More stories

  • in

    The EU needs a nutrient directive

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).Withers, P. J. A. & Haygarth, P. M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 23, 1–4 (2007).Article 

    Google Scholar 
    Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (IFA, 2008).Wassen, M. J., Schrader, J., van Dijk, J. & Eppinga, M. B. Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat. Ecol. Evol. 5, 67–73 (2021).Article 

    Google Scholar 
    Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol. 26, 1962–1985 (2020).Article 

    Google Scholar 
    Stokstad, E. Nitrogen crisis threatens Dutch environment — and economy. Science 366, 1180–1181 (2019).Article 

    Google Scholar 
    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).Article 

    Google Scholar 
    Garske, B., Stubenrauch, J. & Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. RECIEL 29, 107–117 (2020).Article 

    Google Scholar 
    A Farm to Fork Strategy for a Fair, Healthy and Environmentally-friendly Food System (COM(2020) 381 final: European Commission, 2020); https://knowledge4policy.ec.europa.eu/publication/communication-com2020381-farm-fork-strategy-fair-healthy-environmentally-friendly-food_en More

  • in

    Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients

    Speciation models, conditional and intrinsic stability constants and EDH model parametersThe complete set of analytical results for the Zn(II)/ligand systems, including conditional stability constants (logβ) for the formation of hydrolysed Zn(II)–ligand complexes, of zinc hydroxide complexes and of Zn(II)–ligand complexes as well as acidity constants for citrate and DFOB at different ionic strength in NaCl and T = 298.1 K are reported in Table 1 and SI Table 2. Also shown are the values for the optimised parameter C and the intrinsic association constants (logβ0). SI Table 1 lists all the reactions included in the speciation models used to fit the potentiometric titrations and SI Fig. 2 shows single crystal X-ray structures for some of the proposed structures including ZnH2Cit2, Zn2Cit2(H2O)2 and ZnCit22− taken from the Cambridge Crystallographic Data Base. Figure 3 displays the experimentally determined conditional Zn(II)–ligand stability constants and the corresponding EDH model from this study. Also shown are logb values from the literature for [Zn(HCit)] and [Zn(Cit)]− for the Zn(II)/Cit system and [Zn(H2DFOB)]+, [Zn(HDFOB)] and [Zn(DFOB)]− for the Zn(II)/DFOB system. Examples of titration curves and manually fitted models along with the speciation model considered and the experimental conditions are included in the supporting information (see SI Figs. 3 and 4). Only models that fitted the experimental data with sigma values below 5 were considered. Examples of Hyperquad files showing titrations and model fits for Zn(II)/Cit and Zn(II)/DFOB systems and of Excel calculation files for the application of the EDH model to the Zn(II)/DFOB experimental data set, including error calculation for C and logβ0 are uploaded to the Zenodo repository (https://doi.org/10.5281/zenodo.4548162). Errors reported for measured logβ and calculated (modelled) logβ0 and C values have no detectable effect on subsequent speciation calculations. The errors reported on C are slightly larger than in comparable studies22, however, a sensitivity analysis on the two Zn(II)–ligand species with the largest relative error on C found that logβ0 remains within its error range even when logβ0 was recalculated for the maximum and minimum possible C values. The stability constant we report for specific Zn(II)–L complexes at specific ion strengths are in line with literature reports (Fig. 3). For example, the logβ for the formation of [Zn(Cit)]− in 0.15 mol dm−3 NaCl shows good agreement with the value reported by Cigala and co-workers in 0.15 mol dm−3 NaCl; 4.79 vs. 4.7126. We note, however, also significant variations within reported conditional logβ values as seen Fig. 3, with published values for the formation of [Zn(HCit)] and [Zn(Cit)]− in different 1:1 electrolytes differing over two orders of magnitudes. This highlights the analytical challenges associated with accurate and precise logβ determinations of low affinity metal–ligand complexes, in low ion strength solutions33.Figure 3Experimental Zn(II)–ligand conditional stability constants (logβ) for (a) citrate and (b) DFOB at 0.05, 0.15, 0.3, 0.5 and 1 mol dm−3 in NaCl solution (open circles) determined using potentiometric titrations. For each species, the Extended Debye-Hückel (EDH) model has been parameterised using the experimental data (see Table 1 for C and logβ0) and the corresponding model is shown as a solid line. Literature data is included in the figure for comparison (closed circles) from Cigala et al. (2015, NaNO3 and NaCl), Capone et al. (1986, KNO3), Daniele et al. (1988, KNO3), Field et al. (1975, KNO3), Matsushima et al. (1963, NaCl) and Li et al. 1959, NaCl) for the Zn–H–Cit system and from Schijf et al. (2015, NaClO4), Farkas et al. (1997, KCl) and Hernlem et al. (1996, KNO3) for the Zn-H-DFOB system. Note the large variability reported for the Zn–Cit system at 0.1 and 0.15 mol dm−3. We find good agreement with the data published by Sammartano and co-workers26,69.Full size imageThe final speciation scheme with the best statistical fits and with chemically sensible species are given in Table 1. From the eight Zn-Cit species initially considered (SI Table 1), the inclusion of five species resulted in model fits with sigma values below 5. For the Zn(II)/Cit system, the dominant species are [Zn(Cit)]−, [Zn(HCit)], and [Zn2(Cit)2(OH)2]4−. We report also the presence of a [Zn(Cit)(OH)3]4− complex above pH 9 in significant amounts ( > 20%) and we confirm the presence of [Zn(Cit)2]4− if citrate is present in large excess26,31. The presence of [Zn(Cit)]−, [Zn(HCit)] and [Zn(Cit)2]4− were confirmed in pH 6 solutions by mass spectrometry. To confirm the presence of [Zn(Cit)(OH)3]4−, further investigations are warranted. SI Fig. 5 shows the species distributions in the Zn(II)–Cit system with different Zn:L molar ratios (1:1, 1:2 and 1:10) and different concentrations (between 10–6 and 10–3 for Zn and 10–5 and 10–3 for citrate). We find that [Zn(Cit)]− dominates (i.e., formation relative to total Zn is above 50%) between pH 5 and 7.5, [Zn2(Cit)2(OH)2]4− dominates between pH 7.5 and 10 and [Zn(Cit)(OH)3]4− dominates at pH values above 10. We find the formation of [Zn(Cit)2]4− only at Zn:Cit molar ratio of 1:10 and [Zn] and [L] concentrations of 10–4 and 10–3 mol dm−3, respectively. The species [Zn(Cit)(OH)]2− and Zn(Cit)(OH))2]3− possibly form at higher pH but were excluded from the final model. We noted that for titrations of solutions with Zn:Cit molar ratios below 1:3, it was not possible to refine the stepwise stability constant (logK) for [Zn(Cit)2]4− to within ± 0.09 log units, indicating that it is an unstable species that forms at negligible concentrations. The stability constants for zinc complexation with citrate decrease with increasing ionic strength. Table 1 shows that the most significant change is seen between 0.05 and 0.15 mol dm−3 NaCl, where there is approximately a 0.5 to 1.5 log unit change. In dilute solutions, stability constants are sensitive to small increases in ionic strength because changes in the effective concentration (activity) of ions are large.For the Zn(II)–DFOB system, all the stability constants measured during this study are in good agreement with those reported in the literature50,51,53. For example, the stability constant we report for [Zn(HDFOB)] in 0.5 mol dm−3 NaCl is 19.34. This is within ~ 0.5 log units of the stability constant reported by Schijf and co-workers in 0.7 mol dm−3 NaClO4 solutions53. The speciation scheme we report differs slightly from that predicted by Schijf based on a three-step model. Our model does not include the bidentate species [Zn(H3DFOB)]2+, the weakest and least stable Zn(II)–DFOB species. In Table 1, we report stability constants for hexadentate [Zn(DFOB)]− and [Zn(HDFOB)] and tetradentate [Zn(H2DFOB)]+. We observe that as the denticity of the complex increases, so does the strength of the stability constant. The stepwise stability constant (K) differs by approximately 2 log units between the formation of the three different DFOB:Zn:H species (7.75, 9.88, 11.67, see Table 1). DFOB complexation of Zn(II) shows the same pattern of ionic strength dependence as citrate, with the greatest decrease of logβ occurring between 0.05 and 0.15 mol dm−3 NaCl, the region of most importance to the rhizosphere.The absolute decrease in [ZnL] and [Zn(HL)] stability constants between 0.05 and 0.15 mol dm−3 is approximately equal for citrate and DFOB species, average 1.58 vs. 1.73, respectively. This is explained by the effect of ionic strength primarily depending on the charge of the ions involved and free citrate and DFOB having the same electrostatic charge (−3). The ionic strength dependent parameter C shows no systematic change for neither citrate nor DFOB species. The good agreement between literature50,51,52,54,68,69,70 and our speciation models as well as the conditional logβ and pKa values validates the use of a single analytical method for the determination of the LEP. We note that the proposed formation of the trihydroxy Zn(II) citrate complex at pH above 10, needs to be investigated in greater detail using supplementary techniques. However, the formation of this species is not relevant for the pH range of interest in our study. As discussed below the main prevailing species in solution are those of 1:1:0 and 2:2:−2 stoichiometry for Zn:Cit:H.Figure 4 shows intrinsic stability constants for the formation of [Zn(Cit)]− and [Zn(HCit)] determined (i) using the Davies equation and the conditional association constants determined at different ionic strengths and (ii) fitting the parameterised EDH equation to the full ionic strength dataset. We find statistically significant (p  More

