More stories

  • in

    Individual and collective learning in groups facing danger

    Experimental setupThis research was approved by the Carnegie Mellon University Committee of the Use of Human Subjects. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all participants. Our data includes no identifying information of human participants. We conducted experiments from February to August 2021 (except for the preliminary sessions of random information; we ran the condition from June to November 2020). We preregistered the main experiment settings using AsPredicted (https://aspredicted.org/sm4k5.pdf).A total of 2786 subjects participated in our incentivized decision-making game experiments. We recruited subjects using Amazon Mechanical Turk (MTurk)52,53. Supplementary Table 1 shows the subject demographics. Our participants interacted anonymously over the Internet using customized software playable in a browser window (available at http://breadboard.yale.edu). All participants provided explicit consent and passed a series of human verification checks and a screening test of understanding game rules and payoffs before playing the game (see SI). We prohibited subjects from participating in more than one session of the experiment by using unique identifications for each subject on MTurk.In each session, subjects were paid a $2.00 show-up fee and a bonus depending on whether they took the appropriate disaster decision in four rounds. Furthermore, subjects earned $1.00 when they completed all four rounds. In each round, when a disaster stroke before they evacuated, the subjects earned no bonus. Otherwise, they earned a bonus of $1.00 without disaster or $0.50 with disaster by spending $0.50 for evacuation, plus $0.05 per other players who took the correct action accordingly (Supplementary Table 2). We have confirmed with prior work that the amount of evacuation cost, if any, makes no significant difference in the game’s performance23.At the start, subjects were required to pass a series of human verification checks. They needed to pass Google’s reCAPTCHA using the “I’m not a robot” checkbox. They were also requested to answer whether they were human players. The exact question asked was: “Please select an applicable answer about you.” The options were: “I am not a bot. I am a real person.” “I am not a real person. I am a bot.” “I am anything but a human.” and “I am a computer program working for a person.” The option’s order was randomized. Only the participants who selected “I am not a bot. I am a real person.” moved to the step of informed consent.When subjects provided explicit consent, they were asked to take a tutorial before the actual game would begin. In the tutorial, each subject separately interacted with three dummy players in two rounds of a 45-s practice game. In the actual game, some subjects would be informed in advance whether a disaster would indeed strike or not. In the practice game, while all subjects were not informed of such information in the first round, they were informed of the information in the second round. Thus, they practiced both conditions in terms of prior information on the disaster (see SI).After the practice game, subjects were assessed for their comprehension of the game rules and payment structure using four multiple-choice questions with three options. If they failed to select the correct answer in one of the questions, they could reselect it only once through the entire test. If they failed to select the correct answer more than once, they were unable to join the actual game.At 720 s after the tutorial beginning, a “Ready” button became visible simultaneously to all the subjects who completed the tutorial and passed the comprehension tests. The actual games started 30 s after the “Ready” button showed up. If subjects did not click the button before the game started, they were dropped. The game required a certain number of subjects. When the subjects who successfully clicked the button were more than 16, surplus subjects, randomly selected, were dropped from the game. When the number of qualified subjects was less than 12, the game did not start. As a result, subjects started the game in a group with an average size of 15.5 (s.d. = 1.1).At the start of the actual game, we selected one subject (the “informant”) at random who was informed in advance whether a disaster would indeed strike or not. The other subjects were informed that some players had accurate information about the disaster, but they were not informed who the informant was. The exact sentence that the informants received in their game screen was “A disaster is going to strike!” when a disaster would strike or “There is no disaster.” when a disaster would not strike. The one that the other uninformed subjects received was “A disaster may or may not strike.” Then, the group had the same informant across the four rounds except for a supplement condition of random informants. In the random informant condition, an informant was randomly selected every round.To prevent an end-of-game effect, we randomly set the game time with a normal distribution of a mean of 75 s and a standard deviation of 10 s. Prior work has confirmed that the game time is sufficient for players to communicate and make an evacuation decision23. As a result, each round ended at 75.0 s on average (s.d. = 9.5) without prior notice. In half of the sessions, a disaster struck at the end of the game. We did not inform any subjects, including the informants, when their sessions would end, the global network structure they were embedded in, or how many informants were in the game. After making their evacuation choice, subjects were informed of their success and failure along with overall results in their group. Then, subjects played another round of the evacuation game until they completed four total rounds. They had the same local network environment across four rounds except for the dynamic network condition.Network structure and tie rewiringIn the network sessions, subjects played the game in a directed network with a random graph configuration. A certain number of ties were present at the game’s onset as the initial density was set to 0.25.In the dynamic network conditions, subjects also could change their neighbors by making or breaking ties between rounds. In the tie-rewiring step, 40% of all the possible subject pairs were chosen at random. Thus, subjects could choose every other player at least once throughout the entire session (i.e., a set of four rounds) with a probability of about 80%. When the chosen pairs were connected, the pairs (the ties) were dissolved if the predecessor subject of the directed ties chose to break the tie. When the chosen pairs were not connected, the pairs (the ties) were newly created when the predecessor of the potential tie chose to create the tie. Subjects were not informed of the rewiring rate.To equalize the game time, we made subjects in the independent and static network conditions wait for additional 10 s after each game round ended. Despite the adjustment, the game time was significantly longer in the dynamic network sessions than in the independent and static network sessions. The average game time is 429.5 s (s.d. = 20.2) for the independent condition; 428.8 s (s.d. = 19.0) for the static network condition; and 564.7 s (s.d. = 36.3) for the dynamic network condition.To clarify mechanisms for dynamic networks to facilitate collective intelligence, we added one supplementary condition. In the supplementary condition, subjects were assigned to one of the 40 isomorphic networks that other subjects had developed with tie-rewiring options through the three rounds in the dynamic network condition (567 subjects in 40 groups). Network structure and other game settings (i.e., whether a disaster stroke, how long the game was, and which node was the informant) were