More stories

  • in

    China: protect black soil for biodiversity

    CORRESPONDENCE
    05 April 2022

    China: protect black soil for biodiversity

    Deyi Hou

    0

    Deyi Hou

    Tsinghua University, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    In December 2021, the National People’s Congress of China released a draft law on the protection of black soil, noted for its high humus and nutrient content and strong structure. To align with the post-2020 Global Biodiversity Framework under discussion at the United Nations Biodiversity Conference (COP-15) in Kunming, China, later this year, the soil law and the national action plan on black-soil protection must be strengthened to include specific and measurable requirements for biodiversity protection.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 40 (2022)
    doi: https://doi.org/10.1038/d41586-022-00942-6

    Competing Interests
    The author declares no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Ecology

    Conservation biology

    Sustainability

    Latest on:

    Biodiversity

    Regreening: green is not always gold
    Correspondence 05 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Ecology

    Regreening: green is not always gold
    Correspondence 05 APR 22

    Tropical forests have big climate benefits beyond carbon storage
    News 01 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Jobs

    Junior group leader position in Human immunology, Pathophysiology and Immunotherapy at Inserm-Université Paris Cité Unit 976

    National Institute for Health and Medical Research (INSERM)
    Paris, France

    Senior Assistant Editor

    Elsevier Inc.
    London, Greater London, United Kingdom

    Dean, Gordon W. Davis College of Agricultural Sciences and Natural Resources

    Texas Tech University (TTU)
    Lubbock, TX, United States

    Postdoctoral fellow positions in cancer stem cells, single cell genomics, and tumor immunology

    Houston Methodist in “ affiliation with Weill- Cornell Medical College
    Houston, United States More

  • in

    Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests

    Earth’s forests imperiled by further warmingWe quantified a global-scale hotter-drought fingerprint, representing a global climate signal for years with documented site-specific tree mortality. Climate-induced tree mortality in recent decades under hotter-drought conditions has been documented across forests from a diverse array of boundary conditions, spanning from the tropics to the boreal, from sea level to 3,500 m, and across a four-meter precipitation gradient and 30 °C of mean annual temperature. One reason that the hotter-drought fingerprint is similarly evident in the year prior to reported mortality onset (Fig. 3), as well as largely echoed in the year after, may be due to the imprecise nature of identifying the “onset” and duration of mortality (e.g., visual indications of mortality may lag significantly behind environmental drivers16). In addition, chronic drought conditions commonly span multiple years, cumulatively predisposing eventual, lagged mortality events13,26,27—consistent with our observed “3-year hotter-drier window,” centered on the nominal mortality year (Fig. 3).Our global-scale hotter-drought fingerprint, focused on acute hotter-drought extremes, represents a cohesive signal for climatic drivers of tree die-off in many of Earth’s forests. Other approaches could consider other temporal dimensions of climate signals (e.g., shorter-term heat-wave stress, longer-term chronic drought, changes in seasonal drought duration or timing), which may further improve our understanding of climatic drivers of tree mortality. Ideally, future efforts to harmonize global forest inventory and monitoring methodologies, including their currently-disparate documentation of tree mortality, will reduce the inherent sampling biases (typically favoring northern hemisphere and/or areas adjacent to well-funded research institutions) and presence-only limitations of our present database11.Additionally, we found that many of Earth’s forests may become increasingly imperiled by further warming and drought, as the frequency of lethal climate conditions observed with recently documented global mortality events will accelerate with further warming (Fig. 6d). Although our approach does not reveal the particular detailed mechanistic ecophysiological responses to the hotter drought that are driving mortality for each specific site, it exemplifies the powerful utility and practical potential of empirical approaches that link direct observations of tree mortality from diverse precisely georeferenced locations to observed climate drivers. While multiple emerging lines of evidence indicate that warming puts trees at greater risk under drought conditions9,14,15,19,24,35, the quantitative hotter-drought fingerprint we identified here suggests that further warming may accelerate global forest die-off across many biomes. The impact of this hotter-drought fingerprint is acting on Earth’s forests already, with nearly half a billion trees having died from hotter-drought events in Texas and California alone since 201036,37. In central Europe, hotter drought starting in 2018 has led to extensive dieback of forests that is ongoing—and of yet undetermined magnitude and extent—which could lead to significant ecological transitions38. Other notable global tree mortality events documented during hotter-drought episodes include three pulses of large-tree mortality since 2005 across Amazon basin tropical moist forests39,40, and historically unprecedented hotter-drought-triggered dieback in Jarrah forests of southwest Australia in 20118,19.Individual trees and forest ecosystems may benefit in various ways (e.g., increased water-use efficiency, stored non-structural carbon, etc.) from productivity gains under elevated atmospheric CO222—when soil nutrients and water are not limiting. However, the net effects of increasing CO2 in combination with a changing climate on the mortality of global forests during hotter drought are uncertain4,9,35. In particular, during hotter-drought events, plant uptake of CO2 is limited by the initial closing of stomata—with CO2 uptake eventually blocked as leaves lose turgor, followed by failure of the coupled plant water-and-carbon transport system which may ultimately result in death16,28. Thus, potential amelioration of tree mortality risk by the ~85 ppm atmospheric CO2 increase during the timeframe in our database (1970–2018) might have been overwhelmed by the concurrent increases in temperature during mortality-event years (Fig. 5). This warming presents a triple threat to tree survival in the form of amplified soil drought, atmospheric drought, and heat stress, and our results are consistent with experimental findings that drought and warming can negate or overcome the effects of elevated CO217,18.Earth’s historical forests are especially vulnerableAs the longest-lived organisms on Earth, trees routinely are imbued with historical and cultural significance by human societies, while also persistently sequestering carbon and amplifying local biodiversity for centuries, sometimes millennia. In contrast, extreme climate stress events occur on the scale of days to months to a few years, and in these relatively brief periods, large old trees—exemplars of Earth’s historical forests6—can be especially susceptible to mortality5,41,42,43,44. Forests will certainly persist and thrive over large areas into Earth’s future, but increasingly they will have to rapidly shift in physiological function, morphology, genetics, species composition, structure, and geographic distribution in response to anticipated climate changes. Where the pace of climate change outruns the adaptive or acclimation capacities of historically-dominant tree individuals and species, additional die-off events are likely to occur and some forests may even cease to exist. In particular, the current tree communities of Earth’s historical old-growth forests—which took centuries, sometimes millennia, to grow to structural dominance under now locally-shifted climate conditions—may continue to often be most negatively affected by continued warming and drying4,43, as novel hotter-drought extremes increasingly exceed their range of survivable climate across diverse forested biomes. The expected near-term outcome is simplified tree communities, where more drought- and heat-tolerant species survive, and less tolerant species diminish or perish. In many cases, this may lead to lasting changes in vegetation composition, stature, and spacing, where surviving woody plants in these communities do not maintain or develop the complex canopy structure typical of historical old-growth forests4,9,35,45.Underestimation of tree mortality from hotter droughtsWhile our projections for an increase by up to 140% in the frequency of climate conditions associated with recent forest die-off under +4 °C may seem severe, they are modest in comparison to some current empirical and mechanistic process-based model predictions for catastrophic forest die-off at continental scales under hotter droughts12,14. Our projections for increasing die-offs under further warming are consistent with projections showing the potential for large increases in mortality under future hotter drought12,14,46, although these projections are often limited to single species or single biomes. Even continental-scale projections for up to 40% increases in the frequency of mortality-inducing hotter droughts under ~+2.5 °C since pre-industrial20 are in general agreement with our global analysis’s 20% under +2 °C (Fig. 6d). Further, our projections of increasingly frequent, historically lethal climate conditions for Earth’s forests may be conservative for several reasons:

