More stories

  • in

    Revealing environmental synchronicity that enhances anchovy recruitment in the Mediterranean Sea

    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
    Google Scholar 
    Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull. Mar. Sci. 76, 385–462 (2005).
    Google Scholar 
    The State of Mediterranean and Black Sea Fisheries 2020. (FAO, 2020). doi:https://doi.org/10.4060/cb2429en.Checkley, D. M., Asch, R. G. & Rykaczewski, R. R. Climate, Anchovy, and Sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).ADS 

    Google Scholar 
    Bakun, A. Patterns in the ocean: Ocean processes and marine population dynamics. Oceanogr. Lit. Rev. 5, 530 (1997).
    Google Scholar 
    Houde, E. D. Recruitment variability. Fish. Reprod. Biol. 1, 91–171 (2009).
    Google Scholar 
    Cole, J. & McGlade, J. Clupeoid population variability, the environment and satellite imagery in coastal upwelling systems. Rev. Fish Biol. Fish. 8, 445–471 (1998).
    Google Scholar 
    Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).PubMed 

    Google Scholar 
    European Commission. Joint Research Centre. Institute for the Protection and the Security of the Citizen. Scientific, technical and economic committee for fisheries (STECF) : Assessment of mediterranean stocks (Part I). (Publications Office, 2010).García, A. & Palomera, I. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. 12 (1996).Tsikliras, A. C., Antonopoulou, E. & Stergiou, K. I. Spawning period of Mediterranean marine fishes. 40 (2010).Fernández-Corredor, E., Albo-Puigserver, M., Pennino, M. G., Bellido, J. M. & Coll, M. Influence of environmental factors on different life stages of European anchovy (Engraulis encrasicolus) and European sardine (Sardina pilchardus) from the Mediterranean Sea: A literature review. Reg. Stud. Mar. Sci. 41, 1006 (2021).
    Google Scholar 
    Agostini, V. N. & Bakun, A. Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).
    Google Scholar 
    Lasker, R. The relation between oceanographic conditions and larval anchovy food in the California Current: identification of factors contributing to recruitment failure. Rapp. P-V Reun. Cons. Int. Explor. Mer. 173, 212–230 (1978).
    Google Scholar 
    Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).Patti, B. et al. Anchovy (Engraulis encrasicolus) early life stages in the Central Mediterranean Sea: connectivity issues emerging among adjacent sub-areas across the Strait of Sicily. Hydrobiologia 821, 25–40 (2018).
    Google Scholar 
    Maynou, F., Sabatés, A. & Raya, V. Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. Fish. Oceanogr. 29, 201–213 (2020).
    Google Scholar 
    Basilone, G. et al. Spawning site selection by European anchovy ( Engraulis encrasicolus ) in relation to oceanographic conditions in the Strait of Sicily. Fish. Oceanogr. 22, 309–323 (2013).
    Google Scholar 
    Malavolti, S. et al. Distribution of Engraulis encrasicolus eggs and larvae in relation to coastal oceanographic conditions (the South-western Adriatic Sea case study). Mediterr. Mar. Sci. 19, 180 (2018).
    Google Scholar 
    Zorica, B. et al. Spatiotemporal distribution of anchovy early life stages in the eastern part of the Adriatic Sea in relation to some oceanographic features. J. Mar. Biol. Assoc. UK 99, 1205–1211 (2019).
    Google Scholar 
    Punt, A. E. et al. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J. Mar. Sci. 71, 2208–2220 (2014).
    Google Scholar 
    Szuwalski, C. S. & Hilborn, R. Environment drives forage fish productivity. Proc. Natl. Acad. Sci. 112, E3314–E3315 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganias, K. Biology and Ecology of Sardines and Anchovies. 391.Palomera, I. et al. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Prog. Oceanogr. 74, 377–396 (2007).ADS 

    Google Scholar 
    Patti, B., Torri, M. & Cuttitta, A. General surface circulation controls the interannual fluctuations of anchovy stock biomass in the Central Mediterranean Sea. Sci. Rep. 10, 1554 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Rem. Sens. 12, 132 (2020).ADS 

    Google Scholar 
    Regner, S. Effects of environmental changes on early stages and reproduction of anchovy in the Adriatic Sea. Sci. Mar. 60, 167–177 (1996).
    Google Scholar 
    Lavigne, H. et al. Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology: Mediterranean Phytoplankton Phenology. J. Geophys. Res. Oceans 118, 3416–3430 (2013).ADS 

    Google Scholar 
    Morote, E., Olivar, M. P., Villate, F. & Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: Influence of prey availability and ontogeny. ICES J. Mar. Sci. 67, 897–908 (2010).
    Google Scholar 
    Basilone, G. et al. Spawning ecology of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily: Linking variations of zooplankton prey, fish density, growth, and reproduction in an upwelling system. Prog. Oceanogr. 184, 102330 (2020).
    Google Scholar 
    McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).
    Google Scholar 
    d’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6, 139–148 (2009).ADS 

    Google Scholar 
    Escribano, A., Aldanondo, N., Cotano, U., Boyra, G. & Urtizberea, A. Size- and density-dependent overwinter mortality of anchovy juveniles in the Bay of Biscay. Cont. Shelf Res. 183, 28–37 (2019).ADS 

    Google Scholar 
    Bellido, J. M. et al. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612, 171–184 (2008).
    Google Scholar 
    Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).
    Google Scholar 
    Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erauskin-Extramiana, M. et al. Historical trends and future distribution of anchovy spawning in the Bay of Biscay. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 169–182 (2019).
    Google Scholar 
    Bertrand, A. et al. Schooling behaviour and environmental forcing in relation to anchoveta distribution: An analysis across multiple spatial scales. Prog. Oceanogr. 79, 264–277 (2008).ADS 

    Google Scholar 
    Giannoulaki, M. et al. Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages: Habitat of anchovy in the Mediterranean. Fish. Oceanogr. 22, 69–89 (2013).
    Google Scholar 
    Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
    Google Scholar 
    Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).ADS 

    Google Scholar 
    Kodama, T. et al. Improvement in recruitment of Japanese sardine with delays of the spring phytoplankton bloom in the Sea of Japan. Fish. Oceanogr. 27, 289–301 (2018).
    Google Scholar 
    Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schweigert, J. F. et al. Factors linking Pacific herring (Clupea pallasi) productivity and the spring plankton bloom in the Strait of Georgia, British Columbia. Canada. Prog. Oceanogr. 115, 103–110 (2013).ADS 

    Google Scholar 
    Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Progress Oceanogr. 193, 1055 (2021).
    Google Scholar 
    Brosset, P. et al. A fine-scale multi-step approach to understand fish recruitment variability. Sci. Rep. 10, 16064 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, A. et al. Match-mismatch dynamics in the Norwegian-Barents Sea system. Mar. Ecol. Prog. Ser. 650, 81–94 (2020).ADS 

    Google Scholar 
    Ferreira, A. S. A., Hátún, H., Counillon, F., Payne, M. R. & Visser, A. W. Synoptic-scale analysis of mechanisms driving surface chlorophyll dynamics in the North Atlantic. Biogeosciences 12, 3641–3653 (2015).ADS 

    Google Scholar 
    Taboada, F. G. & Anadón, R. Determining the causes behind the collapse of a small pelagic fishery using Bayesian population modeling. Ecol. Appl. 26, 886–898 (2016).
    Google Scholar 
    Katara, I., Pierce, G. J., Illian, J. & Scott, B. E. Environmental drivers of the anchovy/sardine complex in the Eastern Mediterranean. Hydrobiologia 670, 49–65 (2011).
    Google Scholar 
    Robinson, A. R. et al. The Atlantic Ionian Stream. J. Mar. Syst. 20, 129–156 (1999).
    Google Scholar 
    Di Lorenzo, M., Sinerchia, M. & Colloca, F. The North sector of the Strait of Sicily: A priority area for conservation in the Mediterranean Sea. Hydrobiologia 821, 235–253 (2018).
    Google Scholar 
    García Lafuente, J. et al. Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy: Hydrographic relations with the Sicilian Channel anchovy. Fish. Oceanogr. 11, 31–44 (2002).
    Google Scholar 
    Patti, B. et al. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel. Sci. Mar. 74, 577–588 (2010).
    Google Scholar 
    Marini, M., Jones, B. H., Campanelli, A., Grilli, F. & Lee, C. M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. 113, C0590 (2008).
    Google Scholar 
    Artegiani et al. The Adriatic Sea General Circulation. Part I Air–.pdf. (1997)Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 18 (1997).
    Google Scholar 
    Millot, C. The Gulf of Lions’ hydrodynamics. Cont. Shelf Res. 10, 885–894 (1990).ADS 

