More stories

  • in

    Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean

    Volk T, Hoffert MI. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS. (eds). The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union, Geophysical Monograph, Washington, DC: 1985. p. 32:99–110.Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol-Prog Ser. 1999;182:55–67.
    Google Scholar 
    Simon M, Grossart H, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Micro Ecol. 2002;28:175–211.
    Google Scholar 
    Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–25.CAS 

    Google Scholar 
    Ducklow H, Steinberg DK. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–58.
    Google Scholar 
    Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol. 2010;8:593–9.CAS 
    PubMed 

    Google Scholar 
    DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38:924–34.
    Google Scholar 
    Allen AE, Allen LZ, McCrow JP. Lineage specific gene family enrichment at the microscale in marine systems. Curr Opin Microbiol. 2013;16:605–17.CAS 
    PubMed 

    Google Scholar 
    D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 2014;8:2167–79.PubMed 
    PubMed Central 

    Google Scholar 
    Martin JH, Knauer GA, Karl DM, Broenkow WW. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 1987;34:267–85.CAS 

    Google Scholar 
    Buesseler KO. The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycle. 1998;12:297–310.CAS 

    Google Scholar 
    Schlitzer R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhata P, editor. Inverse Methods in Global biogeochemical Cycles. Washington, DC: American Geophysical Union; 2000. p. 114:107–24.Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr. 2008;53:1327–38.
    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 

    Google Scholar 
    Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergh Ø, Borsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2014;12:850–1.CAS 
    PubMed 

    Google Scholar 
    Middelboe M, Lyck PG. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat Micro Ecol. 2002;27:187–94.
    Google Scholar 
    Weinbauer MG, Brettar I, Hofle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.CAS 
    PubMed 

    Google Scholar 
    Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol. 2005;71:6644–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Micro Ecol. 2009;57:321–41.CAS 

    Google Scholar 
    Tian Y, Cai L, Xu Y, Luo T, Zhao Z, Wang Q, et al. Stability and infectivity of allochthonous viruses in deep sea: A long-term high pressure simulation experiment. Deep-Sea Res Part I-Oceanogr Res Pap. 2020;161:103302.
    Google Scholar 
    Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.PubMed 
    PubMed Central 

    Google Scholar 
    Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol. 2020;3:256.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woźniak SB, Stramski D, Stramska M, Reynolds RA, Wright VM, Miksic EY, et al. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J Geophys Res. 2010;115:C08027.
    Google Scholar 
    White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J Geophys Res-Oceans. 2015;120:7381–99.PubMed 
    PubMed Central 

    Google Scholar 
    Vaulot D, Courties C, Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytom Part A. 1989;10:629–35.CAS 

    Google Scholar 
    Chen X, Liu H, Weinbauer M, Chen B, Jiao N. Viral dynamics in the surface water of the western South China Sea in summer 2007. Aquat Micro Ecol. 2011;63:145–60.
    Google Scholar 
    Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep. 2018;8:1525–34.PubMed 
    PubMed Central 

    Google Scholar 
    Marie D, Partensky F, Vaulot D, Brussaard C. Numeration of phytoplankton, bacteria and viruses in marine samples. Curr Protoc Cytom. 1999;11:1–15.
    Google Scholar 
    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brussaard CP. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm SW, Brigden SM, Suttle CA. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Micro Ecol. 2002;43:168–73.CAS 

    Google Scholar 
    Weinbauer MG, Rowe JM, Wilhelm SW. Determining rates of virus production in aquatic systems by the virus reduction approach. In: Wilhelm SW, Weinbauer MG, Suttle CA. (eds). Manual of Aquatic Viral Ecology. American Society of Limnology and Oceanography Inc., Waco, TX: 2010. p. 1–8.Chen X, Wei W, Wang J, Li H, Sun J, Ma R, et al. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019;160:118–29.CAS 
    PubMed 

    Google Scholar 
    Luef B, Luef F, Peduzzi P. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ Microbiol Rep. 2009;1:78–85.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ. Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Natl Acad Sci USA. 2011;108:11506–11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of virioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.CAS 

    Google Scholar 
    Noble RT, Fuhrman JA. Virus decay and its causes in coastal waters. Appl Environ Microbiol. 1997;63:77–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suttle CA, Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992;58:3721–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowe JM, Saxton MA, Cottrell MT, DeBruyn JM, Berg GM, Kirchman DL, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.
    Google Scholar 
    Evans C, Pearce I, Brussaard CP. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol. 2009;11:2924–34.CAS 
    PubMed 

    Google Scholar 
    De Corte D, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 

    Google Scholar 
    Li Y, Lou T, Sun J, Cai L, Liang Y, Jiao N, et al. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean. Biogeosciences. 2014;11:2531–42.
    Google Scholar 
    Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin R, Jiao N. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol. 2017;93:fiw238.PubMed 

    Google Scholar 
    Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev. 2016;92:1081–1100.PubMed 

    Google Scholar 
    Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes in aquatic systems. J Mar Biol Assoc UK. 2006;86:613–21.
    Google Scholar 
    Yuan D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceano Sin. 2002;21:187–202.
    Google Scholar 
    Tian J, Yang Q, Zhao W. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr. 2009;39:3191–203.
    Google Scholar 
    Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.
    Google Scholar 
    Parada V, Sintes E, Van Aken HM, Weinbauer MG, Herndl GJ. Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the north atlantic. Appl Environ Microbiol. 2007;73:4429–38.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 

    Google Scholar 
    Zachary A. An ecological study of bacteriophages of Vibrio natriegens. Appl Environ Microbiol. 1978;24:321–4.CAS 

    Google Scholar 
    Motegi C, Nagata T. Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat Micro Ecol. 2007;48:27.
    Google Scholar 
    Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Prog Ser. 1993;93:39–48.
    Google Scholar 
    Motegi C, Kaiser K, Benner R, Weinbauer MG. Effect of P-limitation on prokaryotic and viral production in surface waters of the Northwestern Mediterranean Sea. J Plankton Res. 2015;37:16–20.CAS 

    Google Scholar 
    Hewson I, O’Neil JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.
    Google Scholar 
    Wilson WH, Mann NH. Lysogenic and lytic viral production in marine microbial communities. Aquat Micro Ecol. 1997;13:95–100.
    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.CAS 
    PubMed 

    Google Scholar 
    Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186:3677–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.CAS 
    PubMed 

    Google Scholar 
    Williamson SJ, Paul JH. Nutrient stimulation of lytic phage production in bacterial populations of the Gulf of Mexico. Aquat Micro Ecol. 2004;36:9–17.
    Google Scholar 
    Williamson SJ, Paul JH. Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage–host system. Micro Ecol. 2006;52:217–25.CAS 

    Google Scholar 
    Cissoko M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y. Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol. 2008;53:1154–62.
    Google Scholar 
    Bettarel Y, Bouvier T, Agis M, Bouvier C, Van Chu T, Combe M, et al. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam. Micro Ecol. 2011;62:143–54.
    Google Scholar 
    Shkilnyj P, Koudelka GB. Effect of salt shock on stability of λimm434 lysogens. J Bacteriol. 2007;189:3115–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuomi P, Fagerbakke KM, Bratbak G, Heldal M. Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol Ecol. 1995;16:23–134.
    Google Scholar 
    Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E2019.PubMed 
    PubMed Central 

    Google Scholar 
    Mojica KD, Brussaard CP. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.CAS 
    PubMed 

    Google Scholar 
    Zweifel UL. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar Coast Shelf Sci. 1999;48:357–70.CAS 

    Google Scholar 
    Pomeroy LR, Wiebe WJ. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Micro Ecol. 2001;23:187–204.
    Google Scholar 
    Ploug H, Grossart H, Azam F, Jørgensen BB. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol-Prog Ser. 1999;179:1–11.CAS 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature. 2007;5:782–91.CAS 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Lekunberri I, Herndl GJ. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ Microbiol Rep. 2016;8:305–15.PubMed 
    PubMed Central 

    Google Scholar 
    Yang YH, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.
    Google Scholar 
    Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.CAS 
    PubMed 

    Google Scholar 
    Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer M. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Uitz J, Stramski D, Baudoux A, Reynolds RA, Wright VM, Dubranna J, et al. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol Oceanogr. 2010;55:2317–30.
    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm SW. Viral ecology comes of age. Environ Microbiol Rep. 2017;9:33–35.PubMed 

    Google Scholar 
    Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.CAS 
    PubMed 