    (1)

    Requiring that all six climate variables meet or exceed mortality year conditions, concurrently in the same year, is a strong filter. For example, TMAX, VPD, and PDSI all exceed mortality-year conditions under +4 °C in about 4 out of every 5 years (Supplementary Fig. S3), whereas under the same warming scenario, all six metrics exceeded the hotter-drought fingerprint only half as often.

    (2)

    Tree mortality involves diverse disturbance processes that amplify forest die-off in the presence of global warming and hotter droughts4,24,35 but these were excluded in our analysis, including insects44,47, pathogens48, wind40,49, and lightning50. Additionally, anthropogenic warming promotes greater wildfire activity, particularly fire extent and severity in many forests worldwide7,51, driving further declines in some of Earth’s forests. We also have not considered disturbance interactions among these many amplifying and synergistic agents of tree mortality49,52—but conversely, we also acknowledge that thinning from either climate-triggered mortality or these associated synergistic agents, may partially buffer against future losses35,45.

    (3)

    Our findings indicate that climate anomalies of tree mortality event years are trending towards ever hotter and drier conditions (Fig. 5, Supplementary Fig. S7), concurrent with any potential ongoing forest acclimation to temperature and/or CO2 fertilization15,22. Yet the potential for tree species to acclimate to ongoing climate warming, even with increasing atmospheric CO2 concentrations, is not unlimited—and when exhausted—forest die-off may rapidly accelerate9,35,53. Since projected warmer climate conditions include unprecedented extremes of hotter drought for which there are no observed analogs, the potential for crossing historically unknown tipping-point climatic stress thresholds may increase, further amplifying tree mortality35.

    (4)

    Our analysis of mortality-year frequency uses monthly climate data, yet important drivers can occur on longer (e.g., drought26), and shorter (e.g., heatwave8,19) timescales. For example, the 4-year-prior signal of cooler/wetter climate (Fig. 3) may reflect favorable pre-drought conditions promoting structural overshoot of trees, which could amplify dieback and mortality risk during subsequent years of hotter drought45.