    Google Scholar 
    Petrenko, A., Leredde, Y. & Marsaleix, P. Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: In situ and modeling data. Cont. Shelf Res. 25, 7–27 (2005).ADS 

    Google Scholar 
    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287–295 (1953).
    Google Scholar 
    Wilcox, R. R. Introduction to robust estimation and hypothesis testing. (Elsevier, 2016).Pernet, C. R., Wilcox, R. R. & Rousselet, G. A. Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Front. Psychol. 1, 1 (2013).
    Google Scholar 
    Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).PubMed 

    Google Scholar 
    Fox, J., & Weisberg, S. “Robust regression.” An R and S-Plus companion to applied regression 91 (2002).Crawley, M. J. The R book. John Wiley & Sons (2012).Fox, J. Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression (2002). More

  • in

    Influence of yellow gypsum on nutrient uptake and yield of groundnut in different acid soils of Southern India

    Seasonal conditions during crop growthThe groundnut crop produces optimum yield in the regions receiving rainfall between 200 to 1000 mm8. The total rainfall during groundnut growing season was 257.10 mm and 403.10 mm at Baljigapade in 2018 and 2019, respectively, wherein Pavagada (2018) total rainfall was 53.90 mm (Fig. 1). In 2018, both Pavagada and Baljigapade received very low and negligible rainfall during the reproduction and harvest stage of groundnut. Optimum temperature for groundnut production ranges between 20 to 30 °C and growth and pod formation limited below 16 °C and above 32 °C9. The monthly mean atmospheric temperature was ranged from 23 to 27 °C and 21 to 26 °C at Baljigapade in 2018 and 2019, respectively, wherein Pavagada ranged from 25 to 28 °C. At all three locations, the monthly mean atmospheric temperature was slightly high during the early vegetative growth of groundnut and it was progressively decreased as the crop reaches its maturity stage (Fig. 1). All three locations recorded higher and lower mean monthly sunshine hours (hours day−1) during peg initiation to pod filling stage (September and October) and early vegetative growth of groundnut (July and August), respectively.Growth parameters of groundnutAnalysis of variance revealed that treatment, location, and their interaction had a significant effect on plant height and number of branches at harvest (P  More

  • in

    Net benefit: using a turtle excluder device in the Adriatic Sea

    Download PDF

    I’m from a fishing family. My grandfather was a fisherman when he was a young man, working out of Fano, the Italian town where I grew up and still live. I’m used to the smell of fish.I’m pictured during an overnight shift on the fishing boat RIMAS. I work from 5 p.m. until 9 a.m. with fishermen from nearby Cesenatico on the north Adriatic Sea. It’s a small boat: there’s only six or so of us on board. At night, the fish are most active and we can avoid other vessels.The nets scrape the sea bed for the catch but sometimes they also catch turtles who often die in the nets or on board. That’s where I come in. The net I’m holding is designed to allow turtles to escape: it has a hole at the top they can swim out of. We call it TED — short for ‘turtle excluder device’. The TED is made from a high-strength plastic, and is based on decades of work and research aimed at reducing the bycatch of turtles from trawling. Turtles and some larger fish can leave through the escape hatch, but the current holds most of the catch in the net.I ensure that the net is working, and that the fishermen we’re collaborating with can still catch enough for their livelihoods while protecting turtles. The work is part of research by the Cetacea Foundation, based in Riccione, Italy, in collaboration with the University of Pisa, where I’m a field researcher. It is financed by the LIFE programme, the European Union’s funding instrument for the environment and climate action.I love this work. It means I’m not stuck in an office all day and instead can enjoy the ocean and work closely with people who live by the sea. I get to be a researcher who works outside, rather than being hunched over a microscope.When my grandfather was fishing in the 1970s, there were more fish and more turtles around. At the foundation, we save 50–60 turtles a year, most of them harmed because of fishing. If we can protect turtles by rolling out this device to fishermen all across the Adriatic, I’d see this work as a success.

    Nature 604, 210 (2022)
    doi: https://doi.org/10.1038/d41586-022-00930-w

    Related Articles

    Protector of giant salamander

    A photo celebration of scientists at work

    Gut feeling: building a picture of Latin American microbiomes

    Subjects

    Careers

    Climate change

    Conservation biology

    Latest on:

    Careers

    How and why to say ‘no’ to colleagues and collaborators
    Career Column 28 MAR 22

    Afghanistan’s girls’ schools can — and must — stay open. There is no alternative
    Editorial 28 MAR 22

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Climate change

    Tropical forests have big climate benefits beyond carbon storage
    News 01 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    Jobs

    Postdoctoral Fellow

    LSU Health Sciences Center New Orleans (LSUHSC-NO)
    New Orleans, LA, United States

    Associate Research Scientist

    Columbia University Medical Center (CUMC), CU
    New York, NY, United States

    Experimental Postdoctoral Research Associate in Optical/Quantum Metasurfaces

    Los Alamos National Laboratory (LANL)
    Los Alamos, NM, United States

    Theory Postdoctoral Research Associate in Optical/Quantum Metasurfaces

    Los Alamos National Laboratory (LANL)
    Los Alamos, NM, United States More

  • in

    Coupling genetic structure analysis and ecological-niche modeling in Kersting’s groundnut in West Africa

    Mabhaudhi, T. et al. Prospects of orphan crops in climate change. Planta 250, 695–708. https://doi.org/10.1007/s00425-019-03129-y (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, M., Bisht, I. S., Dutta, M., Springer. India, 221. https://doi.org/10.1007/978-81-322-2023-7(2014).Litrico, I. & Violle, C. Diversity in plant breeding: A new conceptual framework. Trends Plant Sci. 20, 604–613. https://doi.org/10.1016/j.tplants.2015.07.007 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Govindaraj, M., Vetriventhan, M. & Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Intern. 431–487, 2015. https://doi.org/10.1155/2015/431487 (2015).Article 

    Google Scholar 
    Akohoué, F., Sibiya, J. & Achigan-Dako, E. G. On-farm practices, mapping, and uses of genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] across ecological zones in Benin and Togo. Genet. Resour. Crop. Evol. 66, 195–214. https://doi.org/10.1007/s10722-018-0705-7 (2018).CAS 
    Article 

    Google Scholar 
    Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop. Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).Article 

    Google Scholar 
    Adu-Gyamfi, R., Fearon, J., Bayorbor, T. B., Dzomeku, I. K. & Avornyo, V. K. The Status of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal and Baudet]. Outlook Agric. 40, 259–262. https://doi.org/10.5367/oa.2011.0050 (2011).Article 

    Google Scholar 
    Obasi, M. O. & Agbatse, A. Evaluation of nutritive value and some functional properties of Kersting’s groundnut seeds for optimum utilisation as a food and feed resource. E. Afr. Agric. For. J. 68, 173–181. https://doi.org/10.4314/eaafj.v68i4.1794 (2003).Article 

    Google Scholar 
    Ajayi, O. B. & Oyetayo, F. L. Potentials of Kerstingiella geocarpa as a health food. J. Med. Food 12, 184–187. https://doi.org/10.1089/jmf.2008.0100 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohammed, M., Jaiswal, S. K., Sowley, E. N. K., Ahiabor, B. D. K. & Dakora, F. D. Symbiotic N2 fixation and grain yield of endangered Kersting’s groundnut landraces in response to soil and plant associated bradyrhizobium inoculation to promote ecological resource-use efficiency. Front. Microbiol. 9, 1–14. https://doi.org/10.3389/fmicb.2018.02105 (2018).CAS 
    Article 

    Google Scholar 
    Tamini, Z. Étude ethnobotanique de la Lentille de Terre [Macrotyloma geocarpum Maréchal & Baudet] au Burkina Faso. J. Agric. Trad. Bot. Appl. 37, 187–199. https://doi.org/10.3406/jatba.1995.3569 (1995).Article 

    Google Scholar 
    Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 1–20. https://doi.org/10.3390/agronomy10030371 (2020).CAS 
    Article 