  • in

    Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2) (2016). http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2.Donohue, M. J. et al. Evaluating exposure of northern fur seals, Callorhinus ursinus, to microplastic pollution through fecal analysis. Mar. Pollut. Bull. 138, 213–221 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752 (2019).ADS 
    Article 

    Google Scholar 
    Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bessa, F. et al. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 9, 14191 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ. Rev. 27, 304–317 (2019).Article 

    Google Scholar 
    Bucci, K., Bikker, J., Stevack, K., Watson-Leung, T. & Rochman, C. Impacts to larval fathead minnows vary between preconsumer and environmental microplastics. Environ. Toxicol. Chem. 41, 4 (2021).
    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    De-la-Torre, G. E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. 57, 1601–1608 (2020).Article 
    PubMed 

    Google Scholar 
    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 364, 2027–2045 (2009).CAS 
    Article 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    He, S. et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 1, 127286. https://doi.org/10.1016/j.jhazmat.2021.127286 (2021).CAS 
    Article 

    Google Scholar 
    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    World Health Organization. Safe Management of Shellfish and Harvest Waters (WHO, 2010).
    Google Scholar 
    Lindsay, D. S. & Dubey, J. P. Long-term survival of Toxoplasma gondii sporulated oocysts in seawater. J. Parasitol. 95, 1019–1020 (2009).Article 
    PubMed 

    Google Scholar 
    Tamburrini, A. & Pozio, E. Long-term survival of Cryptosporidium parvum oocysts in seawater and in experimentally infected mussels (Mytilus galloprovincialis). Int. J. Parasitol. 29, 711–715 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 
    PubMed 

    Google Scholar 
    Robertson, L. J. The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: A review. Int. J. Food Microbiol. 120, 201–216 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterb. Parasitol. 15, e00049 (2019).Article 

    Google Scholar 
    Miller, M. A., Shapiro, K., Murray, M. J., Haulena, M. J. & Raverty, S. Protozoan parasites of marine mammals. in CRC Handbook of Marine Mammal Medicine (2018).Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rose, J. B. Environmental ecology of cryptosporidium and public health implications. Annu. Rev. Public Health 18, 135–161 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robert-Gangneux, F. & Dardé, M.-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahia-Oliveira, L., Gomez-Marin, J. & Shapiro, K. Toxoplasma gondii. Global Water Pathogen Project. https://www.waterpathogens.org/book/toxoplasma-gondii (2015).Kreuder, C. et al. Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. J. Wildl. Dis. 39, 495–509 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Dual congenital transmission of Toxoplasma gondii and Sarcocystis neurona in a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis). Parasitology 143, 276–288 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbieri, M. M. et al. Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi. Dis. Aquat. Org. 121, 85–95 (2016).Article 

