Bauer-Gottwein, P. et al. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 19, 507–524 (2011).ADS
Google Scholar
Back, W., Hanshaw, B. B., Herman, J. S. & van Driel, J. N. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14, 137–140 (1986).ADS
Google Scholar
Coke, J. G. Underwater caves of the Yucatan Peninsula. In Encyclopedia of Caves (ed. Coke, J. G.) (Elsevier, 2019).
Google Scholar
Smart, P. L. et al. Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White Vol. 404 (eds Harmon, R. S. & Wicks, C. M.) (Geological Society of America, 2006).
Google Scholar
Moore, W. S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111 (1999).CAS
Google Scholar
Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. https://doi.org/10.3389/feart.2021.600710 (2021).Article
Google Scholar
Beddows, P. A., Smart, P. L., Whitaker, F. F. & Smith, S. L. Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. J. Hydrol. 346, 18–32 (2007).ADS
Google Scholar
Perry, E., Velazquez-Oliman, G. & Marin, L. The Hydrogeochemistry of the Karst aquifer system of the northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 44, 191 (2002).
Google Scholar
Kovacs, S. E. et al. Hurricane ingrid and tropical storm hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J. Hydrol. 551, 703 (2017).ADS
Google Scholar
Schmitter-Soto, J. J. et al. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467, 215–228 (2002).CAS
Google Scholar
Brankovits, D. et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat. Commun. 8, 1–3 (2017).ADS
CAS
Google Scholar
Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustac. Biol. 35, 511–514 (2015).
Google Scholar
Angyal, D., Simões, N. & Mascaró, M. Uptaded checklist, historical overview and illustrated guide to the stygobiont Malacostraca (Arthropoda: Crustacea) species of Yucatan (Mexico). Subterran. Biol. 36, 83–108 (2020).
Google Scholar
Angyal, D. et al. New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911, 21–49 (2020).PubMed
PubMed Central
Google Scholar
Álvarez, F., Iliffe, T. M., Benítez, S., Brankovits, D. & Villalobos, J. L. New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11, 1–10 (2015).
Google Scholar
van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Holthuis, L. Caridean shrimps found in land-locked saltwater pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zool. Verhandelingen 128, 1–48 (1973).
Google Scholar
Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson. Contrib. Mar. Sci. https://doi.org/10.5479/si.01960768.38.1 (2009).Article
Google Scholar
Calderón-Gutiérrez, F. et al. Mexican anchialine fauna—With emphasis in the high biodiversity cave El Aerolito. Reg. Stud. Mar. Sci. 9, 43–55 (2017).
Google Scholar
Creaser, E. P. Crustaceans from Yucatan. In The Cenotes of Yucatan. A Zoological and Hydrografic Survey (eds Pearse, A. S. et al.) 117–132 (Carnegie Institution of Washington, 1936).
Google Scholar
Botello, A. et al. Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J. Biogeogr. 40, 594–607 (2013).
Google Scholar
Jurado-Rivera, J. A. et al. Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci. Rep. 7, 1–11 (2017).CAS
Google Scholar
SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección eigera—Especies nativas de México de flora y fauna silvestres—Categorías de riesgo y especificaciones para su eigera, eigera o cambio—Lista de especies en riesgo. Diario Oficial de la Federación (2010).Hobbs, H. H. III. & Hobbs, H. H. Jr. On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). Smithson. Contrib. Zool. 240, 1–23 (1976).
Google Scholar
Álvarez, F., Iliffe, T. M. & Villalobos, J. L. New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas, and Honduras. J. Crustac. Biol. 25, 81–94 (2005).
Google Scholar
Chace, F. A. & Manning, R. B. Two new caridean shrimps, one representing a new family, from marine pools on Ascension Island (Crustacea: Decapoda: Natantia). Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.131 (1972).Article
Google Scholar
Buhay, J. E. & Crandall, K. A. Taxonomic revision of cave crayfish in the Genus Cambarus, subgenus Aviticambarus (Decapoda: Cambaridae) with descriptions of two new species, C. speleocoopi and C. laconensis, endemic to Alabama, U.S.A.. J. Crustac. Biol. 29, 121 (2009).