    Google Scholar 
    AchiganDako, E. G. & Vodouhe, S. R. Macrotyloma geocarpum (Harms) Marechal & Baudet. In Plant Resources of Tropical Africa 1: Cereals and Pulses (ed. Brink, M. B. G.) 111–114 (Backhuys Publishers CTA, PROTA, 2006).
    Google Scholar 
    Mergeai, G. Influence des facteurs sociologiques sur la conservation des ressources phytogenetiques: Le cas de la lentille de terre [Macrotyloma geocarpum (Harms) Marechal et Baudet] au Togo. Bull Rech Agron 28, 487–500 (1993).
    Google Scholar 
    Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66. https://doi.org/10.1016/j.cell.2015.03.019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Akohoue, F., Achigan-Dako, E. G., Sneller, C., Van Deynze, A. & Sibiya, J. Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. PLoS ONE 15, 1–24. https://doi.org/10.1371/journal.pone.0234769 (2020).CAS 
    Article 

    Google Scholar 
    Schierenbeck, K. A. Population-level genetic variation and climate change in a biodiversity hotspot. Ann. Bot. 119, 215–228. https://doi.org/10.1093/aob/mcw214 (2017).Article 
    PubMed 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538. https://doi.org/10.1111/j.1466-822X.2005.00182.x (2005).Article 

    Google Scholar 
    Araujo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539. https://doi.org/10.1890/11-1930.1 (2012).Article 
    PubMed 

    Google Scholar 
    Martínez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodiv. Inform. 2, 42–55. https://doi.org/10.17161/bi.v2i0.8 (2005).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Chang. 9, 758–763. https://doi.org/10.1038/s41558-019-0585-7 (2019).ADS 
    Article 

    Google Scholar 
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteor. 218–219, 102–113. https://doi.org/10.1016/j.agrformet.2015.12.002 (2016).Article 

    Google Scholar 
    Syfert, M. M. et al. Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. Am. J. Bot. 103, 1–17. https://doi.org/10.3732/ajb.1500539 (2016).CAS 
    Article 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455. https://doi.org/10.1111/ecog.03187 (2018).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS ONE 3, 1–8. https://doi.org/10.1371/journal.pone.0004010 (2008).CAS 
    Article 

    Google Scholar 
    Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Naturalist. 173, 579–588. https://doi.org/10.1086/597611 (2009).Article 

    Google Scholar 
    Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytol. 195, 752–765. https://doi.org/10.1111/j.1469-8137.2012.04230.x (2012).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585. https://doi.org/10.1111/jbi.12562 (2015).Article 

    Google Scholar 
    Ikeda, D. H. et al. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 23, 164–176. https://doi.org/10.1111/gcb.13470 (2016).ADS 
    Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248. https://doi.org/10.1111/1755-0998.12184 (2014).Article 
    PubMed 

    Google Scholar 
    Thoen, M. P. et al. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 213, 1346–1362. https://doi.org/10.1111/nph.14220 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kafoutchoni, K. M., Agoyi, E. E., Agbahoungba, S., Assogbadjo, A. E. & Agbangla, C. Genetic diversity and population structure in a regional collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop. Evol. https://doi.org/10.1007/s10722-021-01187-4 (2021).Article 

    Google Scholar 
    Brown, J. L. & Carnaval, A. C. A tale of two niches: Methods, concepts, and evolution. Front. Biogeogr. https://doi.org/10.21425/f5fbg44158 (2019).Article 

    Google Scholar 
    Marcer, A., Mendez-Vigo, B., Alonso-Blanco, C. & Pico, F. X. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol. Evol. 6, 2084–2097. https://doi.org/10.1002/ece3.2010 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449. https://doi.org/10.1002/ece3.426 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamini, Z. Etude ethnobotanique et analyses morphophysiologiques du développement de la lentille de terre [Macrotyloma geocarpum (harms) Maréchal et Baudet] (Université de Ouagadougou, 1997).
    Google Scholar 
    Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7, 1–8. https://doi.org/10.4172/2157-7617.1000335 (2015).Article 

    Google Scholar 
    Sileshi, G. et al. Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Res. 116, 1–13. https://doi.org/10.1016/j.fcr.2009.11.014 (2010).Article 

    Google Scholar 
    Padi, F. K. & Ehlers, J. D. Effectiveness of early generation selection in cowpea for grain yield and agronomic characteristics in Semiarid West Africa. Crop Sci. 48, 533–540. https://doi.org/10.2135/cropsci2007.05.0265 (2008).Article 

    Google Scholar 
    Kouelo, K. A. F. et al. Impact du travail du sol et de la fertilisation minérale sur la productivité de [Macrotyloma geocarpum (Harms) Maréchal et Baudet] au centre du Bénin. J. Appl. Biosci. 51, 3625–3632 (2012).
    Google Scholar 
    Wellenreuther, M., Larson, K. W. & Svensson, E. I. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflie. Ecology 93, 1353–1366. https://doi.org/10.1890/11-1181.1 (2012).Article 
    PubMed 

    Google Scholar 
    Akohoue, F., Achigan-Dako, E. G., Coulibaly, M. & Sibiya, J. Correlations, path coefficient analysis and phenotypic diversity of a West African germplasm of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop Evol. 66, 1825–1842. https://doi.org/10.1007/s10722-019-00839-w (2019).Article 

    Google Scholar 
    Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).Article 

    Google Scholar 
    Adu-Gyamfi, R., Dzomeku, I. K. & Lardi, J. Evaluation of growth and yield potential of genotypes of Kersting’s groundnut (Macrotyloma geocarpum Harms) in Northern Ghana. Int. Res. J. Agric. Sci. Soil Sci. 2, 509–515 (2012).
    Google Scholar 
    Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325. https://doi.org/10.1016/j.gloenvcha.2009.04.003 (2009).Article 

    Google Scholar 
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05804-0 (2017).CAS 
    Article 

    Google Scholar 
    Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86. https://doi.org/10.1126/science.1209244 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bellon, M. R. & van Etten, J. Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change Vol. 30 (eds Jackson, M. et al.) (CAB International, 2014).
    Google Scholar 
    Lane, A. & Jarvis, A. Changes in climate will modify the geography of crop suitability: Agricultural biodiversity can help with adaptation. ISI J 4, 12 (2007).
    Google Scholar 
    Vigouroux, Y., Barnaud, A., Scarcelli, N. & Thuillet, A. C. Biodiversity, evolution and adaptation of cultivated crops. C.R. Biol. 334, 450–457. https://doi.org/10.1016/j.crvi.2011.03.003 (2011).Article 
    PubMed 

    Google Scholar 
    Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 371. https://doi.org/10.3390/agronomy10030371 (2020).CAS 
    Article 

    Google Scholar 
    Sohn, N., Fernandez, M. H., Papes, M. & Anciães, M. Ecological Niche modeling in practice: Flagship species and regional conservation planning. Oecol. Aust. 17, 429–440. https://doi.org/10.4257/oeco.2013.1703.11 (2013).Article 

    Google Scholar 
    Amujoyegbe, B., Obisesan, I., Ajayi, A. & Aderanti, F. Disappearance of Kersting’s groundnut [Macrotyloma geocarpum (harms) Maréchal et Baudet] in South-Western Nigeria: An indicator of genetic erosion. Plant Gen Res News 152, 45–50 (2007).
    Google Scholar 
    Banta, J. A. et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol. Lett. 15, 769–777. https://doi.org/10.1111/j.1461-0248.2012.01796.x (2012).Article 
    PubMed 

    Google Scholar 
    Kumar, J., Choudhary, A. K., Gupta, D. S. & Kumar, S. Towards exploitation of adaptive traits for climate-resilient smart pulses. Int. J. Mol. Sci. 20, 1–30. https://doi.org/10.3390/ijms20122971 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Bohra, A., Mir, R. R., Jha, R., Maurya, A. K. & Varshney, R. K. Advances in genomics and molecular breeding for legume improvement. In Advancement in Crop Improvement Techniques (eds Bohra, A. et al.) 129–139 (Elsevier Inc, 2020).Chapter 

    Google Scholar 
    Gobu, R. et al. Accelerated crop breeding towards development of climate resilient varieties. In Climate Change and Indian Agriculture: Challenges and Adaptation Strategies (eds Srinivasarao, C. et al.) 49–69 (ICAR-National Academy of Agricultural Research Management, 2020).
    Google Scholar 
    Aliyu, S., Massawe, F. & Mayes, S. Genetic diversity and population structure of Bambara groundnut [Vigna subterranea (L.) Verdc.]: Synopsis of the past two decades of analysis and implications for crop improvement programmes. Genet. Resour. Crop. Evol. 63, 925–943. https://doi.org/10.1007/s10722-016-0406-z (2016).Article 

