 4304–4315 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).Article 

    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dorado-Liñán, I. et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 25, 1296–1314 (2019).ADS 
    Article 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015).PubMed 
    Article 

    Google Scholar 
    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popkin, G. How much can forests fight climate change? Nature 565, 280–282 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 29, 8823–8840 (2016).ADS 
    Article 

    Google Scholar 
    Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 29, 851–862 (2009).Article 

    Google Scholar 
    Doblas-Reyes, F. J., Casado, M. J. & Pastor, M. A. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 107, D2 (2002).Article 

    Google Scholar 
    Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/ More

  • in

    Fuel, food and fertilizer shortage will hit biodiversity and climate

    As well as the humanitarian catastrophe it is inflicting, Russia’s invasion of Ukraine in February is disrupting global flows of vital commodities such as fuel, food and fertilizer. This will affect biodiversity and the environment far beyond the war zones, with implications for sustainability and well-being worldwide.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Author Correction: Climate and land-use changes reduce the benefits of terrestrial protected areas

    AffiliationsDepartment of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, AustraliaErnest F. Asamoah & Joseph M. MainaDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaLinda J. BeaumontAuthorsErnest F. AsamoahLinda J. BeaumontJoseph M. MainaCorresponding authorCorrespondence to
    Ernest F. Asamoah. More

  • in

    A global record of annual terrestrial Human Footprint dataset from 2000 to 2018

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6, 439–447 (2008).Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, (2017).Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nature communications 9, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology 24, 3199–3213 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510 (2020).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing 13, 1849 (2021).ADS 
    Article 

    Google Scholar 
    Wang, L. et al. Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment 210, 269–281 (2018).ADS 
    Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends in ecology & evolution 29, 635–644 (2014).Article 

    Google Scholar 
    Nikhil, S. et al. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis 5, 1–14 (2021).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Steffen W, et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, (2015).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific data 3, 1–10 (2016).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mu, H. et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning 218, 104305 (2022).Article 

    Google Scholar 
    Hoffmann, S., Irl, S. D. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nature communications 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).ADS 
    Article 

    Google Scholar 
    Allan, J. R., Venter, O. & Watson, J. E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Scientific data 4, 1–8 (2017).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances 6, eabc3436 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data 12, 1953–1972 (2020).ADS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, 811–826 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2, 599–610 (2018).Article 

    Google Scholar 
    Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecology letters 17, 1365–1379 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific data 7, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Luck, G. W., Ricketts, T. H., Daily, G. C. & Imhoff, M. Alleviating spatial conflict between people and biodiversity. Proceedings of the National Academy of Sciences 101, 182–186 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Gong, P., Li, X. & Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin 64, 756–763 (2019).ADS 
    Article 

    Google Scholar 
    Hu, T., Yang, J., Li, X. & Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sensing 8, 151 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters 15, 094044 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhu, Z. & Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data 12, 357–371 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, X. et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data 12, 1625–1648 (2020).ADS 
    Article 

    Google Scholar 
    Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment 166, 78–90 (2015).ADS 
    Article 

    Google Scholar 
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G. & Gaston, K. J. Urban form, biodiversity potential and ecosystem services. Landscape and urban planning 83, 308–317 (2007).Article 

    Google Scholar 
    Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous United States. PE&RS. Photogrammetric Engineering & Remote Sensing 77, 858–864 (2011).
    Google Scholar 
    Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).ADS 
    Article 

    Google Scholar 
    Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment 219, 206–220 (2018).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637 (2017).ADS 
    Article 

    Google Scholar 
    Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing 38, 6030–6046 (2017).ADS 
    Article 

    Google Scholar 
    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115, 161–164 (2004).Article 

    Google Scholar 
    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Scientific data 4, 1–17 (2017).Article 

    Google Scholar 
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological reviews 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, M. et al. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971 (2019).ADS 
    Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability 3, 281–289 (2020).Article 

    Google Scholar 
    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature communications 10, 1–10 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Plummer, S., Lecomte, P. & Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203, 2–8 (2017).ADS 
    Article 

    Google Scholar 
    Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles 22, (2008).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation biology 14, 18–30 (2000).Article 

    Google Scholar 
    Paton, D. G., Ciuti, S., Quinn, M. & Boyce, M. S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 8, e01841 (2017).Article 

    Google Scholar 
    Center For International Earth Science Information Network –Columbia University, Georgia ITOSUO. Global roads open access data set, version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), (2013).Wolter, C. & Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89 (2003).Article 

    Google Scholar 
    Wolter, C. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53, 135–144 (2001).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89, 93–94 (2008).ADS 
    Article 

    Google Scholar 
    Mu, H. et al. An annual global terrestrial Human Footprint dataset from 2000 to 2018. figshare https://doi.org/10.6084/m9.figshare.16571064.v5 (2021).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA https://doi.org/10.1594/PANGAEA.787668 (2012).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Scientific data 6, 1–17 (2019).Article 

    Google Scholar 
    Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Global change biology 26, 3040–3051 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Punishment institutions selected and sustained through voting and learning

    Henrich, J. et al. Costly punishment across human societies. Science https://doi.org/10.1126/science.1127333 (2006).Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).Ostrom, E., Walker, J. & Gardner, R. Covenants with and without a sword: self-governance is possible. Am. Polit. Sci. Rev. 86, 404–417 (1992).Article 