Google Scholar
Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s “wrecks of ancient life” in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).PubMed
Google Scholar
Zakšek, V., Sket, B. & Trontelj, P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Mol. Phylogenet. Evol. 42, 223–235 (2007).PubMed
Google Scholar
Hunter, R. L., Webb, M. S., Iliffe, T. M. & Alvarado Bremer, J. R. Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J. Biogeogr. 35, 65–75 (2008).
Google Scholar
von Rintelen, K. et al. Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Mol. Phylogenet. Evol. 63, 82–96 (2012).
Google Scholar
Bracken, H. D., de Grave, S. & Felder, D. L. Phylogeny of the infraorder caridea based on mitochondrial and nuclear genes (Crustacea). In Decapod Crustacean Phylogenetics (eds Martin, J. W. et al.) (Taylor and Francis/CRC Press, 2009).
Google Scholar
Porter, M. L., Pérez-Losada, M. & Crandall, K. A. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37, 355 (2005).CAS
PubMed
Google Scholar
Webb, M. S. Intraspecific Relationships Among the Stygobitic Shrimp, Typhlatya mitchelli, by Analyzing Sequence Data from Mitochondrial DNA (Texas A&M University, 2003).
Google Scholar
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 36, D25 (2007).PubMed
PubMed Central
Google Scholar
Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43 (2003).CAS
PubMed
Google Scholar
Fritz, U., Vargas-Ramírez, M. & Široký, P. Phylogenetic position of Pelusios williamsi and a critique of current GenBank procedures (Reptilia: Testudines: Pelomedusidae). Amphibia-Reptilia 33, 150 (2012).
Google Scholar
Li, X. et al. Detection of potential problematic Cytb gene sequences of fishes in GenBank. Front. Genet. 9, 30 (2018).PubMed
PubMed Central
Google Scholar
Tixier, M.-S., Hernandes, F. A., Guichou, S. & Kreiter, S. The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr. Syst. 25, 389–406 (2011).CAS
Google Scholar
Vilgalys, R. Taxonomic misidentification in public DNA databases. New Phytol. 160, 4–5 (2003).CAS
PubMed
Google Scholar
Chavez-Diaz, J. M. Variación genética de las especies del genero Typhlatya (Decapoda: Atyidae) en sistemas aquilinos de la eigera de Yucatán, Mexico.Kambesis, P. N. & Coke, J. G. Overview of the controls on Eogenetic Cave and Karst development in Quintana Roo, Mexico. In Coastal Karst Landforms, Coastal Research Library Vol. 5 (eds Lace, M. & Mylroie, J.) (Springer, 2013).
Google Scholar
Benítez, S., Illife, T. M., Quiroz-Martínez, B. & Álvarez, F. How is the anchialine fauna distributed within a cave? A study of the Ox Bel Ha System, Yucatan Peninsula, Mexico. Subterr. Biol. 31, 15–28 (2019).
Google Scholar
Chávez-Solís, E. M., Rosas, C., Rodriguez Fuentes, G. & Mascaró, M. Ecophysiology of cave shrimps (Atyidae: Typhlatya); linking salinity tolerance with distribution patterns in anchialine caves of the Yucatan Peninusla. (In prep).Chávez-Solís, E. M., Solís, C., Simões, N. & Mascaró, M. Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Sci. Rep. 10, 1–16 (2020).
Google Scholar
Sanz, S. & Platvoet, D. New perspectives on the evolution of the genus Typhlatya (Crustacea). Contrib. Zool. 65, 79 (1995).
Google Scholar
Jugovic, J., Prevorčnik, S., Blejec, A. & Sket, B. Morphological differentiation in the cave shrimps Troglocaris (Crustacea: Decapoda: Atyidae) of the Dinaric karst—A consequence of geographical isolation or adaptation?. J. Zool. Syst. Evol. Res. 49, 185–195 (2011).
Google Scholar
Sarda, F. & Demestre, M. Shortening of the Rostrum and Rostral Variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae). J. Crustac. Biol. 9, 570–577 (1989).
Google Scholar
Martin, J. W. & Wicksten, M. K. Review and redescription of the freshwater atyid shrimp Genus Syncaris Holmes, 1900, in California. J. Crustac. Biol. 24, 447 (2004).