    Google Scholar 
    Roe, W. D., Howe, L., Baker, E. J., Burrows, L. & Hunter, S. A. An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet. Parasitol. 192, 67–74 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hernandez, E., Nowack, B. & Mitrano, D. M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ. Sci. Technol. 51, 7036–7046 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mason, S. A. et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 109, 230–235 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Desforges, J.-P.W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horn, D., Miller, M., Anderson, S. & Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 139, 231–237 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, X. et al. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613–614, 298–305 (2018).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Collicutt, B., Juanes, F. & Dudas, S. E. Microplastics in juvenile Chinook salmon and their nearshore environments on the east coast of Vancouver Island. Environ. Pollut. 244, 135–142 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davidson, K. & Dudas, S. E. Microplastic ingestion by wild and cultured manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol. 71, 147–156 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129, 179–185 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wootton, N., Reis-Santos, P. & Gillanders, B. M. Microplastic in fish: A global synthesis. Rev. Fish. Biol. Fish. 31, 753–771 (2021).Article 

    Google Scholar 
    De-la-Pinta, I. et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. 30, 77 (2019).
    Google Scholar 
    Rochman, C. M., Hoh, E., Hentschel, B. T. & Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ. Sci. Technol. 47, 1646–1654 (2013).CAS 
    PubMed 

    Google Scholar 
    Lindquist, H. D. A. et al. Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J. Parasitol. 89, 865–867 (2003).Article 
    PubMed 

    Google Scholar 
    Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I 40, 1131–1140 (1993).CAS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. R. Soc. B 281, 20141287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers: Assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).CAS 
    Article 

    Google Scholar 
    Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1211 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lusher, A., Hollman, P. C. H. & Mendoza-Hill, J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (Food and Agriculture Organization of the United Nations, 2017).
    Google Scholar 
    Tamburri, M. N. & Zimmer-Faust, R. K. Suspension feeding: Basic mechanisms controlling recognition and ingestion of larvae. Limnol. Oceanogr. 41, 1188–1197 (1996).ADS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol. 84, 103252 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saley, A. M. et al. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar. Pollut. Bull. 146, 54–59 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res. 44, 893–903 (2010).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment

    Sieńczuk, W. Toksykologia (PZWL Warszawa, 1999) (in Polish).
    Google Scholar 
    Kabata-Pendias, A. & Pendias, H. Biochemia pierwiastków śladowych (PZWL Warszawa, 1999) (in Polish).
    Google Scholar 
    Sharma, H., Rawal, N. & Mathew, B. B. The characteristics, toxicity and effects of cadmium. Int. J. Nanosci. Nanotechnol. 3, 1–9 (2015).
    Google Scholar 
    Duarte, A. et al. (eds) Soil pollution: From Monitoring to Remediation 1st edn. (Academic Press, 2017).
    Google Scholar 
    Zhang, H. & Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 678, 761–767 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lane, T. W. et al. A cadmium enzyme from a marine diatom. Nature 435, 42 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jӓrup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).Article 

    Google Scholar 
    Massányi, P., Massányi, M., Madeddu, R., Stawarz, R. & Lukáč, N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 8, 94 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roy, S. Cadmium accumulation in crops and the increasing risk of dietary cadmium exposure: An overview. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches (eds Hasanuzzaman, M. et al.) 247–254 (Academic Press, 2019).Chapter 

    Google Scholar 
    Templeton, D. M. & Liu, Y. Multiple roles of cadmium in cell death and survival. Chem. Biol. Interact. 188, 267–275 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stojsavljević, A. et al. Evaluation of trace metals in thyroid tissues: Comparative analysis with benign and malignant thyroid diseases. Ecotoxicol. Environ. Saf. 183, 109479 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lewis, J. G. E. The Biology of Centipedes 1st edn. (Cambridge University Press, 1981).Book 

    Google Scholar 
    Hopkin, S. P. Ecophysiology of Metals in Terrestrial Invertebrates 1st edn. (Elsevier Applied Science, 1989).
    Google Scholar 
    Hopkin, S. P. & Read, H. J. The Biology of Millipedes (Oxford University Press, 1992).
    Google Scholar 
    Lipovšek, S., Letofsy-Papst, I., Hofer, F. & Pabst, M. A. Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33, 647–654 (2002).PubMed 
    Article 

    Google Scholar 
    Chajec, Ł, Rost-Roszkowska, M. M., Vilimova, J. & Sosinka, A. Ultrastructure and regeneration of midgut epithelial cells in Lithobius forficatus (Chilopoda, Lithobiidae). Invertebr. Biol. 131, 119–132 (2012).Article 

    Google Scholar 
    Hopkin, S. P., Watson, K., Martin, M. H. & Mould, M. L. The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr. Dierkd. 55, 88–94 (1985).
    Google Scholar 
    Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (Wiley, 1983).
    Google Scholar 
    Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume II. Spermatogenesis and Sperm Function (Wiley, 1983).
    Google Scholar 
    Sareen, M. L. & Adiyodi, K. G. Arthropoda – Myriapoda. In Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (eds Adiyodi, K. G. & Adiyodi, R. G.) 497–520 (Wiley, 1983).
    Google Scholar 
    Minelli, A. Chilopoda – Reproduction. In Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda. Vol. 1. Chilopoda (ed. Minelli, A.) 279–294 (Brill, 2011).Chapter 

    Google Scholar 
    Parolini, M. Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 740, 140043 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nath, V. Oogenesis of Lithobius forficatus. Biol. Rev. 1, 148–157 (1924).Article 

    Google Scholar 
    Nath, V. Spermathogenesis of Lithobius forficatus. Biol. Rev. 1, 270–277 (1925).Article 