identical to where the others played the game at the final round. However, players were different, and they had no prior experience in the game. They played the game in a network with a topology created by others ostensibly to optimize the accurate flow of information. In contrast to other conditions, subjects played only one round in the isomorphic network condition.Signal buttonsDuring the game of network sessions, subjects were allowed to share information about the possibly impending “disaster” by using “Safe” and “Danger” buttons that indicated their assessment (see SI). The default node color was grey. Then, when they clicked the Safe button, their node turned blue and, after 5 s, automatically returned to grey. Likewise, the Danger button turned their node to red for 5 s. Subjects could see only the colors of neighbors to whom they were directly connected. Since the signal exchange occurred through directed connections, an individual could send, but not receive, information from another subject (and vice versa). Once subjects chose to evacuate, they could no longer send signals, and their node showed grey (the default color) for the rest of the game. The neighbors of evacuated subjects were not informed of their evacuation. We have confirmed with prior work that collective performance does not vary with the communication continuity and the evacuation visibility23. Subjects could use the Safe and Danger buttons any time unless they evacuated, or they did not have to.Players dropping during the gameAfter each game round, when a player was inactive for 10 s, they were warned about being dropped. When they remained inactive after 10 s, they were dropped. When the selected informant was dropped, the session stopped at the round, and we did not use the data. Furthermore, as too many dropped players could affect the network structure and the behavioral dynamics of remaining players, we did not use the sessions where more than 25% of initial players were dropped during the game. Overall, 4 players dropped in 15 sessions; 3 players dropped in 22 sessions; 2 players dropped in 41 sessions; 1 player dropped in 44 sessions; and no player dropped in 58 sessions. The dropped players were prohibited from joining another session of this experiment.As noted above, players took the additional tie-rewiring step every round in the dynamic network sessions. Thus, the total game time was longer in the dynamic network sessions than in the independent and static network sessions even with the adjustment. As a result, more players were dropped in the dynamic network sessions than in the independent and static network sessions. The average number of dropped players across the four rounds is 0.40 (s.d. = 0.60) for the independent condition; 1.15 (s.d. = 0.86) for the static network condition; 1.75 (s.d. = 1.19) for the dynamic network condition. Although group size could affect collective performance, we found the differences in group size small enough for our study. We have confirmed the dynamic network’s performance improvement with a comprehensive analysis controlling the effect of group size (Supplementary Table 3). Also, there was no statistically significant difference in the dropped players’ performance of the dynamic network condition, compared with the other two conditions. The rate of correct actions of dropped players is 0.456 (s.d. = 0.322) for the independent condition, 0.594 (s.d. = 0.387) for the static network condition, and 0.558 (s.d. = 0.411) for the dynamic network condition; P = 0.106 between the independent condition and the dynamic network condition; P = 0.599 between the static network condition and the dynamic network condition (Welch two-sample t test).Analysis of signal diffusionsTo examine the change in signal diffusion, we analyzed “diffusion chains” for each signal type in the network sessions. We first identified the subjects who sent a signal when their neighbors had never sent one as spontaneous “diffusion sources.” When a subject sent a signal after at least one neighbor had sent the same type of signal, we regarded the subject’s signaling (and evacuation with danger signals) as occurring in a chain of signal diffusion and the total number of the responded subjects (including the diffusion source) as the diffusion size.We analyzed the distribution of signal diffusion chains with complementary cumulative distribution functions, measuring the fraction of diffusion chains that exhibit a given number of diffusion sizes. We found that the number of diffusions of both signals did not change across rounds. Safe-signal diffusions were more likely to occur than danger-signal diffusions regardless of whether a “disaster” would strike and how many rounds subjects played. On the other hand, the diffusion size varied greatly across rounds in disaster situations. With “disaster,” false safe signals spread further than true danger signals at the first round, but after that, warnings outperformed safe signals in terms of diffusion size. Figure 2B and Supplementary Fig. 3 scrutinize the changes in diffusion chains with their distributions.Analysis of individual responsivenessWe analyzed how individual evacuation behavior varies with exposure to signals from neighbors54. Let$${a}_{i}^{evacuate},, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ evacuates at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show, safe},, (t)=left{begin{array}{ll}1&quad text{if subject } i mathrm{ shows a safe signal at time } t\ 0&quad text{otherwise}end{array}right.$$$${a}_{i}^{show , danger} ,, (t)=left{begin{array}{ll}1&quad text{if subject } i text{ shows a danger signal at time } t\ 0&quad text{otherwise}end{array}right.$$The hazard function, or instantaneous rate of occurrence of subject (i)’s evacuation at time t, is defined as:$${lambda }_{i},, (t)=underset{mathit{dt}to 0}{{mathrm{lim}}}frac{{mathrm{Pr}}({a}_{i}^{evacuate}=1;,, tt)}{dt}$$To model the time to evacuation, We used a Cox proportional hazards model with time-varying covariates for the number of signals, incorporating an individual actor-specific random effect55:$${lambda }_{i} ,, left{t|{{P}_{i}, X}_{i}(t), {G}_{i},{Y}_{i}(t)right}={lambda }_{0}(t)mathrm{exp}left{{{beta }_{P}^{{prime}}{P}_{i}+beta }_{X}^{{prime}}{X}_{i}(t)+{beta }_{G}^{{prime}}{G}_{i}+{beta }_{Y}^{{prime}}{Y}_{i}(t)+{gamma }_{i}right}$$where λ0(t) is a baseline hazard at time t.In the model, the hazard λi(t) depends on the covariates Pi, Xi(t), Gi, and Yi(t). The covariate Pi is the vector of subject i’s experiences before the sessions; that is, the number of rounds, the number of disasters that she has experienced, and the number of disasters that she has been struck by.The covariate Xi(t) is the vector of the number of safe signals ({x}_{i}^{safe} (t)), the number of danger signals ({x}_{i}^{danger} (t)). When subject j is a neighbor of subject i (i.e., (jin {N}_{i})), subject i is exposed to the signal of subject j, so that:$${x}_{i}^{safe},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, safe}(t)$$$${x}_{i}^{danger},, (t)=sum_{jin {N}_{i}}{a}_{j}^{show, danger}(t)$$The covariate Gi is the vector of the properties of the network in which subject i is embedded, out-degree, in-degree, and a network plasticity indicator. The covariate Yi(t) is the vector of the number of the subject i’s actions of sending safe and danger signals before time t. The coefficients β are the fixed effects and γi is the random effect for individual i. We assumed that waiting times to evacuation in different actors are conditionally independent given the sequence of signals they receive from network neighbors. This model shows how the hazard of an individual’s evacuation depends on the signaling actions of others, their network position, and experience (Supplementary Table 4). We applied the same model to the first signaling behavior. More