    Google Scholar 
    Fehr, E. & Gächter, S. Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90, 980–994 (2000).Article 

    Google Scholar 
    Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. Winners don’t punish. Nature https://doi.org/10.1038/nature06723 (2008).Rand, D. G., Ohtsuki, H. & Nowak, M. A. Direct reciprocity with costly punishment: generous tit-for-tat prevails. J. Theor. Biol. https://doi.org/10.1016/j.jtbi.2008.09.015 (2009).Ohtsuki, H., Iwasa, Y. & Nowak, M. A. Indirect reciprocity provides only a narrow margin of efficiency for costly punishment. Nature https://doi.org/10.1038/nature07601 (2009).Sethi, R. & Somanathan, E. Understanding reciprocity. J. Econ. Behav. Organ. 50, 1–27 (2003).Article 

    Google Scholar 
    Bowles, S. & Gintis, H. A Cooperative Species (Princeton Univ. Press, 2011).Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A. & Sigmund, K. Via freedom to coercion: the emergence of costly punishment. Science https://doi.org/10.1126/science.1141588 (2007).Brandt, H., Hauert, C. & Sigmund, K. Punishment and reputation in spatial public goods games. Proc. R. Soc. B https://doi.org/10.1098/rspb.2003.2336 (2003).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000758 (2010).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New J. Phys. https://doi.org/10.1088/1367-2630/12/8/083005 (2010).Perc, M. & Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. https://doi.org/10.1088/1367-2630/14/4/043013 (2012).Boyd, R., Gintis, H. & Bowles, S. Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science https://doi.org/10.1126/science.1183665 (2010).Sigmund, K., De Silva, H., Traulsen, A. & Hauert, C. Social learning promotes institutions for governing the commons. Nature 466, 861–863 (2010).CAS 
    Article 

    Google Scholar 
    Hilbe, C., Traulsen, A., Röhl, T. & Milinski, M. Democratic decisions establish stable authorities that overcome the paradox of second-order punishment. Proc. Natl Acad. Sci. USA 111, 752–756 (2014).CAS 
    Article 

    Google Scholar 
    Murphy, B. The Punisher’s Brain: The Evolution of Judge and Jury. By Hoffman, Morris B. Pp. xi, 359. Cambridge/NY, Cambridge University Press, 2014, £21.99/$30.00. Heythrop J. https://doi.org/10.1111/heyj.12249_81 (2015).Gruter, M. & Masters, R. D. Ostracism as a social and biological phenomenon: an introduction. Ethol. Sociobiolo. https://doi.org/10.1016/0162-3095(86)90043-9 (1986).Molleman, L., Kölle, F., Starmer, C. & Gächter, S. People prefer coordinated punishment in cooperative interactions. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0707-2 (2019).Szolnoki, A., Szabó, G. & Perc, M. Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E https://doi.org/10.1103/PhysRevE.83.036101 (2011).Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).Article 

    Google Scholar 
    Platteau, J.-P. Institutions, Social Norms, and Economic Development Vol. 1 (Psychology Press, 2000).van den Bergh, J. C. J. M., Ferrer-i-Carbonell, A. & Munda, G. Alternative models of individual behaviour and implications for environmental policy. Ecol. Econ. 32, 43–61 (2000).Article 

    Google Scholar 
    Traulsen, A., Nowak, M. A. & Pacheco, J. M. Stochastic dynamics of invasion and fixation. Phys. Rev. E 74, 11909 (2006).Article 

    Google Scholar 
    Dequech, D. Institutions, social norms, and decision-theoretic norms. J. Econ. Behav. Organ. 72, 70–78 (2009).Article 

    Google Scholar 
    Dunn, S. P. Bounded rationality is not fundamental uncertainty: a post Keynesian perspective. J. Post Keynes. Econ. 23, 567–587 (2001).Article 

    Google Scholar 
    Levin, S. The trouble of discounting tomorrow. Solutions 3, 20–24 (2012).
    Google Scholar 
    Alford, R. P. The proliferation of international courts and tribunals: international adjudication in ascendance. In Proc. Annual Meeting of the American Society of International Law Vol. 94, 160–165 (Cambridge University Press, 2000).Dunn, L. A. Containing Nuclear Proliferation (International Institute for Strategic Studies, 1991).Potoski, M. Green clubs in building block climate change regimes. Climatic Change 144, 53–63 (2017).Article 

    Google Scholar 
    Trzyna, T. C., Margold, E. & Osborn, J. K. World Directory of Environmental Organizations: A Handbook of National and International Organizations and Programs—Governmental and Non-governmental—Concerned with Protecting the Earth’s Resources Vol. 5 (Earthscan, 1996).Dixit, A. & Levin, S. in The Theory of Externalities and Public Goods: Essays in Memory of Richard C. Cornes (eds Buchholz, W. and Rübbelke, D.) 127–143 (Springer, 2017); https://doi.org/10.1007/978-3-319-49442-5_7Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. A bottom-up institutional approach to cooperative governance of risky commons. Nat. Clim. Change 3, 797–801 (2013).Article 

    Google Scholar 
    Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. Cooperation dynamics of polycentric climate governance. Math. Model. Methods Appl. Sci. 25, 2503–2517 (2015).Article 

    Google Scholar 
    Ostrom, E. Beyond markets and states: polycentric governance of complex economic systems. Am. Econ. Rev. 100, 641–672 (2010).Article 