Google Scholar
Chace, F. A. Jr. A new cave shrimp from Cuba. Proc. N. Engl. Zoöl. Club 19, 99–102 (1942).
Google Scholar
Buden, D. W. & Fleder, D. L. Cave shrimps in the Caicos Islands. Proc. Biol. Soc. Wash. 90, 108–115 (1975).
Google Scholar
van Hengstum, P. J., Reinhardt, E. G., Beddows, P. A. & Gabriel, J. J. Environmental reconstruction of a Mexican flooded cave system: Evidence for climate—Forced changes to the local freshwater lens. Quat. Sci. Rev. 29, 2788–2798 (2010).ADS
Google Scholar
van Hengstum, P. J., Scott, D. B., Gröcke, D. R. & Charette, M. A. Sea level controls sedimentation and environments in coastal caves and sinkholes. Mar. Geol. 286, 35–50 (2011).ADS
Google Scholar
Gabriel, J. J. et al. Palaeoenvironmental evolution of cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to eigera sea-level rise. J. Paleolimnol. 42, 199–213 (2009).ADS
Google Scholar
Moritsch, M. M., Pakes, M. J. & Lindberg, D. R. How might sea level change affect arthropod biodiversity in anchialine caves: A comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea)?. Org. Divers. Evol. 14, 225–235 (2014).
Google Scholar
Mejía-Ortíz, L. M., Pakes, J., Zarza-González, E., Hartnoll, R. G. & López-Mejía, M. Morphological adaptations to anchialine environments in species of five shrimp families (Barbouria yanezi, Agostocaris bozanici, Procaris eigera, Calliasmata nohochi and Typhlatya pearsei). Crustaceana 86(5), 578–593 (2013).
Google Scholar
Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155, 121 (1988).ADS
Google Scholar
Pitman, W. C. III., Cande, S. C., LaBrecque, J. & Pindell, J. L. Fragmentation of Gondwana: The separation of Africa from South America. In Biological Relationships Between Africa and South America (ed. Goldblatt, P.) 15–34 (Yale University Press, 1993).
Google Scholar
Chakrabarty, P. Systematics and historical biogeography of Greater Antillean Cichlidae. Mol. Phylogenet. Evol. 39, 619–627 (2006).PubMed
Google Scholar
Gonzalez, B. C. et al. Genetic spatial structure of an anchialine cave annelid indicates connectivity within—But not between—Islands of the Great Bahama Bank. Mol. Phylogenet. Evol. 109, 259 (2017).PubMed
Google Scholar
Sommer, M. Late Cretaceous to Miocene Tectonic Reconstruction of the Northwestern Caribbean: Regional Analysis of Cuban Geology (Universität Greifswald, 2009).
Google Scholar
Ramos, E. L. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn, A. E. M. & Stehli, F. G.) (Springer, 1975).
Google Scholar
Hart, C. W., Manning, R. B. & Iliffe, T. M. The fauna of Atlantic marine caves: Evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proc. Biol. Soc. Wash 98, 288–292 (1985).
Google Scholar
Craft, J. D. et al. Islands under islands: The phylogeography and evolution of Halocaridina rubra Holthuis, 1963 (Crustacean: Decapoda: Atyidae) in the Hawaiian archipelago. Limnol. Oceanogr. 53, 675 (2008).ADS
Google Scholar
Vázquez-Domínguez, E. & Arita, H. T. The Yucatan peninsula: Biogeographical history 65 million years in the making. Ecography 33(2), 212–2019 (2010).
Google Scholar
Quintana Roo Speleological Survey (2022). https://caves.org/project/qrss/qrlong.htm.Sommer, M. Late Cretaceous to Miocene tectonic reconstruction of the northwestern Caribbean: regional analysis of Cuban geology. Universität Greifswald. (2009).Gold, D. P. et al. The biostratigraphic record of Cretaceous to Paleogene tectono-eustatic relative sea-level change in Jamaica. J. S. Am. Earth Sci. https://doi.org/10.1016/j.jsames.2018.06.011 (2018).Article
Google Scholar
Suárez-Morales, E. Historical biogeography and distribution of the freshwater calanoid copepods (Crustacea: Copepoda) of the Yucatan Peninsula Mexico. J. Biogeogr. 30, 1851 (2003).