    Roadmap for research enabled by a quantitative ground-based global databaseThe widespread global coherence of our empirically quantified hotter-drought fingerprint may provide immediate opportunities to validate projections of tree mortality in existing models of the Earth system, while also enabling diverse future analyses. Although global in geographic extent, our database is limited by the availability of peer-reviewed, ground-based empirical studies of climate-induced tree mortality, and thus only sparsely covers some regions, particularly large portions of boreal and tropical forests. For example, our hotter-drought fingerprint was consistent across all biomes except the tropical rainforest (Fig. 4)—despite published direct observations of hotter drought as a driver of tree mortality at these tropical rainforest sites39,40. Additionally, this biome may experience pulses of tree mortality in response to different climate fingerprints, particularly involving longer-duration dry seasons—not just intensified single monthly extremes.Despite this and some other limitations, our database represents a globally-distributed dataset with precisely geo-referenced sites where ground-based heat- and drought-induced tree mortality has been documented. Our use of this database to quantify a global hotter-drought fingerprint of tree mortality illustrates the potential for rapid progress in empirical modeling of forest mortality drivers and thresholds at spatial scales from local to global, where direct observations of forest responses to climate stress can help identify and quantify mortality drivers. Toward the goal of fostering further rapid community development of many more such direct observational records of climate-induced forest stress and tree mortality worldwide—with methods ranging from local ground-based sites to synoptic remote-sensing—this database immediately will be served as an open-access resource at the International Tree Mortality Network (https://www.tree-mortality.net), an academic networking initiative associated with the International Union of Forest Research Organizations’ (IUFRO) task force on monitoring global tree mortality patterns and trends (https://www.iufro.org/science/task-forces/tree-mortality-patterns). The complete database—along with an interactive version of Fig. 1 from this paper—will allow users to zoom in on dense plot networks, with direct links to the supporting literature for each point. This online database includes the reference for each plot, its precise coordinates, dominant species, associated biotic agents, and the year of mortality onset. To further update and rapidly increase the quantity and spatial representativeness of global tree mortality observations, ongoing online contributions from diverse observer groups, ranging from practicing foresters and field ecologists to remote-sensing scientists, can be integrated into the website in near-real-time via a user-friendly entry form.As the only global set of ground-truthed observations of drought- and heat-induced tree mortality, this database can immediately aid in validating remote-sensing technologies for eventual synoptic monitoring in near-real-time of tree mortality (which could then feedback into the database). Additional groups to benefit from the database are those interested in climate and physiological mechanisms of tree mortality, including the connected fates of all forest-dependent life5,19, with an aim toward improving the representation of climate-induced tree mortality representations in Earth system models. Related future research opportunities associated with this initial online database include:

    (1)

    Identify additional chronic (e.g., seasonal to decadal) and acute (daily to weekly) climatic signals of tree mortality, including thorough analyses that quantitatively consider antecedent and lagging factors, and duration and seasonality of drought stress;

    (2)

    Synthesize mortality observations from extensive forestry plot inventory networks, to increase spatial representation for the global climate signal of tree mortality, and to identify where during these events trees did not die-off;

    (3)

    Apply remote-sensing approaches to mortality detection using this spatially precise (and in some places plot-dense) database for ground-truthing, to determine the full spatial extent of known mortality events, and aid in ongoing monitoring of forest stress and tree mortality events in near-real-time;

    (4)

    Benchmark state-of-the-art Earth system models via hindcasting, to assess the accuracy of tree mortality event representation—and to do so across spatial resolutions (as in Supplementary Fig. S4) at which these planetary models operate;

    (5)

    Develop approaches to understand potentially unique features and drivers of hotter-drought mortality in tropical rainforests (differing climate signals, e.g., extended dry seasons, where warming/drying of typically moderate shoulder seasons may matter more than intensified single-month extremes), the single biome in which our global approach did not reveal a strong hotter-drought fingerprint;

    (6)

    Investigate how the severity of forest die-off events will respond to further warming; and

    (7)

    Invest in monitoring, documenting, and gathering mortality data for forests under-represented in this initial global database—especially in the extensive critical carbon sinks of boreal forests and tropical rainforests.

    Future challenges for Earth’s forests and societies under hotter droughtIn conclusion, our findings reveal the emergence of a global acceleration of lethal climate conditions, associated with recent forest mortality events, under further warming. Earth’s historical forests in particular face a challenging future, including dramatic changes in the extent, composition, age, and structure of these unique and irreplaceable forests, with planetary-scale consequences for biodiversity and the cycling of water and carbon. Our findings both corroborate earlier studies of hotter-drought driven mortality at local to regional scales8,13,19,20,24,36,38 and extend these findings by quantifying the commonality in climate anomalies across this planetary-scale observation-based database of tree die-off. Although forests often are invoked as an important part of the solution to the present global climate crisis, their role as reliable carbon sinks in mitigating climate change depends upon their ability to survive further warming10,22,52—which our global hotter-drought fingerprint identifies as an imminent threat. Our findings show that limiting warming to +2 °C over pre-industrial levels could reduce the frequency of these climate conditions associated with observed tree mortality events to less than half that predicted at +4 °C. Efforts to protect the world’s climate from excessive warming likely will be decisive in determining the future persistence of many of Earth’s forests. More