    Google Scholar 
    Vasconcelos, V. V., Hannam, P. M., Levin, S. A. & Pacheco, J. M. Coalition-structured governance improves cooperation to provide public goods. Sci. Rep. 10, 9194 (2020).CAS 
    Article 

    Google Scholar 
    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    Article 

    Google Scholar 
    Hannam, P. M., Vasconcelos, V. V., Levin, S. A. & Pacheco, J. M. Incomplete cooperation and co-benefits: deepening climate cooperation with a proliferation of small agreements. Climatic Change 144, 65–79 (2017).Article 

    Google Scholar 
    Markussen, T., Putterman, L. & Tyran, J.-R. Self-organization for collective action: an experimental study of voting on sanction regimes. Rev. Econ. Stud. 81, 301–324 (2014).Article 

    Google Scholar 
    Gürerk, Ö., Irlenbusch, B. & Rockenbach, B. The competitive advantage of sanctioning institutions. Science 312, 108–111 (2006).Article 

    Google Scholar 
    Dannenberg, A. & Gallier, C. The choice of institutions to solve cooperation problems: a survey of experimental research. Exp. Econ. https://doi.org/10.1007/s10683-019-09629-8 (2019).Bühren, C. & Dannenberg, A. The demand for punishment to promote cooperation among like-minded people. Eur. Econ. Rev. 138, 103862 (2021).Radzvilavicius, A. L., Kessinger, T. A. & Plotkin, J. B. Adherence to public institutions that foster cooperation. Nat. Commun. 12, 3567 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Sexual morph specialisation in a trioecious nematode balances opposing selective forces

    Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton and Company, 1877).
    Google Scholar 
    Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn Soc. 22, 333–348 (1984).Article 

    Google Scholar 
    Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44, 1469–1489 (1990).CAS 
    Article 

    Google Scholar 
    Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).
    Google Scholar 
    Weeks, S. C. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).Article 

    Google Scholar 
    Pannell, J. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997).Article 

    Google Scholar 
    Wolf, D. E. & Takebayashi, N. Pollen limitation and the evolution of androdioecy from dioecy. Am. Nat. 163, 122–137 (2004).Article 

    Google Scholar 
    Charlesworth, D. Theories of the evolution of dioecy. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A. et al.) 33–60 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-662-03908-3_2.Chapter 

    Google Scholar 
    Denver, D. R., Clark, K. A. & Raboin, M. J. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species. Mol. Phylogenetics Evol. 61, 584–592 (2011).CAS 
    Article 

    Google Scholar 
    Pires-daSilva, A. Evolution of the control of sexual identity in nematodes. Semin. Cell Dev. Biol. 18, 362–370 (2007).Article 

    Google Scholar 
    Kanzaki, N. et al. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci. Rep. 7, 11135 (2017).ADS 
    Article 

    Google Scholar 
    Tandonnet, S. et al. Sex- and gamete-specific patterns of X chromosome segregation in a trioecious nematode. Curr. Biol. 28, 93-99.e3 (2018).CAS 
    Article 

    Google Scholar 
    Chaudhuri, J. et al. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 5, 17676 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Félix, M.-A. Alternative morphs and plasticity of vulval development in a rhabditid nematode species. Dev. Genes Evol. 214, 55–63 (2004).Article 

    Google Scholar 
    Shakes, D. C., Neva, B. J., Huynh, H., Chaudhuri, J. & Pires-daSilva, A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat. Commun. 2, 157 (2011).ADS 
    Article 

    Google Scholar 
    Winter, E. S. et al. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development 144, 3253–3263 (2017).CAS 

    Google Scholar 
    Robles, P. et al. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol. 19, 102 (2021).CAS 
    Article 

    Google Scholar 
    Zuco, G. et al. Sensory neurons control heritable adaptation to stress through germline reprogramming. bioRxiv 406033 (2018) https://doi.org/10.1101/406033.Colegrave, N., Kaltz, O. & Bell, G. The ecology and genetics of fitness in chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56, 14–21 (2002).Article 

    Google Scholar 
    Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Gray, J. C. & Goddard, M. R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol. Biol. 12, 43 (2012).Article 

    Google Scholar 
    Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage ⌽6. Genetics 166, 19 (2004).Article 

    Google Scholar 
    Stewart, A. D. & Phillips, P. C. Selection and maintenance of androdioecy in Caenorhabditis elegans. Genetics 160, 975–982 (2002).Article 

    Google Scholar 
    Stiernagle, T. Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology (WormBook, 2006).Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).CAS 
    Article 

    Google Scholar 
    Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    Lenth, R. V. Emmeans: estimated marginal means, aka least-squares means (2021).Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004).CAS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Pino, E. C., Webster, C. M., Carr, C. E. & Soukas, A. A. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. J. Vis. Exp. https://doi.org/10.3791/50180 (2013).Article 

    Google Scholar 
    Hakim, A. et al. WorMachine: machine learning-based phenotypic analysis tool for worms. BMC Biol. 16, 8 (2018).Article 

    Google Scholar 
    Motola, D. L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).CAS 
    Article 

    Google Scholar 
    Ogawa, A., Streit, A., Antebi, A. & Sommer, R. J. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19, 67–71 (2009).CAS 
    Article 