    Google Scholar 
    Al-Khayri, J. M., Jain, S. M., Johnson, D. V. Springer Nature Switzerland AG. Switzerland. https://doi.org/10.1007/978-3-030-23400-3(2019).Kilian, A. et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5 (2012).Article 
    PubMed 

    Google Scholar 
    Illumina, I. HiSeq®2500 Sequencing System: Unsurpassed power and efficiency for production scale sequencing. System Specification Sheet: Sequencing, 1–4. https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf (2015).Buckler, E. et al. User Manual for TASSEL Trait Analysis by association, Evolution and Linkage Version 5.0. The Buckler Lab at Cornell University. 1–70. https://www.maizegenetics.net/tassel (2014).Pritchard, J. K., Wen, X., Falush, D. Department of Human Genetics, University of Chicago. (2010).Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet version 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).Article 

    Google Scholar 
    Peterson, A. T. et al. NicheBook (Princeton University Press, 2011).
    Google Scholar 
    Kass, J. M., Pinilla-Buitrago, G. E., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., Anderson, R. P., Wallace: A Modular Platform for Reproducible Modeling of Species Niches and Distributions. R package version 1.0.6.3. (2020).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2014).Article 

    Google Scholar 
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241. https://doi.org/10.1007/s10584-011-0156-z (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    IPCC, I. P. o. C. C. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324(2013).Ramirez-Villegas, J. & Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis, Working Paper No. 1. Policy Anal. Manag. 1, 1–18 (2010).
    Google Scholar 
    Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 10, 1–26. https://doi.org/10.1371/journal.pone.0125814 (2015).CAS 
    Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches Methods. Ecol. Evol. 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452 (2020).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum Entropy modeling of species geographic distributions. Ecol. Model 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2005).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2010).Article 

    Google Scholar 
    Richards, C. L., Carstens, B. C. & Lacey Knowles, L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845. https://doi.org/10.1111/j.1365-2699.2007.01814.x (2007).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x (2008).Article 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    Barve, N., Barve, V. ENMGadgets: Pre and post processing in ENM Workflow. R package version 0.1.0.1. (2019).Kass, J. M. et al. ENMeval 20: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Ecol. Evolut. https://doi.org/10.1111/2041-210X.13628 (2021).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 
    PubMed 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental Niche equivalency versus conservatism: Quantitative approaches to Niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x (2008).Article 
    PubMed 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x (2012).Article 

    Google Scholar 
    Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360. https://doi.org/10.2193/2009-441 (2010).Article 

    Google Scholar  More

  • in

    Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the World’s Marine Ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).ADS 

    Google Scholar 
    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthropocene. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    Leslie, H. M. A synthesis of marine conservation planning approaches. Conserv. Biol. 19, 1701–1713 (2005).
    Google Scholar 
    Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).
    Google Scholar 
    Manea, E., Bianchelli, S., Fanelli, E., Danovaro, R. & Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 715, 136884 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Aylesworth, L., Phoonsawat, R., Suvanachai, P. & Vincent, A. C. J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 26, 383–399 (2017).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).
    Google Scholar 
    James, N. P., Ginsburg, R. N. & Ginsburg, R. N. The Seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution, and Late Quaternary History (Blackwell Scientific, 1979).
    Google Scholar 
    Ginsburg, R. N., Harris, P. M., Eberli, G. P. & Swart, P. K. The growth potential of a bypass margin, Great Bahama Bank. J. Sediment. Res. 61, 976–987 (1991).
    Google Scholar 
    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems. Coral Reefs of the World (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_1.Chapter 

    Google Scholar 
    Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
    Google Scholar 
    Hinderstein, L. M. et al. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 29, 247–251 (2010).ADS 

    Google Scholar 
    J. A. Turner, D. A. Andradi-Brown, A. Gori, P. Bongaerts, H. L. Burdett, C. Ferrier-Pagès, C. R. Voolstra, D. K. Weinstein, T. C. L. Bridge, F. Costantini, E. Gress, J. Laverick, Y. Loya, G. Goodbody-Gringley, S. Rossi, M. L. Taylor, N. Viladrich, J. D. Voss, J. Williams, L. C. Woodall, G. Eyal. in Mesophotic Coral Ecosystems, Coral Reefs of the World, 989–1003 (Y. Loya, K. A. Puglise, T. C. L. Bridge, Eds). (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_52.Baker, E. K., Puglise, K. A., Harris, P. T., United Nations Environment Programme, GRID-Arendal. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? (United Nations Environment Programme and GRID-Arendal, 2016).
    Google Scholar 
    Lang, J. C. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am. Scientist. 62, 272–281 (1974).ADS 

    Google Scholar 
    J. K. Reed. Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. in Proceedings of the 5th International Coral Reef Symposium (1985), Vol. 6, 249–254.Hanisak, M. D. & Blair, S. M. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgolander Meeresunters. 42, 133–163 (1988).
    Google Scholar 
    Aponte, N. E. & Ballantine, D. L. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I 48, 2185–2194 (2001).
    Google Scholar 
    Fricke, H. W., Vareschi, E. & Schlichter, D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73, 371–381 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kahng, S. & Maragos, J. The deepest, zooxanthellate scleractinian corals in the world?. Coral Reefs 25, 254–254 (2006).ADS 

    Google Scholar 
    Maragos, J. E. & Jokiel, P. L. Reef corals of Johnston Atoll: One of the world’s most isolated reefs. Coral Reefs 4, 141–150 (1986).ADS 

    Google Scholar 
    Bridge, T. C. L. et al. Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar. Ecol. Progress Series 428, 63–75 (2011).ADS 

    Google Scholar 
    Lesser, M. P. & Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13, 1855–1868 (2011).
    Google Scholar 
    Slattery, M. & Lesser, M. P. The Bahamas and Cayman Islands. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_3.Chapter 

    Google Scholar 
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41 (2011).
    Google Scholar 
    Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 28, 1403–1416 (2019).
    Google Scholar 
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10, e02839 (2019).
    Google Scholar 
    Laverick, J. H., Green, T. K., Burdett, H. L., Newton, J. & Rogers, A. D. Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki. J. Mar. Biol. Assoc. UK 99, 1535–1546 (2019).
    Google Scholar 
    Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60 (2021).ADS 

    Google Scholar 
    Cerrano, C. et al. Temperate mesophotic ecosystems: Gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).
    Google Scholar 
    Idan, T. et al. Shedding light on an East-Mediterranean mesophotic sponge ground community and the regional sponge fauna. Mediterr. Mar. Sci. 19, 84–106 (2018).
    Google Scholar 
    Idan, T., Goren, L., Shefer, S., Brickner, I. & Ilan, M. Does depth matter? Reproduction pattern plasticity in two common sponge species found in both mesophotic and shallow waters. Front. Mar. Sci. 7, 1078 (2020).
    Google Scholar 
    Enrichetti, F. et al. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS ONE 14, e0223949 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahng, S. E. et al. Coral reefs of the world. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_42 (801–828).Chapter 

    Google Scholar 
    D’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 6, 139–148 (2009).ADS 

    Google Scholar 
    Christaki, U. et al. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences 8, 1839–1852 (2011).ADS 
    CAS 

    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J. & Hernández-Carrasco, I. Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions. Remote Sens. Environ. 215, 7–17 (2018).ADS 

    Google Scholar 
    Tanhua, T. et al. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth Syst. Sci. Data 5, 289–294 (2013).ADS 

    Google Scholar 
    Bethoux, J. P. Budgets of the Mediterranean Sea-their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 2, 157–163 (1979).
    Google Scholar 
    Azov, Y. Eastern Mediterranean—A marine desert?. Mar. Pollut. Bull. 23, 225–232 (1991).
    Google Scholar 
    Pinardi, N., Zavatarelli, M., Arneri, E., Crise, A. & Ravaioli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14, 1243–1330 (2006).
    Google Scholar 
    Rodolfo-Metalpa, R. et al. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob. Change Biol. 21, 2238–2248 (2015).ADS 