  • in

    DarkCideS 1.0, a global database for bats in karsts and caves

    The DarkCideS database was initially conceptualised and developed by KCT, JAG, and ACH as part of the “Global Bat Cave Vulnerability and Conservation Mapping Initiative” in 2014, and later with the “Mapping Karst Biodiversity in Yunnan” and the “Southeast Asian Atlas of Biodiversity” projects. The initiative includes developing tools and methods (e.g., the Bat Cave Vulnerability Index14) and synthesis (e.g., the global bat cave vulnerability assessment11) to identify conservation priorities and important bat caves in the tropics. Since 2019, the initiative has expanded and potential collaborators and contributors were invited through scientific conferences (Association for Tropical Biology and Conservation 2018, International Bat Research Conference 2019), social media platforms, and personal correspondences. At present, the database has 36 collaborators from twenty countries on six continents with expertise and research interests in bat conservation. Four main datasets for all known cave-dwelling bats were built for the DarkCideS database version 1.0.Datasets and compilation for species checklistThe first dataset contains taxonomic checklists for all extant cave-dwelling bats species extracted from the expert-based International Union for the Conservation Union (IUCN) Red List database version 2020-1 (Table 1). We screened and included all bat species that were reported to use, roost in, or aggregate in “Caves”, “Underground”, and “Karsts” habitats in any part of their life histories. We also scanned major publicly available bat cave databases from expeditions such as “Bats in China” (http://www.bio.bris.ac.uk/research/bats/China/) and UNEP-EUROBATS (https://www.eurobats.org/) for European bats24 for additional information and datasets. In addition, the first dataset contains species ecological traits, distribution range, and threatening processes (Table 1).Table 1 DarkCideS 1.0 includes key traits for all living cave-dwelling bat species (N = 679). General metadata for traits included in the current version of the database: habitat preference, ecological status, feeding groups, geographical range, island endemism, geopolitical endemism, distribution range, biogeographical breadth, generation length, body mass, and threatening process.Full size tableInformation per species was pooled from the IUCN Red List versions 2020-125. Species taxonomy was then curated and updated (e.g., synonyms or merged species) using the nomenclature from Simmons and Cirranello12. The “checklist for global cave-dwelling bats” derived from the IUCN Red List includes 679 species. Meanwhile, the DarkCideS 1.0 dataset contains occurrence data for 402 species from 16 families representing 59% of all cave-dwelling species11 (Fig. 2). We found a marginally significant relationship between the species richness and proportion of threatened species between the IUCN-based global cave-dwelling bat and DarkCideS datasets (Kendall’s τ b = 0.60, P = 0.07). The highest completeness of sampled species is in the Neotropics (67.38%) and Indomalayan region (66.08%), and the greatest gaps are in Austral-Oceania (40.28%). Highest endemism was recorded in Austral-Oceania (58.62%) (χ2 = 227.32, df = 5, P  More

  • in

    Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the World’s Marine Ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).ADS 

    Google Scholar 
    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthropocene. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    Leslie, H. M. A synthesis of marine conservation planning approaches. Conserv. Biol. 19, 1701–1713 (2005).
    Google Scholar 
    Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).
    Google Scholar 
    Manea, E., Bianchelli, S., Fanelli, E., Danovaro, R. & Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 715, 136884 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Aylesworth, L., Phoonsawat, R., Suvanachai, P. & Vincent, A. C. J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 26, 383–399 (2017).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).
    Google Scholar 
    James, N. P., Ginsburg, R. N. & Ginsburg, R. N. The Seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution, and Late Quaternary History (Blackwell Scientific, 1979).
    Google Scholar 
    Ginsburg, R. N., Harris, P. M., Eberli, G. P. & Swart, P. K. The growth potential of a bypass margin, Great Bahama Bank. J. Sediment. Res. 61, 976–987 (1991).
    Google Scholar 
    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems. Coral Reefs of the World (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_1.Chapter 

    Google Scholar 
    Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
    Google Scholar 
    Hinderstein, L. M. et al. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 29, 247–251 (2010).ADS 

    Google Scholar 
    J. A. Turner, D. A. Andradi-Brown, A. Gori, P. Bongaerts, H. L. Burdett, C. Ferrier-Pagès, C. R. Voolstra, D. K. Weinstein, T. C. L. Bridge, F. Costantini, E. Gress, J. Laverick, Y. Loya, G. Goodbody-Gringley, S. Rossi, M. L. Taylor, N. Viladrich, J. D. Voss, J. Williams, L. C. Woodall, G. Eyal. in Mesophotic Coral Ecosystems, Coral Reefs of the World, 989–1003 (Y. Loya, K. A. Puglise, T. C. L. Bridge, Eds). (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_52.Baker, E. K., Puglise, K. A., Harris, P. T., United Nations Environment Programme, GRID-Arendal. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? (United Nations Environment Programme and GRID-Arendal, 2016).
    Google Scholar 
    Lang, J. C. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am. Scientist. 62, 272–281 (1974).ADS 