    Google Scholar 
    Wang, Z. et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc. Natl. Acad. Sci. 106, 9138–9143 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Hu, P. Dauer. WormBook: The C. elegans Research Community (2007).Chaudhuri, J., Kache, V. & Pires-daSilva, A. Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Curr. Biol. 21, 1548–1551 (2011).CAS 
    Article 

    Google Scholar 
    Luciani, G. M. et al. Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat. Chem. Biol. 7, 891–893 (2011).CAS 
    Article 

    Google Scholar 
    Adams, S., Pathak, P., Shao, H., Lok, J. B. & Pires-daSilva, A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci. Rep. 9, 483 (2019).ADS 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    Article 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).CAS 
    Article 

    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar 
    Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    Article 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucl. Acids Res. 39, W29–W37 (2011).CAS 
    Article 

    Google Scholar 
    Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).CAS 
    Article 

    Google Scholar 
    McGhee, J. D. The C. elegans intestine. WormBook: The Online Review of C. elegans Biology [Internet] (WormBook, 2007).Mullaney, B. C. & Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1791, 474–478 (2009).CAS 

    Google Scholar 
    O’Rourke, E. J., Soukas, A. A., Carr, C. E. & Ruvkun, G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).Article 

    Google Scholar 
    Mak, H. Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans. J. Lipid Res. 53, 28–33 (2012).CAS 
    Article 

    Google Scholar 
    Kroetz, S. M., Srinivasan, J., Yaghoobian, J., Sternberg, P. W. & Hong, R. L. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. BMC Proc. 6, P27 (2012).Article 

    Google Scholar 
    Edgar, L. G. & McGhee, J. D. Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev. Biol. 114, 109–118 (1986).CAS 
    Article 

    Google Scholar 
    Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386 (1999).ADS 
    CAS 

    Google Scholar 
    Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L. & Bargmann, C. I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Joo, H.-J. et al. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319–29325 (2010).CAS 
    Article 

    Google Scholar 
    Yassin, L. et al. Characterization of the DEG-3/DES-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol. Cell. Neurosci. 17, 589–599 (2001).CAS 
    Article 

    Google Scholar 
    Zhang, X., Wang, Y., Perez, D. H., Lipinski, R. A. J. & Butcher, R. A. Acyl-CoA oxidases fine-tune the production of ascaroside pheromones with specific side chain lengths. ACS Chem. Biol. https://doi.org/10.1021/acschembio.7b01021 (2018).Article 

    Google Scholar 
    Borne, F., Kasimatis, K. R. & Phillips, P. C. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS ONE 87, 511 (2017).
    Google Scholar 
    Choe, A. et al. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. 109, 20949–20954 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Duggal, C. L. Sex attraction in the free-living nematode panagrellus redivivus. Nematologica 24, 213–221 (1978).Article 

    Google Scholar 
    Andersson, M. Sexual Selection Vol. 72 (Princeton University Press, 1994).Book 

    Google Scholar 
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).CAS 
    Article 

    Google Scholar 
    Kvarnemo, C. & Simmons, L. W. Polyandry as a mediator of sexual selection before and after mating. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120042 (2013).Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: the history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).Article 

    Google Scholar 
    Rhainds, M. Female mating failures in insects. Entomol. Exp. Appl. 136, 211–226 (2010).Article 

    Google Scholar 
    Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland Biol. Neoplasia 2, 243–252 (1997).CAS 
    Article 

    Google Scholar 
    Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 363, 375–398 (2008).Article 

    Google Scholar 
    Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015).Article 

    Google Scholar 
    Kaliszewicz, A. Interference of asexual and sexual reproduction in the green hydra. Ecol. Res. 26, 147–152 (2011).Article 

    Google Scholar 
    Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. A. Trioecy in the Marine Mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).Article 

    Google Scholar 
    Armoza-Zvuloni, R., Kramarsky-Winter, E., Loya, Y., Schlesinger, A. & Rosenfeld, H. Trioecy, a unique breeding strategy in the sea anemone aiptasia diaphana and its association with sex steroids. Biol. Reprod. 90, 122 (2014).Article 

    Google Scholar 
    Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 539(7628), 254–258. https://doi.org/10.1038/nature19848 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Kieninger, M. R. et al. The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus.Curr Biol 26(16), 2174–2179. https://doi.org/10.1016/j.cub.2016.06.018 (2016).Therrien, M., Rouleau, G. A., Dion, P. A., Parker, J. A. & Dupuy, D. Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans. PLoS ONE 8(12), e83450. https://doi.org/10.1371/journal.pone.0083450 (2013).Lee, B. H., Liu, J., Wong, D., Srinivasan, S., Ashrafi, K. & Kim, S. K. Hyperactive Neuroendocrine Secretion Causes Size Feeding and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biol 9(12), e1001219. https://doi.org/10.1371/journal.pbio.1001219 (2011).CAS 
    Article 

    Google Scholar 
    Li, C. & Kim, K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol. https://doi.org/10.3389/fendo.2014.00150 (2014). Buntschuh, I. et al. FLP-1 neuropeptides modulate sensory and motor circuits in the nematode Caenorhabditis elegans. PLoS ONE 13(1), e0189320. https://doi.org/10.1371/journal.pone.0189320 (2018).Topalidou, I. et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLOS Genet 12(5), e1006074. https://doi.org/10.1371/journal.pgen.1006074 (2016).Maman, M. et al. A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode C. elegans. J Neurosci 33(14), 6102–6111. https://doi.org/10.1523/JNEUROSCI.4023-12.2013 (2013). More