  • in

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera

    Lotsy, J. P. Evolution by Means of Hybridization (Martinus Nijhoff, 1916).Abbott, R. J. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).PubMed 
    Article 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z. F. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Müntzing, A. Outlines to a genetic monograph for the genus Galeopsis: with special reference to the nature and inheritance of partial sterility. Hereditas 13, 185–341 (1930).Article 

    Google Scholar 
    Schumer, M., Cui, R., Rosenthal, G. G. & Andolfatto, P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. Plos. Genet. 11, e1005041 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kong, S. & Kubatko, L. S. Comparative performance of popular methods for hybrid detection using genomic data. Syst. Biol. 70, 891–907 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jiang, Y. F. et al. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. N. Phytol. 228, 409–414 (2020).Article 

    Google Scholar 
    Rokas, A. & Holland, P. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol. 19, 972–977 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 
    Article 

    Google Scholar 
    Guo, X., Thomas, D. C. & Saunders, R. M. K. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Mol. Phylogenet. Evol. 127, 14–29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winkler, H. Betulaceae. In: Pflanzenreich IV (Verlag von Wilhelm Engelmann, 1904).Li, P. Q. & Skvortsov, A. K. Betulaceae. In: Flora of China (Science Press & Missouri Botanical Garden Press, 1999).Crane, P. R. Betulaceous leaves and fruits from the British Upper Palaeocene. Bot. J. Linn. Soc. 83, 103–136 (1981).Article 

    Google Scholar 
    Li, P. Q. & Cheng, S. X. Betulaceae. In: Flora Reipublicae Popularis Sinicae (Science Press, 1979).Yoo, K. O. & Wen, J. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Plant Sci. 163, 641–650 (2002).Article 

    Google Scholar 
    Li, J. H. Sequences of low-copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). J. Sys. Evol. 46, 333–340 (2008).
    Google Scholar 
    Yang, X. Y. et al. Plastomes of Betulaceae and phylogenetic implications. J. Sys. Evol. 57, 508–518 (2019).Article 

    Google Scholar 
    Yang, Y. Z. et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, X. Y. et al. A chromosome-level reference genome of the hornbeam, Carpinus fangiana. Sci. Data 7, 24 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, Y. et al. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic. Res. 8, 54 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tajima, F. Evolutionary relationship of DNA-sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kubatko, L. S. & Chifman, J. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. BMC Evol. Biol. 19, 112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baack, E., Melo, M. C., Rieseberg, L. H. & Ortiz-Barrientos, D. The origins of reproductive isolation in plants. N. Phytol. 207, 968–984 (2015).Article 

    Google Scholar 
    Sobel, J. M. & Chen, G. F. Unification of methods for estimating the strength of reproductive isolation. Evolution 68, 1511–1522 (2014).PubMed 
    Article 

    Google Scholar 
    Imura, Y. et al. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 53, 287–303 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S.-J. & Bassham, D. C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol. 156, 514–526 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, F. et al. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. N. Phytol. 223, 2024–2038 (2019).CAS 
    Article 

    Google Scholar 
    Liu, Z. C., Franks, R. G. & Klink, V. P. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12, 1879–1891 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sitaraman, J., Bui, M. & Liu, Z. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol. 147, 672–681 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. L. et al. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Sys. Evol. 59, 1198–1208 (2021).Article 

    Google Scholar 
    Morales-Briones, D. F. et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219–235 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yang, Y. Z. et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215–222 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Luo, X. et al. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol. Ecol. 26, 3037–3049 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Grover, C. E. et al. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 92, 45–52 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 5, 4.10.1–4.10.14 (2004).Article 

    Google Scholar 
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    Article 

    Google Scholar 
    Conesa, A. & Götz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, G. et al. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant J. 97, 779–794 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. GigaScience 9, giaa050 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. In: Multiple Sequence Alignment Methods, Methods in Molecular Biology (Humana Press, 2014).Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).Article 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 
    Article 

    Google Scholar 
    Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Privately protected lands have outsized benefits

    .readcube-buybox { display: none !important;}

    As plant and animal species disappear at breakneck speed owing to human activity, researchers reveal that privately owned protected areas are helping to halt the loss of biodiversity, particularly in overlooked regions1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00984-w

    ReferencesPalfrey, R., Oldekop, J. A. & Holmes, G. Nature Ecol. Evol. https://doi.org/10.1038/s41559-022-01715-0 (2022).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Argentina: wildfires jeopardize rewilding
    Correspondence 12 APR 22

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda
    News & Views 12 APR 22

    China: protect black soil for biodiversity
    Correspondence 05 APR 22

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More

  • in

    Evaluation of resource and environmental carrying capacity in rare earth mining areas in China

    Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(04), 68–86 (2019).Article 
    CAS 

    Google Scholar 
    Chen, K. F., Hu, J. L., Zhang, Y. B. & Xue, D. F. Current R&D status and future trends of rare earth crystal materials. Inorgan. Chem. Ind. 52, 11–16 (2020).ADS 