    Google Scholar 
    J. K. Reed. Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. in Proceedings of the 5th International Coral Reef Symposium (1985), Vol. 6, 249–254.Hanisak, M. D. & Blair, S. M. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgolander Meeresunters. 42, 133–163 (1988).
    Google Scholar 
    Aponte, N. E. & Ballantine, D. L. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I 48, 2185–2194 (2001).
    Google Scholar 
    Fricke, H. W., Vareschi, E. & Schlichter, D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73, 371–381 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kahng, S. & Maragos, J. The deepest, zooxanthellate scleractinian corals in the world?. Coral Reefs 25, 254–254 (2006).ADS 

    Google Scholar 
    Maragos, J. E. & Jokiel, P. L. Reef corals of Johnston Atoll: One of the world’s most isolated reefs. Coral Reefs 4, 141–150 (1986).ADS 

    Google Scholar 
    Bridge, T. C. L. et al. Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar. Ecol. Progress Series 428, 63–75 (2011).ADS 

    Google Scholar 
    Lesser, M. P. & Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13, 1855–1868 (2011).
    Google Scholar 
    Slattery, M. & Lesser, M. P. The Bahamas and Cayman Islands. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_3.Chapter 

    Google Scholar 
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41 (2011).
    Google Scholar 
    Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 28, 1403–1416 (2019).
    Google Scholar 
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10, e02839 (2019).
    Google Scholar 
    Laverick, J. H., Green, T. K., Burdett, H. L., Newton, J. & Rogers, A. D. Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki. J. Mar. Biol. Assoc. UK 99, 1535–1546 (2019).
    Google Scholar 
    Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60 (2021).ADS 

    Google Scholar 
    Cerrano, C. et al. Temperate mesophotic ecosystems: Gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).
    Google Scholar 
    Idan, T. et al. Shedding light on an East-Mediterranean mesophotic sponge ground community and the regional sponge fauna. Mediterr. Mar. Sci. 19, 84–106 (2018).
    Google Scholar 
    Idan, T., Goren, L., Shefer, S., Brickner, I. & Ilan, M. Does depth matter? Reproduction pattern plasticity in two common sponge species found in both mesophotic and shallow waters. Front. Mar. Sci. 7, 1078 (2020).
    Google Scholar 
    Enrichetti, F. et al. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS ONE 14, e0223949 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahng, S. E. et al. Coral reefs of the world. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_42 (801–828).Chapter 

    Google Scholar 
    D’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 6, 139–148 (2009).ADS 

    Google Scholar 
    Christaki, U. et al. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences 8, 1839–1852 (2011).ADS 
    CAS 

    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J. & Hernández-Carrasco, I. Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions. Remote Sens. Environ. 215, 7–17 (2018).ADS 

    Google Scholar 
    Tanhua, T. et al. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth Syst. Sci. Data 5, 289–294 (2013).ADS 

    Google Scholar 
    Bethoux, J. P. Budgets of the Mediterranean Sea-their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 2, 157–163 (1979).
    Google Scholar 
    Azov, Y. Eastern Mediterranean—A marine desert?. Mar. Pollut. Bull. 23, 225–232 (1991).
    Google Scholar 
    Pinardi, N., Zavatarelli, M., Arneri, E., Crise, A. & Ravaioli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14, 1243–1330 (2006).
    Google Scholar 
    Rodolfo-Metalpa, R. et al. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob. Change Biol. 21, 2238–2248 (2015).ADS 

    Google Scholar 
    Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Cons. 171, 167–176 (2014).
    Google Scholar 
    Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).
    Google Scholar 
    L. Bramanti, M. C. Benedetti, R. Cupido, S. Cocito, C. Priori, F. Erra, M. Iannelli, G. Santangelo. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 529–548 (S. Rossi, L. Bramanti, A. Gori, C. Orejas Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_13.Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13, e0191346 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Angeletti, L. et al. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 402–411 (2020).
    Google Scholar 
    Angeletti, L. & Taviani, M. Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea. Diversity 12, 92 (2020).
    Google Scholar 
    Castellan, G., Angeletti, L., Taviani, M. & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00692 (2019).Article 

    Google Scholar 
    Corriero, G. et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. 9, 3601 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chimienti, G. Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).
    Google Scholar 
    Gori, A. et al. Animal forests in deep coastal bottoms and continental shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–28 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-17001-5_5-2.Chapter 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean Coast. Front. Mar. Sci. 7, 1245 (2021).
    Google Scholar 
    Santín, A. et al. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep Sea Res. Part I 131, 75–86 (2018).
    Google Scholar 
    Martin, C. S. et al. Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 5073 (2014).CAS 