  • in

    The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions

    Caldeira, K. & Wickett, M. E. Oceanography: Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M.) (2019).Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2014).ADS 
    Article 

    Google Scholar 
    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).Article 

    Google Scholar 
    Kleypas, J. A. & Yates, K. K. Coral reefs and ocean acidification. Oceanography 22, 108–117 (2009).Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    Article 

    Google Scholar 
    Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: The role of reef foraminifera. J. Foraminifer. Res. 27, 271–277 (1997).Article 

    Google Scholar 
    Langer, M. R. Assessing the contribution of foraminiferan protists to global ocean carbonate production. J. Eukaryot. Microbiol. 55, 163–169 (2008).Article 

    Google Scholar 
    Hallock, P. Symbiont-bearing Foraminifera. In Modern Foraminifera (ed. Sen Gupta, B. K.) 123–139 (Springer Netherlands, 2003). https://doi.org/10.1007/0-306-48104-9_8.BouDagher-Fadel, M. K. Biology and evolutionary history of larger benthic foraminifera. In Evolution and Geological Significance of Larger Benthic Foraminifera 1–44 (UCL Press, 2018).Köhler-Rink, S. & Kühl, M. Microsensor studies of photosynthesis and respiration in larger symbiotic foraminifera. I The physico-chemical microenvironment of Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii. Mar. Biol. 137, 473–486 (2000).Article 

    Google Scholar 
    Glas, M. S., Fabricius, K. E., de Beer, D. & Uthicke, S. The O2, pH and Ca2+ microenvironment of benthic foraminifera in a high CO2 world. PLoS One 7, e50010 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    De Nooijer, L. J., Toyofuku, T. & Kitazato, H. Foraminifera promote calcification by elevating their intracellular pH. Proc. Natl. Acad. Sci. U. S. A. 106, 15374–15378 (2009).ADS 
    Article 

    Google Scholar 
    Glas, M., Langer, G. & Keul, N. Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.). J. Exp. Mar. Biol. Ecol. 424–425, 53–58 (2012).Article 

    Google Scholar 
    Toyofuku, T. et al. Proton pumping accompanies calcification in foraminifera. Nat. Commun. 8, 14145 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M. & Donnelly, K. B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM Index. Environ. Monit. Assess. 81, 221–238 (2003).Article 

    Google Scholar 
    Uthicke, S., Thompson, A. & Schaffelke, B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29, 209–225 (2010).ADS 
    Article 

    Google Scholar 
    Prazeres, M., Martínez-Colón, M. & Hallock, P. Foraminifera as bioindicators of water quality: The FoRAM Index revisited. Environ. Pollut. 257, 113612 (2020).CAS 
    Article 

    Google Scholar 
    Sen Gupta, B. K. Modern Foraminifera. (Springer Science & Business Media, 2003).Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Andersson, A. J., Mackenzie, F. T. & Bates, N. R. Life on the margin: Implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar. Ecol. Prog. Ser. 373, 265–273 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Van Dijk, I., De Nooijer, L. J. & Reichart, G.-J. Trends in element incorporation in hyaline and porcelaneous foraminifera as a function of pCO2. Biogeosciences 14, 497–510 (2017).ADS 
    Article 

    Google Scholar 
    Not, C., Thibodeau, B. & Yokoyama, Y. Incorporation of Mg, Sr, Ba, U, and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2. Geochem. Geophys. Geosyst. 19, 83–98 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Levi, A., Müller, W. & Erez, J. Intrashell variability of trace elements in benthic foraminifera grown under high CO2 levels. Front. Earth Sci. 7, 247 (2019).ADS 
    Article 

    Google Scholar 
    Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).CAS 
    Article 

    Google Scholar 
    Fujita, K. et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8, 2089–2098 (2011).ADS 
    Article 

    Google Scholar 
    Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).ADS 
    Article 

    Google Scholar 
    Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).Article 

    Google Scholar 
    McIntyre-Wressnig, A., Bernhard, J. M., McCorkle, D. C. & Hallock, P. Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Mar. Ecol. Prog. Ser. 472, 45–60 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).ADS 
    Article 

    Google Scholar 
    Knorr, P. O., Robbins, L. L., Harries, P. J., Hallock, P. & Wynn, J. Response of the Miliolid Archaias angulatus to simulated ocean acidification. J. Foraminifer. Res. 45, 109–127 (2015).Article 

    Google Scholar 
    Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B Biol. Sci. 282, 20142782 (2015).Article 

    Google Scholar 
    Reymond, C., Lloyd, A., Kline, D., Dove, S. & Pandolfi, J. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 
    Article 

    Google Scholar 
    Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R. & Ralph, P. J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinutok, S., Hill, R., Kühl, M., Doblin, M. A. & Ralph, P. J. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).CAS 
    Article 

    Google Scholar 
    Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).ADS 
    Article 

    Google Scholar 
    Engel, B., Hallock, P., Price, R. & Pichler, T. Shell dissolution in larger benthic foraminifers exposed to pH and temperature extremes: Results from an in situ experiment. J. Foraminifer. Res. 45, 190–203 (2015).Article 

    Google Scholar 
    Marques, J. A., de Barros Marangoni, L. F. & Bianchini, A. Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa. Coral Reefs 36, 489–501 (2017).ADS 
    Article 