    Google Scholar 
    Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Cons. 171, 167–176 (2014).
    Google Scholar 
    Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).
    Google Scholar 
    L. Bramanti, M. C. Benedetti, R. Cupido, S. Cocito, C. Priori, F. Erra, M. Iannelli, G. Santangelo. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 529–548 (S. Rossi, L. Bramanti, A. Gori, C. Orejas Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_13.Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13, e0191346 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Angeletti, L. et al. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 402–411 (2020).
    Google Scholar 
    Angeletti, L. & Taviani, M. Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea. Diversity 12, 92 (2020).
    Google Scholar 
    Castellan, G., Angeletti, L., Taviani, M. & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00692 (2019).Article 

    Google Scholar 
    Corriero, G. et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. 9, 3601 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chimienti, G. Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).
    Google Scholar 
    Gori, A. et al. Animal forests in deep coastal bottoms and continental shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–28 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-17001-5_5-2.Chapter 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean Coast. Front. Mar. Sci. 7, 1245 (2021).
    Google Scholar 
    Santín, A. et al. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep Sea Res. Part I 131, 75–86 (2018).
    Google Scholar 
    Martin, C. S. et al. Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 5073 (2014).CAS 

    Google Scholar 
    D. Basso, L. Babbini, A. A. Ramos-Esplá, M. Salomidi. in Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, 281–298 (R. Riosmena-Rodríguez, W. Nelson, J. Aguirre, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-29315-8_11.Foster, M. M., Amado Filho, G. M., Kamenos, N. A., Riosmena-Rodríguez, R. & Steller, D. L. Rhodoliths and rhodolith beds. Res. Discoveries Revolut. Sci. Through Scuba. 39, 143–155 (2013).
    Google Scholar 
    Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).
    Google Scholar 
    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).
    Google Scholar 
    Smith, T. B. et al. Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U. S. Virgin Islands. Coral Reefs 29, 289–308 (2010).ADS 

    Google Scholar 
    Markager, S. & Sand-Jensen, K. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88, 83–92 (1992).ADS 

    Google Scholar 
    Runcie, J. W., Gurgel, C. F. D. & Mcdermid, K. J. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43, 377–388 (2008).CAS 

    Google Scholar 
    Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).Tweedley, J. R., Warwick, R. M. & Potter, I. C. The contrasting ecology of temperate macrotidal and microtidal estuaries. In Oceanography and Marine Biology: An Annual Review (eds Hughes, R. N. et al.) 73–171 (CRC Press, 2016).
    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change. 8, 338–344 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, N., Krom, M. D., Wu, Y., Yu, D. & Hong, H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ. 628–629, 1108–1120 (2018).ADS 
    PubMed 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Google Scholar 
    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS 

    Google Scholar 
    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 28, 1153–1166 (2018).
    Google Scholar 
    Enrichetti, F. et al. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach. Ecol. Ind. 102, 218–229 (2019).
    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. B. M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Diversity Distributions. 25, 255–268 (2019).
    Google Scholar 
    Mobley, C. D. & Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
    Google Scholar 
    Marty, J.-C. & Chiavérini, J. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Part II 49, 2017–2030 (2002).ADS 
    CAS 

    Google Scholar 
    Morel, A. & André, J.-M. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. Oceans. 96, 12685–12698 (1991).ADS 

    Google Scholar 
    Antoine, D., Morel, A. & André, J.-M. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. Oceans. 100, 16193–16209 (1995).ADS 

    Google Scholar 
    Mayot, N., D’Ortenzio, F., Ribera d’Alcalà, M., Lavigne, H. & Claustre, H. Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences 13, 1901–1917 (2016).ADS 
    CAS 

    Google Scholar 
    S. Kahng, J. M. Copus, D. Wagner. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 185–206 (S. Rossi, L. Bramanti, A. Gori, C. Orejas, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_4.Chimienti, G. et al. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11, 20703 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. D. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol. Evol. 11, 13445–13454 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Danovaro, R. et al. Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Mar. Policy. 112, 103781 (2020).
    Google Scholar 
    Saulquin, B. et al. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233 (2013).ADS 

    Google Scholar 
    Grinyó, J. et al. Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea). Progress Oceanogr. 188, 102435 (2020).
    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).ADS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).ADS 

    Google Scholar 
    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georgian, S. E. et al. Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J. Biogeogr. 47, 1455–1466 (2020).
    Google Scholar 
    R. C. Team, R: A language and environment for statistical computing (3. 5. 1)[Computer software]. R Foundation for Statistical Computing (2020). More

  • in

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal

    Nathan, R. The challenges of studying dispersal. Trends. Ecol. Evol. 16, 481–483. https://doi.org/10.1016/S0169-5347(01)02272-8 (2001).CAS 
    Article 

    Google Scholar 
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x (2012).Article 
    PubMed 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–18 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x (2009).Article 
    PubMed 

    Google Scholar 
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Lond. 269, 637–645. https://doi.org/10.1098/rspb.2001.1936 (2002).Article 

    Google Scholar 
    Benton, T. G. & Bowler, D. E. Dispersal in invertebrates: Influences on individual decisions. Ecol. Evol. 1, 41–49 (2012).
    Google Scholar 
    Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831. https://doi.org/10.1111/ecog.01283 (2015).Article 

    Google Scholar 
    Travis, J. M. J., Murrell, D. J. & Dytham, C. The evolution of density–dependent dispersal. Proc. R. Soc. Lond. B 266, 1837–1842. https://doi.org/10.1098/rspb.1999.0854 (1999).Article 

    Google Scholar 
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x (2005).Article 

    Google Scholar 
    de Meester, N., Derycke, S., Rigaux, A. & Moens, T. Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124, 561–570. https://doi.org/10.1111/oik.01779 (2015).Article 

    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225. https://doi.org/10.1017/S1464793104006645 (2005).Article 
    PubMed 

    Google Scholar 
    Bengtsson, G., Hedlund, K. & Rundgren, S. Food- and density-dependent dispersal: Evidence from a soil collembolan. J. Anim. Ecol. 63, 513. https://doi.org/10.2307/5218 (1994).Article 

    Google Scholar 
    Fellous, S., Duncan, A., Coulon, A. & Kaltz, O. Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS ONE 7, e48436. https://doi.org/10.1371/journal.pone.0048436 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aguillon, S. M. & Duckworth, R. A. Kin aggression and resource availability influence phenotype-dependent dispersal in a passerine bird. Behav. Ecol. Sociobiol. 69, 625–633. https://doi.org/10.1007/s00265-015-1873-5 (2015).Article 

    Google Scholar 
    Byers, J. E. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J. Exp. Mar. Biol. Ecol. 248, 133–150. https://doi.org/10.1016/S0022-0981(00)00163-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Meester, N., Derycke, S. & Moens, T. Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7, e42674. https://doi.org/10.1371/journal.pone.0042674 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sepulveda, A. J. & Marczak, L. B. Active dispersal of an aquatic invader determined by resource and flow conditions. Biol. Invasions 14, 1201–1209. https://doi.org/10.1007/s10530-011-0149-x (2012).Article 

    Google Scholar 
    Lobbia, P. A. & Mougabure-Cueto, G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 204, 105345. https://doi.org/10.1016/j.actatropica.2020.105345 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257. https://doi.org/10.1046/j.1365-2656.2003.00695.x (2003).Article 

    Google Scholar 
    Bonte, D. & de La Peña, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22, 1242–1251. https://doi.org/10.1111/j.1420-9101.2009.01737.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: A systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 96, 269–288. https://doi.org/10.1111/brv.12655 (2021).Article 
    PubMed 

    Google Scholar 
    Altermatt, F. & Fronhofer, E. A. Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshw. Biol. 63, 22–32. https://doi.org/10.1111/fwb.12951 (2018).Article 

    Google Scholar 
    McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452. https://doi.org/10.1098/rsbl.2009.1082 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol. Evol. 5, 2307–2316. https://doi.org/10.1002/ece3.1508 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammill, E., Fitzjohn, R. G. & Srivastava, D. S. Conspecific density modulates the effect of predation on dispersal rates. Oecologia 178, 1149–1158. https://doi.org/10.1007/s00442-015-3303-9 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evol. 2, 1859–1863. https://doi.org/10.1038/s41559-018-0686-0 (2018).Article 
    PubMed 

    Google Scholar 
    Delm, M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. https://doi.org/10.1007/BF00171099 (1990).Article 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. Ecol. Evol. 1, 3–18 (2012).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Variation in dispersal mortality and dispersal propensity among individuals: The effects of age, sex and resource availability. J. Anim. Ecol. 78, 1234–1241. https://doi.org/10.1111/j.1365-2656.2009.01580.x (2009).Article 
    PubMed 