    Google Scholar 
    D. Basso, L. Babbini, A. A. Ramos-Esplá, M. Salomidi. in Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, 281–298 (R. Riosmena-Rodríguez, W. Nelson, J. Aguirre, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-29315-8_11.Foster, M. M., Amado Filho, G. M., Kamenos, N. A., Riosmena-Rodríguez, R. & Steller, D. L. Rhodoliths and rhodolith beds. Res. Discoveries Revolut. Sci. Through Scuba. 39, 143–155 (2013).
    Google Scholar 
    Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).
    Google Scholar 
    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).
    Google Scholar 
    Smith, T. B. et al. Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U. S. Virgin Islands. Coral Reefs 29, 289–308 (2010).ADS 

    Google Scholar 
    Markager, S. & Sand-Jensen, K. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88, 83–92 (1992).ADS 

    Google Scholar 
    Runcie, J. W., Gurgel, C. F. D. & Mcdermid, K. J. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43, 377–388 (2008).CAS 

    Google Scholar 
    Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).Tweedley, J. R., Warwick, R. M. & Potter, I. C. The contrasting ecology of temperate macrotidal and microtidal estuaries. In Oceanography and Marine Biology: An Annual Review (eds Hughes, R. N. et al.) 73–171 (CRC Press, 2016).
    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change. 8, 338–344 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, N., Krom, M. D., Wu, Y., Yu, D. & Hong, H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ. 628–629, 1108–1120 (2018).ADS 
    PubMed 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Google Scholar 
    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS 

    Google Scholar 
    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 28, 1153–1166 (2018).
    Google Scholar 
    Enrichetti, F. et al. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach. Ecol. Ind. 102, 218–229 (2019).
    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. B. M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Diversity Distributions. 25, 255–268 (2019).
    Google Scholar 
    Mobley, C. D. & Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
    Google Scholar 
    Marty, J.-C. & Chiavérini, J. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Part II 49, 2017–2030 (2002).ADS 
    CAS 

    Google Scholar 
    Morel, A. & André, J.-M. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. Oceans. 96, 12685–12698 (1991).ADS 

    Google Scholar 
    Antoine, D., Morel, A. & André, J.-M. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. Oceans. 100, 16193–16209 (1995).ADS 

    Google Scholar 
    Mayot, N., D’Ortenzio, F., Ribera d’Alcalà, M., Lavigne, H. & Claustre, H. Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences 13, 1901–1917 (2016).ADS 
    CAS 

    Google Scholar 
    S. Kahng, J. M. Copus, D. Wagner. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 185–206 (S. Rossi, L. Bramanti, A. Gori, C. Orejas, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_4.Chimienti, G. et al. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11, 20703 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. D. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol. Evol. 11, 13445–13454 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Danovaro, R. et al. Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Mar. Policy. 112, 103781 (2020).
    Google Scholar 
    Saulquin, B. et al. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233 (2013).ADS 

    Google Scholar 
    Grinyó, J. et al. Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea). Progress Oceanogr. 188, 102435 (2020).
    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).ADS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).ADS 

    Google Scholar 
    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georgian, S. E. et al. Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J. Biogeogr. 47, 1455–1466 (2020).
    Google Scholar 
    R. C. Team, R: A language and environment for statistical computing (3. 5. 1)[Computer software]. R Foundation for Statistical Computing (2020). More

  • in

    A colourful tropical world

    von Humboldt, A. Views of Nature: Or Contemplations on the Sublime Phenomena of Creation (transl. Otté, E. C. & Bohn, H. G.) (Henry G. Bohn, 1850).Cooney, C. R. et al. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01714-1 (2022).Article 

    Google Scholar 
    Hawkins, B. A. et al. J. Biogeogr. 39, 825–841 (2012).Article 

    Google Scholar 
    Pulido-Santacruz, P. & Weir, J. T. Evolution 70, 860–872 (2016).Article 

    Google Scholar 
    Fine, P. V. A. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).Article 

    Google Scholar 
    Storch, D., Bohdalková, E. & Okie, J. Ecol. Lett. 21, 920–937 (2018).Article 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Science 314, 102–106 (2006).CAS 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. Nature 491, 444–448 (2012).CAS 
    Article 

    Google Scholar 
    Kennedy, J. D. et al. J. Biogeogr. 41, 1746–1757 (2014).Article 

    Google Scholar 
    Pontarp, M. et al. Trends Ecol. Evol. 34, 211–223 (2019).Article 

    Google Scholar  More

  • in

    A three-dimensional climate-smart conservation approach in the high seas

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01323-7 (2022). More

  • in

    Restructuring of plankton genomic biogeography in the surface ocean under climate change

