A deep learning-based hybrid model of global terrestrial evaporation
Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).ADS
CAS
PubMed
Google Scholar
Masson-Delmotte, V. et al. Climate change 2021: The physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel of climate change. Global warming of 1.5 C. An IPCC Special Report (2021).Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).ADS
CAS
PubMed
Google Scholar
Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).ADS
PubMed
Google Scholar
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).ADS
CAS
PubMed
Google Scholar
Sippel, S. et al. Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4, 266–286 (2018).
Google Scholar
Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).ADS
CAS
PubMed
Google Scholar
Vicente-Serrano, S. M., Beguería, S. & L`ópez-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
Google Scholar
Anderson, M. C. et al. The evaporative stress index as an indicator of agricultural drought in brazil: an assessment based on crop yield impacts. Remote Sens. Environ. 174, 82–99 (2016).ADS
Google Scholar
Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).ADS
Google Scholar
Kalma, J. D., McVicar, T. R. & McCabe, M. F. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv. Geophys. 29, 421–469 (2008).ADS
Google Scholar
Melton, F. S. et al. Openet: Filling a critical data gap in water management for the western united states. JAWRA Journal of the American Water Resources Association (2021). https://onlinelibrary.wiley.com/doi/abs/10.1111/1752-1688.12956. https://onlinelibrary.wiley.com/doi/pdf/10.1111/1752-1688.12956.Lawrence, D. M. et al. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Modeling Earth Syst. 11, 4245–4287 (2019).ADS
Google Scholar
Niu, G.-Y. et al. The community noah land surface model with multiparameterization options (noah-mp): 1. model description and evaluation with local-scale measurements. J. Geophys. Res.: Atmosph. 116 (2011). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD015139.Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).ADS
Google Scholar
Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land-atmosphere water flux based on monthly avhrr and islscp-ii data, validated at 16 fluxnet sites. Remote Sens. Environ. 112, 901–919 (2008).ADS
Google Scholar
Mu, Q., Zhao, M. & Running, S. W. Improvements to a modis global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).ADS
Google Scholar
Mueller, B. & Seneviratne, S. I. Systematic land climate and evapotranspiration biases in cmip5 simulations. Geophys. Res. Lett. 41, 128–134 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
Koppa, A., Alam, S., Miralles, D. G. & Gebremichael, M. Budyko-based long-term water and energy balance closure in global watersheds from earth observations. Water Resour. Res. 57, e2020WR028658 (2021).ADS
PubMed
PubMed Central
Google Scholar
Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).ADS
Google Scholar
Penman, H. L. & Keen, B. A. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 193, 120–145 (1948).ADS
CAS
Google Scholar
Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev. 100, 81–92 (1972).
Google Scholar
Maes, W. H., Gentine, P., Verhoest, N. E. C. & Miralles, D. G. Potential evaporation at eddy-covariance sites across the globe. Hydrol. Earth Syst. Sci. 23, 925–948 (2019).ADS
Google Scholar
Zhao, W. L. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).ADS
Google Scholar
Miralles, D. G. et al. The wacmos-et project – part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842 (2016).ADS
Google Scholar
Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6 (2020). https://advances.sciencemag.org/content/6/47/eabb7232. https://advances.sciencemag.org/content/6/47/eabb7232.full.pdf.Verhoef, A. & Egea, G. Modeling plant transpiration under limited soil water: Comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric. For. Meteorol. 191, 22–32 (2014).ADS
Google Scholar
Powell, T. L. et al. Confronting model predictions of carbon fluxes with measurements of amazon forests subjected to experimental drought. N. Phytologist 200, 350–365 (2013).
Google Scholar
Wu, X. et al. Parameterization of the water stress reduction function based on soil–plant water relations. Irrig. Sci. 39, 101–122 (2021).
Google Scholar
Zhang, J., Liu, P., Zhang, F. & Song, Q. Cloudnet: Ground-based cloud classification with deep convolutional neural network. Geophys. Res. Lett. 45, 8665–8672 (2018).ADS
Google Scholar
Hengl, T. et al. Soilgrids250m: global gridded soil information based on machine learning. PLoS ONE 12, 1–40 (2017).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS
CAS
PubMed
Google Scholar
Jung, M. et al. The fluxcom ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).PubMed
PubMed Central
Google Scholar
McGovern, A. et al. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Am. Meteorological Soc. 98, 2073–2090 (2017).