    Google Scholar 
    Hong, G. Y. Research progress of rare earth luminescent materials. J. Synth. Cryst. 44, 2641–2651 (2015).CAS 

    Google Scholar 
    Hu, J. L. & Xue, D. F. Research progress on the characteristics of rare earth ions and rare earth functional materials. Chin. J. Appl. Chem. 37, 245–255 (2020).CAS 

    Google Scholar 
    Ji, L. Q., Chen, M. X., Gu, H., Zhao, J. H. & Yang, X. Actuality of light rare earth resources and application in field of new energy vehicles. J. Chin. Soc. Rare Earths 38, 129–138 (2020).
    Google Scholar 
    Liu, L. S. et al. Progress in nanocrystalline materials of rare earths. Chin. Rare Earths 33, 84–89 (2012).ADS 

    Google Scholar 
    Chen, Z. H. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 29, 1–6 (2011).Article 

    Google Scholar 
    Mineral Commodity Summaries: 2021. Government Printing Office (2021)Yang, Z. F., Ma, Y. & Wang, Y. Mining (Metallurgical Industry Press, 2018).
    Google Scholar 
    Liu, H. Y. et al. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery. Sci. Total Environ. 804, 150241–150241 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, J. et al. Recovery of thorium and rare earths from leachate of ion-absorbed rare earth radioactive residues with N1923 and Cyanex 572. J. Rare Earths 39(10), 1273–1281 (2020).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. Int. J. 27(5), 1276–1295 (2020).Article 
    CAS 

    Google Scholar 
    Jin, Y., Jin, X. & Chen, L. I. Applying supporting-pressuring coupling curve to the evaluation of urban land carrying capacity: The case study of 32 cities in Zhejiang province. Geogr Res 37(6), 1087–1099 (2018).
    Google Scholar 
    Hadwen, S. & Palmer, L.J. Reindeer in Alaska. US Department of Agriculture (1922).Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).Article 

    Google Scholar 
    Chapman, E. J. & Carrie, J. B. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 13, e00365 (2018).Article 

    Google Scholar 
    Arrow, K. et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 15(2), 91–95 (1995).Article 

    Google Scholar 
    Zhu, M. C. et al. A load-carrier perspective examination on the change of ecological environment carrying capacity during urbanization process in China. Sci. Total Environ. 714, 136843 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, F. et al. Evaluation of resources and environmental carrying capacity of 36 large cities in China based on a support-pressure coupling mechanism. Sci. Total Environ. 688, 838–854 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, X., Shen, L., Liu, Z., Luo, L. & Chen, Y. Comparative analysis on the evolution of ecological carrying capacity between provinces during urbanization process in China. Ecol. Indic. 112, 106179 (2020).Article 

    Google Scholar 
    Wu, X. & Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 113, 106243 (2020).Article 

    Google Scholar 
    Wang, J. Y. et al. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 89, 348–355 (2018).Article 

    Google Scholar 
    Jia, Z., Cai, Y., Chen, Y. & Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 134, 282–293 (2018).Article 

    Google Scholar 
    Ma, X. A., Bai, Z. K. & Feng, L. R. Evaluation of the eco-environment quality and resources utilization in opencast coal mine area-A case study of Antaibao Open cast Mine of Pingshuo Shanxi Province. Chin. J. Eco-Agric. 15(5), 197–201 (2007).
    Google Scholar 
    Zhang, Z. Q. Study on ecological capacity and environment evaluation of Qingyang, GanSu. Lanzhou: GanSu Agricultural University Doctoral Thesis (in Chinese) (2010).Li, Y. G. et al. Research on the development of the ecological protection of the Qilian Mountains based on ecological redline. Acta Ecol. Sin. 39(7), 2343–2352 (2019).
    Google Scholar 
    Wang, Y., Hong, X. Y. & Lv, D. Analysis on dynamic ecological security and development capacity of 2005–2009 in Qinhuangdao, China. Proc. Environ. Sci. 10, 607–612 (2011).Article 

    Google Scholar 
    Zeng, C. et al. An integrated approach for assessing aquatic ecological carrying capacity: A case study of Wujin District in the Tai Lake Basin, China. Int. J. Environ. Res. Public Health 8(1), 264–280 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, Y. X. & Lu, Y. Q. The coupling relationship between population and economic in Poyang Lake ecological economic zone. Econ. Geogr 31(2), 195–200 (2011).MathSciNet 

    Google Scholar 
    Wang, D., Shi, Y. & Wan, K. Integrated evaluation of the carrying capacities of mineral resource-based cities considering synergy between subsystems. Ecol. Indic. 108, 105701 (2020).Article 

    Google Scholar 
    Zhang, Y., Wang, Q., Wang, Z., Yang, Y. & Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 698, 134304 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, M., Liu, Y., Wu, J. & Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess Rev. 68, 90–97 (2018).Article 

    Google Scholar 
    Feng, Z. M. et al. The progress of resources and environment carrying capacity: From single-factor carrying capacity research to comprehensive research. J. Resour. Ecol. 9, 125–134 (2018).
    Google Scholar 
    Xiao, W. et al. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 109, 105843 (2020).Article 

    Google Scholar 
    Zhang, Y., Shang, J. C. & Yu, X. Y. Study on the coupling mechanism of urban economy and environment. Acta Sci. Circum. 23(1), 107–112 (2003).ADS 
    CAS 