    Google Scholar 
    Descamps, M. Etude ultrastructurale des spermatogonies et de la croissance spermatocytaire chez Lithobius forficatus L. (Myriapode Chilopode). Z. Zellforsch. 121, 14–26 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Descamps, M. Le cycle spermatogenétique chez Lithobius forficatus L. (Myriapode, Chilopode). I. Evolution et etude quantitative des populations cellulaires du tes ticle au cours du développement post-embryonnaire. Arch. Zool. Exp. Gen. 112, 199–209 (1971).
    Google Scholar 
    Herbaut, C. Etude cytochimique et ultrastructurale de l’ovogenése chez Lithobius forficatus L. (Myriapode Chilopode). Evolution des constituants cellulaires. Wilhelm Roux’ Arch. 170, 115–134 (1972).CAS 
    Article 

    Google Scholar 
    Descamps, M., Fabre, M. C., Grelle, C. & Gerard, S. Cadmium and lead kinetics during experimental contamination of the centipede Lithobius forficatus L. Arch. Environ. Contam. Toxicol. 31, 350–353 (1996).CAS 
    Article 

    Google Scholar 
    Vandenbulcke, F., Grelle, C., Fabre, M.-C. & Descamps, M. Implication of the midgut of the centipede Lithobius forficatus in the heavy metal detoxification process. Ecotoxicol. Environ. Saf. 41, 258–268 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rost-Roszkowska, M. et al. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 87, 242–262 (2020).CAS 
    Article 

    Google Scholar 
    Rost-Roszkowska, M. et al. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 137, 102915 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rost-Roszkowska, M. et al. Effects of cadmium on mitochondrial structure and function in different organs: Studies on the soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 88, 632–664 (2021).CAS 
    Article 

    Google Scholar 
    Włodarczyk, A., Student, S. & Rost-Roszkowska, M. Autophagy and apoptosis in starved and refed Neocaridina davidi (Crustacea, Malacostraca) midgut. Can. J. Zool. 97, 294–303 (2019).Article 

    Google Scholar 
    Bradford, M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wieser, W. Conquering terra firma: The copper problem from the isopod’s point of view. Helgolander Wiss. Meeresunters. 15, 282–293 (1967).ADS 
    Article 

    Google Scholar 
    Gräff, S., Berkus, M., Alberti, G. & Köhler, H. R. Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: A quantitative comparison. Biometals 10, 45–53 (1997).Article 

    Google Scholar 
    Siekierska, E. & Urbańska-Jasik, D. The effect of cadmium and selenium ions on the ovary structure in leech Herpobdella octooculata (L.). Folia Morphol. 57, 61 (1998).
    Google Scholar 
    Siekierska, E. & Urbańska-Jasik, D. Cadmium effect on the ovarian structure in earthworm Dendrobaena veneta (Rosa). Environ. Pollut. 120, 289–297 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Osman, W., El-Samad, L. M., Mokhamer, E.L.-H., El-Touhamy, A. & Shonouda, M. Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ. Sci. Pollut. Res. Int. 22, 14104–14115 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siekierska, E. & Brzozowa, M. Cadmium effect on the seminal vesicles structure and spermatogenesis in the earthworm Dendrobaena veneta (Rosa). In 8th International Symposium on Earthworm Ecology. Book of abstracts, 231 (2006).Siekierska, E. & Brzozowa, M. Changes in primary and secondary spermatocytes in seminal vesicles in the earthworm Dendrobaena veneta (Rosa) after 10 days of cadmium exposure. Acta Biol. Cracov. Bot. 50, 68 (2008).
    Google Scholar 
    Brzozowa, M. Wpływ kadmu na przebieg spermiogenezy u dżdżownicy Dendrobaena veneta (Rosa). PhD Thesis, University of Silesia in Katowice Poland (2009).Papathanassiou, E. Cadmium accumulation and ultrastructural alterations in oogenesis of the prawn Palaemon serratus (Pennant). Bull. Environ. Contam. Toxicol. 36, 192–198 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Au, D. W. T., Chiang, M. W. L. & Wu, R. Effect of cadmium and phenol on mortality and ultrastructure of sea urchin and mussel spermatozoa. Arcg. Environ. Contam. Toxicol. 38, 455–463 (2000).CAS 
    Article 

    Google Scholar 
    Au, D. W. T., Lee, C. Y., Chan, K. L. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part I: Effects on gamete quality. Environ. Pollut. 111, 1–9 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Au, D. W. T., Reunov, A. A. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part II: Effects on sperm development. Environ. Pollut. 111, 11–20 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eckelbarger, K. J. Diversity of metazoan ovaries and vitellogenic mechanisms – implications for life history theory. Proc. Biol. Soc. Wash. 107, 193–218 (1994).
    Google Scholar 
    Suzuki, K. T., Yamamura, M. & Mori, T. Cadmium-binding proteins induced in earthworm. Arch. Environ. Contam. Toxicol. 9, 415–424 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maroni, G., Wise, J., Young, J. E. & Otto, E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics 117, 739–744 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, M., Finet, C., Cong, H., Wei, H. & Chung, H. The evolution of insect metallothioneins. Proc. R. Soc. B 287, 20202189 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbeck, B. O. A study of the concentrically laminated concretions, ‘spherites’, in the regenerative cells of the midgut of Lepidopterous larvae. Tissue Cell. 6, 627–640 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-Landim, C. Localization of calcium and acid phosphatase in the Malpighian tubules of nurse workers of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae, Meliponini). Biosci. J. 16, 87–99 (2000).
    Google Scholar 
    Lipovšek, S., Letofsky-Papst, I., Hofer, F., Pabst, M. A. & Devetak, D. Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc. Res. Tech. 75, 397–407 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pinheiro, D. O., Conte, H. & Gregório, E. A. Spherites in the midgut epithelial cells of the sugarcane borer parasitized by Cotesia flavipes. Biocell 32, 61–67 (2008).Article 