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature https://doi.org/10.1038/nature16942 (2016).Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2011GB004099 (2012).Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Saab, M. A. Day-to-day variation in phytoplankton assemblages during spring blooming in a fixed station along the Lebanese coastline. J. Plankton Res. https://doi.org/10.1093/plankt/14.8.1099 (1992).Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. https://doi.org/10.1038/s41467-019-14105-1 (2020).Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsw086 (2016).Longhurst, A. R. Ecological Geography of the Sea (Elsevier, 2007).Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data https://doi.org/10.5194/essd-6-273-2014 (2014).Reygondeau, G. et al. Dynamic biogeochemical provinces in the global ocean. Glob. Biogeochem. Cycles https://doi.org/10.1002/gbc.20089 (2013).Richter, D. J. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. Preprint at bioRxiv https://doi.org/10.1101/867739 (2020).Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences https://doi.org/10.5194/bg-17-609-2020 (2020).Hellweger, F. L., Van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science https://doi.org/10.1126/science.1254421 (2014).Laso-Jadart, R. et al. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol. Evol. https://doi.org/10.1002/ece3.6588 (2020).Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife https://doi.org/10.7554/eLife.46497 (2019).Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. https://doi.org/10.1038/s41467-017-02342-1 (2018).Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell https://doi.org/10.1016/j.cell.2019.10.014 (2019).Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data https://doi.org/10.1038/sdata.2017.93 (2017).Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data https://doi.org/10.1038/sdata.2015.23 (2015).Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001177 (2011).Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. https://doi.org/10.1002/lob.10008 (2015).Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1519080113 (2016).Benedetti, F., Guilhaumon, F., Adloff, F. & Ayata, S. D. Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea. Ecography https://doi.org/10.1111/ecog.02434 (2018).Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science https://doi.org/10.1126/science.1239352 (2013).Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences https://doi.org/10.5194/bg-10-6225-2013 (2013).Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science https://doi.org/10.1126/science.1224836 (2012).Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell https://doi.org/10.1016/j.cell.2019.10.008 (2019).Busseni, G. et al. Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13161 (2020).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. Preprint at bioRxiv https://doi.org/10.1101/2020.10.15.341214 (2020).Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. https://doi.org/10.1038/s41396-021-01135-1 (2021).Boyer, et al. World Ocean Database 2013, NOAA Atlas NESDIS 72 (National Oceanic and Atmospheric Administration, 2013); https://doi.org/10.7289/V5NZ85MTSunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0364-5 (2020).Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0336-3 (2019).van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change https://doi.org/10.1007/s10584-011-0148-z (2011).Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsq198 (2011).Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. https://doi.org/10.1038/s41561-019-0524-2 (2020).Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).Article 

    Google Scholar 
    Wrightson, L. & Tagliabue, A. Quantifying the impact of climate change on marine diazotrophy: insights from Earth system models. Front. Mar. Sci. 7, 635 (2020).Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    Article 

    Google Scholar 
    Luo, Y.-W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).Article 

    Google Scholar 
    Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).Article 

    Google Scholar 
    Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).CAS 
    Article 

    Google Scholar 
    Agrawal, R. & Srikant, R. in Proceedings of the 20th International Conference on Very Large Data Bases (eds Bocca, J. B. et al.) 487–499 (Morgan Kaufmann, 1994).Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4023–4047 (2016).Article 

    Google Scholar 
    Iudicone, D. Some may like it hot. Nat. Geosci. https://doi.org/10.1038/s41561-020-0535-z (2020).Gorsky, G. et al. Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean–atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00750 (2019).Istace, B. et al. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. Gigascience https://doi.org/10.1093/gigascience/giw018 (2017).Grand, M. M. et al. Developing autonomous observing systems for micronutrient trace metals. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00035 (2019).Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R version 3.5.0 https://cran.r-project.org/web/packages/maps/index.html (2021).Jaccard, P. Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bull. Murith. 31, 81–92 (1902).
    Google Scholar 
    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data https://doi.org/10.1038/sdata.2017.39 (2017).Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11 (Flanders Marine Institute, 2019); https://doi.org/10.14284/386Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. https://doi.org/10.5194/gmd-8-2465-2015 (2015).Bibby, T. S. & Moore, C. M. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences https://doi.org/10.5194/bg-8-657-2011 (2011).Brun, P., Kiørboe, T., Licandro, P. & Payne, M. R. The predictive skill of species distribution models for plankton in a changing climate. Glob. Change Biol. https://doi.org/10.1111/gcb.13274 (2016).Redfield, A. C. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 176–192 (Liverpool Univ. Press, 1934).Michelangeli, P. A., Vrac, M. & Loukos, H. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038401 (2009).Ridgeway, G. gbm: Generalized boosted regression models. R version 1.6–3.1 https://cran.r-project.org/web/packages/gbm/gbm.pdf (2010).Breiman, L. & Cutler, A. randomForest: Breiman and Cutler’s random forests for classification and regression. R package 4.1.0 https://www.stat.berkeley.edu/~breiman/RandomForests/ (2012).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. https://doi.org/10.1198/016214504000000980 (2004).Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. https://doi.org/10.1016/j.patrec.2005.10.010 (2006).Biecek, P. DALEX: explainers for complex predictive models. J. Mach. Learn. Res. 19, 1–5 (2018).
    Google Scholar 
    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu172 (2015).Vallejos, C. A. Exploring a world of a thousand dimensions. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0330-9 (2019).Kaufman, L. and Rousseeuw, P.J. in Statistical Data Analysis Based on the L1 Norm and Related Methods (ed. Dodge, Y.) 405–416 (North-Holland, 1987).Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. https://doi.org/10.1016/0377-0427(87)90125-7 (1987).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I https://doi.org/10.1016/0967-0637(95)00021-W (1995).Hubert, L. & Arabie, P. Comparing partitions. J. Classif. https://doi.org/10.1007/BF01908075 (1985).Somerfield, P. J. Identification of the Bray–Curtis similarity index: comment on Yoshioka (2008). Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07841 (2008).Bloom, S. Similarity indices in community studies: potential pitfalls. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps005125 (1981).Welch, B. L. The generalisation of student’s problems when several different population variances are involved. Biometrika 34, 28–35 (1947).CAS 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 
    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).Article 