    Google Scholar 
    Kranzler CF, Brzezinski MA, Cohen NR, Lampe RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;4:231–7.
    Google Scholar 
    Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.CAS 

    Google Scholar  More

  • in

    MeadoWatch: a long-term community-science database of wildflower phenology in Mount Rainier National Park

    Study origin and designThe MeadoWatch project (MW) is a project run collaboratively between the University of Washington (UW) and the United States National Park Service to monitor the phenology of alpine and subalpine wildflower species across large elevational gradients in Mount Rainier National Park (Fig. 2). MW was established in 2013 with the goal of understanding long-term effects of climate change on Mount Rainier National Park wildflower communities using community-science approaches. The first MW transect was established along Reflection Lakes, Skyline, and Paradise Glacier trail system in 2013 (9–11 plots). In 2015, MW expanded to include a second transect (15–17 plots) along the Glacier Basin trail (Fig. 1a). The MW transects span around 5 km each, over a 400 m altitudinal gradient (Reflection Lakes: 1490m–1889m a.s.l.; Glacier Basin: 1460m–1831m a.s.l.)Fig. 2Alpine meadows, plot extension, and target species. (a) Species-rich alpine meadow in Mount Rainier National Park (Mount Tahoma), showing many of the target species in the foreground. (b) MW volunteer coordinator Anna Wilson at a plot, indicating the arm span that defines the plot area (personal likeness used with confirmed consent). (c) Species composition and proportion of reports per species in each of the transects; species common to both trails are highlighted with striped shadowing. Photographs: A. John (a), L. Felker (b).Full size imagePlots are located along the side of each trail, marked with a colored survey marker. The area of each plot is defined by the arm-span of volunteers when they position themselves over the plot marker looking away from the trail (Fig. 2b). While less accurate than marking the corners of plots, this approach was used to avoid establishing permanent structures in wilderness areas within the National Park. The surveyed area in each plot is, on average, 1.25 m2. Each plot is also equipped with temperature sensors (HOBO Pendant Logger, Onset Computer Corp.) buried approximately 4 cm below the ground. Sensors are placed at the start of each fall season and removed at the beginning of each summer season for data downloading. The HOBO sensors provide an estimate for the date of snow disappearance and in-situ temperature at 3 hours intervals. Once plots are covered in snow, soil temperatures remain at 0 °C and show no diurnal variation, so that daily changes in temperatures above 1 °C can be used to determine the earliest date without snow cover20. We use these approaches to provide dates of snow appearance and disappearance, snow cover duration, and minimum soil temperatures for each year and plot. Occasionally, temperature data during the snow disappearing window were lost due to sensor failure or loss of sensors (which occurs because plots are not permanently marked and/or well-meaning visitors remove sensors). This, and the lack of temperature sensors in the first year of the project, resulted in approx. 20% of cases of missing data. In those cases, we used a data imputation method to estimate the missing values based on data from nearby plots and a parallel temperature data collection with 890 total observations. These estimates were highly reliable in filling the data gaps (see Appendix C in16 for further details).Focal speciesWe originally targeted 16 native wildflower species along each transect, which were chosen based on their abundance, ease of identification, and presence in the plot. Four of those target species were present on both transects. In 2016 we replaced one species with a different one (see further information below), making for a total of 17 species monitored (Fig. 2c). The focal species are: American bistort* (Polygonum bistortoides), avalanche lily (Erythronium montanum), bracted lousewort* (Pedicularis bracteosa), broadleaf arnica (Arnica latifolia), cascade aster (Aster ledophyllus; synonym Eucephalus ledophyllus), glacier lily (Erythronium grandiflorum), Gray’s lovage (Ligusticum grayi), magenta paintbrush (Castilleja parviflora), mountain daisy (Erigenon peregrinus; synonym Erigeron glacialis), northern microseris (Microseris alpestris; synonym Nothocalais alpestris), scarlet paintbrush (Castilleja miniata), sharptooth angelica (Angelica arguta), sitka valerian* (Valeriana sitchensis), subalpine lupine* (Lupinus arcticus; synonym Lupinus latifolius var. subalpinus), tall bluebell (Mertensia paniculata), Canby’s licorice-root (Ligusticum canbyi), and western anemone (Anemone occidentalis). Asterisks denote species monitored along both trails.Due to challenges in species identification, we dropped Canby’s licorice-root (Ligusticum canbyi) as a target species in 2016. Consequently, Ligusticum canbyi has limited replication in the database (Fig. 2c). While we included the phenological records of this species for the sake of completeness, we recommend focusing on the other 16 species, which are both better represented (in terms of data coverage) and are free of any potential misidentification issues.For additional information on the species, methods, identification cues, and image resources see: http://www.meadowatch.org, https://www.youtube.com/channel/UCGBFTKxf8FIWswMDxBavpuQ, and the appendices therein16.Data collection and volunteer trainingDuring the summer months, MW volunteers and scientists collect reproductive phenology data with a frequency between 3 and 9 trail reports per week. Each report records the presence or absence of 4 phenophases for each target species present in each of the plots. The phenophases are ‘budding’, ‘flowering’, ‘ripening fruit’, and ‘releasing seed’. Phenophases were defined as follows:BuddingThe beginning growth of the flower which has not yet opened. A plant is considered budding if buds are present, but the stamen and pistils are not yet visible and available to pollinators.FloweringThe generally “showy” part of the plant that holds the reproductive parts (stamens and pistils). A plant is considered flowering when at least one flower is open, and the stamens and pistils are visible and available for pollination and reproduction.Ripening fruitThe fruit develops from the female part of the flower following successful pollination. In the target species, fruits can take many forms, from hard, fleshy capsules, juicy berries, to a feathery tuft on the end of a seed. A plant is in the ripening fruit stage when reproductive parts on at least one reproductive stalk are non-functional and the formation of the fruit part is clearly ongoing (visible), but seeds are not yet fully mature and not yet being dispersed.Releasing seedAfter the fruit ripens, seeds are released to be dispersed by gravity, wind, or animals. A plant is considered in the releasing seed stage if seeds are actively being released on at least one reproductive stalk (but there are still seeds present).A full description, including illustrations for each species’ phenophase and identification cues is available in http://www.meadowatch.org/volunteer-resources.html, as well as in Annex 1 – Supplementary Documentation. Multiple phenophases can be present simultaneously, depending on the species, and are noted independently. Additionally, volunteers are also asked to record the presence of snow (‘snow covered plot’, ‘partially covered plot’, or ‘snow-free plot’), and, since 2017, the presence of damage by herbivory (‘presence of browsed stems’) on each plot.In years not impacted by the SARS-Cov-2 pandemic MW volunteers attend an in-person 3-hour botanical and phenological training session taught by UW scientists at the beginning of each sampling season. Volunteers were also provided with detailed species-identification guides, including an extensive description of sampling methods and location of the plots. The trainings for the 2020 and 2021 seasons were held virtually via a series of online training videos. In these years, volunteers took a quiz on wildflower phenology, plant identification and data collection methods after viewing these videos and were required to ‘pass’ a certain threshold to volunteer (unlimited attempts were allowed). During these virtual trainings, volunteers were provided with digital copies of the species identification guides, with many returning volunteers using printed guides they had kept from previous years.At the end of their phenological hike, volunteers submit their data sheets either by depositing them in lockboxes located within the park, or by scanning and emailing them directly to mwatch@uw.edu. Data are then entered manually and stored in the UW repositories after being checked for consistency at the end of each sampling season.The parallel data collection by members of UW’s Hille Ris Lambers group (including PI, postdoctoral researchers, graduate students, and trained interns) acted as the following: (i) a quality-control, i.e., allowing us to compare the consistency in phenology assessments between volunteers and scientists, and (ii) a way to increase the temporal resolution and scale of the data, e.g., by reducing early season gaps and ‘weekend bias’17. This parallel expert sampling was carried out around once a week between 2013 and 2020, showing great consistency between the two groups. For detailed comparisons between volunteers and scientists’ assessments see the data validation section (as well as Appendix E in16).Processed dataIn addition to the raw phenological data, we also provide here parameters to construct the year, species, and plot-specific flowering phenology based on the timing of snow disappearance (as in16). Models describe unimodal probability distributions that were fitted with maximum likelihood models to binomial flowering data from each species, year, and plot. These curves have been used to estimate peak flowering dates and diversity and link them to reported visitor experiences16. Here, we provide the 3 parameters defining the unimodal curve of flowering probability per species i, plot j and year k: the duration of flowering (𝛿ijk), the maximum probability of flowering (𝜇ijk), and peak flowering (in DOY – ρijk); following the equations described in16 and https://github.com/ajijohn/MeadoWatch).The parameters of these probability distribution curves are ready-to-use values that can be broadly and easily used to estimate floral compositional change over past seasons due to changing environmental conditions—for example, to inform plant-pollinator interaction networks if combined with pollinator behavioral data (e.g.21). More