    Google Scholar 
    China County Statistical Yearbook. National Bureau of Statistics, Department of Rural Social and Economic Survey (in Chinese) (2013).Baotou Statistical Yearbook. Baotou City Bureau of Statistics (in Chinese) (2019).Jiangxi Statistical Yearbook. Jiangxi Bureau of Statistics (in Chinese) (2014).Jining Statistical Yearbook. Jining Bureau of Statistics (in Chinese) (2019).402009 Liangshan Yearbook Atlas. Liangshan Yi Autonomous Prefecture People’s Government (in Chinese) (2010).Liao, X. P. Meizhou yearbook. Yearb. Inf. Res. 2, 53 (1999).
    Google Scholar 
    Chongzuo yearbook. Chongzuo local history compilation committee (in Chinese) (2019).Ma, G. X. et al. Assessment of ecological and environmental costs of rare earth resources development in China from 2001–2013. Journal of Natural Resources (in Chinese) (2017).Bai, L. N. et al. The impact of radioactivity on the surrounding environment in the production of rare earths and steel at the Bayan Obo mine. Rare Earths 75–77 (in Chinese) (2004).Li, X. Y. Monitoring and analysis of the radioactive environmental impact of the mining project of Baogang Bayan Obo Iron Mine (West Mine) (in Chinese) (2016).Shi, H. R. & Zhao, R. Y. Comparison of radioactivity levels of rare earth products from different origins. China Radiat. Health 1, 30 (2000).
    Google Scholar 
    Liu, H. P., Zhong, M. L. & Hu, Y. M. Survey of rare earth natural radionuclides in Ganan, Jiangxi Province. Radiat Prot 34(4), 255–257 (2014).
    Google Scholar 
    Xiao, X. L. Investigation and Treatment of Radioactive Environment in Rare Earth Mining Area of Mianning (Southwest Jiaotong University, 2013).
    Google Scholar 
    Min, D., Xu, Z., Peng, L., Zhu, Y. & Xu, X. Comprehensive evaluation of water resources carrying capacity of jining city. Energy Proc. 5(5), 1654–1659 (2011).Article 

    Google Scholar 
    Yin, J. N. & Song, X. A review of major rare earth element and yttrium deposits in China. Aust. J. Earth Sci. 2, 1–25 (2021).
    Google Scholar 
    Chi, R., Li, Z. J., Peng, C., Zhu, G. C. & Xu, S. M. Partitioning properties of rare earth ores in China. Rare Met. 24, 205–209 (2005).CAS 

    Google Scholar 
    Yang, X. J. et al. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 8, 131–136 (2013).Article 

    Google Scholar 
    Liu, T. & Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 276, 119263 (2021).CAS 
    Article 

    Google Scholar 
    Wang, L., Zhong, B., Liang, T., Xing, B. & Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 572, 1–8 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gwenzi, W. et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 636, 299–313 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, W. S. et al. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 216, 75–83 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. C. & Wen, Z. Rare earths from mines to metals: Comparing environmental impacts from China’s main production pathways. J. Ind. Ecol. 21(5), 1277–1290 (2017).CAS 
    Article 

    Google Scholar 
    Shen, L., Wu, N., Zhong, S. & Gao, L. Overview on China’s rare earth industry restructuring and regulation reforms. J. Resour. Ecol. 8, 213–222 (2017).
    Google Scholar  More

  • in

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda

    NEWS AND VIEWS
    12 April 2022

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda

    Snippets from Nature’s past.

    Twitter

    Facebook

    Email

    .readcube-buybox { display: none !important;}

    50 Years Ago

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00974-y

    Subjects

    History

    Archaeology

    Fisheries

    Latest on:

    History

    Russian scientists’ complicity: shame will remain
    Correspondence 05 APR 22

    From the archive: Mary Leakey’s book on excavations in Africa, and physics teaching under scrutiny
    News & Views 05 APR 22

    Together, we must help refugee researchers to thrive
    Correspondence 29 MAR 22

    Archaeology

    From the archive: Mary Leakey’s book on excavations in Africa, and physics teaching under scrutiny
    News & Views 05 APR 22

    Ancient smells reveal secrets of Egyptian tomb
    News 31 MAR 22

    Ancient ‘harbour’ revealed to be part of fertility god’s lavish shrine
    Research Highlight 17 MAR 22

    Fisheries

    River conservation by an Indigenous community
    News & Views 11 DEC 20

    Can aquaculture overcome its sustainability challenges?
    Outlook 09 DEC 20

    The grim truth behind eyewitness accounts of sea serpents
    Research Highlight 30 SEP 20

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More

  • in

    Argentina: wildfires jeopardize rewilding

    CORRESPONDENCE
    12 April 2022

    Argentina: wildfires jeopardize rewilding

    Mario S. Di Bitetti

     ORCID: http://orcid.org/0000-0001-9704-8649

    0
    ,

    Carlos De Angelo

     ORCID: http://orcid.org/0000-0002-7759-3321

    1
    ,

    Agustín Paviolo

     ORCID: http://orcid.org/0000-0001-7855-4298

    2
    ,

    Adrián S. Di Giacomo

     ORCID: http://orcid.org/0000-0002-7976-0197

    3
    ,

    Diego Varela

     ORCID: http://orcid.org/0000-0003-3123-6756

    4
    &

    Alejandro R. Giraudo

     ORCID: http://orcid.org/0000-0003-0708-4481

    5

    Mario S. Di Bitetti

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Carlos De Angelo

    Universidad Nacional de Río Cuarto – CONICET, Río Cuarto, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Agustín Paviolo

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Adrián S. Di Giacomo

    Universidad Nacional del Nordeste – CONICET, Corrientes, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Diego Varela

    Universidad Nacional de Misiones – CONICET, Puerto Iguazú, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Alejandro R. Giraudo

    Universidad Nacional del Litoral-CONICET, Santa Fé, Argentina.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Ferocious wildfires have already destroyed more than one million hectares this year in the Corrientes province of Argentina — including more than half of Iberá National Park, where a crucial rewilding project is under way (see E. Donadio et al. Nature 603, 225–227; 2022). We call for greater wildfire awareness and improved alarm systems to prevent such large-scale devastation in the future.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 246 (2022)
    doi: https://doi.org/10.1038/d41586-022-01006-5

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More

  • in

    Deforestation-induced climate change reduces carbon storage in remaining tropical forests

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang 2, 182–185 (2012).ADS 
    CAS 