    Google Scholar 
    Sthle, L. & Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6, 259–272 (1989).Article 

    Google Scholar 
    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).Article 

    Google Scholar 
    Frémont, P. et al. Biogeographies of genomic provinces from ‘Restructuring of plankton genomic biogeography in the surface ocean under climate change’. figshare. https://figshare.com/articles/dataset/Biogeographies_genomic_provinces/19071620 (2022). More

  • in

    Latitudinal gradients in avian colourfulness

    Darwin, C. R. On the Origin of Species, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).Wallace, A. R. Natural Selection and Tropical Nature: Essays on Descriptive and Theoretical Biology 2nd edn (Macmillan, 1895).Darwin, C. R. A Naturalist’s Voyage Round the World (John Murray, 1913).Wallace, A. R. Colour in nature. Nature 19, 580–581 (1879).
    Google Scholar 
    Dalrymple, R. L. et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 88, 204–224 (2018).
    Google Scholar 
    Adams, J. M., Kang, C. & June-Wells, M. Are tropical butterflies more colorful? Ecol. Res. 29, 685–691 (2014).
    Google Scholar 
    Bailey, S. F. Latitudinal gradients in colors and patterns of passerine birds. Condor 80, 372–381 (1978).
    Google Scholar 
    Wilson, M. F. & Von Neaumann, R. A. Why are neotropical birds more colourful than North American birds? Avicultural Mag. 78, 141–147 (1972).
    Google Scholar 
    Dalrymple, R. L. et al. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 24, 1424–1432 (2015).
    Google Scholar 
    Friedman, N. R. & Remeš, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).
    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).CAS 

    Google Scholar 
    Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).
    Google Scholar 
    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).
    Google Scholar 
    Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).
    Google Scholar 
    Delhey, K. The colour of an avifauna: a quantitative analysis of the colour of Australian birds. Sci. Rep. 5, 18514 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    PubMed Central 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Phil. Soc. 94, 1294–1316 (2019).
    Google Scholar 
    Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature 362, 149–152 (1993).
    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).
    Google Scholar 
    Schemske, D. W. in Speciation and Patterns of Diversity Vol. 12 (eds Butlin, R. et al.) 219–239 (Cambridge Univ. Press, 2009).Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Google Scholar 
    MacArthur, R. H. Patterns of communities in the tropics. Biol. J. Linn. Soc. 1, 19–30 (1969).
    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Cooney, C. R., MacGregor, H. E. A., Seddon, N. & Tobias, J. A. Multi-modal signal evolution in birds: re-assessing a standard proxy for sexual selection. Proc. R. Soc. B 285, 20181557 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    van der Bijl, W. et al. Butterfly dichromatism primarily evolved via Darwin’s, not Wallace’s, model. Evol. Lett. 4, 545–555 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Darwin, C. R. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Galván, I., Negro, J. J., Rodríguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).
    Google Scholar 
    Kiltie, R. A. Scaling of visual acuity with body size in mammals and birds. Funct. Ecol. 14, 226–234 (2000).
    Google Scholar 
    Zahavi, A. & Zahavi, A. The Handicap Principle (Oxford Univ. Press, 1997).Badyaev, A. V. & Hill, G. E. Avian sexual dichromatism in relation to phylogeny and ecology. Annu. Rev. Ecol. Evol. Syst. 34, 27–49 (2003).
    Google Scholar 
    Simpson, R. K., Johnson, M. A. & Murphy, T. G. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers. Proc. R. Soc. B 282, 20150375 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Helferich, G. Humboldt’s Cosmos (Tantor eBooks, 2011).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, Y. et al. Segmenting biological specimens from photos to understand the evolution of UV plumage in passerine birds. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453339 (2021).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder–decoder with atrous separable convolution for semantic image segmentation. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.02611 (2018).Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. in Computational Science and Technology Lecture Notes in Electrical Engineering (eds Alfred, R. et al.) 321–330 (Springer Singapore, 2020).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.5-15 https://CRAN.R-project.org/package=raster (2022).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).
    Google Scholar 
    Stoddard, M. C. et al. Wild hummingbirds discriminate nonspectral colors. Proc. Natl Acad. Sci. USA 117, 15112–15122 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).
    Google Scholar 
    Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105 (2016).
    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).
    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
    Google Scholar 
    Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).CAS 

    Google Scholar 
    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
    Google Scholar 
    Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).
    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/ More