  • in

    Biological invasions facilitate zoonotic disease emergences

    Disease data sourceAll analyses were conducted at the administrative level, and the exact list of known zoonotic diseases is recorded in the GIDEON database22. GIDEON is currently the most comprehensive and frequently updated infectious disease outbreak database reporting epidemics of human infectious diseases at the global scale and has been widely used in global zoonosis studies42,43 (Last access date, November 9, 2020). The administrative designations used in our analyses were based on the Global Administrative Areas (GADM) database (www.gadm.org, downloaded on November 8, 2020), which includes very detailed boundary data for global countries and major island groups.Pattern and correlates of zoonosis events worldwideNumber of zoonosis eventsGIDEON defines human infectious disease reservoirs as any animal, plant, or substrate supporting the survival and reproduction of infectious agents and promoting transmission to potential susceptible hosts. Its host category therefore includes all human-specific, zoonotic, multihost, and environmental agents. As our main aim was to test the role of established alien animal species in the emergence of zoonotic diseases, we focused on a total of 161 diseases specified in GIDEON’s host designations and definitions as nonhuman zoonotic (n = 115) and multihost (n = 46) diseases (Supplementary Data 1) and excluded diseases with human-specific hosts that do not need animals to persist or be transmitted. The infectious agents of nonhuman zoonotic diseases complete their entire lifecycle in nonhuman hosts but may have the potential to spillover and infect human populations. Infectious agents of multihost diseases can use both human and animal hosts for their development and reproduction. We measured the number of zoonosis events for each jurisdiction according to five host taxonomic groups: mammals, birds, invertebrates, reptiles and amphibians. These zoonoses were mainly caused by bacteria, viruses, parasitic animals and fungi. We excluded zoonoses from the Algae (3 diseases) due to low sample sizes in GIDEON.Correlates of the number of zoonosis eventsClimatic variablesFollowing a previous study21, we used global environmental stratification (GEnS) as a composite bioclimatic variable generated by stratifying the Earth’s surface into zones with similar climates44. The GEnS database was constructed based on a total of 125 strata across 18 global environmental zones with a spatial resolution of 30 arc seconds (equivalent to approximately 0.86 km2 at the equator). The values in GEnS range from 1 to 18 with a higher value indicating warmer and wetter conditions.Human population densityWe used human population density as one general anthropogenic factor reflecting propagule pressure and human-assisted pathogen movements1,21,45. Human population size data and the land area of each jurisdiction were collected from World Bank Open Data from 2011 to 2020 (available at https://data.worldbank.org/indicator/SP.POP.TOTL, accessed on November 18, 2020). We then calculated the human population density using the human population size divided by the land area.Native potential host richness and biodiversity lossData on the richness of native amphibians, birds, and mammals were derived from the Biodiversity Mapping website (https://biodiversitymapping.org/wordpress/index.php/home/, accessed on August 19, 2020), which were based on studies from Jenkins et al. (2013)’s and Pimm et al. (2014)46,47. The map of reptile diversity is based on an updated database of the global spatial distribution of reptiles48. All diversity maps for each taxon were generated through the calculation of grid-based richness at a spatial resolution of 10 km × 10 km in ArcGIS46. We did not include native invertebrate richness, as global maps for most invertebrate taxa are not yet available. For the loss of native biodiversity, we followed the previous study by first extracting the list of threatened species (NT, EN and VU categories evaluated by the IUCN Red List, access on May 10th, 2021)29, and then calculated the number of threatened species for each taxon distributes in each administrative unite as a proxy of biodiversity loss.Richness of established alien zoonotic host speciesWe quantified the richness of established alien animal species from the five main taxonomic groups (mammals, birds, reptiles, amphibians and invertebrates) based on 4,522 establishment events of 795 alien animals in each of 201 jurisdictions according to various databases. Data on 262 established alien reptiles and amphibians were compiled from multiple publications, including Kraus’s compendium49 and other recent updates50. Data on 337 established alien birds after removing all migratory bird species as vagrants were collected from the Global Avian Invasions Atlas (GAVIA)51, which is a comprehensive database of the global distribution of established alien birds. Data on 119 established alien mammals were obtained from the Introduced Mammals of the World database52 and the more recent update53. Data on 77 terrestrial alien invertebrates (66 insects and 11 other groups) across 7 taxa with native and invaded range information were obtained from the Global Invasive Species Database (GISD, http://www.iucngisd.org/gisd/, accessed on July 1, 2020). We calculated the richness of both zoonotic and non-zoonotic alien host species for each order. We first conducted an intensive literature review for each established alien species of each of the four taxa to determine whether they transmit pathogens to humans (Supplementary Data 2). The identification of zoonotic or non-zoonotic host may be influenced by under-sampling in the literature. We therefore incorporated the latest synthesis of human-infecting pathogens in the ‘CLOVER’ dataset to identify zoonotic and non-zoonotic animal hosts54. The CLOVER dataset compiled GMPD255, EID256, HP323 and Shaw57 databases and is currently the most comprehensive dataset on host-pathogen associations. Based on this information, we then categorized each alien species as a ‘zoonotic host’ or ‘non-zoonotic host’. The records of the established alien species were assigned to GADM jurisdictions, and we calculated the richness of the established alien zoonotic and non-zoonotic host species for each taxonomic group within each jurisdiction. In order to increase the statistical power, we conducted subsequent modeling analyses based on four mammalian orders (i.e., Carnivora, Cetartiodactyla, Lagomorpha, and Rodentia), five avian groups (i.e., waterfowl including five orders: Anseriformes, Gruiformes, Pelecaniformes, Phoenicopteriformes and Suliformes; Columbiformes, Galliformes, Passeriformes, Psittaciformes), the order Diptera of the invertebrates, and herpetofauna as a whole, which have established alien populations in at least 50 administrative units.Climate changeWe extracted historical monthly mean temperature and precipitation data recorded between 1901 and 2009 from the University of East Anglia Climate Research Unit (CRU, https://sites.uea.ac.uk/cru/, accessed on November 30, 2020)58. This database provides historical global-scale yearly climatic data with the finest resolution of 0.5° grids. We generated the temperature and precipitation values for all grids in each jurisdiction, calculated the slope of the temperature and precipitation for the time series of the years 1901 to 2009 for each grid and generated the averages based on all grids within each jurisdiction.Anthropogenic land-use changeWe downloaded global land-use data from the Anthromes v2 Dataset (Anthropogenic Biomes version 2, accessed on October 15, 2020) in ESRI GRID format59. We used the 1900 and 2000 data to calculate the temporal changes in land use. By using the reclassify and raster function in ArcGIS, we calculated the percentage of grids in which the land-use type changed to a more anthropogenically influenced type from 1900 to 2000 for each jurisdiction, including 15 scenarios: Wildlands to Seminatural, Wildlands to Rangelands, Wildlands to Croplands, Wildlands to Villages, Wildlands to Dense Settlements, Seminatural to Rangelands, Seminatural to Croplands, Seminatural to Villages, Seminatural to Dense Settlements, Rangelands to Croplands, Rangelands to Villages, Rangelands to Dense Settlements, Croplands to Villages, Croplands to Dense Settlements, and Villages to Dense Settlements.Sampling effort, reporting bias and incomplete dataA potential issue in quantifying the effects of different predictor variables on the number of zoonosis events is the need to account for the differences in survey effort, reporting bias and incomplete disease data among regions1,21,28. There is a high probability that zoonosis discovery is spatially biased by uneven levels of surveillance across countries, as the global allocation of scientific resources has been focused on rich and developed countries. We thus included the Infectious Disease Vulnerability Index (IDVI), which is a comprehensive metric reflecting the demographic, health care, public health, socioeconomic, and political factors that may have an impact on the capacity of surveillance and detection of infectious diseases in each country60. Second, we followed the methods of a previous study21 to control for reporting biases. We incorporated PubMed citations per disease for each jurisdiction using a Python-based PubCrawler21. In addition, we added the longitude and latitude of the geographic centroid of administrative units to control for spatial autocorrelation as there would be a higher probability of having similar diseases in nearby than distant administrative units61.Statistical analysisThe number of zoonosis events, native potential host richness, established alien animal richness and human population density were log-transformed to improve linearity. A potential issue in our data analysis is that the numbers of zoonosis events and the numbers of native and alien animal species are strongly influenced by geographical area, as larger countries or regions may host more native or alien animal species and more disease events. We therefore calculated the density of native or alien species richness and the number of zoonosis events using the total number divided by the geographical area of each jurisdiction. Furthermore, the number of zoonosis events may also be influenced by the degree of local disease surveillance. We thus obtained the residuals from a regression correlating zoonosis event density and all disease event density, and used them as the dependent variable for further analyses (Fig. 1). As some of our variables may be expected to be nonlinear, we performed generalized additive mixed model (GAMM) analyses following Mollentze & Streicker 2020’s framework25 to quantify the relationships between different predictor variables and the number of zoonosis events. We started with a full model with zoonosis event density controlling for overall disease surveillance as the response variable and 13 smoothed fixed effects (Fig. 1 and Supplementary Data 4): GEnS, human population density, density of native species richness, biodiversity loss, density of alien zoonotic host richness, density of alien non-zoonotic host richness, climate (temperature and precipitation) change, land-use change, IDVI, PubMed citations, longitude and latitude of geographic centroid of administrative units. The reason why we included the density of alien non-zoonotic host richness as a covariate is because this variable can serve as a positive control for propagule pressure, allowing us to more explicitly test whether zoonotic alien hosts contribute to zoonoses beyond propagule pressure associated with non-zoonotic alien hosts, which cannot directly increase zoonotic diseases. These predictor variables were not highly collinear as their correlation coefficients based on Pearson rank correlation analyses were all More