    Google Scholar 
    Giere, O. Meiobenthology. The microscopic motile fauna of aquatic sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    Ptatscheck, C. & Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 22, 71. https://doi.org/10.1007/s10750-020-04373-0 (2020).Article 

    Google Scholar 
    Ptatscheck, C. & Gansfort, B. Dispersal of free-living nematodes. In Ecology of Freshwater Nematodes (ed. Traunspurger, W.) 151–184 (CABI, 2021).Chapter 

    Google Scholar 
    Traunspurger, W., Bergtold, M., Ettemeyer, A. & Goedkoop, W. Effects of copepods and chironomids on the abundance and vertical distribution of nematodes in a freshwater sediment. J. Freshw. Ecol. 21, 81–90. https://doi.org/10.1080/02705060.2006.9664100 (2006).Article 

    Google Scholar 
    Bargmann, C. I. Chemosensation in C. elegans. WormBook 1, 1–29. https://doi.org/10.1895/wormbook.1.123.1 (2006).Article 

    Google Scholar 
    Chasnov, J. R. & Chow, K. L. Why are there males in the hermaphroditic species Caenorhabditis elegans?. Genetics 160, 983–994 (2002).CAS 
    Article 

    Google Scholar 
    Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: A platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208. https://doi.org/10.1371/journal.pone.0002208 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muschiol, D. & Traunspurger, W. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9, 271–284. https://doi.org/10.1163/156854107780739117 (2007).Article 

    Google Scholar 
    Beier, S., Bolley, M. & Traunspurger, W. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshw. Biol. 49, 77–86. https://doi.org/10.1046/j.1365-2426.2003.01168.x (2004).Article 

    Google Scholar 
    Powers, E. M. & Sayre, R. M. A predacious soil turbellarian that feeds on free-living and plant-parasitic nematodes. Nematology 12, 619–629. https://doi.org/10.1163/187529266X00482 (1966).Article 

    Google Scholar 
    Kreuzinger-Janik, B., Kruscha, S., Majdi, N. & Traunspurger, W. Flatworms like it round: Nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884). Hydrobiologia 819, 231–242. https://doi.org/10.1007/s10750-018-3642-8 (2018).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Practical use of the information-theoretic approach. In Model Selection and Inference (eds Burnham, K. P. & Anderson, D. R.) 75–117 (Springer, 1998).Chapter 

    Google Scholar 
    McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).Bonte, D., de Roissart, A., Wybouw, N. & van Leeuwen, T. Fitness maximization by dispersal: Evidence from an invasion experiment. Ecology 95, 3104–3111. https://doi.org/10.1890/13-2269.1 (2014).Article 

    Google Scholar 
    You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–257. https://doi.org/10.1016/j.cmet.2008.01.005 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102. https://doi.org/10.1242/jeb.01955 (2006).Article 
    PubMed 

    Google Scholar 
    Mathieu, J. et al. Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol. Biochem. 42, 203–209. https://doi.org/10.1016/j.soilbio.2009.10.018 (2010).CAS 
    Article 

    Google Scholar 
    Oro, D., Cam, E., Pradel, R. & Martínez-Abraín, A. Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc. R. Soc. Lond. B 271, 387–396. https://doi.org/10.1098/rspb.2003.2609 (2004).Article 

    Google Scholar 
    Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans. J. Exp. Zool. B Mol. Dev. Evol. 312B, 224–230. https://doi.org/10.1002/jez.b.21287 (2009).Article 
    PubMed 

    Google Scholar 
    Wilden, B., Majdi, N., Kuhlicke, U., Neu, T. R. & Traunspurger, W. Flatworm mucus as the base of a food web. BMC Ecol. 19, 15. https://doi.org/10.1186/s12898-019-0231-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloria-Soria, A. & Azevedo, R. B. R. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr. Biol. 18, 1694–1699. https://doi.org/10.1016/j.cub.2008.09.043 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harrison, R. G. Dispersal Polymorphisms in Insects. Annu. Rev. Ecol. Syst. 11, 95–118. https://doi.org/10.1146/annurev.es.11.110180.000523 (1980).Article 

    Google Scholar 
    Denno, R. F. & Peterson, M. A. Density-dependent dispersal and its consequences for population dynamics. Popul Dyn 1, 113–130 (2021).
    Google Scholar 
    Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237. https://doi.org/10.1371/journal.pbio.1001237 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bretscher, A. J. et al. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freckman, D. W., Duncan, D. A. & Larson, J. R. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32, 418. https://doi.org/10.2307/3898550 (1979).Article 

    Google Scholar 
    Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73. https://doi.org/10.1111/ecog.02538 (2017).Article 

    Google Scholar  More

  • in

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Ferguson-Lees, J., Christie, D. A. Raptors of the World. Helm Identification Guides (Christopher Helm, London, 2001).
    Google Scholar 
    BirdLife International 2021 Species factsheet: Milvus migrans. Downloaded from http://www.birdlife.org on 10 May 2021.Sergio, F., Pedrini, P. & Marchesi, L. Adaptive selection of foraging and nesting habitat by black kites Milvus migrans and its implications for conservation: a multi-scale approach. Biol. Conserv. 112, 351–362 (2003).
    Google Scholar 
    Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. Habitat selection by Black kite breeders and floaters: implications for conservation management of raptor floaters. Biol. Conserv. 160, 1–9 (2013).
    Google Scholar 
    Cortés-Avizanda, A. et al. Spatial heterogeneity in resource distribution promotes facultative sociality in two Trans-Saharan migratory birds. PLoS ONE 6, e21016 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panuccio, M., Agostini, N., Mellone. U. & Bogliani, G. Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): A review. Ethol. Ecol. Evol. 26, 1–18 (2013).Dickinson, E. C. & Remsen, J. V. The Howard and Moore Complete Checklist of the Birds of the World, 4th (Aves Press, 2013).
    Google Scholar 
    Clements, J. F. et al. The eBird/Clements Checklist of Birds of the World: v2019. (2019).Orta, J., Marks, J. S., Garcia, E. & Kirwan, G. M. Black Kite (Milvus migrans). In Birds of the World (eds. Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberg T.S.) 168–172 (Cornell Lab of Ornithology, 2020).Gill, F., Donsker, D. & Rasmussen, P. IOC World Bird List – version 11.1 (worldbirdnames.org., 2021).Dementiev, G. P., Gladkov, N. A., Ptushenko, E. S., Spangenberg, E. P. & Sudilovskaya, A. M. Birds of the Soviet Union, Vol. 1 (Sovetskaya Nauka, Moscow, in Russian, 1951).
    Google Scholar 
    Stepanyan, L. S. Conspectus of the Ornithological Fauna of the USSR (Nauka, Moscow, in Russian, 1990).Karyakin, I. Problem of identification of Eurasian subspecies of the Black Kite and records of the Pariah Kite in Southern Siberia, Russia. Raptors Conserv. 34, 49–67 (2017).
    Google Scholar 
    Skyrpan, M. & Literák, I. A kite Milvus migrans migrans/lineatus in Ukraine. Biologia 74, 1669–1673 (2019).
    Google Scholar 
    Panter, C. T. et al. Kites (Milvus spp.) wintering on Crete. Eur. Zool. J. 87, 591–596 (2020).
    Google Scholar 
    Skyrpan, M. et al. Kites Milvus migrans lineatus (Milvus migrans migrans/lineatus) are spreading west across Europe. J. Ornithol. 162, 317–323 (2021).
    Google Scholar 
    Onrubia Baticón A. Patrones espacio-temporales de la migración de aves planeadoras en el Estrecho de Gibraltar (Spatial and temporal patterns of soaring birds migration through the straits of Gibraltar). Doctoral thesis (Universidad de León, 2015).Literák, I. et al. Weather-influenced water-crossing behaviour of black kites Milvus migrans during migration. Biologia 76, 1267–1273 (2021).
    Google Scholar 
    Ovčiariková, S. et al. Natal dispersal in Black Kites Milvus migrans migrans in Europe. J. Ornithol. 161, 935–951 (2020).
    Google Scholar 
    Sklyarenko, S., Gavrilov, E. & Gavrilov, A. Migratory flyways of raptors and owls in Kazakhstan according to ringing data. Vogelwarte 41, 263–268 (2002).
    Google Scholar 
    Probst, R. & Pavličev, M. Migration in the Novosibirsk region and the Kuznetsky Alatau, Russia. Sandgrouse 28, 114–118 (2006).
    Google Scholar 
    Harris, T. Migration Hotspots. The World’s Best Bird Migration Sites. (Bloomsbury, London, New Delhi, New York, Sydney, 2013).Hirano, T. & Ueda, M. Black Kite Milvus migrans in Japanese. Bird Res. News 810, 1–6 (2011).
    Google Scholar 
    Choudhuri, A. Migration of Black-eared or Large Indian Kite Milvus migrans lineatus Gray from Mongolia to North-Eastern India. J. Bombay Nat. Hist. Soc. 102, 229–230 (2005).
    Google Scholar 
    Davaasuren, B. Khurkh Bird Ringing Station Annual Report 2018. (Wildlife Science Conservation Center of Mongolia, Ulaanbaatar, 2019).Kumar, N. et al. GPS-telemetry unveils the regular high-elevation crossing of the Himalayan by a migratory raptor: Implications for definition of a “Central Asian Flyway”. Sci. Rep. 10, 15988 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juhant, M. A. & Bildstein, K. L. Raptor migration across and around the Himalayas. In Bird Migration Across the Himalayas (eds. Prins, H. H. T. & Namgail, T.) 98–116 (Cambridge University Press, Cambridge, 2017).
    Google Scholar 
    Rotics, S. et al. The challenges of the first migration: Movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    Vidal-Mateo, J. et al. Wind effects on the migration routes of trans-Saharan soaring raptors: Geographical, seasonal and interspecific variation. Curr. Zool. 62, 89–97 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Safi, K. et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 4 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Green, M., Alerstam, T., Clausen, P., Drent, R. & Ebbinge, B. S. Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144, 106–121 (2002).
    Google Scholar 
    Malmiga, G., Nilsson, C., Bäckman, J. & Alerstam, T. Interspecific comparison of the flight performance between sparrowhawks and common buzzards migrating at the Falsterbo peninsula: a radar study. Curr. Zool. 605, 670–679 (2014).
    Google Scholar 
    Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).
    Google Scholar 
    Dodge, S., Bohrer, G. & Weinzierl, R. MoveBank track annotation project: linking animal movement data with the environment to discover the impact of environmental change in animal migration. In Workshop on GIScience in the Big Data Age in Conjunction with the Seventh International Conference on Geographic Information Science 2012 GIScience (eds. Janowicz, K., Kessler, C., Kauppinen, T. & Kolas, D.) 35–41 (Columbus, OH, 2012).Scott, G. R. et al. How bar-headed geese fly over the Himalayas. Physiology 30, 107–115 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andreyenkova, N. G., Andreyenkov, O. V., Karyakin, I. V. & Zhimulev, I. F. New haplotypes of the mitochondrial gene cytB in the nesting population of the Siberian Black Kite Milvus migrans lineatus Gray, 1831 in the territory of the Republic of Tyva. Dokl. Biochem. Biophys. 482, 242–244 (2018).CAS 
    PubMed 