    Google Scholar 
    Uthicke, S. & Fabricius, K. E. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Glob. Change Biol. 18, 2781–2791 (2012).ADS 
    Article 

    Google Scholar 
    Uthicke, S., Momigliano, P. & Fabricius, K. E. High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Pettit, L. R., Smart, C. W., Hart, M. B., Milazzo, M. & Hall-Spencer, J. M. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Ecol. Evol. 5, 1784–1793 (2015).Article 

    Google Scholar 
    Martinez, A., Hernández-Terrones, L., Rebolledo-Vieyra, M. & Paytan, A. Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages. Biogeosciences 15, 6819–6832 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Pettit, L. R. et al. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Mar. Pollut. Bull. 73, 452–462 (2013).CAS 
    Article 

    Google Scholar 
    Charrieau, L. M. et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region. Mar. Micropaleontol. 139, 42–56 (2018).ADS 
    Article 

    Google Scholar 
    Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology https://doi.org/10.1111/sed.12858 (2021).Article 

    Google Scholar 
    Le Cadre, V., Debenay, J.-P. & Lesourd, M. Low pH effect on Ammonia beccarii test deformation: Implications for using test deformations as a pollution indicator. J. Foraminifer. Res. 33, 1–9 (2003).Article 

    Google Scholar 
    Kurtarkar, S. R., Nigam, R., Saraswat, R. & Linshy, V. N. Regeneration and abnormality in benthic foraminifer Rosalina leei: Implications in reconstructing past salinity changes. Riv. Ital. Paleontol. E Stratigr. 117(1), 189–196 (2011).
    Google Scholar 
    Haynert, K., Schönfeld, J., Polovodova-Asteman, I. & Thomsen, J. The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic Sea. Biogeosciences 9, 4421–4440 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Lee, J. J. ‘Living Sands’—Larger foraminifera and their endosymbiotic algae. Symbiosis 25, 71–100 (1997).CAS 

    Google Scholar 
    Parker, J. Ultrastructure of the test wall in modern porcelaneous foraminifera: Implications for the classification of the Miliolida. J. Foraminifer. Res. 47, 136–174 (2017).ADS 
    Article 

    Google Scholar 
    Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev. Mineral. Geochem. 54, 115–149 (2003).CAS 
    Article 

    Google Scholar 
    Dissard, D., Nehrke, G., Reichart, G. J. & Bijma, J. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences 7, 81–93 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McIntyre-Wressnig, A., Bernhard, J. M., Wit, J. C. & Mccorkle, D. C. Ocean acidification not likely to affect the survival and fitness of two temperate benthic foraminiferal species: Results from culture experiments. J. Foraminifer. Res. 44, 341–351 (2014).Article 

    Google Scholar 
    Charrieau, L. M. et al. Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity. Mar. Environ. Res. 138, 36–45 (2018).CAS 
    Article 

    Google Scholar 
    Saraswat, R. et al. Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment. Estuar. Coast. Shelf Sci. 153, 96–107 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Buzas-Stephens, P. & Buzas, M. A. Population dynamics and dissolution of foraminifera in Nueces Bay, Texas. J. Foraminifer. Res. 35, 248–258 (2005).Article 

    Google Scholar 
    Cesbron, F. et al. Vertical distribution and respiration rates of benthic foraminifera: Contribution to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows. Estuar. Coast. Shelf Sci. 179, 23–38 (2016).CAS 
    Article 

    Google Scholar 
    Lee, J. J. et al. Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera. Mar. Biol. 109, 417–425 (1991).Article 

    Google Scholar 
    Yanko, V., Arnold, A. J. & Parker, W. C. Effects of marine pollution on benthic Foraminifera. In Modern Foraminifera 217–235 (Springer Netherlands, 1999). https://doi.org/10.1007/0-306-48104-9_13.Polovodova Asteman, I. & Schönfeld, J. Foraminiferal test abnormalities in the western Baltic Sea. J. Foraminifer. Res. 38, 318–336 (2008).Article 

    Google Scholar 
    Boltovskoy, E. & Wright, R. The test. In Recent Foraminifera (eds. Boltovskoy, E. & Wright, R.) 51–93 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-017-2860-7_3.Kaczmarek, K. et al. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry. Biogeosciences 12, 1753–1763 (2015).ADS 
    Article 

    Google Scholar 
    Allen, K. et al. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet. Sci. Lett. 309, 291–301 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Allen, K., Hönisch, B., Eggins, S. & Rosenthal, Y. Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth Planet. Sci. Lett. s351–352, 270–280 (2012).ADS 
    Article 

    Google Scholar 
    Howes, E. L. et al. Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa. Biogeosciences 14, 415–430 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lea, D. W. Trace elements in foraminiferal calcite. In Modern Foraminifera 259–277 (Springer Netherlands, 2003).Quigg, A. Micronutrients. In The Physiology of Microalgae (eds. Borowitzka, M. A., Beardall, J. & Raven, J. A.) 211–231 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24945-2_10.Jennings, D. Culturing Benthic Foraminifera to Understand the Effects of Changing Seawater Chemistry and Temperature on Foraminiferal Shell Chemistry. (2015).Van Dijk, I., De Nooijer, L. J., Barras, C. & Reichart, G.-J. Mn Incorporation in large benthic foraminifera: Differences between species and the impact of pCO2. Front. Earth Sci. https://doi.org/10.3389/feart.2020.567701 (2020).Article 