  • in

    Spatio-temporal inhabitation of settlements by Hystrix cristata L., 1758

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and evolution of mating systems. Science 197(4300), 215–223 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk? J. Mammal. 76(3), 900–905 (1995).Article 

    Google Scholar 
    Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutiérrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: A field experiment with a neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    Schradin, C. & Pillay, N. Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17(3), 452–458. https://doi.org/10.1093/beheco/arj047 (2006).Article 

    Google Scholar 
    Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113, 155–165. https://doi.org/10.1111/j.1439-0310.2006.01305.x (2007).Article 

    Google Scholar 
    Brivio, F. et al. Forecasting the response to global warming in a heat-sensitive species. Sc. Rep. 9, 3048. https://doi.org/10.1038/s41598-019-39450-5 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Santamaría, A. E., Olea, P. P., Vinuela, J. & Garcia, J. T. Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur. J. Wildl. Res. 65, 52. https://doi.org/10.1007/s10344-019-1286-2 (2019).Article 

    Google Scholar 
    Kinlaw, A. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41, 127–145 (1999).ADS 
    Article 

    Google Scholar 
    Daly, M., Beherends, P. R. & Wilson, M. I. Activity patterns of kangaroo rats—Granivores in a desert habitat. In Activity Patterns in Small Mammals: An Ecological Approach (eds Halle, S. & Stenseth, N. C.) 145–158 (Springer, 2000).Chapter 

    Google Scholar 
    Mackin-Rogalska, R., Adamczewska-Andrzejewska, K. & Nabaglo, L. Common vole numbers in relation to the utilization of burrow system. Acta Theriol. 31(2), 17–44 (1986).Article 

    Google Scholar 
    Powell, R. A. & Fried, J. J. Helping by juvenile pine voles (Microtus pinetorum), growth and survival of younger siblings, and the evolution of pine vole sociality. Behav. Ecol. 3, 325–333 (1992).Article 

    Google Scholar 
    Randall, J. A., Rogovin, K., Parker, P. G. & Eimes, J. A. Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints. Behav. Ecol. 16, 961–973 (2005).Article 

    Google Scholar 
    Ebensperger, L. A. et al. Burrow limitations and group living in the communally rearing rodent, Octodon degus. J. Mammal. 92(1), 21–30 (2011).Article 

    Google Scholar 
    Santini, L. The habits and influence on the environment of the old world porcupine Hystrix cristata L. in the northernmost part of its range. In Proc. 9th Vertebrate Pest Conference, Vol. 34, 149–153 (1980).Felicioli, A., Grazzini, A. & Santini, L. The mounting and copulation behaviour of the crested porcupine Hystrix cristata. Ital. J. Zool. 64, 155–161 (1997).Article 

    Google Scholar 
    Felicioli, A., Grazzini, A. & Santini, L. The mounting behaviour of a pair of crested porcupine H. cristata L.. Mammalia 61(1), 123–126 (1997).
    Google Scholar 
    Felicioli, A. Analisi spazio-temporale dell’attività motoria in Hystrix cristata L. Dissertation, University of Pisa (1991).Felicioli, A. & Santini, L. Burrow entrance-hole orientation and first emergence time in the crested porcupine Hystrix cristata L.: Space-time dependence on sunset. Pol. Ecol. Stud. 20(3–4), 317–321 (1994).
    Google Scholar 
    Mori, E., Nourisson, D. H., Lovari, S., Romeo, G. & Sforzi, A. Self-defence may not be enough: Moonlight avoidance in a large, spiny rodent. J. Zool. 294, 31–40 (2014).Article 

    Google Scholar 
    Corsini, M. T., Lovari, S. & Sonnino, S. Temporal activity patterns of crested porcupine Hystrix cristata. J. Zool. Lond. 236, 43–54 (1995).Article 

    Google Scholar 
    Coppola, F., Vecchio, G. & Felicioli, A. Diurnal motor activity and “sunbathing” behaviour in crested porcupine (Hystrix cristata L., 1758). Sci. Rep. 9, 14283 (2019).ADS 
    Article 

    Google Scholar 
    Pigozzi, G. Crested porcupines (Hystrix cristata) within badger setts (Meles meles) in the Maremma Natural Park, Italy. Saugetierk. Mitt. 33, 261–263 (1986).
    Google Scholar 
    Coppola, F. & Felicioli, A. Reproductive behaviour in free-ranging crested-porcupine Hystrix cristata L., 1758. Sci. Rep. 11, 20142. https://doi.org/10.1038/s41598-021-99819-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monetti, L., Massolo, A., Sforzi, A. & Lovari, S. Site selection and fidelity by crested porcupines for denning. Ethol. Ecol. Evol. 17, 149–159 (2005).Article 

    Google Scholar 
    Coppola, F., Dari, C., Vecchio, G., Scarselli, D. & Felicioli, A. Co-habitation of settlements among Crested Porcupines (Hystrix cristata), Red Foxes (Vulpes vulpes) and European Badgers (Meles meles). Curr. Sci. 119(5), 817–822 (2020).Article 

    Google Scholar 
    De Villiers, M. S., Van Aarde, R. J. & Dott, H. M. Habitat utilization by the Cape porcupine Hystrix africaeaustralis in a savanna ecosystem. J. Zool. Lond. 232, 539–549 (1994).Article 

    Google Scholar 
    Corbet, N. U. & de Aarde, R. J. Social organization and space use in the Cape porcupine in a Southern African savanna. Afr. J. Ecol. 34, 1–14 (1996).Article 

    Google Scholar 
    Massolo, A., Dani, F. R. & Bella, N. Sexual and individual cues in the peri-anal gland secretum of crested porcupines (Hystrix cristata). Mamm. Biol. 74, 488–496 (2009).Article 

    Google Scholar 
    Mori, E. & Lovari, S. Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm. Biol. 79, 157–160 (2014).Article 

    Google Scholar 
    Mori, E. et al. Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav. Process. 107, 112–118 (2014).Article 

    Google Scholar 
    Mukherjee, A., Pilakandy, R., Kumara, H. N., Manchi, S. S. & Bhupathy, S. Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India. J. Arid Environ. 141, 7–15 (2017).ADS 
    Article 

    Google Scholar 
    Mukherjee, A., Pal, A., Velankar, A. D., Kumara, H. N. & Bhupathy, S. Stay awhile in my burrow! Interspecific associations of vertebrates to Indian crested porcupine burrows. Ethol. Ecol. Evol. 3(4), 313–328 (2019).Article 

    Google Scholar 
    Fernandez, N. & Palomares, F. The selection of breeding dens by the endangered Iberian lynx (Lynx pardinus): Implications for its conservation. Biol. Conserv. 94, 51–61 (2000).Article 