    Google Scholar 
    Mellone, U. et al. Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies. PLoS ONE 7, e39833 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kemp, M. U., Emiel van Loon, E., Shamoun-Baranes, J. & Bouten, W. RNCEP: global weather and climate data at your fingertips. Methods Ecol. Evol. 3, 65–70 (2012).
    Google Scholar 
    Team, R.C. R: A Language and Environment for Statistical Computing. R 739 (Foundation for Statistical Computing [Internet], Vienna, Austria, 2018). https://www.R-project.org/Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Andreyenkova, N. G. et al. Phylogeography and demographic history of the Black Kite Milvus migrans, raptor widespread in Eurasia, Australia and Africa. J. Avian Biol. 52, e02822 (2021).
    Google Scholar 
    Lindholm, A. & Forsten, A. Black Kites Milvus migrans in Russian Altai. Caluta 2, 1–6 (2011).
    Google Scholar 
    Vansteelant, W.M.G. An ontogenetic perspective on migration learning and critical life-history traits in raptors. In Abstracts of British Ornithologists’ Union 2019 Annual Conference Tracking Migration: Drivers, Challenges and Consequences of Seasonal Movements. 45–46. (University of Warwick, UK, 2019).Dixon, A., Rahman, L., Sokolov, A. & Sokolov, V. Peregrine Falcons crossing the „Roof of the World”. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.) 128–141 (Cambridge University Press, Cambridge, 2017).Parr, N. et al. High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).
    Google Scholar 
    Hawkes, L. A. et al. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc. R. Soc. B 280, 1–8 (2013).
    Google Scholar 
    Bishop, C. M. et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347, 250–254 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Agostini, N., Pannucio, M. & Pasquaretta, C. Morphology, flight performace, and water crossing tendencies of Afro-Palearctic raptors during migration. Curr. Zool. 61, 951–958 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Altshuler, D. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohlmann, K. The wind system in the Himalayas: From a Bird’s-Eye View. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 9–28 (Cambridge University Press, Cambridge, 2017).Heise, R. Birds, gliders and uplift systems over the Himalayas. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 229–40 (Cambridge University Press, Cambridge, 2017).Harel, R. et al. Decision-making by a soaring bird: time, energy and risk considerations at different spatiotemporal scales. Philos. T. R. Soc. B 371, 20150397 (2016).
    Google Scholar 
    Vansteelant, W. M. G., Shamoun-Baranes, J., McLaren, J., van Diermen, J. & Bouten, W. Soaring across continents: Decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J. Avian Biol. 48, 887–896 (2017).
    Google Scholar 
    Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845 (2013).PubMed 

    Google Scholar 
    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–150 (1999).
    Google Scholar 
    Moore, F.R., Smith, R.J. & Sandberg, R. Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance. In Birds of Two Worlds: the Ecology and Evolution of Migration (eds. Greenberg, R. & Marra, P.P.), 251–261 (Johns Hopkins University Press, Baltimore, 2005).McNamara, J. M., Welham, R. K. & Houston, A. I. The timing of migration within the context of an annual routine. J. Avian Biol. 29, 416–423 (1998).
    Google Scholar 
    Köppen, U. et al. Seasonal migrations of four individual bar-headed geese Anser indicus from Kyrgyzstan followed by satellite telemetry. J. Ornithol. 151, 703–712 (2010).
    Google Scholar 
    Kölzsch, A. et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507 (2016).
    Google Scholar 
    Butler, R. W., Williams, T. D., Warnock, N. & Bishop, M. A. Wind assistance: a requirement for migration of shorebirds? Auk 114, 456–466 (1997).
    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A. R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring birds at the Strait of Gibraltar. J. Anim. Ecol. 89, 1317–1328 (2020).PubMed 

    Google Scholar 
    Kumerloeve, H. V. Überwintern des Schwarzmilans im vorderen Orient. Falke 14, 274–227 (1967).
    Google Scholar 
    Baumgart, W., Kasparek, M. & Stephan, B. Die Vögel Syrien: eine Übersicht (Max Kasparek Verlag, 1995).
    Google Scholar 
    Tsvelykh, A. N. & Panyushkin, V. E. Wintering of the Black Kite Milvus migrans in Ukraine. Vestn. Zool. 36, 81–83 (2002).
    Google Scholar 
    Sarà, M. The colonisation of Sicily by the Black Kite Milvus migrans. J. Raptor Res. 37, 167–172 (2003).
    Google Scholar 
    Domashevskii, S. V. First record of the Black Kite in winter in the northern part of Ukraine. Berkut 18, 212–213 (2009).
    Google Scholar 
    Ciach, M. & Kruszyk, R. Foraging of White Storks Ciconia ciconia on rubbish dumps on nonbreeding grounds. Waterbirds 33, 101–104 (2010).
    Google Scholar 
    Biricik, M. & Karakaş. R. Black Kites Milvus migrans winter in Southeastern Anatolia, Turkey. J. Raptor Res. 45, 370–373 (2011).Literák, I., Horal, D., Alivizatos, H. & Matušík, H. Common wintering of black kites Milvus migrans migrans in Greece, and new data on their wintering elsewhere in Europe. Slovak Raptor J. 11, 91–102 (2017).
    Google Scholar 
    Shirihai, H., Yosef, R., Alon, D., Kirwan, G.M. & Spaar, R. Raptor Migration in Israel and the Middle East (International Birdwatching Centre Eilat IBRCE, IOC, Israel, 2000).Forsman, D. Identification of Black-eared Kite. Bird. World 16, 156–216 (2003).
    Google Scholar 
    Abuladze, A. Birds of Prey of Georgia, Materials towards a Fauna of Georgia, Issue VI (Ilia State University, Tbilisi, 2013).
    Google Scholar 
    Brooke, R. K. The migratory Black Kite Milvus migrans migrans Aves: Accipitridae of the Palearctic in southern Africa. Durb. Mus. Novit. 10, 53–66 (1974).
    Google Scholar 
    Forsman, D. Flight Identifcation of Raptors of Europe (North Africa and the Middle East (Christopher Helm, 2016).
    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). More