    Google Scholar 
    Rost-Roszkowska, M. M., Kszuk-Jendrysik, M., Marchewka, A. & Poprawa, I. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma 255, 43–55 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lipovšek, S. et al. Ultrastructure of spherites in the midgut diverticula and Malpighian tubules of the harvestman Amilenus aurantiacus during the winter diapause. Histochem. Cell Biol. 157, 107–118 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kramarz, P. Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 2. The centipede Lithobius mutabilis Koch. Bull. Environ. Contam. Toxicol. 63, 538–545 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rost-Roszkowska, M. M. et al. Structure of the midgut epithelium in four diplopod species: Histology, histochemistry and ultrastructure. Arthropod Syst. Phylogeny 79, 295–308 (2021).Article 

    Google Scholar 
    Köhler, H.-R. Localization of metals in cells of saprophagous soil arthropods (Isopoda, Diplopoda, Collembola). Microsc. Res. Tech. 56, 393–401 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenesis inhibition in Oncopeltus fasciatus females (Heteroptera: Lygaeidae) exposed to cadmium. J. Insect Physiol. 51, 895–911 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenin polypeptide levels in one susceptible and one cadmium-resistant strain of Oncopeltus fasciatus (Heteroptera: Lygaeidae), and its role in cadmium resistance. J. Insect Physiol. 52, 158–168 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sehgal, A., Osgood, C. & Zimmering, S. Aneuploid in Drosophila. III: Aneuploidogens inhibit in vitro assembly of taxol-purified Drosophila microtubules. Environ. Mol. Mutagen. 16, 217–224 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, W., Zhao, Y. & Cou, I. N. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65–79 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    dos Santos, D. C., Gregorio, E. A. & Moreli Silva de Moraes, R. L. Programmed cell death during early oogenesis in the Diatraea saccharalis germarium. Acta Microsc. 16, 311–312 (2007).
    Google Scholar 
    Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hikim, A. P. S. et al. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 144, 3167–3175 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell, L. D., Chiarini-Garcia, H., Korsmeyer, S. J. & Knudson, C. M. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol. Reprod. 66, 950–958 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaha, C., Tripathi, R. & Mishra, D. P. Male germ cell apoptosis: Regulation and biology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1501–1515 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Devine, P. J., Payne, C. M., McCuskey, M. K. & Hoyer, P. B. Ultrastructural evaluation of oocytes during atresia in rat ovarian follicles. Biol. Reprod. 63, 1245–1252 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hussein, M. R. Apoptosis in the ovary: Molecular mechanisms. Hum. Reprod. Update 11, 162–177 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Miller, M. A., Technau, U., Smith, K. M. & Steele, R. E. Oocyte development in Hydra involves selection from competent precursor cells. Dev. Biol. 224, 326–338 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matova, N. & Cooley, L. Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Technau, U., Miller, M. A., Bridge, D. & Steele, R. E. Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev. Biol. 260, 191–206 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mpakou, V. E., Nezis, I. P., Stravopodis, D. J., Margaritis, L. H. & Papassideri, I. S. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev. Growth Differ. 48, 419–428 (2006).PubMed 
    Article 

    Google Scholar 
    Mpakou, V. E. et al. Different modes of programmed cel death during oogenesis of the silkmoth Bombyx mori. Autophagy 4, 97–100 (2008).PubMed 
    Article 

    Google Scholar 
    Mpakou, V. E. et al. Programmed cell death of the ovarian nurse cells during oogenesis of the ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae). Dev. Growth Differ. 53, 804–815 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poprawa, I., Hyra, M., Kszuk-Jendrysik, M. & Rost-Roszkowska, M. M. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron 70, 26–33 (2015).PubMed 
    Article 

    Google Scholar 
    Janelt, K., Jezierska, M. & Poprawa, I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). Arthropod. Struct. Dev. 50, 53–63 (2019).PubMed 
    Article 

    Google Scholar 
    Mooyottu, S., Anees, C. & Cherian, S. Ovarian stem cells and neo-oogenesis: A breakthrough in reproductive biology research. Vet. World 4, 89–91 (2011).
    Google Scholar 
    Tiwari, M. et al. Apoptosis in mammalian oocytes: A review. Apoptosis 20, 1019–1025 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiu, Y.-R. & Yang, W.-X. Roles of three Es-Caspases during spermatogenesis and cadmium-induced apoptosis in Eriocheir sinensis. Aging 10, 1146–1165 (2018).Article 

    Google Scholar 
    Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sonakowska, L. et al. Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS ONE 11, e0147582 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Włodarczyk, A. et al. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca). PLoS ONE 12, e0173563 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ossola, J. O. & Tomaro, M. L. Heme oxygenase induction by cadmium chloride: Evidence for oxidative stress involvement. Toxicology 104, 141–147 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levine, B. & Klionsky, D. J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463–477 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kourtis, N. & Tavernarakis, N. Autophagy and cell death in model organisms. Cell Death Differ. 16, 21–30 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).Article 

    Google Scholar 
    Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).Article 

    Google Scholar 
    Velentzas, A. D., Nezis, I. P., Stravopodis, D. J., Papassideri, I. S. & Margaritis, L. H. Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3, 130–132 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lipovšek, S. et al. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochem. Cell Biol. 149, 245–260 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rost-Roszkowska, M. M. et al. Autophagy and apoptosis in the midgut epithelium of millipedes. Microsc. Microanal. 25, 1004–1016 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nezis, I. P. et al. Autophagy as a trigger for cell death: Autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila. Autophagy 6, 1214–1215 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rost-Roszkowska, M. M., Janelt, K. & Poprawa, I. The role of autophagy in the midgut epithelium of Parachela (Tardigrada). Zoomorphology 137, 501–509 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leist, M., Single, B., Castoldi, A. F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta. 1833, 3448–3459 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Short and long-term costs of inbreeding in the lifelong-partnership in a termite

    Shellman-Reeve, J. S. Courting strategies and conflicts in a monogamous, biparental termite. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 137–144 (1999).Article 