    Google Scholar 
    Raitzsch, M., Dueñas-Bohórquez, A., Reichart, G.-J., de Nooijer, L. J. & Bickert, T. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: Impact of calcium concentration and associated calcite saturation state. Biogeosciences 7, 869–881 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Holzmann, M., Hohenegger, J., Hallock, P., Piller, W. E. & Pawlowski, J. Molecular phylogeny of large miliolid foraminifera (Soritacea Ehrenberg 1839). Mar. Micropaleontol. 43, 57–74 (2001).ADS 
    Article 

    Google Scholar 
    Hottinger, L., Halicz, E. & Reiss, Z. Recent Foraminiferida from the Gulf of Aqaba, Red Sea. vol. 33 (Slovenska Akademija Znanosti in Umetnosti, Dela Opera, Classis IV: Historia Naturalis, 1993).Langer, M., Makled, W., Pietsch, S. & Weinmann, A. Asynchronous calcification in juvenile megalospheres: An ontogenetic window into the life cycle and polymorphism of Peneroplis. J. Foraminifer. Res. 39, 8–14 (2009).Article 

    Google Scholar 
    Dissard, D., Nehrke, G., Reichart, G.-J. & Bijma, J. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments. Geochim. Chosmocimica Acta 74, 928–940 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean. (Springer, 2017).Culberson, C. H., Pytkowicz, R. M. & Hawley, J. E. Seawater alkalinity determination by the pH method. J. Mar. Res. 28, 15–21 (1970).CAS 

    Google Scholar 
    Dickson, A. G. & Goyet, C. DOE. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2. (eds., ORNL/CDIAC-74., 1994).Suga, H., Sakai, S., Toyofuku, T. & Ohkouchi, N. A simplified method for determination of total alkalinity in seawater based on the small sample one-point titration method. JAMSTEC Rep. Res. Dev. 17, 23–33 (2013).Article 

    Google Scholar 
    Robbins, L. L., Hansen, M. E., Kleypas, J. A. & Meylan, S. C. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone): U.S. Geological Survey Open-File Report 2010–1280. 17 (2010).Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).CAS 
    Article 

    Google Scholar 
    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).ADS 
    Article 

    Google Scholar 
    Orr, J. C., Epitalon, J.-M. & Gattuso, J.-P. Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences 12, 1483–1510 (2015).ADS 
    Article 

    Google Scholar 
    Fontanier, C. et al. Living (stained) deep-sea foraminifera from the Sea of Marmara: A preliminary study. Deep Sea Res. Part II Top. Stud. Oceanogr. 153, 61 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Gaffey, S. & Bronnimann, C. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).ADS 
    Article 

    Google Scholar 
    Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Responses of CO2 emissions and soil microbial community structures to organic amendment in two contrasting soils in Zambia

    Aune, J. B. & Lal, R. Agricultural productivity in the tropics and critical limits of properties of Oxisols, Ultisols, Alfisols. Trop. Agric. (Trinidad and Tobago) 74, 96–103 (1997).
    Google Scholar 
    Bauer, A. & Black, A. L. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58, 185–193 (1994).ADS 
    Article 

    Google Scholar 
    Hamamoto, T., Chirwa, M., Nyambe, I. & Uchida, Y. Small-scale variability in the soil microbial community structure in a semideveloped farm in Zambia. Appl. Environ. Soil Sci. 2018, 1–6 (2018).Article 

    Google Scholar 
    Mapanda, F., Wuta, M., Nyamangara, J. & Rees, R. M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343, 67–81 (2011).CAS 
    Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Swanepoel, C. M., van der Laan, M., Weepener, H. L., du Preez, C. C. & Annandale, J. G. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutr. Cycl. Agroecosyst. 104, 107–123 (2016).CAS 
    Article 

    Google Scholar 
    Zingore, S., Manyame, C., Nyamugafata, P. & Giller, K. E. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. Eur. J. Soil Sci. 56, 727–736 (2005).CAS 

    Google Scholar 
    Sakala, W. D., Cadisch, G. & Giller, K. E. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol. Biochem. 32, 679–688 (2000).CAS 
    Article 

    Google Scholar 
    Lal, R. & Stewart, B. A. (eds) Food security and soil quality (CRC Press, 2010).
    Google Scholar 
    Aparna, K., Pasha, M. A., Rao, D. L. N. & Krishnaraj, P. U. Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 71, 268–277 (2014).Article 

    Google Scholar 
    Dhull, S., Goyal, S., Kapoor, K. & Mundra, M. Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch. Agron. Soil Sci. 50, 641–647 (2004).CAS 
    Article 

    Google Scholar 
    Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326, 511–522 (2010).CAS 
    Article 

    Google Scholar 
    Janssen, B. H. Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. I. New soil organic matter and residual effect of P from fertilizers and farmyard manure in Kabete, Kenya. Plant Soil 339, 3–16 (2011).CAS 
    Article 

    Google Scholar 
    Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326, 31 (2010).CAS 
    Article 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, 6455 (2019).Article 

    Google Scholar 
    Grunwald, D., Kaiser, M. & Ludwig, B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Tillage Res. 164, 11–17 (2016).Article 