    Google Scholar 
    Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cy. 13, 997–1027 (1999).ADS 
    CAS 

    Google Scholar 
    Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Glob. Biogeochem. Cy. 22, GB3018 (2008).ADS 

    Google Scholar 
    Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).ADS 

    Google Scholar 
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol. 19, 680–688 (2005).
    Google Scholar 
    van Marle, M. J. et al. Fire and deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cy 31, 24–38 (2017).
    Google Scholar 
    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cy 31, 456–472 (2017).ADS 
    CAS 

    Google Scholar 
    Houghton, R. A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 11, 945–958 (2005).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).ADS 

    Google Scholar 
    Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).ADS 

    Google Scholar 
    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–8 (2015).ADS 

    Google Scholar 
    Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).
    Google Scholar 
    Betts, R. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus Ser. B-Chem. Phys. Meteorol. 59, 602–615 (2007).ADS 

    Google Scholar 
    Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. & Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 32, L23705 (2005).ADS 

    Google Scholar 
    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T. & Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7, 1383–1399 (2010).ADS 
    CAS 

    Google Scholar 
    Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl Acad. Sci. USA 112, 3257–3262 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land‐use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).CAS 
    PubMed 

    Google Scholar 
    Henderson-Sellers, A. & Gornitz, V. Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim. Change 6, 231–257 (1984).ADS 

    Google Scholar 
    Dickinson, R. E. & Henderson‐Sellers, A. Modelling tropical deforestation: a study of GCM land‐surface parametrizations. Q. J. R. Meteorol. Soc. 114, 439–462 (1988).ADS 

    Google Scholar 
    Zhang, H., Henderson-Sellers, A. & McGuffie, K. Impacts of tropical deforestation. Part I: process analysis of local climatic change. J. Clim. 9, 1497–1517 (1996).ADS 

    Google Scholar 
    Costa, M. H. & Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Clim. 13, 18–34 (2000).ADS 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 5, 27–36 (2015).ADS 

    Google Scholar 
    Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).ADS 

    Google Scholar 
    Gedney, N. & Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 27, 3053–3056 (2000).ADS 

    Google Scholar 
    Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. & Giarolla, E. Amazon deforestation and climate change in a coupled model simulation. J. Clim. 22, 5686–5697 (2009).ADS 

    Google Scholar 
    Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact. 14, 1–34 (2010).
    Google Scholar 
    Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).
    Google Scholar 
    Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 1–7 (2021).
    Google Scholar 
    Baidya Roy, S. & Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. Atmos. 107, LBA-4 (2002).
    Google Scholar 
    Khanna, J., Medvigy, D., Fisch, G. & de Araújo Tiburtino Neves, T. T. Regional hydroclimatic variability due to contemporary deforestation in southern Amazonia and associated boundary layer characteristics. J. Geophys. Res. Atmos. 123, 3993–4014 (2018).ADS 

    Google Scholar 
    McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. B. & Pitman, A. J. Global climate sensitivity to tropical deforestation. Glob. Planet. Change 10, 97–128 (1995).ADS 

    Google Scholar 
    Zhang, H., Henderson-Sellers, A. & McGuffie, K. The compounding effects of tropical deforestation and greenhouse warming on climate. Clim. Change 49, 309–338 (2001).CAS 

    Google Scholar 
    Voldoire, A. & Royer, J. F. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Clim. Dyn. 24, 843–862 (2005).
    Google Scholar 
    Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).
    Google Scholar 
    Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Chang. 8, 434–440 (2018).ADS 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosci. 113, G00B07 (2008).ADS 

    Google Scholar 
    Sullivan, M. J. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).ADS 

    Google Scholar 
    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, eabb7232 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Numata, I. et al. Biomass collapse and carbon emissions from forest fragmentation in the Brazilian Amazon. J. Geophys. Res. Biogeosci. 115, G03027 (2010).ADS 

    Google Scholar 
    Junior, C. H. S. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).ADS 

    Google Scholar 
    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).ADS 

    Google Scholar 
    Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 

    Google Scholar 
    Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12, 4823–4873 (2019).ADS 
    CAS 

    Google Scholar 
    Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).ADS 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of earth system processes in present‐day and future climate. J. Adv. Model Earth Syst. 11, 4182–4227 (2019).ADS 

    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model Earth Syst. 12, 1–52 (2020).
    Google Scholar 
    Kelley, M. et al. GISS‐E2. 1: configurations and climatology. J. Adv. Model Earth Syst. 12, e2019MS002025 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sellar, A. A. et al. Implementation of UK Earth system models for CMIP6. J. Adv. Model Earth Syst. 12, e2019MS001946 (2020).ADS 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1. 2) and its response to increasing CO2. J. Adv. Model Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boysen, L. et al. Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17, 5615–5638 (2020).ADS 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).ADS 
    CAS 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).ADS 
    CAS 

    Google Scholar 
    Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Stocker et al.) 465–570 (Cambridge Univ Press, UK and USA, 2013).Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 

    Google Scholar 
    Jones, C. D. et al. C4MIP–The coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).ADS 
    CAS 

    Google Scholar 
    UNFCCC. Background paper for the Workshop on Reducing Emissions from Deforestation in Developing Countries, Part 1: Scientific, Socio-economic, Technical, and Methodological Issues Related to Deforestation in Developing Countries 30 August to 1 September, Rome, Italy. Working paper No. 1(a) (2006).Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ. Res. Lett. 4, 034009 (2009).ADS 

    Google Scholar 
    Mahowald, N. M. et al. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cy 31, 96–113 (2017).CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).ADS 

    Google Scholar 
    Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 14, 479–483 (2021).ADS 
    CAS 

    Google Scholar 
    Ordway, E. M. & Asner, G. P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA117, 7863–7870 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. 219, 851–869 (2018).
    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    MATH 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).ADS 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).ADS 