    Google Scholar 
    Boomsma, J. J. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B: Biol. Sci. 368 (2013).Nichols, H. J. The causes and consequences of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J. Zool. 303, 1–14 (2017).Article 

    Google Scholar 
    Clutton-Brock, T. H. Female transfer and inbreeding avoidance in social mammals. Nature 337, 70–72 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolff, J. O. Parents suppress reproduction and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359, 409–410 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abbott, D. In Primate Social Conflict (eds W. A. Mason & S. P. Mendoza) 331–372 (State University of New York Press, 1993).Koenig, W. D., Haydock, J. & Stanback, M. T. Reproductive roles in the cooperatively breeding acorn woodpecker: incest avoidance versus reproductive competition. Am. Nat. 151, 243–255 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hanby, J. P. & Bygott, J. D. Emigration of subadult lions. Anim. Behav. 35, 161–169 (1987).Article 

    Google Scholar 
    Brooked, M. G., Rowley, I., Adams, M. & Baverstock, P. R. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav. Ecol. Sociobiol. 26, 191–199 (1990).Article 

    Google Scholar 
    Amos, B., Schlotterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA proftling. Science 260, 670–672 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sillero-Zubiri, C., Gottelli, D. & Macdonald, D. W. Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav. Ecol. Sociobiol. 38, 331–340 (1996).Article 

    Google Scholar 
    Husseneder, C., Simms, D. M. & Ring, D. R. Genetic diversity and genotypic differentiation between the sexes in swarm aggregations decrease inbreeding in the Formosan subterranean termite. Insectes Sociaux 53, 212–219 (2006).Article 

    Google Scholar 
    Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).Article 

    Google Scholar 
    Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vargo, E. L. & Husseneder, C. In Biology of termites: A modern synthesis (eds D.E. Bignell, Yves Roisin, & Nathan Lo) 133–164 (Springer, 2011).Shellman-Reeve, J. S. Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav. Ecol. Sociobiol. 26, 389–397 (1990).Article 

    Google Scholar 
    Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological demands during incipient colony foundation in a social insect: consequences of pathogenic stress. Front. Ecol. Evol. 6 (2018).Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl Acad. Sci. 99, 6838–6842 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosengaus, R. B., Traniello, J. F. A. & Bulmer, M. In biology of termites: a modern synthesis (eds D. E. Bignell, Yves Roisin & Nathan Lo) 165–191 (Springer, 2011).Cole, E. L., Bayne, H. & Rosengaus, R. B. Young but not defenceless: antifungal activity during embryonic development of a social insect. R. Soc. Open Sci. 7, 191418–191418 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosengaus, R. B. & Traniello, J. F. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).Article 

    Google Scholar 
    Cole, E. L. & Rosengaus, R. B. Pathogenic dynamics during colony ontogeny reinforce potential drivers of termite eusociality: mate assistance and biparental care. Front. Ecol. Evol. 7 (2019).Chouvenc, T. The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux 66, 177–184 (2019).Article 

    Google Scholar 
    Matsuura, K. & Kobayashi, N. Termite queens adjust egg size according to colony development. Behav. Ecol. 21, 1018–1023 (2010).Article 

    Google Scholar 
    Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. A. Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc. R. Soc. B: Biol. Sci. 273, 2633–2640 (2006).Article 

    Google Scholar 
    DeHeer, C. J. & Vargo, E. L. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59, 753–761 (2006).Article 

    Google Scholar 
    Aguero, C. M., Eyer, P.-A., Martin, J. S., Bulmer, M. S. & Vargo, E. L. Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol. Evol. 11, 3072–3083 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosengaus, R. B. & Traniello, J. F. Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc. Natl Acad. Sci. 90, 6641–6645 (1993).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2021).Article 
    PubMed 

    Google Scholar 
    Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinotte, V. M. et al. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol. Evolution 11, 5598–5605 (2021).Article 

    Google Scholar 
    Li, G., Gao, Y., Sun, P., Lei, C. & Huang, Q. Factors affecting mate choice in the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). J. Ethol. 31, 159–164 (2013).Article 

    Google Scholar 
    Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Sociaux 62, 237–245 (2015).Article 

    Google Scholar 
    Miyaguni, Y., Agarie, A., Sugio, K., Tsuji, K. & Kobayashi, K. Caste development and sex ratio of the Ryukyu drywood termite Neotermes sugioi and its potential mechanisms. Sci. Rep. 11, 15037 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nutting, W. L. In Biology of Termites (eds Kumar Krishna & Frances M. Weesner) 233–282 (Academic Press, 1969).Fougeyrollas, R. et al. Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux 65, 251–262 (2018).Article 

    Google Scholar 
    Shellman-Reeve, J. S. Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim. Behav. 61, 869–876 (2001).Article 

    Google Scholar 
    Zhang, Z.-Y. et al. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. Insect Sci. 28, 77–92 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).Article 
    PubMed 

    Google Scholar 
    Goodisman, M. A. D. & Crozier, R. H. Population and colony genetic structure of the primitive termite Mastotermes Darwiniensis. Evolution 56, 70–83 (2002).Article 
    PubMed 

    Google Scholar 
    Schmidt, A. M., Jacklyn, P. & Korb, J. Isolated in an ocean of grass: low levels of gene flow between termite subpopulations. Mol. Ecol. 22, 2096–2105 (2013).Article 
    PubMed 

    Google Scholar 
    Thompson, G. J., Lenz, M., Crozier, R. H. & Crespi, B. J. Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Aust. J. Zool. 55, 219–227 (2007).CAS 
    Article 

    Google Scholar 
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).Article 
    PubMed Central 

    Google Scholar 
    Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2014).Article 

    Google Scholar 
    Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M. & Gu, W.-X. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biol. Control 55, 166–173 (2010).Article 