    Google Scholar 
    Schleuss, P.-M. et al. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol. Biochem. 135, 294–303 (2019).CAS 
    Article 

    Google Scholar 
    de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, (2016).Fan, F. et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 70, 12–21 (2014).CAS 
    Article 

    Google Scholar 
    Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).CAS 
    Article 

    Google Scholar 
    Kihara, J. et al. Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl. Soil Ecol. 58, 12–20 (2012).Article 

    Google Scholar 
    Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol. Biochem. 46, 1–9 (2012).CAS 
    Article 

    Google Scholar 
    Ouédraogo, E., Brussaard, L. & Stroosnijder, L. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa. Biol Fertil Soils 44, 343–351 (2007).Article 

    Google Scholar 
    Ouédraogo, E., Mando, A. & Brussaard, L. Soil macrofaunal-mediated organic resource disappearance in semi-arid West Africa. Appl. Soil Ecol. 27, 259–267 (2004).Article 

    Google Scholar 
    Powlson, D. S., Hirsch, P. R. & Brookes, P. C. The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 61, 41–51 (2001).Article 

    Google Scholar 
    Gentile, R., Vanlauwe, B., Kavoo, A., Chivenge, P. & Six, J. Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutr. Cycl. Agroecosyst. 88, 121–131 (2010).CAS 
    Article 

    Google Scholar 
    Amato, M. & Ladd, J. N. Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 24, 455–464 (1992).CAS 
    Article 

    Google Scholar 
    Spain, A. V. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Soil Res. 28, 825–839 (1990).CAS 
    Article 

    Google Scholar 
    Schimel, D. S., Coleman, D. C. & Horton, K. A. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214 (1985).ADS 
    Article 

    Google Scholar 
    Schimel, D., Stillwell, M. A. & Woodmansee, R. G. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66, 276–282 (1985).CAS 
    Article 

    Google Scholar 
    Macharia, J. M. et al. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosci. 125, e2019JG005427 (2020).Ortiz-Gonzalo, D. et al. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Sci. Total Environ. 626, 328–339 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De la Cruz-Barrón, M. et al. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from zimbabwe with contrasting management practices. Microb. Ecol. 73, 135–152 (2017).Article 

    Google Scholar 
    Wood, S. A. et al. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. J. Appl. Ecol. 52, 744–752 (2015).CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Wagg, C., Dudenhöffer, J.-H., Widmer, F. & van der Heijden, M. G. A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 32, 1280–1292 (2018).Article 

    Google Scholar 
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003).Article 

    Google Scholar 
    Liu, B. et al. Microbial metabolic efficiency and community stability in high and low fertility soils following wheat residue addition. Appl. Soil Ecol. 159, 103848 (2021).Article 

    Google Scholar 
    Hamamoto, T., Uchida, Y., von Rein, I. & Mukumbuta, I. Effects of short-term freezing on nitrous oxide emissions and enzyme activities in a grazed pasture soil after bovine-urine application. Sci. Total Environ. 740, 140006 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).ADS 
    Article 

    Google Scholar 
    Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).
    Google Scholar 
    Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).Article 

    Google Scholar 
    Naether, A. et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest Soils. Appl. Environ. Microbiol. 78, 7398–7406 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).ADS 
    Article 

    Google Scholar 
    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).CAS 
    Article 

    Google Scholar 
    Moreno-Espíndola, I. P. et al. The bacterial community structure and microbial activity in a traditional organic milpa farming system under different soil moisture conditions. Front. Microbiol. 9, 2737 (2018).Article 

    Google Scholar 
    Steven, B. et al. Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances. Front. Microbiol. 12, (2021).Elliott, E. T., Anderson, R. V., Coleman, D. C. & Cole, C. V. Habitable pore space and microbial trophic interactions. Oikos 35, 327–335 (1980).Article 

    Google Scholar 
    Bushby, H. V. A. & Marshall, K. C. Water status of rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Microbiology 99, 19–27 (1977).
    Google Scholar 
    Bitton, G., Henis, Y. & Lahav, N. Influence of clay minerals, humic acid and bacterial capsular polysaccharide on the survival of Klebsiella aerogenes exposed to drying and heating in soils. Plant Soil 45, 65–74 (1976).Article 

    Google Scholar 
    Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 1–11 (2021).Article 

    Google Scholar 
    Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1–13 (2021).Article 

    Google Scholar 
    Jones, A. et al. (eds) Soil Atlas of Africa (European Commission. Publication Office of the European Union, 2013).
    Google Scholar 
    Mehlich, A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).CAS 
    Article 

    Google Scholar 
    Hadas, A., Kautsky, L., Goek, M. & Erman Kara, E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 36, 255–266 (2004).CAS 
    Article 

    Google Scholar 
    Sagova-Mareckova, M. et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74, 2902–2907 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Schroeder, J., Kammann, L., Helfrich, M., Tebbe, C. C. & Poeplau, C. Impact of common sample pre-treatments on key soil microbial properties. Soil Biol. Biochem. 160, 108321 (2021).CAS 
    Article 

    Google Scholar 
    Wang, F. et al. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 157, 108238 (2021).CAS 
    Article 

    Google Scholar 
    Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).CAS 
    Article 

    Google Scholar 
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2016).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Mickan, B. S. et al. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol. Fertil. Soils 55, 53–66 (2019).CAS 
    Article 

    Google Scholar 
    Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).Article 

    Google Scholar  More