Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).PubMed
PubMed Central
Google Scholar
Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 7, 4103 (2017).PubMed
PubMed Central
Google Scholar
Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).PubMed
PubMed Central
Google Scholar
Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49 (2018).
Google Scholar
Otim, M. H. et al. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE 13, e0194571 (2018).PubMed
PubMed Central
Google Scholar
FAO. Briefing note on FAO actions on fall armyworm in Africa, (2018).FAO. Briefing note on FAO actions on fall armyworm, (2019).Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. India 115, 621–623 (2018).CAS
Google Scholar
Sharanabasappa, D. et al. First report of the fall Armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae) an Alien invasive pest on Maize in India. Pest Manag. Horticultural Ecosyst. 24, 23–29 (2018).
Google Scholar
FAO. in FAO Regional Conference for Asia and the Pacific, 35th Session 7 (Thimphu, Bhutan, 2019).EPPO. First report of Spodoptera frugiperda in Thailand. (2019).Tay, W. T. & Gordon, K. H. J. Going global – genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).PubMed
Google Scholar
Zhang, L. et al. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province. Plant Prot. 45, 19–24 (2019).
Google Scholar
Wu, Q., Jian, Y. & K, W. Analysis of migration routes of the fall armyworm Spodoptera frugiperda (J. E. Smith) form Myanmar to China. Plant Prot. 45, 1–6 (2019).CAS
Google Scholar
USDA. Fall armyworm damages corn and threatens other crops in Vietnam. United States Department of Agriculture, Foreign Agricultural Service, Report Number: VM2019-0017 (2019).FAO. Report of first detection of fall armyworm (FAW) in the Republic of the Philippines. Report No. PHL-02/1, (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).Navasero, M. V. et al. Detection of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) using larval mrophological characters, and observations on its current local distribution in the Philippines. Philipp. Ent 33, 171–184 (2019).
Google Scholar
Vennila, S. et al. in International Workshop on Facilitating International Research Collaboration on Transboundary Plant Pests. (Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan, 2019).FAO. First detection of fall armyworm in China. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).Silver, A. Caterpillar’s devastating march across China spurs hunt for native predator. Nature 570, 286–287 (2019).CAS
PubMed
Google Scholar
Song, X. P. et al. Intrusion of Fall Armyworm (Spodoptera frugiperda) in Sugarcane and Its Control by Drone in China. Sugar Tech. 22, 734–737 (2020).
Google Scholar
Czepak, C. et al. Especial Spodoptera: Migração acelerada. Cultivar Gd. Culturas 244, 26–29 (2019).
Google Scholar
FAO. First detection of Fall armyworm in Torres Strait of Australia. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2020).Queensland Government, D. o. A. a. F. First mainland detection of fall armyworm, accessed 13 March 2020 (2020).Wild, S. Invasive pest hits Africa. Nature 543, 13–14 (2017).CAS
PubMed
Google Scholar
Porter, J. E. & Hughes, J. H. Insect eggs transported on the outer surface of airplanes. J. Economic Entomol. 43, 555–557 (1950).
Google Scholar
Jeger, M. et al. Pest categorisation of Spodoptera frugiperda. Efsa J. https://doi.org/10.2903/j.efsa.2017.4927 (2017).Early, R., Gonzalez-Moreno, P., Murphy, S. T. & Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. Neobiota https://doi.org/10.3897/neobiota.40.28165 (2018).FAO. Fall armyworm likely to spread from India to other parts of Asia with South East Asia and South China most at risk. (Food and Agriculture Organization of the United Nation, 2018).Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).PubMed
PubMed Central
Google Scholar
Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13219 (2020).Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 10, e02919 (2019).
Google Scholar
du Plessis, H., van den Berg, J., Ota, N. & Kriticos, D. J. Spodoptera frugiperda (Fall Armyworm). in CSIRO-InSTePP Pest Geography. June, 2018 (2018).FAO. First detection report of the fall armyworm Spodoptera frugiperda (Lepdioptera: Noctuidae) on maize in Myanmar. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).Sun, X.-X. et al. Case study on the first immigration of fall armyworm Spodoptera frugiperda invading into China. J. Integr. Agriculture 18, 2–10 (2019).
Google Scholar
Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).
Google Scholar
Assefa, F. & Ayalew, D. Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: a review. Cogent Food Agr. 5, 1641902 (2019).
Google Scholar
Hurska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 11 (2019).