    Google Scholar 
    Yanagawa, A., Imai, T., Akino, T., Toh, Y. & Yoshimura, T. Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118–1126 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosengaus, R. B., James, L.-T., Hartke, T. R. & Brent, C. S. Mate preference and disease risk in Zootermopsis angusticollis (Isoptera: Termopsidae). Environ. Entomol. 40, 1554–1565 (2011).Article 
    PubMed 

    Google Scholar 
    Beani, L. et al. Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps. Insectes Sociaux 66, 543–553 (2019).Article 

    Google Scholar 
    Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).Article 

    Google Scholar 
    Bengtsson, B. O. Avoiding inbreeding: at what cost? J. Theor. Biol. 73, 439–444 (1978).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: Choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).Article 
    PubMed 

    Google Scholar 
    Basalingappa, S. Environmental hazards to reproductives of Odontotermes assmuthi Holgrem. Indian Zool. 1, 45–50 (1970).
    Google Scholar 
    Darlington, J., Sands, W. & Pomeroy, D. Distribution and post-settlement survival in the field by reproductive pairs of Hodotermes mossambicus hagen (isoptera, hodotermitida). Insectes Sociaux 24, 353–358 (1977).Article 

    Google Scholar 
    Dial, K. P. & Vaughan, T. A. Opportunistic predation on alate termites in Kenya. Biotropica 19, 185–187 (1987).Article 

    Google Scholar 
    Korb, J. & Salewski, V. Predation on swarming termites by birds. Afr. J. Ecol. 38, 173–174 (2000).Article 

    Google Scholar 
    Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. ReproduCtion–immunity Trade-offs In Insects. Annu. Rev. Entomol. 61, 239–256 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Calleri, D. II, Rosengaus, R. & Traniello, J. A. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs. Naturwissenschaften 92, 300–304 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fei, H. X. & Henderson, G. Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera,Rhinotermitidae). Insectes Sociaux 50, 226–233 (2003).Article 

    Google Scholar 
    Rosengaus, R. B., Cornelisse, T., Guschanski, K. & Traniello, J. F. A. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94, 25–33 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J. & Karp, R. D. Immunity in a social insect. Naturwissenschaften 86, 588–591 (1999).CAS 
    Article 

    Google Scholar 
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79 (2017).Article 
    CAS 

    Google Scholar 
    Eyer, P.-A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).PubMed 

    Google Scholar 
    Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    Crnokrak, P. & Spencer, C. H. B. Perspective: purging the genetic load. A review of the experimental evidence. Evolution 56, 2347–2358 (2002).Article 
    PubMed 

    Google Scholar 
    Day, S. B., Bryant, E. H. & Meffert, L. M. The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potential. Evolution 57, 1314–1324 (2003).Article 
    PubMed 

    Google Scholar 
    Syren, R. M. & Luykx, P. Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fontana, F. Multiple reciprocal chromosomal translocations and their role in the evolution of sociality in termites. Ethol. Ecol. Evolution 3, 15–19 (1991).CAS 
    Article 

    Google Scholar 
    Matsuura, K. A test of the haplodiploid analogy hypothesis in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 646–649 (2002).Article 

    Google Scholar 
    Yashiro, T. et al. Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proc. Natl. Acad. Sci. 118, e2009533118 (2021).Charlesworth, B. & Wall, J. D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 51–56 (1999).Article 

    Google Scholar 
    Hellemans, S. et al. Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evol. Biol. 19, 131 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vargo, E. L., Labadie, P. E. & Matsuura, K. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B: Biol. Sci. 279, 813–819 (2012).Article 

    Google Scholar 
    Matsuura, K. et al. Queen succession through asexual reproduction in termites. Science 323, 1687–1687 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Meyel, S., Körner, M. & Meunier, J. Social immunity: why we should study its nature, evolution and functions across all social systems. Curr. Opin. Insect Sci. 28, 1–7 (2018).Article 
    PubMed 

    Google Scholar 
    Cotter, S. C. & Kilner, R. M. Personal immunity versus social immunity. Behav. Ecol. 21, 663–668 (2010).Article 

    Google Scholar 
    Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11, 244 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Chouvenc, T. & Su, N. Y. When subterranean termites challenge the rules of fungal epizootics. Plos One 7, e34484 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433–14433 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cassidy, S. T. et al. Disease defences across levels of biological organization: individual and social immunity in acorn ants. Anim. Behav. 179, 73–81 (2021).Article 

    Google Scholar 
    López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, S. et al. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proc. R. Soc. B: Biol. Sci. 288, 20203168 (2021).Article 

    Google Scholar 
    Viljakainen, L. et al. Rapid evolution of immune proteins in social insects. Mol. Biol. Evol. 26, 1791–1801 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meusemann, K., Korb, J., Schughart, M. & Staubach, F. No evidence for single-copy immune-gene specific signals of selection in termites. Front. Ecol. Evol. 8 (2020).Otani, S., Bos, N. & Yek, S. H. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4 (2016).Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Meta-analytic evidence that animals rarely avoid inbreeding. Nat. Ecol. Evol. 5, 949–964 (2021).Article 
    PubMed 

    Google Scholar 
    Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).Article 
    PubMed 

    Google Scholar 
    Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evol. 65, 246–258 (2011).Article 

    Google Scholar 
    Kokko, H., Ots, I. & Tregenza, T. When not to avoid inbreeding. Evolution 60, 467–475 (2006).Article 
    PubMed 

    Google Scholar 
    Zayed, A. & Packer, L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, K. G. & Fletcher, D. J. C. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19, 283–291 (1986).Article 

    Google Scholar 
    Eyer, P.-A., Salin, J., Helms, A. M. & Vargo, E. L. Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Sci. Rep. 11, 4471 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).Article 
    PubMed 

    Google Scholar 
    Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).Article 
    PubMed 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosengaus, R. B., Moustakas, J. E., Calleri, D. V. & Traniello, J. F. A. Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3, 31 (2003).Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, T. J., Burns, T., Lee, S. & Taylor, J. in PCR protocols: A guide to methods and applications (eds. M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White) 315–322 (Academic Press, 1990).Aguero, C. M., Eyer, P.-A., Crippen, T. L. & Vargo, E. L. Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb. Ecol. 81, 1054–1063 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Therneau, T. & Grambsch, P. Modeling Survival Data: Extending the Cox Model (Springer, 2000).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar  More

