The evolution of trait variance creates a tension between species diversity and functional diversity
Calow, P. Towards a definition of functional ecology. Funct. Ecol. 1, 57–61 (1987).Article
Google Scholar
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).Article
PubMed
Google Scholar
Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).Article
PubMed
Google Scholar
Dehling, D. M. & Stouffer, D. B. Bringing the Eltonian niche into functional diversity. Oikos 127, 1711–1723 (2018).Article
Google Scholar
Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article
Google Scholar
Leinster, T. & Cobbold, C. A. Measuring diversity: the importance of species similarity. Ecology 93, 477–489 (2012).Article
PubMed
Google Scholar
Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).Article
PubMed
Google Scholar
Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 89, e01343 (2019).ADS
Article
Google Scholar
Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).Article
PubMed
PubMed Central
Google Scholar
Kattge, J., Bönisch, G. & D’iaz, S. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS
Article
Google Scholar
Fajardo, A. & Siefert, A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024–1030 (2018).Article
PubMed
Google Scholar
Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
Google Scholar
Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).CAS
Article
PubMed
Google Scholar
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article
PubMed
Google Scholar
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article
PubMed
PubMed Central
Google Scholar
Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).Article
PubMed
Google Scholar
Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article
Google Scholar
Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS
CAS
Article
PubMed
Google Scholar
Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).Article
PubMed
Google Scholar
Loreau, M. The Challenges of Biodiversity Science. Excellence in Ecology Series (International Ecology Institute, 21385 Oldendorf/Luhe, Germany, 2010).Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. J. Veg. Sci. 24, 921–931 (2013).Article
Google Scholar
Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).Article
PubMed
Google Scholar
Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).Article
PubMed
PubMed Central
Google Scholar
Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).Article
PubMed
PubMed Central
Google Scholar
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article
PubMed
Google Scholar
Mullon, C. & Lehmann, L. An evolutionary quantitative genetics model for phenotypic (co)variance under limited dispersal, with an application to socially synergistic traits. Evolution 73, 1695–1728 (2019).Article
PubMed
Google Scholar
Taper, M. L. & Case, T. J. Quantitative genetic models for the coevolution of character displacement. Ecology 66, 355–371 (1985).Article
Google Scholar
Engen, S., Grotan, V., Saether, B.-E. & Coste, C. F. D. An evolutionary and ecological community model for distribution of phenotypes and abundances among competing species. Am. Natur. 198, 1 (2021). https://doi.org/10.1086/714529.Kohyama, T. & Takada, T. The stratification theory for plant coexistence promoted by one-sided competition. J. Ecol. 97, 463–471 (2009).Article
Google Scholar
Kinzig, A. P., Levin, S. A., Dushoff, J. & Pacala, S. W. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. Am. Nat. 153, 371–383 (1999).CAS
Article
PubMed
Google Scholar
Adler, F. R. & Mosquera, J. Is space necessary? Interference competition and limits to biodiversity. Ecology 81, 3226–3232 (2000).Article
Google Scholar
Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS
Article
Google Scholar
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS
CAS
Article
PubMed
Google Scholar
Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. 174, 898–905 (2009).Article
PubMed
Google Scholar
Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A. Paleogeographic Model of the Galápagos Islands and Biogeographical and Evolutionary Implications. In Geophysical Monograph Series, (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.), chap. 8, 145–166 (2014).Parent, C. E. & Crespi, B. J. Sequential colonization and diversification of Galápagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60, 2311–2328 (2006).CAS
PubMed
Google Scholar
Parent, C. E. Diversification on islands: bulimulid land snails of Galápagos. Ph.D. thesis, Simon Fraser University, Burnaby, Canada (2008).Kraemer, A. C., Roell, Y. E., Shoobs, N. F. & Parent, C. E. Does island ontogeny dictate both the accumulation of species richness and functional diversity? Glob. Ecol. Biogeogr. 31, 123–137 (2021).Kraemer, A. C., Philip, C. W., Rankin, A. M. & Parent, C. E. Trade-offs direct the evolution of coloration in Galápagos land snails. Proc. R. Soc. B 286, 20182278 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Barabás, G. & D’Andrea, R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016).Article
PubMed
Google Scholar
Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).CAS
MATH
Article
PubMed
Google Scholar
Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).Article
Google Scholar
Keddy, P. A. & Shipley, B. Competitive hierarchies in herbaceous plant communities. Oikos 54, 234–241 (1989).Article
Google Scholar
Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 7842 (2015).ADS
CAS
Article
PubMed
Google Scholar
Kandlikar, G. S., Johnson, C. S., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed
Google Scholar
Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).ADS
CAS
Article
PubMed
Google Scholar
Spaak, J. W. & De Laender, F. Effects of pigment richness and size variation on coexistence, richness and function in light limited phytoplankton. J. Ecol. 109, 2385–2394 (2021).Article
Google Scholar
Parain, E. C., Rohr, R. P., Gray, S. M. & Bersier, L.-F. Increased temperature disrupts the biodiversity–ecosystem functioning relationship. Am. Nat. 193, 227–239 (2019).Article
PubMed
Google Scholar
Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article
PubMed
PubMed Central
Google Scholar
Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS
CAS
Article
PubMed
Google Scholar
Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).Article
PubMed
Google Scholar
Bolnick, D. I., Svanbäck, R., Araujo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article
Google Scholar
Goodfriend, G. A. Variation in land-snail shell form and size and its causes: a review. Syst. Biol. 35, 204–223 (1986).Article
Google Scholar
Machin, J. Structural adaptation for reducing water-loss in three species of terrestrial snail. J. Zool. 152, 55–65 (1967).Article
Google Scholar
McMahon, R. F. Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. In Progress in Littorinid and Muricid Biology, 241–260 (Springer, Dordrecht, The Netherlands, 1990).Rees, B. B. & Hand, S. C. Heat dissipation, gas exchange and acid-base status in the land snail oreohelix during short-term estivation. J. Exp. Biol. 152, 77–92 (1990).Article
Google Scholar
Newkirk, G. F. & Doyle, R. W. Genetic analysis of shell-shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30, 227–237 (1975).Article
Google Scholar
Seeley, R. H. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. Natl Acad. Sci. USA 83, 6897–6901 (1986).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmidt-Nielsen, K., Taylor, C. R. & Shkolnik, A. Desert snails: problems of heat, water and food. J. Exp. Biol. 55, 385–398 (1971).CAS
Article
PubMed
Google Scholar
Xavier Jordani, M. et al. Intraspecific and interspecific trait variability in tadpole metacommunitiees from the Brazilian Atlantic rainforest. Ecol. Evol. 9, 4025–4037 (2019).Article
PubMed
PubMed Central
Google Scholar More