Google Scholar
Firake, D. M. & Behere, G. T. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biol. Control 148, 104303 (2020).CAS
Google Scholar
Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenee, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).PubMed
PubMed Central
Google Scholar
Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica 143, 305–316 (2015).CAS
PubMed
PubMed Central
Google Scholar
Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS ONE 14, e0222332 (2019).CAS
PubMed
PubMed Central
Google Scholar
Jing, D. P. et al. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci. 27, 780–790 (2020).CAS
PubMed
Google Scholar
Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421 (2020).CAS
PubMed
PubMed Central
Google Scholar
Mahadeva, S. H. M. et al. Prevalence of “R” strain and molecular diversity of fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian J. Entomol. 80, 544–553 (2018).
Google Scholar
Murua, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).PubMed
Google Scholar
Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).CAS
Google Scholar
Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).PubMed
PubMed Central
Google Scholar
Czepak, C., Albernaz, C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesq. Agropec. Trop., Goia.̂nia 43, 110–113 (2013).
Google Scholar
Arnemann, J. A. et al. Multiple incursion pathways for Helicoverpa armigera in Brazil show its genetic diversity spreading in a connected world. Sci. Rep. 9, 19380 (2019).CAS
PubMed
PubMed Central
Google Scholar
Tay, W. T. et al. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 8, e80134 (2013).Tay, W. T. et al. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil. Sci. Rep. 7, 45302 (2017).CAS
PubMed
PubMed Central
Google Scholar
Behere, G. T. et al. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol. Biol. 7, 117 (2007).PubMed
PubMed Central
Google Scholar
Pearce, S. L. et al. Erratum to: Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 15, 69 (2017).CAS
PubMed
PubMed Central
Google Scholar
Pearce, S. L. et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 15, 63 (2017).CAS
PubMed
PubMed Central
Google Scholar
Guillemaud, T., Ciosi, M., Lombaert, E. & Estoup, A. Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. Cr Biol. 334, 237–246 (2011).
Google Scholar
Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).CAS
PubMed
PubMed Central
Google Scholar
Anderson, C. J., Tay, W. T., McGaughran, A., Gordon, K. & Walsh, T. K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25, 5296–5311 (2016).CAS
PubMed
Google Scholar
Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl Acad. Sci. USA 115, 5034–5039 (2018).CAS
PubMed
PubMed Central
Google Scholar
Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467 (2012).PubMed
PubMed Central
Google Scholar
Wright, S. The interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).
Google Scholar
Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).
Google Scholar
Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755 (2019).CAS
PubMed
PubMed Central
Google Scholar
Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep.-Uk 8, 3710 (2018).
Google Scholar
Arias, O. et al. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Manag. Sci. 75, 2948–2957 (2019).CAS
PubMed
Google Scholar
Nguyen, T. K. O. & Vu, T. P. Checklist of turfgrass insect pests, morphology, biology and population fluctuation of Herpetograma phaeopteralis (Guenee) (Lepidopera: Pyralidae) in Ha Noi, in Spring-Summer 2008. in The 3rd National Conference of Ecology and Natural Resources, Ha Noi. 1490–1498.Pham, V. L. On time to recognise first potential Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Vietnam and its Vietnamese name. in Plant Protection Magazine No. 4/2019 (Plant Protection Research Institute of Vietnam, July, 2019).Vu, T. P. Insect pests of turf grass, biology, ecology and the control of Herpetogramma phaeoptralis (Guenée) in Hà Nội in Spring Summer 2008 MSc. Thesis, Hà Nội Agriculture University, Vietnam (2008).Nguyen, V. D., Ha, Q. H. & Nguyen, T. T. C. in Vietnam Insects and Pests. (ed. V. L. Pham) (2012).Gilligan, T. M. & Passoa, S. C. LepIntercept, An identification resource for intercepted Lepidoptera larvae. Identification Technology Program (ITP), (2014).Gui, F. R. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell https://doi.org/10.1007/s13238-020-00795-7 (2020).Stokstad, E. FOOD SECURITY New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).CAS
PubMed
Google Scholar
Baloch, M. N., Fan, J. Y., Haseeb, M. & Zhang, R. Z. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects 11, 172 (2020).PubMed Central
Google Scholar
Juarez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol. Exp. Appl. 152, 182–199 (2014).CAS
Google Scholar
Groot, A. T. et al. Evolution of reproductive isolation of Spodoptera frugiperda. Pheromone Communication in Moths: Evolution, Behavior, and Application, 291–300 (2016).Nagoshi, R. N., Meagher, R. L., Nuessly, G. & Hall, D. G. Effects of fall armyworm (Lepidoptera: Noctuidae) interstrain mating in wild populations. Environ. Entomol. 35, 561–568 (2006).