  • in

    Drivers of tropical forest loss between 2008 and 2019

    The crowdsourcing campaign was organized as a competition with prizes offered to those who contributed the most, based on a combination of quality and quantity. The Geo-Wiki platform (www.geo-wiki.org), a web platform dedicated to engaging citizens in environmental monitoring, was used as the tool to perform the campaign. A customized user interface was prepared for the campaign (Fig. 2), where participants were shown a random location in the tropics (here broadly defined as the area between 30 degrees of latitude north and south of the equator, i.e., including part of the subtropics), where a blue 1 × 1 km box showed the location to be visually interpreted. The Global Forest Change (GFC) tree loss map (v1.7)10 was overlaid on the imagery to show all areas where tree loss was detected at any point between 2008 and 2019. The tree loss area was shaded in red and the map itself was aggregated to 100 m for fast rendering.Fig. 2Customized Geo-Wiki interface for the ‘Drivers of Tropical Forest Loss’ crowdsourcing campaign showing: (a) Tools available to participants such as the NDVI and Sentinel time-series profiles, visualizing the location on Google Earth and exploring the imagery time-series, reviewing the quick-start guide and exploring examples to identify specific drivers of forest loss as well as contacting IIASA staff via chat or email; (b) country and continent of the location as well as dates of the imagery shown; (c) campaign statistics; (d) available background imagery; and (e) tasks to be undertaken by the participants along with buttons to submit or skip the location.Full size imageThe year 2008 was selected as the start date because the RED states that date as the cut-off year for conversion from high-carbon areas, i.e., forest, to other land uses7. In order to capture the main drivers of forest loss, but also include potential additional drivers such as the existence of roads as precursors of deforestation, the participants were asked to complete three steps: 1) To select the predominant tree loss driver visible inside the tree loss pixels in the blue box from a list of nine specific drivers; 2) to select all other tree loss drivers visible inside the tree loss pixels in the blue box from a list of five more general drivers, and 3) to mark if roads, trails, or buildings were visible in the blue box. The list of specific and general drivers as well as their definitions is shown in Table 1. The Geo-Wiki interface allowed participants to switch between different background imagery such as ESRI, Google Maps, and Bing Maps as well as Sentinel 2 satellite imagery. The different sources of imagery allowed the participants to see the location at different resolutions and in different periods of time. It also provided participants with information about the current country and the continent as well as the dates of the background imagery. Furthermore, it provided the participants with links for displaying NDVI and Sentinel time series, and to see the location and explore the historical imagery using the Google Earth platform. All these tools were meant to help with easier identification of the forest loss drivers by allowing participants to look at the locations during different times and at different spatial resolutions.Table 1 List and description of the available list of tree loss drivers that participants could select for steps 1 and 2 of the campaign.Full size tableAt the beginning of the campaign, each participant was shown a quick start guide of the interface and the tasks requested. As shown in Fig. 2, this quick start guide could be accessed again at any point during the campaign. Figure 2 also shows that the interface had buttons for four further functions. The first was to see the gallery of examples with access to pre-loaded video-tutorials and examples of images describing each driver of forest loss and how to do visual interpretation and selection of each of these (available at https://application.geo-wiki.org/Application/modules/drivers_forest_change/drivers_forest_change_gallery.html). An illustration of the gallery of examples shown to participants is shown in Figure S1. The second function was to ask experts for help, which automatically sent IIASA experts an email regarding a specific location. The third was to join the expert chat, which led participants to a dedicated chat interface on the Discord messaging platform. Here participants could pose questions and interact with staff and other participants directly. Finally, there was a button to see the leader board as well as the aims, rules and prizes of the campaign (available at https://application.geo-wiki.org/Application/modules/drivers_forest_change/drivers_forest_change.html). When the participants started the campaign, they were shown 10 initial practice locations, where they could try out the user interface (UI) with control points, which showed the participants how to identify the different drivers of forest loss. This set of videos, the images and the training points, together with the gallery of images, were developed to train the participants before and during the campaign.Campaign set-up and data qualityAs the aim of the campaign was to determine the drivers of tree loss across the tropics, the sample locations were selected from the GFC tree loss layer10 for the tropics (between 30 degrees north and south of the equator). No stratification was used since a completely random sample across the tropics was deemed to be the fairest representation of tree loss and their corresponding drivers. The previous map of deforestation drivers6 used a 5 K sample of 10 × 10 km grid cells to produce a global map. Here the sample size was largely driven by the estimated capacity of the crowd. Hence, we aimed to validate ca. 150k 1 × 1 km locations across the tropics, which is a considerably larger sample size than that of Curtis et al.6. In order to reduce noise, the GFC tree loss layer10 was first aggregated to a 100 m resolution from the original 30 m, and 150 K centroids were then randomly selected. From these, a sub sample of 5000 random locations were selected for visual interpretation by six IIASA experts (with backgrounds in remote sensing, agronomy, forestry and geography). Due to time constraints, only 2001 locations were evaluated by at least three different experts. In these locations, agreement was discussed and once a consensus was reached, these locations became the final control or expert data set. The control locations were then used to produce quality scores for each participant as the campaign progressed in order to rank them and determine the final prize winners. The list of prizes offered to the top 30 participants is shown in Table S1 in the Supplementary Information (SI), and a list and rank of motivations mentioned by the participants is shown on Figure S2 in the SI.The control locations were randomly shown to the participants at a ratio of approximately 2 control locations to every 20 non-control locations visited. If the participants correctly selected the predominant tree loss driver (in step 1), they were awarded 20 points; if they selected the wrong answer, they lost 15 points. If participants confused pasture and commercial agriculture or wildfire with other natural disturbances, they lost only 10 points instead of 15. Furthermore, they could win 8 additional points by selecting the correct secondary drivers in step 2. If a mixture of correct and incorrect answers were provided in step 2, the participants gained 2 points for every correct choice and lost 2 points for every incorrect one, with a minimum gain/loss of 0 points. Finally, participants could earn 2 additional points by correctly reporting the existence of roads, trails or buildings in step 3. The scoring system was based on previous Geo-Wiki campaign experiences and aimed to promote focus on the primary driver selection. The points were used to produce a leader board with the total number of points by participant. Additionally, a relative quality score (RQS) was derived from the score received by the users and the potential score that could have been obtained if all control points were correctly interpreted. This is shown in Eq. 1.$${rm{RQS}}=(({{rm{NCP}}}^{ast }15+{rm{SumScore}})/{rm{NCP}})/45$$
    (1)
    where RQS ranges between 0 and 1, NCP is the number of control points visited and SumScore is the number of points obtained.The RQS was crucial in understanding how each participant performed in terms of the quality of their visual interpretations, as this was independent of the number of locations interpreted. Once the campaign ended, an average RQS was used as a minimum criterion for participants to receive a prize, independent of where they were located on the leader board. Additionally, all users who submitted a substantial number of interpretations, i.e., more than 1000 with the minimum required RQS, were invited to become co-authors of the current manuscript, independent of whether they received a monetary prize or not. All these co-authors additionally contributed to the editing and revision of this manuscript. Furthermore, future users of the data set could use the RQS as a key data quality indicator.After the campaign, the data post-processing included eliminating interpretations made by users who broke any of the competition rules. Additionally, during the campaign, some users communicated with IIASA staff using the “Ask Experts” button and pointed out that some control points were mistaken. Consequently, the corresponding points lost were added to the final score of those participants where the correction was made. A total of 18742 validations from 1 participant were removed before the end of the campaign and the user was disqualified since their account was deemed to be shared across several people and computers, which was not allowed. Validations from another user (38,502 out of 40,828) were also removed due to inconsistencies but the user remained in the competition. Before the prizes were awarded to the top 30 users, a questionnaire was administered to all users to gather information about participant characteristics and gauge their motivations. Participation was mandatory for the top 30 users. A summary of the participant backgrounds is provided in Figure S3 in the SI. More