    Google Scholar 
    Ross, S., Kamnitzer, R., Munkhtsog, B. & Harris, S. Den-site selection is critical for Pallas’s cats (Otocolobus manul). Can. J. Zool. 88(9), 905–913. https://doi.org/10.1139/Z10-056 (2010).Article 

    Google Scholar 
    Libal, N. S., Belant, J. L., Leopold, B. D., Wang, G. & Owen, A. Despotism and risk of infanticide influence grizzly bear den-site selection. PLoS ONE 6(9), e24133. https://doi.org/10.1371/journal.pone.0024133 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbroch, L. M., Lendrum, P. E. & Quigley, H. Cougar den site selection in the Southern Yellowstone ecosystem. Mamm. Res. 60, 89–96. https://doi.org/10.1007/s13364-015-0212-6 (2015).Article 

    Google Scholar 
    Solomon, N. G., Christiansen, A. M., Kirk Lin, Y. & Hayes, L. D. Factors affecting nest location of prairie voles (Microtus ochrogaster). J. Mammal. 86(3), 555–560 (2005).Article 

    Google Scholar 
    Pereoglou, F. et al. Refuge site selection by the eastern chestnut mouse in recently burnt heath. Wildl. Res. 38(4), 290–298. https://doi.org/10.1071/WR11007 (2011).Article 

    Google Scholar 
    Grazzini, M. T. Comportamento riproduttivo e accrescimento post-natale in Hystrix cristata L. (Rodentia, Hystricidae). Dissertation, University of Pisa (1992).Capizzi, D. & Santini, L. Hystrix cristata Linnaeus, 1758. In Fauna d’Italia, Mammalia II: Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia (eds Amori, G. et al.) 695–706 (Edizione Calderini de il Sole 24 Ore, 2008).
    Google Scholar 
    Coppola, F. New knowledge tools for crested porcupine (Hystrix cristata L., 1758) management in the wild: First census model, new behavioural ecology aspects and preliminary investigation on health status. University of Pisa, PhD thesis (2021).Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    Wood, S. N. A simple test for random effects in regression models. Biometrika 100, 1005–1010 (2013).MathSciNet 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar  More

  • in

    Small brains predisposed Late Quaternary mammals to extinction

    Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1984).Waguespack, N. M. & Surovell, T. A. Clovis hunting strategies, or how to make out on plentiful resources. Am. Antiq. 68, 333–352 (2003).
    Google Scholar 
    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl. Acad. Sci. 113, 886–891 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Martin, P. S. Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution (eds. Martin, P. S. & Klein, R. G.) 355–403 (University of Arizona Press, 1984).Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern. Int. 217, 10–29 (2010).
    Google Scholar 
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. 109, 4527–4531 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).
    Google Scholar 
    Berger, J., Swenson, J. E. & Persson, I. L. Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science 291, 1036–1039 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. The uncertain blitzkrieg of Pleistocene megafauna. J. Biogeogr. 31, 517–523 (2004).
    Google Scholar 
    Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. London. Ser. B Biol. Sci. 269, 2221–2227 (2002).CAS 

    Google Scholar 
    Bourgon, N. et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. J. Hum. Evol. 161, 103075 (2021).PubMed 

    Google Scholar 
    Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. 117, 28555–28563 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).
    Google Scholar 
    Cardillo, M. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Meiri, S. & Liang, T. Rensch’s rule—Definitions and statistics. Glob. Ecol. Biogeogr. 30, 573–577 (2021).
    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973). https://doi.org/10.2307/4512058.Book 

    Google Scholar 
    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).PubMed 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size in birds is related to traffic accidents. R. Soc. Open Sci. 4, 161040 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92, 446–473 (2017).PubMed 

    Google Scholar 
    Benoit, J. et al. Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic. Sci. Rep. 9, 9323 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size and the risk of getting shot. Biol. Lett. 12, 20160647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Di Febbraro, M. et al. Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. J. Biogeogr. 44, 2828–2838 (2017).
    Google Scholar 
    Morris, S. D., Kearney, M. R., Johnson, C. N. & Brook, B. W. Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sacrophilus harrisii from mainland Australia? Ecography 2022, (2022).Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).
    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 

    Google Scholar 
    Barton, R. A. & Capellini, I. Maternal investment, life histories, and the costs of brain growth in mammals. Proc. Natl. Acad. Sci. U.S.A. 108, 6169–6174 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Abelson, E. S. Brain size is correlated with endangerment status in mammals. Proc. R. Soc. B Biol. Sci. 283, 20152772 (2016).
    Google Scholar 
    Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution (N.Y.) 70, 1364–1375 (2016).
    Google Scholar 
    Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).
    Google Scholar 
    Billet, G. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9, 481–497 (2011).
    Google Scholar 
    Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B Biol. Sci. 272, 2305–2311 (2005).
    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 

    Google Scholar 
    Abelson, E. S. Big brains reduce extinction risk in Carnivora. Oecologia 191, 721–729 (2019).PubMed 
    ADS 

    Google Scholar 
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117, 7871–7878 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences 107, 21582–21586 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, S. J. & Vrba, E. S. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 306, 70–75 (2004).Article 
    PubMed 

    Google Scholar 
    Profico, A., Buzi, C., Melchionna, M., Veneziano, A. & Raia, P. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes. Am. J. Phys. Anthropol. 172, 511–515 (2020).PubMed 

    Google Scholar 
    Damuth, J. & Macfadden, B. J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications (Cambridge University Press, 1990).
    Google Scholar 
    Zagwijn, W. H. The beginning of the Ice Age in Europe and its major subdivisions. Quatern. Sci. Rev. 11, 583–591 (1992).ADS 

    Google Scholar 
    Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quatern. Sci. Rev. 26, 2090–2112 (2007).ADS 

    Google Scholar 
    Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).PubMed 

    Google Scholar 
    Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2021).
    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Fromm, A., Meiri, S. & McGuire, J. Big, flightless, insular and dead: Characterising the extinct birds of the Quaternary. J. Biogeogr. 48(9), 2350–2359. https://doi.org/10.1111/jbi.14206 (2021).Article 

    Google Scholar 
    Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).
    Google Scholar 
    Larramendi, A. & Palombo, M. R. Body Size, Structure, Biology and Encephalization Quotient of Palaeoloxodon ex gr. P. falconeri from Spinagallo Cave (Hyblean plateau, Sicily). Hystrix, the Italian Journal of Mammalogy 26, 102–109 (2015).Article 

    Google Scholar 
    Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: Size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).
    Google Scholar 
    Tracy, C. R. & George, T. L. On the determinants of extinction. Am. Nat. 139, 102–122 (1992).
    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).CAS 
    ADS 

    Google Scholar 
    Turvey, S. T. In the shadow of the megafauna: prehistoric mammal and bird extinctions across the Holocene. in Holocene Extinctions 17–40 (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199535095.003.0002Ebinger, P. A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift für Anat. und Entwicklungsgeschichte 144, 267–302 (1974).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Welche quantitativen beziehungen bestehen bei säugetieren zwischen schädelkapazität und hirnvolumen? Mammalian Biology 66, 102–110 (2001).Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004).PubMed 

    Google Scholar 
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
    Google Scholar 
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Raia, P. & Meiri, S. The tempo and mode of evolution: Body sizes of island mammals. Evolution 65, 1927–1934 (2011).

    Google Scholar 
    Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution 67, 3339–3353 (2013).
    PubMed 

    Google Scholar 
    Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: An r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
    Google Scholar 
    Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biological Journal of the Linnean Society 129, 14–25 (2020).Article 

    Google Scholar 
    Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686 (2019).Barton, K. Package ‘MuMIn’ Title Multi-Model Inference. CRAN-R (2018). More