  • in

    Identifying biases in the global placement of river gauges

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Krabbenhoft, C. A. et al. Assessing placement bias of the global river gauge network. Nat. Sustain. https://doi.org/10.1038/s41893-022-00873-0 (2022). More

  • in

    Transversal criminality at sea

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Assessing placement bias of the global river gauge network

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Ruhi, A., Messager, M. L. & Olden, J. D. Tracking the pulse of the Earth’s fresh waters. Nat. Sustain. 1, 198–203 (2018).Article 

    Google Scholar 
    Pearson, C. Short- and medium-term climate information for water management. World Meteorol. Organ. Bull. 57, 173–177 (2008).
    Google Scholar 
    Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H. & Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 53, 2598–2604 (2017).Article 

    Google Scholar 
    Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2011).Article 

    Google Scholar 
    Shrestha, S., Kazama, F. & Newham, L. T. H. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ. Model. Softw. 23, 182–194 (2008).Article 

    Google Scholar 
    Lepistö, A., Futter, M. N. & Kortelainen, P. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob. Change Biol. 20, 1225–1237 (2014).Article 

    Google Scholar 
    Hester, G., Ford, D., Carsell, K., Vertucci, C. & Stallings, E. A. Flood Management Benefits of USGS Streamgaging Program (National Hydrologic Warning Council, 2006).Xu, H., Xu, C.-Y., Chen, H., Zhang, Z. & Li, L. Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol. 505, 1–12 (2013).Article 

    Google Scholar 
    Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B. & Eng, K. A National Streamflow Network Gap Analysis (USGS, 2013).Deweber, J. T. et al. Importance of understanding landscape biases in USGS gage locations: implications and solutions for managers. Fisheries 39, 155–163 (2014).Article 

    Google Scholar 
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).Article 

    Google Scholar 
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).CAS 
    Article 

    Google Scholar 
    Olden, J. D. et al. Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology. https://doi.org/10.1002/eco.2282 (2021).Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).Article 

    Google Scholar 
    Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).Article 

    Google Scholar 
    Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9,372 catchments. J. Clim. 33, 1299–1315 (2020).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)—part 1: the production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar 
    Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).Article 

    Google Scholar 
    Dobrushin, R. L. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970).Article 

    Google Scholar 
    Schefzik, R., Flesch, J. & Goncalves, A. Fast identification of differential distributions in single-cell RNA-sequencing data with waddR. Bioinformatics 37, 3204–3211 (2021).CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).CAS 
    Article 

    Google Scholar 
    Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem Services. Fisheries 44, 73–91 (2019).Article 

    Google Scholar 
    Chen, K. & Olden, J. D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 26, 4952–4965 (2020).Article 

    Google Scholar 
    Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).CAS 
    Article 

    Google Scholar 
    Sauquet, E. et al. Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: a global perspective. J. Hydrol. 597, 126170 (2021).Article 

    Google Scholar 
    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).CAS 
    Article 

    Google Scholar 
    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).Article 

    Google Scholar 
    Wilhite, D. A. in Coping with Drought Risk in Agriculture and Water Supply Systems: Drought Management and Policy Development in the Mediterranean, Vol. 26 (eds. Iglesias, A. et al.) 3–19 (Springer Science and Business Media, 2009).Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 
    Article 

    Google Scholar 
    Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184 (1995).Article 

    Google Scholar 
    Hammond, J. C. et al. Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).Article 

    Google Scholar 
    Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).CAS 
    Article 

    Google Scholar 
    Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).Article 

    Google Scholar 
    Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).Article 

    Google Scholar 
    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).CAS 
    Article 

    Google Scholar 
    Beaufort, A., Lamouroux, N., Pella, H., Datry, T. & Sauquet, E. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks. Hydrol. Earth Syst. Sci. 22, 3033–3051 (2018).Article 

    Google Scholar 
    Argerich, A. et al. Comprehensive multiyear carbon budget of a temperate headwater stream: carbon budget of a headwater stream. J. Geophys. Res. Biogeosci. 121, 1306–1315 (2016).CAS 
    Article 

    Google Scholar 
    Molden, D. J., Shrestha, A. B., Nepal, S. & Immerzeel, W. W. in Water Security, Climate Change and Sustainable Development (eds. Biswas, A. K. & Tortajada, C.) 65–82 (Springer, 2016).Kaletová, T. et al. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services—a Mediterranean case study. Int. J. Environ. Res. Public Health 16, 2693 (2019).Article 

    Google Scholar 
    Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).Article 

    Google Scholar 
    Wine, M. L. Toward strong science to support equitable water sharing in securitized transboundary watersheds. Biologia 9, 907–915 (2020).Article 

    Google Scholar 
    Alsdorf, D. E. GEOPHYSICS: tracking fresh water from space. Science 301, 1491–1494 (2003).CAS 
    Article 

    Google Scholar 
    Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).CAS 
    Article 

    Google Scholar 
    Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. https://doi.org/10.1086/701483 (2019).Joo, H. et al. Optimal stream gauge network design using entropy theory and importance of stream gauge stations. Entropy 21, 991 (2019).Article 

    Google Scholar 
    Vörösmarty, C. et al. Global water data: a newly endangered species. Eos 82, 54–58 (2001).Article 

    Google Scholar 
    Jordahl, K. et al. Geopandas/geopandas. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).Article 

    Google Scholar 
    Yu, S. et al. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 24, 5279–5295 (2020).CAS 
    Article 

    Google Scholar 
    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193 (2010).Article 

    Google Scholar 
    Flow/No Flow Observations with Discharge Data from Probabilistic Stream Surveys (US EPA Office of Research and Development, 2021).Rosenbaum, P. R. & Rubin, D. B. The bias due to incomplete matching. Biometrics 41, 103–116 (1985).CAS 
    Article 

    Google Scholar  More