Google Scholar
Kratzert, F. et al. Toward improved predictions in ungauged basins: exploiting the power of machine learning. Water Resour. Res. 55, 11344–11354 (2019).ADS
Google Scholar
Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).ADS
CAS
PubMed
Google Scholar
Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).CAS
PubMed
PubMed Central
Google Scholar
de Bézenac, E., Pajot, A. & Gallinari, P. Deep learning for physical processes: incorporating prior scientific knowledge. J. Stat. Mech.: Theory Exp. 2019, 124009 (2019).MathSciNet
MATH
Google Scholar
Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: Fusion of a deep learning approach and a physics-based model for global hydrological modeling. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. XLIII-B2-2020, 1537–1544 (2020).
Google Scholar
Chen, H., Huang, J. J., Dash, S. S., Wei, Y. & Li, H. A hybrid deep learning framework with physical process description for simulation of evapotranspiration. J. Hydrol. 606, 127422 (2022).
Google Scholar
Martens, B. et al. Gleam v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Dev. 10, 1903–1925 (2017).ADS
Google Scholar
Gash, J. H. C. An analytical model of rainfall interception by forests. Q. J. R. Meteorological Soc. 105, 43–55 (1979).ADS
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytologist 226, 1550–1566 (2020).
Google Scholar
Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, e1356534 (2017). PMID: 28786730.PubMed
PubMed Central
Google Scholar
Matthews, J. S. A., Vialet-Chabrand, S. & Lawson, T. Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 71, 2253–2269 (2019).PubMed Central
Google Scholar
Xu, Z., Jiang, Y., Jia, B. & Zhou, G. Elevated-co2 response of stomata and its dependence on environmental factors. Front. Plant Sci. 7, 657 (2016).PubMed
PubMed Central
Google Scholar
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).ADS
CAS
PubMed
Google Scholar
Peng, Y., Bloomfield, K. J., Cernusak, L. A., Domingues, T. F. & Colin Prentice, I. Global climate and nutrient controls of photosynthetic capacity. Commun. Biol. 4, 462 (2021).CAS
PubMed
PubMed Central
Google Scholar
Knoben, W. J. M., Freer, J. E. & Woods, R. A. Technical note: Inherent benchmark or not? comparing nash–sutcliffe and kling–gupta efficiency scores. Hydrol. Earth Syst. Sci. 23, 4323–4331 (2019).ADS
Google Scholar
Pagán, B. R., Maes, W. H., Gentine, P., Martens, B. & Miralles, D. G. Exploring the potential of satellite solar-induced fluorescence to constrain global transpiration estimates. Remote Sens. 11 (2019). https://www.mdpi.com/2072-4292/11/4/413.Jonard, F. et al. Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges. Agric. For. Meteorol. 291, 108088 (2020).ADS
Google Scholar
Bauer, P. et al. The digital revolution of earth-system science. Nat. Comput. Sci. 1, 104–113 (2021).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS
CAS
PubMed
Google Scholar
Pastorello, G. et al. The fluxnet2015 dataset and the oneflux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).PubMed
PubMed Central
Google Scholar
Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).ADS
Google Scholar
Stoy, P. C. et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775 (2019).ADS
CAS
Google Scholar
Poyatos, R. et al. Global transpiration data from sap flow measurements: the sapfluxnet database. Earth Syst. Sci. Data 13, 2607–2649 (2021).ADS
Google Scholar
Falster, D. S. et al. Baad: a biomass and allometry database for woody plants. Ecology 96, 1445–1445 (2015).
Google Scholar
Granier, A. & Loustau, D. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol. 71, 61–81 (1994).ADS
Google Scholar
Aumann, H. et al. Airs/amsu/hsb on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 41, 253–264 (2003).ADS
Google Scholar
Wielicki, B. A. et al. Clouds and the earth’s radiant energy system (ceres): an earth observing system experiment. Bull. Am. Meteorological Soc. 77, 853–868 (1996).ADS
Google Scholar
Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (vodca). Earth Syst. Sci. Data 12, 177–196 (2020).ADS
Google Scholar
Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org.Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).ADS
Google Scholar
Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High-resolution global contiguous sif of oco-2. Geophys. Res. Lett. 46, 1449–1458 (2019).ADS
Google Scholar
Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A Deep learning-based hybrid model of global terrestrial evaporation (2022). https://doi.org/10.5281/zenodo.5886608.Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A Deep learning-based hybrid model of global terrestrial evaporation (2022). https://doi.org/10.5281/zenodo.6343005. More