  • in

    Tropical tree growth driven by dry-season climate variability

    Forest Ecology and Forest Management Group, Wageningen University, Wageningen, the NetherlandsPieter A. Zuidema & Ute Sass-KlaassenSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USAFlurin BabstLaboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USAFlurin Babst, Valerie Trouet, Zakia Hassan Khamisi, Paul R. Sheppard & Ramzi TouchanDepartment of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, BrazilPeter Groenendijk & José Roberto Vieira AragãoWorld Agroforestry Centre (ICRAF), Addis Ababa, EthiopiaAbrham AbiyuDepartment of Microbiology and Parasitology, Universidad Nacional Autónoma de México, Mexico City, MexicoRodolfo Acuña-SotoLaboratory of Protection and Forest Management, Department of Forest Engineering, Universidade Regional de Blumenau, Santa Catarina, BrazilEduardo Adenesky-FilhoDepartment of Biology, Wilfrid Laurier University, Waterloo, Ontario, CanadaRaquel Alfaro-SánchezDepartment of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, BrazilGabriel Assis-Pereira, Claudia Fontana & Mario Tomazello-FilhoTree-Ring Laboratory, Forest Science Department, Federal University of Lavras, Lavras, BrazilGabriel Assis-Pereira & Ana Carolina BarbosaCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, ChinaXue Bai, Ze-Xin Fan, Shankar Panthi & Zhe-Kun ZhouDepartment of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, ItalyGiovanna BattipagliaService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Camille Couralet & Benjamin ToirambeBrazilian Agricultural Research Corporation (Embrapa), Embrapa Forestry, Colombo, BrazilPaulo Cesar BotossoU.S. Department of Agriculture, Forest Service, NWCG Member Agency, Washington, DC, USATim BradleyInstitute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, GermanyAchim Bräuning, Mahmuda Islam, Mulugeta Mokria & Mizanur RahmanSchool of Geography, University of Leeds, Leeds, UKRoel Brienen & Emanuel GloorLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USABrendan M. Buckley & Rosanne D’ArrigoInstituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, SpainJ. Julio CamareroCentre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, PortugalAna Carvalho & Cristina NabaisDepartment of Botany, Institute of Biosciences, University of São Paulo, São Paulo, BrazilGregório Ceccantini, Bruno Barçante Ladvocat Cintra & Giuliano Maselli LocosselliInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaría en Relación Agua-Suelo-Planta-Atmósfera (CENID-RASPA), Gómez Palacio, MéxicoLibrado R. Centeno-Erguera, Julián Cerano-Paredes & Jose Villanueva-DiazInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Centro – Altos de Jalisco, Tepatitlán de Morelos, MéxicoÁlvaro Agustín Chávez-DuránDepartment of Geosciences, University of Arkansas, Fayetteville, AR, USAMalcolm K. Cleaveland & Daniela Granato-SouzaDepartment of Forest Sciences, Universidad Nacional de Colombia – Sede Medellín, Medellín, ColombiaJorge Ignacio del ValleMaster School for Carpentry and Cabinetmaking, Ebern, GermanyOliver DünischDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian J. EnquistSanta Fe Institute, Santa Fe, NM, USABrian J. EnquistDepartment of Biological Sciences, University of Joinville Region ‐ UNIVILLE, Joinville, BrazilKarin Esemann-QuadrosPostgraduate Program in Forestry, Regional University of Blumenau – FURB, Blumenau, BrazilKarin Esemann-QuadrosCollege of Life Science, Climate Science Center and Department of Earth Science, Addis Ababa University, Addis Ababa, EthiopiaZewdu EshetuDepartamento de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Mendoza, ArgentinaM. Eugenia Ferrero, Lidio Lopez, Fidel Alejandro Roig & Ricardo VillalbaLaboratorio de Dendrocronología, Universidad Continental, Huancayo, PerúM. Eugenia Ferrero, Janet G. Inga & Edilson Jimmy Requena-RojasDepartment of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling, Göttingen University, Göttingen, GermanyEsther FichtlerInstitute of Pacific Islands Forestry, USDA Forest Service Pacific Southwest Research Station, Hilo, HI, USAKainana S. Francisco & Mulugeta MokriaWorld Agroforestry Centre (ICRAF), Nairobi, KenyaAster GebrekirstosFlanders Heritage Agency, Brussels, BelgiumKristof HanecaDepartment of Geography and Geological Sciences, University of Idaho, Moscow, ID, USAGrant Logan HarleyGerman Archaeological Institute DAI, Berlin, GermanyIngo HeinrichGeography Department, Humboldt University Berlin, Berlin, GermanyIngo HeinrichGFZ German Research Centre for Geosciences, Potsdam, GermanyIngo Heinrich & Gerd HelleDepartment of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, BangladeshMahmuda Islam & Mizanur RahmanFaculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech RepublicYu-mei JiangUS Fish and Wildlife Service, Albuquerque, NM, USAMark KaibDepartment of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiCentre for Climate Change Research, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiWater Systems and Global Change Group, Wageningen University and Research, Wageningen, the NetherlandsBart KruijtInstituto Nacional de Innovación Agraria, Programa Nacional de Investigación Forestal, Huancayo, PerúEva LaymeEnvironmental Systems Analysis Group, Wageningen University and Research, Wageningen, the NetherlandsRik LeemansDepartment of Natural Resource Management, South Dakota State University, Brookings, USA, SDA. Joshua LefflerLaboratory of Plant Anatomy and Dendrochronology, Department of Biology, Universidade Federal de Sergipe, Sergipe, BrazilClaudio Sergio Lisi, Mariana Alves Pagotto & Adauto de Souza Ribeiro Department of Geography, Swansea University, Swansea, UKNeil J. Loader & Iain RobertsonDepartamento Forestal, Universidad Autónoma Agraria Antonio Narro, Saltillo, MexicoMaría I. López-HernándezCITAB – Department of Forestry Sciences and Landscape (CIFAP), University of Trás-os-Montes and Alto Douro, Vila Real, PortugalJosé Luís Penetra Cerveira LousadaEscuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, ColombiaHooz A. MendivelsoBrazilian Agricultural Research Corporation (Embrapa), Embrapa Amazônia Ocidental, Manaus, BrazilValdinez Ribeiro MontóiaIHE Delft, Delft, the NetherlandsEddy MoorsVU University Amsterdam, Amsterdam, the NetherlandsEddy MoorsDepartment of Biomaterials Science and Technology, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaJustine NgomaLaboratory of Ecology and Dendrology of the Federal Institute of Sergipe, São Cristovão, BrazilFrancisco de Carvalho Nogueira JúniorLaboratory of Plant Ecology, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, BrazilJuliano Morales Oliveira & Gabriela Morais OlmedoBIOAPLIC, Departamento de Botánica, Universidade de Santiago de Compostela, EPSE, Lugo, SpainGonzalo Pérez-De-LisLaboratorio de Dendrocronología, Carrera de Ingeniería Forestal, Universidad Nacional de Loja, Loja, EcuadorDarwin Pucha-CofrepFaculty of Environment and Resource studies, Mahidol University, Nakhon Pathom, ThailandNathsuda PumijumnongFacultad de Ciencias Agrarias, Universidad del Cauca, Popayán, ColombiaJorge Andres RamirezHémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Santiago, ChileFidel Alejandro Roig & Alejandro Venegas-GonzálezInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro de Investigación Regional Pacífico Centro – Campo Experimental, Centro Altos de Jalisco, MéxicoErnesto Alonso Rubio-CamachoNational Institute for Amazon Research, Petrópolis, Manaus, BrazilJochen SchöngartDepartment of Earth Sciences, Freie Universität Berlin, Berlin, GermanyFranziska SlottaDepartment of Earth and Environmental Systems, Indiana State University, Terre Haute, IN, USAJames H. SpeerDepartment of Geography, University of Alabama, Tuscaloosa, AL, USAMatthew D. TherrellDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USAMax C. A. TorbensonDepartment of Geography, Johannes Gutenberg University, Mainz, GermanyMax C. A. TorbensonDepartment of Plant and Environmental Sciences, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaRoyd VinyaForest and Nature Management, Van Hall Larenstein University of Applied Sciences, Velp, the NetherlandsMart VlamSchool of Teacher Training for Secondary Education Tilburg, Fontys University of Applied Sciences, Tilburg, the NetherlandsTommy WilsP.A.Z., P.G. and V.T. initiated the tropical tree-ring network; P.A.Z., F.B., P.G. and V.T. designed the study; all co-authors except F.B. contributed tree-ring data; F.B. and P.G. analysed the data, with important contributions from P.A.Z.; P.A.Z. and V.T. wrote the manuscript, with important contributions from F.B. and P.G. All co-authors read and approved the manuscript. More

  • in

    Individual experience as a key to success for the cuckoo catfish brood parasitism