    Google Scholar 
    Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).ADS 

    Google Scholar 
    Schulzweida, U. Climate data operators (CDO) user guide (Version 1.9.8). https://doi.org/10.5281/zenodo.3539275 (2019).Tropical Rainfall Measuring Mission (TRMM) TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).
    Google Scholar 
    Yang, H. et al. Comparison of forest above‐ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation‐based estimates. Glob. Chang. Biol. 26, 3997–4012 (2020).ADS 
    PubMed 

    Google Scholar 
    Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 1.0o: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100 (2011).Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang 5, 470–474 (2015).ADS 

    Google Scholar 
    Spracklen, D. V. & Garcia‐Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).ADS 

    Google Scholar  More

  • in

    High genomic diversity in the endangered East Greenland Svalbard Barents Sea stock of bowhead whales (Balaena mysticetus)

    Kovacs, K. M. et al. The endangered Spitsbergen bowhead whales’ secrets revealed after hundreds of years in hiding. Biol. Lett. https://doi.org/10.1098/rsbl.2020.0148 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, J. & Reeves, R. Balaena mysticetus (East Greenland-Svalbard-Barents Sea subpopulation). The IUCN Red List of Threatened Species 2018, e.T2472A50348144 (2018). https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T2472A50348144.enAllen, R. C. & Keay, I. Bowhead whales in the eastern Arctic, 1611–1911: Population reconstruction with historical whaling records. Environ. Hist. 12, 89–113 (2006).Article 

    Google Scholar 
    Reeves, R. R. Spitsbergen bowhead stock: A short review. Mar. Fish. Rev. 42, 65–69 (1980).
    Google Scholar 
    Shelden, K. E. W. & Rugh, D. J. The Bowhead Whale, Balaena mysticetus: Its Historic and Current Status. Mar. Fish. Rev. 57, 1–20 (1995).
    Google Scholar 
    Gilg, O. & Born, E. W. Recent sightings of the bowhead whale (Balaena mysticetus) in Northeast Greenland and the Greenland Sea. Polar Biol. 28, 796–801. https://doi.org/10.1007/s00300-005-0001-9 (2005).Article 

    Google Scholar 
    Boertmann, D., Kyhn, L. A., Witting, L. & Heide-Jørgensen, M. P. A hidden getaway for bowhead whales in the Greenland Sea. Polar Biol. 38, 1315–1319. https://doi.org/10.1007/s00300-015-1695-y (2015).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Janik, V., Kovac, K. & Lydersen, C. Spitsbergen bowhead whales revisited. Mar. Mamm. Sci. 23, 688–693. https://doi.org/10.1111/j.1748-7692.2007.02373.x (2007).Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L., Øien, N., Kovacs, K. & Lydersen, C. Observations of bowhead whales (Balaena mysticetus) in the Svalbard area 1940–2009. Polar Biol. 33, 979–984. https://doi.org/10.1007/s00300-010-0776-1 (2010).Article 

    Google Scholar 
    Lydersen, C. et al. Lost highway not forgotten: Satellite tracking of a bowhead whale (Balaena mysticetus) from the critically endangered Spitsbergen stock. Arctic 65, 76–86. https://doi.org/10.14430/arctic4167 (2012).Article 

    Google Scholar 
    Vacquié-Garcia, J. et al. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endang. Spec. Res. 32, 59–70. https://doi.org/10.3354/esr00791 (2017).Article 

    Google Scholar 
    Givens, G. H. & Heide-Jørgensen, M. P. Abundance. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 77–86 (Academic Press, 2020).
    Google Scholar 
    Rooney, A. P., Honeycutt, R. L. & Derr, J. N. Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 55, 1678–1685. https://doi.org/10.1111/j.0014-3820.2001.tb00687.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235. https://doi.org/10.1111/j.1365-294X.2007.03287.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    LeDuc, R. G. et al. Genetic analyses (mtDNA and microsatellites) of Okhotsk and Bering/Chukchi/Beaufort Seas populations of bowhead whales. J. Cetacean Res. Manag. 7, 107–111 (2005).
    Google Scholar 
    Meschersky, I. G., Chichkina, A. N., Shpak, O. V. & Rozhnov, V. V. Molecular genetic analysis of the Shantar Summer Group of bowhead whales (Balaena mysticetus L.) in the Okhotsk Sea. Russ. J. Genet. 50, 395–405. https://doi.org/10.1134/S1022795414040097 (2014).CAS 
    Article 

    Google Scholar 
    Bachmann, L. et al. Mitogenomics and the genetic differentiation of contemporary Balaena mysticetus (Cetacea) from Svalbard. Zool. J. Linn. Soc. 191, 1192–1203. https://doi.org/10.1093/zoolinnean/zlaa082 (2021).Article 

    Google Scholar 
    Grond, J., Płecha, M., Hahn, C., Wiig, Ø. & Bachmann, L. Mitochondrial genomes of ancient bowhead whales (Balaena mysticetus) from Svalbard. Mitochondrial DNA Part B 4, 4152–4154. https://doi.org/10.1080/23802359.2019.1693284 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nyhus, E. S. et al. Mitogenomes of contemporary Spitsbergen stock bowhead whales (Balaena mysticetus). Mitochondrial DNA Part B 1, 898–900. https://doi.org/10.1080/23802359.2016.1258345 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keane, M. et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 10, 112–122. https://doi.org/10.1016/j.celrep.2014.12.008) (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, E. M. vcf2phylip v2.0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. zenodo.org, https://zenodo.org/record/2540861#.YDUOKy1Q0f0 (2019).Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–576. https://doi.org/10.1086/519795 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Knaus, B. J. & Grunwald, N. J. VcfR: An R package to manipulate and visualize VCF format data. bioRxiv, 041277 (2016). https://doi.org/10.1101/041277Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanghøj, K., Moltke, I., Alstrup Andersen, P., Manica, A. & Korneliussen, T. S. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034. https://doi.org/10.1093/gigascience/giz034 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 15, 356. https://doi.org/10.1186/s12859-014-0356-4 (2014).Article 