Google Scholar
Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).CAS
PubMed
PubMed Central
Google Scholar
Orsucci, M. et al. Transcriptional plasticity evolution in two strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) feeding on alternative host-plants. Preprint at bioRxiv https://doi.org/10.1101/263186 (2018).Lopes-da-Silva, M., Sanches, M. M., Stancioli, A. R., Alves, G. & Sugayama, R. The role of natural and human-mediated pathways for invasive agricultural pests: a historical analysis of cases from Brazil. Agric. Sci. 5, 634–646 (2014).
Google Scholar
Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Economic Entomol. 108, 135–144 (2015).CAS
Google Scholar
Tembrock, L. R., Timm, A. E., Zink, F. A. & Gilligan, T. M. Phylogeography of the recent expansion of Helicoverpa armigera (Lepidoptera: Noctuidae) in South America and the Caribbean basin. Ann. Entomol. Soc. Am. 112, 388–401 (2019).CAS
Google Scholar
Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5, e9743 (2010).PubMed
PubMed Central
Google Scholar
Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
Google Scholar
Valencia-Montoya, W. A. et al. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa108 (2020).Article
PubMed
PubMed Central
Google Scholar
Walsh, T. K. et al. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS ONE 13, e0197760 (2018).PubMed
PubMed Central
Google Scholar
Liu, X. et al. Risks of biological invasion on the belt and road. Curr. Biol. 29, 499–505.e494 (2019).CAS
PubMed
Google Scholar
Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Preprint at Commun Biol. 664, https://doi.org/10.1038/s42003-020-01382-6 (2020).Yainna, S. et al. Genomic balancing selection is key to the invasive success of the fall armyworm. Preprint at bioRxiv https://doi.org/10.1101/2020.06.17.154880 (2020).Tay, W. T. et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci. Rep.-Uk 7, ARTN 429 (2017).
Google Scholar
Walsh, T. K. et al. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 9, 2933–2944 (2019).PubMed
PubMed Central
Google Scholar
Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed
Google Scholar
Villesen, P. FaBox: an online toolbox for FASTA sequences. Mol. Ecol. Notes 7, 965–968 (2007).CAS
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS
PubMed
PubMed Central
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
PubMed
PubMed Central
Google Scholar
Nam, K. et al. Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae). Preprint at bioRxiv https://doi.org/10.1101/452870 (2018).Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. Preprint at bioRxiv https://doi.org/10.1101/671560 (2019).Xiao, H. et al. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 20, 1050–1068 (2020).CAS
PubMed
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. (Lawrence Berkeley National Laboratory. 2014).Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed
PubMed Central
Google Scholar
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS
PubMed
PubMed Central
Google Scholar
Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS
PubMed
PubMed Central
Google Scholar
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).CAS
PubMed
Google Scholar
Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS
PubMed
PubMed Central
Google Scholar
Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).PubMed
Google Scholar
Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).CAS
PubMed
PubMed Central
Google Scholar
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed
PubMed Central
Google Scholar
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS
PubMed
PubMed Central
Google Scholar
Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS
PubMed
PubMed Central
Google Scholar
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).PubMed
PubMed Central
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS
PubMed
PubMed Central
Google Scholar
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS
PubMed
PubMed Central
Google Scholar
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).CAS
PubMed
PubMed Central
Google Scholar
Pfeifer, B., Wittelsburger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).CAS
PubMed
PubMed Central
Google Scholar
Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).CAS
PubMed
Google Scholar
Raymond, M. & Rousset, F. Genepop (Version-1.2) – population-genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS
PubMed
PubMed Central
Google Scholar
Neuditschko, M., Khatkar, M. S. & Raadsma, H. W. NetView: a high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS ONE 7, e48375 (2012).CAS
PubMed
PubMed Central
Google Scholar
Steinig, E. J., Neuditschko, M., Khatkar, M. S., Raadsma, H. W. & Zenger, K. R. netview p: a network visualization tool to unravel complex population structure using genome-wide SNPs. Mol. Ecol. Resour. 16, 216–227 (2016).CAS
PubMed
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS
PubMed
Google Scholar
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodohl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
Google Scholar
Sundqvist, L., Keenan, K., Zackrisson, M., Prodohl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).PubMed
PubMed Central
Google Scholar
Bastian, M., Heymann, S. & Jacomy, M. in International AAAI Conference on Weblogs and Social Media (2009).Tay, T. et al. Global FAW population genomic signature supports complex introduction events across the Old World. v1. CSIRO. Data Collection. https://doi.org/10.25919/y3nd-2903 (2021).Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA 70, 3321–3323 (1973).CAS
PubMed
PubMed Central
Google Scholar
Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS
PubMed
Google Scholar More