    Study systemThe cuckoo catfish (Synodontis multipunctatus) belongs to the African catfish family Mochokidae. The genus Synodontis, with 131 species distributed across African freshwaters57, gave rise to a small radiation in Lake Tanganyika, with 10 described endemic species58. The taxonomy of the group is not well established59 and we use the name S. multipunctatus as this species is confirmed as a brood parasite30 and the name was used in previous studies4,30,32,37,42. Cuckoo catfish primarily parasitise mouthbrooding cichlids from the tribe Tropheini30, but species from other lineages can also be parasitised59.Experimental designAll experiments took place between January and August 2020 at the Institute of Vertebrate Biology, Czech Republic. Prior to experimental use, fish were housed in mixed-sex groups in tanks equipped with shelter and internal filtration. Cuckoo catfish were F1 generation of commercially imported wild-caught parents (10 pairs). Host cichlids were descendant of wild fish imported from Kalambo, Zambia. Experimental tanks (420 L; length 150 cm, depth 70 cm, height 40 cm) were equipped with internal filtration, fine gravel (2–4 mm diameter), half a clay pot as a shelter on each side of the tank, and one artificial plant in the centre of each tank. Water temperature was maintained at 27 °C (±1 °C) and the dark – light regime was set to 11 h:13 h. In total, we stocked 18 tanks with 4 males and 12 females of the mouthbrooding cichlid Astatotilapia burtoni and introduced 3 cuckoo catfish pairs of one of three different experience levels. Naïve catfish (n = 36 individuals) had no prior experience with cichlids. Experienced catfish (n = 36) were housed together with reproductive cichlids for 12 months prior to the experiment and were age-matched to naïve catfish (5 years old). Highly experienced catfish (n = 36) were raised, coexisted and reproduced with cichlids for 7 years (and were on average 7–8% larger than both naïve and experienced catfish; mean ± SE, naïve: 116.2 ± 1.9 mm, experienced: 117.1 ± 1.5 mm, highly experienced: 125.6 ± 1.4 mm; Linear Model (LM): experienced vs. highly experienced, estimate ± S.E = 8.44 ± 2.29, t = 3.68, P = 0.0004, experienced vs. naïve, estimate ± S.E = −0.94 ± 2.29, t = −0.41, P = 0.681, n = 108). Additionally, both naïve and experienced cuckoo catfish were bred using in-vitro fertilisation32 to avoid cichlid imprinting (i.e., priming with cichlid cues), while highly experienced catfish were bred under natural conditions within the buccal cavities of their hosts. Each experimental tank contained catfish with the same experience level. Due to space limitations, we split the experiment into two consecutive phases with 3 replicate tanks for each treatment within both phases (in total 9 experimental tanks per phase). Between the two experimental phases, host cichlids were placed together and haphazardly assigned to new experimental tanks. During the second phase, we removed some cichlids from the tanks because of injuries caused by their intraspecific aggression (3 males and 3 females in total), and those hosts were not replaced. Over an experimental phase, cuckoo catfish and cichlids freely interacted for 15–16 weeks. During this period, each tank was checked for mouthbrooding cichlids twice each week (Tuesday and Friday). We caught the mouthbrooding females, gently washed the eggs out of their mouths using a jet of water from a Pasteur pipette, measured their body size to the nearest mm, and released them back to their experimental tank. For each female, we counted the number of cichlid eggs and cuckoo catfish eggs (if present). At the end of each experimental phase, we measured body size of all cuckoo catfish to the nearest mm. There was no significant difference between the number of cichlid spawnings between naïve and experienced catfish treatments (Generalised Linear Models with negative binomial error distribution, estimate ± S.E.: −0.093 ± 0.145, z = −0.644, P = 0.519), nor between naïve and highly experienced catfish (estimate ± S.E.: −0.269 ± 0.148, z = −1.810, P = 0.070).Behavioural recordingOver the experimental period, we successfully recorded 18 videos of spawning events (Lamax x3.1 ATLAS cameras; naïve catfish treatment, n = 9; experienced catfish treatment, n = 6; highly experienced catfish treatment, n = 3). One camera was placed near the spawning site approximately 20 cm away from spawning activity and a second camera was placed outside the experimental tank to obtain an overall view. Nine spawnings were recorded from the start (n = 7 naïve catfish experiments and 2 experienced catfish experiments) and nine spawnings were recorded from the timepoint when we recognised ongoing spawning activity (n = 2 naïve, 4 experienced, and 3 highly experienced catfish experiments). From the video footage taken for each spawning, we scored all overt aggression that host cichlids directed towards cuckoo catfish, counted the number of intruding catfish during each distinct cichlid spawning behaviour (i.e., male and female cichlid interact in a repeated succession of quivering and T-positions), measured the delay of intruding catfish to each distinct spawning behaviour (i.e., the time from the start of spawning behaviour until the first catfish directly approaches the spawning cichlids), and recorded the presence or absence of catfish during each spawning behaviour. Additionally, we recorded whether cichlids used the available shelters for spawning as this might have impeded catfish recognition of the spawning activity. When spawning was recorded from the start, scoring started 100 s before we detected the first egg laid (cichlid or cuckoo catfish). When spawning was already ongoing, the scoring started immediately after the cameras were in place. Mounting of the cameras did not interrupt the normal behaviour of cichlids or catfish. For all video footage, scoring ended 100 s after the last male-female interaction within the spawning site. To estimate the duration of male T-positions during spawnings, we measured the time period from the start of male nuzzling near female genital papilla until the female turned around either to collect eggs or start nuzzling near the male´s genital papilla (n = 115 male T-positions from 12 cichlid spawnings).Statistical analysisWe used R v. 3.5.1 (R Development Core Team, 2018) for all statistical analyses. All statistical tests were two-sided. First, we compared body size among the three cuckoo catfish experience levels using a Linear Model with catfish size (mm) as response variable and ‘treatment’ (naïve, experienced, and highly experienced catfish) as predictor variable. Second, we formally tested whether the number of host spawnings varied between the treatment groups (total numbers: naïve = 191 spawnings, experienced = 174 spawnings, highly experienced = 146 spawnings). To obtain an insight into temporal dynamics of cichlid spawning, we calculated the number of cichlid spawnings for each treatment in each quarter of the duration of the experimental period. We fitted a GLM with a negative binomial error distribution (to account for slightly overdispersed data) with the number of cichlid spawnings as the response variable and our treatment groups as predictors.To test how experience with host spawning (treatment) affected cuckoo catfish ability to place their eggs in the care of the host, we compared (1) the number of parasitised cichlid clutches among the three catfish experience groups (prevalence of parasitism), (2) the mean number of catfish eggs introduced into cichlid clutches among the three treatment levels (mean parasite egg abundance, the mean number of catfish eggs calculated across all cichlid broods, (3) mean parasite clutch size (the number of catfish eggs calculated only across parasitised cichlid broods), and examined (4) temporal dynamics of all three measures of parasite success within each treatment group throughout the duration of the experiment.To test for differences in prevalence of parasitism among different cuckoo catfish experience treatments, we applied a Generalised Linear Mixed-effects Model (GLMM, R package glmmTMB)60 with a binomial error distribution. We fitted the occurrence of ‘catfish parasitism’ (1 = yes, 0 = no) as the binary response variable and ‘treatment effect’ (i.e., ‘catfish experience’), ‘time progress of experiment’ (1–113 days) and ‘host female body size’ (in mm) as predictor variables. We additionally fitted an interaction between treatment (‘catfish experience’) and ‘time progress of experiment’ to the model to test whether parasitism rate changed over time at treatment-specific rates. We included tank identity (‘tank ID’) as a random intercept to account for nonindependence of data obtained from the same tank.Next, we tested whether the mean number of parasite eggs that were accepted by host females during one spawning bout differed between catfish experience treatments. We applied two GLMMs (R package glmmTMB)60 with a negative binomial error distribution (i.e., nbinom1) to account for over-dispersed count data. We applied GLMMs on the mean abundance of catfish eggs (across all host clutches) and on mean clutch size of cuckoo catfish using a subset of clutches that were parasitised. For both GLMMs, we included the ‘number of cuckoo catfish eggs per clutch’ as the response variable and treatment (‘catfish experience’), ‘time progress of experiment’, and their interaction as predictor variables. We additionally fitted ‘host female body size’ as a predictor variable because larger female cichlids are capable of laying more eggs and may appear more attractive hosts to cuckoo catfish. Further, a higher number of host eggs may increase the number of opportunities for cuckoo catfish to deposit their own eggs in the host clutch. ‘Tank ID’ was included as random intercept to account for nonindependence of data.To test whether cuckoo catfish presence affected cichlid spawning activity, we applied a GLMM (R package glmmTMB)60 with Gaussian error distribution (which provided superior model fit compared to Poisson and negative binomial distributions by ‘simulateResiduals’ and ‘testDispersion’ functions in the R package DHARMa)61. We fitted the ‘number of host eggs’ per clutch as the response variable and treatment (‘catfish experience’), ‘host female body size’, ‘time progress of experiment’, and ‘experimental phase’ (1st or 2nd phase) as predictor variables. We also included ‘tank ID’ as random intercept to account for nonindependence of data. The full model further included an interaction between treatment and ‘time progress of experiment’ to accommodate the possibility that host egg numbers may be affected differently across catfish experience treatments over time. As this full model predicted no difference in temporal aspect of host clutch size among treatments (‘catfish experience’: ‘time progress’, experienced: z = 0.92, P = 0.360, highly experienced: z = 1.46, P = 0.143), we subsequently dropped the interaction term from the final model.We used data collected from video footage to investigate whether naïve, experienced and highly experienced cuckoo catfish differed in their response to host spawnings and, additionally, if catfish from the three treatments elicited different host reactions towards them by applying Linear Mixed-effect Models using the R packages lme462 and glmmTMB60. To account for different starting times of recordings, we calculated either the rate of behaviour per minute of observation (i.e., for aggression) or their relative values (i.e., for the number of host courtships that cuckoo catfish missed).First, we tested whether host spawning pairs increased their aggressions towards cuckoo catfish over the experimental period to rule out the presence of host adaptation to cuckoo catfish intrusions, which would interfere with our aim of understanding parasite learning. We fitted a Generalised Linear Mixed-effects Model (GLMM, R package glmmTMB) with a negative binomial error distribution. The number of overt aggressive behaviours that the spawning pair performed towards cuckoo catfish per minute of catfish presence at the spawning site (summed over male and female cichlid) was fitted as the response variable and treatment (‘catfish experience’) as the predictor variable. We further included ‘time progress of experiment’ and ‘experimental phase’ as predictors to account for their possible effect on host aggression. We additionally included ‘tank ID’ as random intercept in the model to account for individual variation in host aggression levels among experimental tanks.To investigate if naïve cuckoo catfish missed more opportunities to parasitise cichlids than experienced and highly experienced catfish, we fitted a GLMM (R package lme4) with a binomial error distribution. We included the proportion of missed spawning behaviours (coded as ‘missed spawnings behaviours’ versus ‘intruded spawning behaviours’, based on count data for each spawning) as the response variable (‘spawnings missed’) and treatment (‘catfish experience’) as a predictor variable. We fitted ‘tank ID’ as a random intercept to the model to account for nonindependence of data within tanks, and we additionally fitted a random intercept based on whether the spawning was covered by a shelter or not (‘sheltered spawn’, yes / no) since spawning in a shelter may have been less apparent to catfish.We tested whether cuckoo catfish experience played a role in the timing of their intrusion to specific spawning behaviours by fitting a GLMM (R package lme4) with a Gamma error distribution to account for a positive skew in the data distribution. We included the mean delay of catfish to the first appearance of cichlid T-position in seconds (‘catfish delay’, see main text and Supplementary Movie 1 for a detailed description of cichlid spawning sequence) as the response variable and ‘catfish experience’ as the predictor variable. We included ‘tank ID’ and ‘sheltered spawn’ as random intercepts.Finally, we fitted a GLMM with a Poisson error distribution to test whether cuckoo catfish learn to synchronise their intrusion behaviour as they gain experience through interactions with their hosts. We included the maximum number of catfish during a specific cichlid spawning behaviour (‘intruder number’, count data) as the response variable and ‘catfish experience’ as the predictor variable. To account for nonindependence of data within experimental tanks and spawnings, we included a random intercept where each spawning was nested within ‘tank ID’ in the model.Ethical complianceResearch adhered to all national and institutional animal care and use guidelines, was administered under permit No. CZ62760203 and was approved by ethical boards of the Institute of Vertebrate Biology and the Czech Academy of Sciences (approval No. 32-2019).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Funding battles stymie ambitious plan to protect global biodiversity