    Google Scholar 
    Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E. & Orlando, L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212, 587–614. https://doi.org/10.1534/genetics.119.302057 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151. https://doi.org/10.1093/bioinformatics/btq102 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the brown hyena. Mol. Biol. Evol. 35, 1225–1237. https://doi.org/10.1093/molbev/msy037 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from whole genome sequence of a single individual. Nature 475, 493–496. https://doi.org/10.1038/nature10231 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V., Petersen, B., Garde, E., Heide-Jørgensen, M. P. & Lorenzen, E. D. Narwhal genome reveals long-term low genetic diversity despite current large abundance size. iScience 15, 592–599. https://doi.org/10.1016/j.isci.2019.03.023 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, B. et al. Synthesis of lines of evidence for population structure for bowhead whales in the Bering-Chukchi-Beaufort region. Paper SC/59/BRG35 presented to the IWC Scientific Committee, Anchorage, Alaska (2007).Phillips, C. D. et al. Molecular insights into the historic demography of bowhead whales: Understanding the evolutionary basis of contemporary management practices. Ecol. Evol. 3, 18–37. https://doi.org/10.1002/ece3.374 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, X. & Fu, Y. X. Stairway Plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280. https://doi.org/10.1186/s13059-020-02196-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbury, M. V. et al. Speciation in the face of gene flow within the toothed whale superfamily Delphinoidea. bioRxiv, https://doi.org/10.1101/2020.10.23.352286 (2020).Westbury, M. V. et al. Ecological specialisation and evolutionary reticulation in extant Hyaenidae. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab055 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IWC. Report of the Scientific Committee Virtual Meeting, 11–26 May 2020. J. Cetacean Res. Manag. (Supplement) 22, 1–122 (2021).Jonsgård, Å. A right whale (Balaena sp.), in all probability a Greenland right whale (Balaena mysticetus) observed in the Barents Sea. Norsk Hvalfangst-Tidende 53, 311–313 (1964).
    Google Scholar 
    De Jong, C. The hunt of the Greenland whale: A short history and statistical sources. Rep. Int. Whaling Comm. Spec. Issue 5, 83–106 (1983).
    Google Scholar 
    Weslawski, J. M., Hacquebord, L., Stempniewicz, L. & Malinga, M. Greenland whales and walruses in the Svalbard food web before and after exploitation. Oceanologia 2, 37–56 (2000).
    Google Scholar 
    George, J. C. et al. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool. 77, 571–580. https://doi.org/10.1139/z99-015 (1999).Article 

    Google Scholar 
    de Jager, D. et al. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci. Rep. 11, 4540. https://doi.org/10.1038/s41598-021-83823-8 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belikov, S. E., Gorbunov, Y. A. & Shil’nikov, V. I. Distribution of pinnipedia and cetacea in Soviet arctic seas and the Bering Sea in winter. Sov. J. Marine Biology 15, 251–257 (1989).
    Google Scholar 
    Gavrilo, M. V. Status of the bowhead whale Balaena mysticetus in the waters of Franz Josef Land Archipelago. Paper SC/66a/BRG20 Presented to the IWC Scientific Committee, May 2015, San Diego, USA (2015).Heide-Jorgensen, M. P., Hansen, R. G. & Shpak, O. V. Distribution, migrations, and ecology of the Atlantic and the Okhotsk Sea Populations. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 57–75 (Academic Press, 2020).
    Google Scholar 
    Petrov, S. A. et al. The results of marine mammal countins during the four expeditions in the Arctic in 2014 and 2015. Collection of scientific papers 9th International Conference ‘Marine mammals of the Holarctic’, Astrakhan, Russia, 2016. 91–102 (2018).Gavrilo, M. V. & Tretiakov V. Y. Observation of bowhead whales (Balaena mysticetus) in the East-Siberian Sea during 2007 season with record-low ice cover – Marine mammals of the Holarctic. In: Collection of Scientific Papers. Odessa, 191–194 (2008).Citta, J. J., Quakenbush, L. & George, J. C. Distribution and behavior of Bering-Chukchi-Beaufort bowhead whales as inferred by telemetry. In The Bowhead Whale: Balaena Mysticetus: Biology and Human Interactions (eds George, J. C. & Thewissen, J. G. M.) 31–56 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-818969-6.00004-2.Chapter 

    Google Scholar 
    Arnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A. & Janke, A. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 4, eaap9873. https://doi.org/10.1126/sciadv.aap9873 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corbett-Detig, R., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112. https://doi.org/10.1371/journal.pbio.1002112 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans?. Ecol. Evol. 8, 1554–1572. https://doi.org/10.1002/ece3.3727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808. https://doi.org/10.1073/pnas.022629899 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bininda-Emonds, O. R. P. Fast genes and slow clades: Comparative rates of molecular evolution in mammals. Evol. Bioinf. 3, 59–85. https://doi.org/10.1177/117693430700300008 (2007).CAS 
    Article 

    Google Scholar 
    Jackson, J. A. et al. Big and slow: Phylogenetic estimates of molecular evolution in baleen whales (Suborder Mysticeti). Mol. Biol. Evol. 26, 2427–2440. https://doi.org/10.1093/molbev/msp169 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1667. https://doi.org/10.1038/ncomms2714 (2013).CAS 
    Article 

    Google Scholar 
    Wiig, Ø., Bachmann, L. & Hufthammer, A. K. Late Pleistocene and Holocene occurrence of bowhead whales (Balaena mysticetus) along the coasts of Norway. Polar Biol. 42, 645–656. https://doi.org/10.1007/s00300-019-02460-0 (2018).Article 

    Google Scholar 
    Alter, S. E. et al. Gene flow on ice: The role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus). Ecol. Evol. 2, 2895–2911. https://doi.org/10.1093/zoolinnean/zlaa082 (2012).Article 

    Google Scholar  More