Google Scholar
Suarez-Morales, E., Reid, J. W., Fiers, F. & Iliffe, T. M. Historical biogeography and distribution of the freshwater cyclopine copepods (Copepoda, Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. J. Biogeogr. 31, 1051 (2004).
Google Scholar
Arroyave, J., Martinez, C. M., Martínez-Oriol, F. H., Sosa, E. & Alter, S. E. Regional-scale aquifer hydrogeology as a driver of phylogeographic structure in the Neotropical catfish Rhamdia guatemalensis (Siluriformes: Heptapteridae) from cenotes of the Yucatán Peninsula, Mexico. Freshw. Biol. 66, 332–348 (2021).CAS
Google Scholar
Guimarais, M. et al. The conservational state of coastal ecosystems on the mexican caribbean coast: Environmental guidelines for their management. Sustainability 13, 2738 (2021).
Google Scholar
Hillebrand, H., Jacob, U. & Leslie, H. M. Integrative research perspectives on marine conservation. Philos. Trans. R. Soc. B 375, 20190444 (2020).
Google Scholar
Price, S. A. & Schmitz, L. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos. Trans. R. Soc. B 371, 20150228 (2016).CAS
Google Scholar
IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-1 (2021). https://www.iucnredlist.org.Kantun Manzano, C., Arcega-Cabrera, F., Derrien, M., Noreña-Barroso, E. & Herrera-Silveira, J. Submerged groundwater discharges as source of fecal material in protected karstic coastal areas. Geofluids 2018, 1–11 (2018).
Google Scholar
Arcega-Cabrera, F., Velázquez-Tavera, N., Fargher, L., Derrien, M. & Noreña-Barroso, E. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. J. Contam. Hydrol. 168, 41 (2014).ADS
CAS
PubMed
Google Scholar
Brown, A. L., Reinhardt, E. G., van Hengstum, P. J. & Pilarczyk, J. E. A Coastal Yucatan Sinkhole records intense hurricane events. J. Coast. Res. 294, 418 (2014).
Google Scholar
Graillot, D. et al. Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges. Springerplus. https://doi.org/10.1186/2193-1801-3-68 (2014).Article
PubMed
PubMed Central
Google Scholar
Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110 (2016).CAS
Google Scholar
Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145 (2015).
Google Scholar
Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proc. Natl. Acad. Sci. 116(7), 2624 (2019).CAS
PubMed
PubMed Central
Google Scholar
Montagna, P. A., Palmer, T. A. & Pollack, J. Hydrological Changes and Estuarine Dynamics. Springerbriefs in Environmental Science Vol. 8 (Springer, 2013).
Google Scholar
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647 (2012).PubMed
PubMed Central
Google Scholar
Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171 (2011).PubMed
Google Scholar
Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899 (2010).CAS
PubMed
PubMed Central
Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/GCE.2010.5676129.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539 (2012).PubMed
PubMed Central
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901 (2018).CAS
PubMed
PubMed Central
Google Scholar
Rambaut, A. FigTree v1.4.3 (2009). http://tree.bio.ed.ac.uk/software/figtree/.Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014).PubMed
PubMed Central
Google Scholar
Neall, V. E. & Trewick, S. A. The age and origin of the Pacific islands: A geological overview. Philos. Trans. R. Soc. B Biol. Sci. 363, 3293 (2008).
Google Scholar
Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217 (2012).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526 (2019).CAS
PubMed
PubMed Central
Google Scholar
Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216 (2014).CAS
PubMed
Google Scholar
Rstudio Team. Rstudio: Integrated Development for R (Rstudio, 2020).
Google Scholar
Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinform. https://doi.org/10.1186/1471-2105-7-88 (2006).Article
Google Scholar
QGIS Development Team. Open Source Geospatial Foundation Project (QGIS Geographic Information System, 2020).
Google Scholar
Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).PubMed
PubMed Central
Google Scholar
Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS
PubMed
PubMed Central
Google Scholar
Bouckaert, R. & Drummond, A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed
PubMed Central
Google Scholar
Ezard, T., Fujisawa, T. & Barraclough, T. G. Splits: Species’ Limits by Threshold Statistics. R Package Version 1.11: r29 (2009) More