    NEWS
    31 March 2022

    Funding battles stymie ambitious plan to protect global biodiversity

    Researchers are disappointed with the progress — but haven’t lost hope.

    Natasha Gilbert

    Natasha Gilbert

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Scientists are frustrated with countries’ progress towards inking a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled, mostly over financing. Negotiators say they will now have to meet again before a highly anticipated United Nations biodiversity summit later this year, where the deal was to be signed.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the UN Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades because of factors such as climate change, human activity and disease.
    China takes centre stage in global biodiversity push
    The COVID-19 pandemic has already slowed discussions of the deal. Over the past two years, countries’ negotiators met only virtually; the Geneva meeting was the first in-person gathering since the pandemic began. When it ended, Basile van Havre, one of the chairs of the framework negotiations working group, said that because negotiators couldn’t agree on goals, additional discussions will need to take place in June in Nairobi. The convention’s pivotal summit — its Conference of the Parties (COP15) — is expected to be held in Kunming, China, in August and September, but no firm date has been set.Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services in Bonn, Germany, who attended the Geneva gathering, told Nature: “We are leaving the meeting with no quantitative elements. I was hoping for more progress.”Robert Watson, a retired environmental scientist at the University of East Anglia, UK, says the quantitative targets are crucial to conserving biodiversity and monitoring progress towards that goal. He calls on governments to “bite the bullet and negotiate an appropriate deal that both protects and restores biodiversity”.Finance fightMany who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up to negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough. A group of conservation organizations has called for at least $60 billion per year to flow to poorer nations.
    Biodiversity moves beyond counting species
    The consumption habits of wealthy nations are among the key drivers of biodiversity loss. And poorer nations are often home to areas rich in biodiversity, but have fewer means to conserve them.“The most challenging aspect is the amount of financing that wealthy nations are committing to developing nations,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity. “Nations need to up their level of financing to get progress in the COP.”Other nations, particularly low-income ones, probably don’t want to agree “unless they have assurances of resources to allow them to implement the new framework”, Larigauderie says.Countries including Argentina and Brazil are largely responsible for stalling the deal, several sources close to the negotiations told Nature. They asked to remain anonymous because the negotiations are confidential.
    The world’s species are playing musical chairs: how will it end?
    No agreement could be reached even on targets with broad international support, such as protecting at least 30% of the world’s land and seas by 2030. O’Donnell says that just one country blocked agreement on this target, questioning its scientific basis.Van Havre downplayed the lack of progress, saying that the brinksmanship at the meeting was part of a “normal negotiating process”. He told reporters: “We are happy with the progress made.” Further delays ‘unacceptable’A bright spot in the negotiations, van Havre said, was a last-minute “major step forward” in discussions on how to fairly and equitably share the benefits of digital sequence information (DSI). DSI consists of genetic data collected from plants, animals and other organisms.
    Why deforestation and extinctions make pandemics more likely
    When pressed, however, van Havre admitted that the progress was simply an agreement between countries to continue discussing a way forward.Thomas Brooks, chief scientist at the International Union for Conservation of Nature in Gland, Switzerland, says that DSI discussions have actually been fraught. Communities from biodiverse-rich regions where genetic material is collected have little control over the commercialization of the data that come from it, and no way to recoup financial and other benefits, he explains.Like biodiversity financing, DSI rights could hold up negotiations on the overall framework. Low-income countries want a fair and equitable share of the benefits from genetic material that originates in their lands, but rich nations don’t want unnecessary barriers to sharing the information.“We are a long way from a watershed moment, and there remain genuine disagreements,” Brooks says. However, he is optimistic that progress will eventually be made.
    The biodiversity leader who is fighting for nature amid a pandemic
    Some conservation organizations take hope from new provisional language in the deal that calls for halting all human-caused species extinctions. The previous draft of the deal proposed only a reduction in the rate and risk of extinctions, says Paul Todd, an environmental lawyer at the Natural Resources Defense Council, a non-profit group based in New York City.Given how much work governments must do to reach agreement on the deal, Watson says the extra Nairobi meeting is a “logical” move. But he warns: “Any further delay would be unacceptable.”“This isn’t even the hard work,” Todd says. “Implementing the deal will be the real work.”

    doi: https://doi.org/10.1038/d41586-022-00916-8

    Related Articles

    China takes centre stage in global biodiversity push

    The biodiversity leader who is fighting for nature amid a pandemic

    Why deforestation and extinctions make pandemics more likely

    Biodiversity moves beyond counting species

    The battle for the soul of biodiversity

    The world’s species are playing musical chairs: how will it end?

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Climate change

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Biden bids again to boost science spending — but faces long odds
    News 28 MAR 22

    Jobs

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Robustness and Decision Making in Cells and Tissues

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Physical Measurement and Manipulation of Living Systems

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany More