More stories

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More

  • in

    The citizens who chart changing climate

    Jean Combes’s love of nature as a child led her to note the signs of starting spring. Her long-term records are now part of a vital growing citizen science dataset that starkly shows how climate change is shifting the timing of the natural world.For people living in colder parts of the world, watching for the first signs of spring — from the opening of snowdrops and daffodils, to birds building their nests, to the return of bees and butterflies — is a common winter pastime. Jean Combes has not just been watching out for these signs, but also recording them, ever since she was a child. Taking note of the earliest emergence of leaves in springtime — first as a child of 11 years, and then continuously from the age of 20 years — Jean has now collected one of the longest continuous datasets of spring leaf-out time in the UK (see also Correspondence by Vitasse et al.). These almost 75 years of data show a clear shift that corroborates shifts now acknowledged for diverse species around the world: springtime is coming earlier, and the patterns of advance match the global trends in the changing climate. Jean’s naturalist endeavours have already earned her high honours in the form of an OBE (Order of the British Empire), and recognition of her own work is mirrored in a growing recognition of the vital role of citizen scientists in tracking the signs of our rapidly changing world.
    This is a preview of subscription content More

  • in

    Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes

    Canadell JG, Monteiro PMS, Costa, MH, Cotrim da Cunha L, Cox PM, Eliseev AV, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021, in press.Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci. 2021;14:225–30.CAS 

    Google Scholar 
    Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000 – 2017. Earth Syst. Sci Data. 2020;12:1561–623.
    Google Scholar 
    Lamentowicz M, Gałka M, Pawlyta J, Lamentowicz Ł, Goslar T, Miotk-Szpiganowicz G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Stud Quat. 2011;28:3–16.
    Google Scholar 
    Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.
    Google Scholar 
    Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils – a review. Geochemistry. 2016;76:327–52.CAS 

    Google Scholar 
    Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev. 2000;24:625–45.CAS 
    PubMed 

    Google Scholar 
    Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.CAS 
    PubMed 

    Google Scholar 
    Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–R732.CAS 
    PubMed 

    Google Scholar 
    Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 2021;15:3549–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–6.CAS 
    PubMed 

    Google Scholar 
    Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.PubMed 

    Google Scholar 
    Narrowe AB, Borton MA, Hoyt DW, Smith GJ, Daly RA, Angle JC, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. mSystems. 2019;4:e00320–19.PubMed 
    PubMed Central 

    Google Scholar 
    Zalman CA, Meade N, Chanton J, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem. 2018;118:156–60.CAS 

    Google Scholar 
    Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 

    Google Scholar 
    Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50.
    Google Scholar 
    Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol. 2011;77:28–39.CAS 
    PubMed 

    Google Scholar 
    Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep. 2016;8:941–55.CAS 
    PubMed 

    Google Scholar 
    Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: An ‘active’ microbial process. Microbiol Open. 2015;4:1–11.
    Google Scholar 
    Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 2011;17:2629–39.
    Google Scholar 
    Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, et al. Microbial minorities modulate methane consumption through niche partitioning. ISME J. 2013;7:2214–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbin S, Hagedorn F, Dawes MA, Niklaus PA. Treeline soil warming does not affect soil methane fluxes and the spatial micro-distribution of methanotrophic bacteria. Soil Biol Biochem. 2015;86:164–71.CAS 

    Google Scholar 
    Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem. 2011;43:1034–41.CAS 

    Google Scholar 
    Menyailo OV, Hungate BA, Abraham WR, Conrad R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Chang Biol. 2008;14:2405–19.
    Google Scholar 
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. editors. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2013, 465–570.Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol. 2021;27:929–40.PubMed 

    Google Scholar 
    Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep. 2009;1:336–46.CAS 
    PubMed 

    Google Scholar 
    Kolb S, Horn MA. Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol. 2012;3:78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 2016;7:11728.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys. 2018;56:207–50.
    Google Scholar 
    Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.CAS 
    PubMed 

    Google Scholar 
    Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol. 2011;78:31–49.CAS 
    PubMed 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.PubMed 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 

    Google Scholar 
    Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, et al. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol. 2016;41:14–18.CAS 
    PubMed 

    Google Scholar 
    Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–815.CAS 
    PubMed 

    Google Scholar 
    Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J. 2018;12:3043–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Liesack W. Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol. 2017;8:400.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome. 2018;6:169.PubMed 
    PubMed Central 

    Google Scholar 
    Abdallah RZ, Wegner CE, Liesack W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem. 2019;132:131–42.CAS 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.PubMed 

    Google Scholar 
    Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:e00038–18.PubMed 
    PubMed Central 

    Google Scholar 
    Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–85.
    Google Scholar 
    IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resour Reports No 106. Rome: FAO; 2015.Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibaration of the kEN value. Soil Biol Biochem. 1996;28:33–37.CAS 

    Google Scholar 
    Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.CAS 

    Google Scholar 
    Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils. 2014;50:1189–1200.CAS 

    Google Scholar 
    Koch O, Tscherko D, Kandeler E. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res. 2007;39:438–48.
    Google Scholar 
    Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol. 2014;80:5761–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, et al. CREST – Classification resources for environmental sequence tags. PLoS One. 2012;7:e49334.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 

    Google Scholar 
    Dumont MG, Lüke C, Deng Y, Frenzel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol. 2014;5:34.PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.Oksanen J, Blanchet f. G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2020. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.Graves S, Piepho H-P, Selzer L. multcompView: Visualizations of paired comparisons. 2019. R package version 0.1-8. https://CRAN.R-project.org/package=multcompView.Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644.PubMed 
    PubMed Central 

    Google Scholar 
    IPCC Task Force on National Greenhouse Gas Inventories. Methodological guidance on lands with wet and drained soilds, and constructed wetlands for wastewater treatment. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2014.Tiemeyer B, Albiac Borraz E, Augustin J, Bechtold M, Beetz S, Beyer C, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob Chang Biol. 2016;22:4134–49.PubMed 

    Google Scholar 
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.CAS 

    Google Scholar 
    Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming. Nature 2005;433:298–301.CAS 
    PubMed 

    Google Scholar 
    Dutaur L, Verchot LV. A global inventory of the soil CH4 sink. Glob Biogeochem Cycles. 2007;21:GB4013.
    Google Scholar 
    McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems. 2019;22:1424–43.CAS 

    Google Scholar 
    Gulledge J, Schimel JP. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol Biochem. 1998;30:1127–32.CAS 

    Google Scholar 
    Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA. 2015;112:E2507–E2516.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conrad R. Methane production in soil environments – anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.CAS 
    PubMed Central 

    Google Scholar 
    Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 2018;12:411–23.PubMed 

    Google Scholar 
    Smith KS, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15:150–5.CAS 
    PubMed 

    Google Scholar 
    Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014, pp 123–63.Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
    Google Scholar 
    Söllinger A, Urich T. Methylotrophic methanogens everywhere – physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.PubMed 

    Google Scholar 
    Yang S, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem. 2017;111:66–77.CAS 

    Google Scholar 
    Weil M, Wang H, Bengtsson M, Köhn D, Günther A, Jurasinski G, et al. Long-term rewetting of three formerly drained peatlands drives congruent compositional changes in pro- and eukaryotic soil microbiomes through environmental filtering. Microorganisms. 2020;8:550.CAS 
    PubMed Central 

    Google Scholar 
    Söllinger A, Seneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, et al. Down-regulation of the microbial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Sci Adv. 2022;8:eabm3230.PubMed 
    PubMed Central 

    Google Scholar 
    Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, et al. Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol. 2012;14:1024–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci. 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yimga MT, Dunfield PF, Ricke P, Heyer J, Liesack W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol. 2003;69:5593–602.CAS 

    Google Scholar 
    Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TE, Toet S, Ineson P, Prosser JI. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol. 2010;73:157–65.CAS 
    PubMed 

    Google Scholar 
    Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol Fertil Soils. 2018;54:885–95.
    Google Scholar  More

  • in

    Impact of rice paddy agriculture on habitat usage of migratory shorebirds at the rice paddy scale in Korea

    Boere, G. C., Galbraith, C. A., Stroud, D. & Thompson, D. B. A. The conservation of waterbirds around the world in Waterbirds Around the World (ed. Boere, G. C., Galbraith, C. A. & Stroud, D. A.) 32–45 (The Stationery Office, Edinburgh, UK, 2007).Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512,Pubmed:20430971 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nebel, S., Porter, J. L. & Kingsford, R. T. Long-term trends of shorebird populations in eastern Australia and impacts of freshwater extraction. Biol. Conserv. 141, 971–980. https://doi.org/10.1016/j.biocon.2008.01.017 (2008).Article 

    Google Scholar 
    MacKinnon, J., Verkuil, Y. I. & Murray, N. IUCN situation analysis on east and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occas. Pap. IUCN Species Surviv. Comm. 047, 70.Li, X. et al. Assessing changes of habitat quality for shorebirds in stopover sites: A case study in Yellow River Delta, China. Wetlands 39, 67–77. https://doi.org/10.1007/s13157-018-1075-9 (2019).Article 

    Google Scholar 
    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272. https://doi.org/10.1890/130260 (2014).Article 

    Google Scholar 
    Green, J. M. H., Sripanomyom, S., Giam, X. & Wilcove, D. S. The ecology and economics of shorebird conservation in a tropical human-modified landscape. J. Appl. Ecol. 52, 1483–1491. https://doi.org/10.1111/1365-2664.12508 (2015).Article 

    Google Scholar 
    Toral, G. M. & Figuerola, J. Unraveling the importance of rice fields for waterbird populations in Europe. Biodivers. Conserv. 19, 3459–3469. https://doi.org/10.1007/s10531-010-9907-9 (2010).Article 

    Google Scholar 
    Masero, J. A. Assessing alternative anthropogenic habitats for conserving waterbirds: salinas as buffer areas against the impact of natural habitat loss for shorebirds. Biodivers. Conserv. 12, 1157–1173. https://doi.org/10.1023/A:1023021320448 (2003).Article 

    Google Scholar 
    Athearn, N. D. et al. Variability in habitat value of commercial salt production ponds: implications for waterbird management and tidal marsh restoration planning. Hydrobiologia 697, 139–155. https://doi.org/10.1007/s10750-012-1177-y (2012).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Agroecosystems and conservation of migratory waterbirds: Importance of coastal pastures and factors influencing their use by wintering shorebirds. Biodivers. Conserv. 22, 1895–1907. https://doi.org/10.1007/s10531-013-0516-2 (2013).Article 

    Google Scholar 
    Navedo, J. G., Fernández, G., Valdivia, N., Drever, M. C. & Masero, J. A. Identifying management actions to increase foraging opportunities for shorebirds at semi-intensive shrimp farms. J. Appl. Ecol. 54, 567–576. https://doi.org/10.1111/1365-2664.12735 (2017).Article 

    Google Scholar 
    Lawler, S. P. Rice fields as temporary wetlands: A review. Isr. J. Zool. 47, 513–528. https://doi.org/10.1560/X7K3-9JG8-MH2J-XGX1 (2001).Article 

    Google Scholar 
    Fasola, M. & Ruiz, X. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Waterbirds 19, 122–128. https://doi.org/10.2307/1521955 (1996).Article 

    Google Scholar 
    Elphick, C. S. Why study birds in rice fields?. Waterbirds 33, 1–7. https://doi.org/10.1675/063.033.s101 (2010).Article 

    Google Scholar 
    Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55, 194–202. https://doi.org/10.1080/00063650809461522 (2008).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Conservation implications of flooding rice fields on winter waterbird communities. Agric. Ecosyst. Environ. 94, 17–29. https://doi.org/10.1016/S0167-8809(02)00022-1 (2003).Article 

    Google Scholar 
    Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16, 569–585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).Article 

    Google Scholar 
    Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33, 334–343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).Article 

    Google Scholar 
    Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189–217 (2001).
    Google Scholar 
    Sánchez-Guzmán, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16, 3333–3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).Article 

    Google Scholar 
    Rendón, M. A., Green, A. J., Aguilera, E. & Almaraz, P. Status, distribution and long-term changes in the waterbird community wintering in Doñana, south–west Spain. Biol. Conserv. 141, 1371–1388. https://doi.org/10.1016/j.biocon.2008.03.006 (2008).Article 

    Google Scholar 
    Ibáñez, C., Curcó, A., Riera, X., Ripoll, I. & Sánchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33, 167–180. https://doi.org/10.1675/063.033.s113 (2010).Article 

    Google Scholar 
    Pierluissi, S. Breeding waterbirds in rice fields: A global review. Waterbirds 33, 123–132. https://doi.org/10.1675/063.033.0117 (2010).Article 

    Google Scholar 
    Day, J. H. & Colwell, M. A. Waterbird communities in rice fields subjected to different post-harvest treatments. Waterbirds 21, 185–197. https://doi.org/10.2307/1521905 (1998).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35, 95–108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).Article 

    Google Scholar 
    Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68, 74–83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).Article 

    Google Scholar 
    Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. Jour. Wild. Mgmt 81, 96–111. https://doi.org/10.1002/jwmg.21167 (2017).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H. & Yoo, J. C. Influence of foraging behaviors of shorebirds on habitat use in rice fields during spring migration. Korean J. Environ. Agric. 34, 178–185. https://doi.org/10.5338/KJEA.2015.34.3.35 (2015).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agr. 31, 359–367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).Article 

    Google Scholar 
    Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38, 173–183. https://doi.org/10.1675/063.038.0206 (2015).Article 

    Google Scholar 
    Hua, N., Tan, K., Chen, Y. & Ma, Z. Key research issues concerning the conservation of migratory shorebirds in the Yellow Sea region. Bird Conserv. Int. 25, 38–52. https://doi.org/10.1017/S0959270914000380 (2015).Article 

    Google Scholar 
    Stroud, D. A. et al. The conservation and population status of the world’s waders at the turn of the millennium in. Waterbirds Around the World Conference 643–648 (The Stationery Office, Edinburgh, UK, 2006).Taft, O. W. & Haig, S. M. The value of agricultural wetlands as invertebrate resources for wintering shorebirds. Agric. Ecosyst. Environ. 110, 249–256. https://doi.org/10.1016/j.agee.2005.04.012 (2005).Article 

    Google Scholar 
    Strum, K. M. et al. Winter management of California’s rice fields to maximize waterbird habitat and minimize water use. Agric. Ecosyst. Environ. 179, 116–124. https://doi.org/10.1016/j.agee.2013.08.003 (2013).Article 

    Google Scholar 
    Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116, 384–393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).Article 

    Google Scholar 
    Golet, G. H. et al. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 28, 409–426. https://doi.org/10.1002/eap.1658,Pubmed:29205645 (2018).Article 
    PubMed 

    Google Scholar 
    Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20, 27–37. https://doi.org/10.2326/osj.20.27 (2021).Article 

    Google Scholar 
    Choi, S. H. & Nam, H. K. Flexible behavior of the Black-tailed godwit Limosa limosa is key to successful refueling during staging at rice paddy fields in Midwestern Korea. Zool. Sci. 37, 255–262. https://doi.org/10.2108/zs190120,Pubmed:32549539 (2020).Article 

    Google Scholar 
    Cole, M. L., Leslie, D. M. Jr. & Fisher, W. L. Habitat use by shorebirds at a stopover site in the southern Great Plains. Southwest. Nat. 47, 372–378. https://doi.org/10.2307/3672495 (2002).Article 

    Google Scholar 
    Rundle, W. D. & Fredrickson, L. H. Managing seasonally flooded impoundments for migrant rails and shorebirds. Wildl. Soc. Bull., 80–87 (1981).Taylor, D. M. & Trost, C. H. Use of lakes and reservoirs by migrating shorebirds in Idaho. Gr Basin Nat. 52, 179–184 (1992).
    Google Scholar 
    Hands, H. M., Ryan, M. R. & Smith, J. W. Migrant shorebird use of marsh, Moist-Soil, and flooded agricultural habitats. Wildl. Soc. Bull. 1973–2006(19), 457–464 (1991).
    Google Scholar 
    Skagen, S. K. & Knopf, F. L. Migrating shorebirds and habitat dynamics at a prairie wetland complex. Wilson Bull., 91–105 (1994).Weber, L. M. & Haig, S. M. Shorebird use of South Carolina managed and natural coastal wetlands. J. Wildl. Manag. 60, 73–82. https://doi.org/10.2307/3802042 (1996).Article 

    Google Scholar 
    Collazo, J. A., O’Harra, D. A. & Kelly, C. A. Accessible habitat for shorebirds: factors influencing its availability and conservation implications. Waterbirds, 13–24 (2002).Helmers, D.L. Shorebird Management Manual. Western Hemisphere Shorebird Reserve Network (Manomet Cntr for Conservation Sciences, Manomet, MA, 1992).Verkuil, Y., Koolhaas, A. & Van Der Winden, J. Wind effects on prey availability: how northward migrating waders use brackish and hypersaline lagoons in the Sivash, Ukraine. Neth. J. Sea Res. 31, 359–374. https://doi.org/10.1016/0077-7579(93)90053-U (1993).Article 

    Google Scholar 
    Davis, C. A. & Smith, L. M. Ecology and management of migrant shorebirds in the Playa Lakes Region of Texas. Wildl. Monogr., 3–45 (1998).Barter, M. Shorebirds of the Yellow Sea: Importance, threats and conservation status in Wetlands Int. Global Ser. Oceania 9, 5–13.Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).Article 

    Google Scholar 
    Mukherjee, A. Adaptiveness of cattle egret’s (Bubulcus ibis) foraging. Zoos Print J. 15, 331–333 (2000). https://doi.org/10.11609/JoTT.ZPJ.15.10.331-3.Choi, Y. S., Kim, S. S. & Yoo, J. C. Feeding activity of cattle egrets and intermediate egrets at different stages of rice culture in Korea. J. Ecol. Environ. 33, 149–155. https://doi.org/10.5141/JEFB.2010.33.2.149 (2010).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2013).
    Google Scholar 
    Sebastián-González, E. & Green, A. J. Reduction of avian diversity in created versus natural and restored wetlands. Ecography 39, 1176–1184. https://doi.org/10.1111/ecog.01736 (2016).Article 

    Google Scholar 
    Walton, M. E. M. et al. A model for the future: ecosystem services provided by the aquaculture activities of Veta La Palma, Southern Spain. Aquaculture 448, 382–390. https://doi.org/10.1016/j.aquaculture.2015.06.017 (2015).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: data visualization for statistics in social science. R package version 1.6.9. org/Package=sjPlot > (2016). http://CRAN.Rproject. More

  • in

    Regreening: green is not always gold

    CORRESPONDENCE
    05 April 2022

    Regreening: green is not always gold

    Michael C. Orr

    0
    &

    Alice C. Hughes

    1

    Michael C. Orr

    Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Alice C. Hughes

    University of Hong Kong, Hong Kong, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    As the upcoming United Nations Biodiversity Conference in Kunming, China, ushers in the UN decade of ecosystem restoration, regreening efforts are sprouting worldwide. Adding vegetation — expedited by new technologies such as EcoFit, which predicts what trees will thrive in a given environment — can salvage highly disturbed habitats, benefiting native species and offsetting climate change. But when aimed at halting desertification, regreening can have a devastating cost for native ecosystems.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 40 (2022)
    doi: https://doi.org/10.1038/d41586-022-00944-4

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    China: protect black soil for biodiversity
    Correspondence 05 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Climate change

    The microbiologist working to understand how oceans absorb carbon dioxide
    Spotlight 05 APR 22

    By the numbers: China’s net-zero ambitions
    Spotlight 05 APR 22

    Turning industrial CO2 into battery fuel
    Spotlight 05 APR 22

    Jobs

    Junior group leader position in Human immunology, Pathophysiology and Immunotherapy at Inserm-Université Paris Cité Unit 976

    National Institute for Health and Medical Research (INSERM)
    Paris, France

    Senior Assistant Editor

    Elsevier Inc.
    London, Greater London, United Kingdom

    Dean, Gordon W. Davis College of Agricultural Sciences and Natural Resources

    Texas Tech University (TTU)
    Lubbock, TX, United States

    Postdoctoral fellow positions in cancer stem cells, single cell genomics, and tumor immunology

    Houston Methodist in “ affiliation with Weill- Cornell Medical College
    Houston, United States More

  • in

    Influence of wind and light on the floating and sinking process of Microcystis

    Paerl, H. W. & Huisman, J. Climate. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    Article 

    Google Scholar 
    Yamamoto, Y., Shiah, F. K. & Chen, Y. L. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann. Limnol. Int. J Limnol. 47, 167–173 (2011).Article 

    Google Scholar 
    Chen, Y. W., Qin, B. Q., Teubner, K. & Dokulil, M. T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 25, 445–453 (2003).Article 

    Google Scholar 
    Walsby, A. E. The nuisance algae: Curiosities in the biology of planktonic blue-green algae. Water Treat. Exam. 19, 359–373 (1970).
    Google Scholar 
    Reynolds, C. S. & Walsby, A. E. Water-blooms. Biol. Rev. 50, 437–481 (1975).CAS 
    Article 

    Google Scholar 
    Yonggang, L., Wei, Z., Ming, L. I., Amp, D. X. & Man, X. Effect of colony size on Microcystis diurnal vertical migration. J. Lake Sci. 25(3), 386–391 (2013).Article 

    Google Scholar 
    Ibelings, B. W., Mur, L. & Walsby, A. Diurnal variations in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13, 419–436 (1991).Article 

    Google Scholar 
    Kromkamp, J. C. & Mur, L. R. Buoyant density variations in the cyanobacterium Microcystis aeruginosa due to variations in the cellular carbohydrate content. FEMS Microbiol. Lett. 1, 105–109 (1984).Article 

    Google Scholar 
    Kromkamp, J. & Walsby, A. E. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12, 161–183 (1990).Article 

    Google Scholar 
    Visser, P. M., Passarge, J. & Mur, L. R. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349(1–3), 99–109 (1997).Article 

    Google Scholar 
    Medrano, E. A., Uittenbogaard, R. E., Pires, L. M. D., van de Wiel, B. J. H. & Clercx, H. J. H. Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol. Model. 248, 41–56 (2013).Article 

    Google Scholar 
    George, D. G. & Edwards, R. W. The effect of wind on the distribution of chlorophyll A and crustacean plankton in a shallow eutrophic reservoir. J. Appl. Ecol. 13, 667 (1976).CAS 
    Article 

    Google Scholar 
    Hutchinson, P. A. & Webster, I. T. On the distribution of blue-green algae in lakes: Wind-tunnel tank experiments. Limnol. Oceanogr. 9, 374–382 (1994).Article 

    Google Scholar 
    Ha, K., Kim, H. W., Jeong, K. S. & Joo, G. J. Vertical distribution of Microcystis population in the regulated Nakdong River, Korea. J. Limnol. 1, 225–230 (2000).Article 

    Google Scholar 
    Ma, X., Wang, Y., Feng, S. & Wang, S. Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ. Earth Sci. 74, 3805–3814 (2015).CAS 
    Article 

    Google Scholar 
    Ndong, M. et al. A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes. Water Res. 127, 191–203 (2017).CAS 
    Article 

    Google Scholar 
    Hozumi, A., Ostrovsky, I. S., Sukenik, A. & Gildor, H. Turbulence regulation of Microcystis surface scum formation and dispersion during a cyanobacteria bloom event. Inland Waters. 10, 51–70 (2020).CAS 
    Article 

    Google Scholar 
    Zhu, W., Chen, H., Xiao, M., Miquel, L. & Li, M. Wind induced turbulence caused colony disaggregation and morphological variations in the cyanobacterium Microcystis. J. Lake Sci. 33, 349 (2021).Article 

    Google Scholar 
    Wu, X. & Kong, F. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int. Rev. Hydrobiol. 94, 258–266 (2009).Article 

    Google Scholar 
    Xiao, M. et al. The influence of water oscillation on the vertical distribution of Microcystis colonies of different sizes. Fresenius Environ. Bull. 22, 3511–3518 (2013).CAS 

    Google Scholar 
    Zhao, H. et al. Numerical simulation of the vertical migration of Microcystis (cyanobacteria) colonies based on turbulence drag. J. Limnol. 76, 190–198 (2017).
    Google Scholar 
    Li, M., Xiao, M., Zhang, P. & Hamilton, D. P. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res. 141, 340–348 (2018).CAS 
    Article 

    Google Scholar 
    Chien, Y. C., Wu, S. C., Chen, W. C. & Chou, C. C. Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environ. Eng. Sci. 30, 179–186 (2013).CAS 
    Article 

    Google Scholar 
    Medrano, E. A., van de Wiel, B. J. H., Uittenbogaard, R. E., Pires, L. M. D. & Clercx, H. J. H. Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions. Ecol. Model. 337, 200–210 (2016).Article 

    Google Scholar 
    Liu, H., Zheng, Z. C., Young, B. & Harris, T. D. Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir. Ecol. Model. 398, 20–34 (2019).CAS 
    Article 

    Google Scholar 
    Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. & Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids. 24, 227–238 (1995).Article 

    Google Scholar 
    Geernaert, G. L., Larsen, S. E. & Hansen, F. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. 92, 127–139 (1987).Article 

    Google Scholar 
    Large, W. G. & Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336 (1981).Article 

    Google Scholar 
    Sellers, H. Development and application of “U.S.E.D.”: A hydroclimate lake stratification model. Ecol. Model. 21, 233–246 (1984).Article 

    Google Scholar 
    Morsi, S. A. & Alexander, A. J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972).Article 

    Google Scholar 
    Gosman, A. D. & Loannides, E. Aspects of computer simulation of liquid-fuelled combustor. AIAA J. 81, 482–490 (1981).
    Google Scholar 
    Li, M. et al. To increase size or decrease density? Different Microcystis species has different choice to form blooms. Sci. Rep. 6, 37056 (2016).CAS 
    Article 

    Google Scholar 
    Li, M., Zhu, W. & Gao, L. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ. Manag. 53, 947–958 (2014).Article 

    Google Scholar 
    Sun, D., Li, Y., Wang, Q. & Gao, J. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: A case study of Lake Taihu. Appl. Opt. 48(11), 1979–1989 (2009).CAS 
    Article 

    Google Scholar 
    Li, M., Zhu, W., Gao, L., Huang, J. & Li, L. Seasonal variations of morphospecies composition and colony size of Microcystis in a shallow hypertrophic lake (Lake Taihu, China). Fresenius Environ. Bull. 22, 3474–3483 (2013).CAS 

    Google Scholar 
    Zhu, W. et al. Vertical distribution of Microcystis colony size in Lake Taihu: Its role in algal blooms. J. Great Lakes Res. 40, 949–955 (2014).Article 

    Google Scholar 
    Chen, Y. Y. & Liu, Q. Q. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mech. Sinica-Prc. 30(005), 656–666 (2014).MathSciNet 
    Article 

    Google Scholar 
    Beletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A. & Ruberg, S. A. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett. 39, 6605 (2012).Article 

    Google Scholar 
    Ishikawa, T. & Qian, X. Numerical simulation of wind-induced current and water exchange at the mouth of Takahamairi Bay of the Lake Kasumigaura during the formation of diurnal thermocline. Tohoku Univ. 2, 419–428 (1998).
    Google Scholar 
    Wu, H., Wu, X. & Yang, T. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: Numerical simulations and laboratory experiments. Water Res. 194(3), 116908 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    China: protect black soil for biodiversity

    CORRESPONDENCE
    05 April 2022

    China: protect black soil for biodiversity

    Deyi Hou

    0

    Deyi Hou

    Tsinghua University, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    In December 2021, the National People’s Congress of China released a draft law on the protection of black soil, noted for its high humus and nutrient content and strong structure. To align with the post-2020 Global Biodiversity Framework under discussion at the United Nations Biodiversity Conference (COP-15) in Kunming, China, later this year, the soil law and the national action plan on black-soil protection must be strengthened to include specific and measurable requirements for biodiversity protection.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 40 (2022)
    doi: https://doi.org/10.1038/d41586-022-00942-6

    Competing Interests
    The author declares no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Ecology

    Conservation biology

    Sustainability

    Latest on:

    Biodiversity

    Regreening: green is not always gold
    Correspondence 05 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Ecology

    Regreening: green is not always gold
    Correspondence 05 APR 22

    Tropical forests have big climate benefits beyond carbon storage
    News 01 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Jobs

    Junior group leader position in Human immunology, Pathophysiology and Immunotherapy at Inserm-Université Paris Cité Unit 976

    National Institute for Health and Medical Research (INSERM)
    Paris, France

    Senior Assistant Editor

    Elsevier Inc.
    London, Greater London, United Kingdom

    Dean, Gordon W. Davis College of Agricultural Sciences and Natural Resources

    Texas Tech University (TTU)
    Lubbock, TX, United States

    Postdoctoral fellow positions in cancer stem cells, single cell genomics, and tumor immunology

    Houston Methodist in “ affiliation with Weill- Cornell Medical College
    Houston, United States More

  • in

    Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests

    Earth’s forests imperiled by further warmingWe quantified a global-scale hotter-drought fingerprint, representing a global climate signal for years with documented site-specific tree mortality. Climate-induced tree mortality in recent decades under hotter-drought conditions has been documented across forests from a diverse array of boundary conditions, spanning from the tropics to the boreal, from sea level to 3,500 m, and across a four-meter precipitation gradient and 30 °C of mean annual temperature. One reason that the hotter-drought fingerprint is similarly evident in the year prior to reported mortality onset (Fig. 3), as well as largely echoed in the year after, may be due to the imprecise nature of identifying the “onset” and duration of mortality (e.g., visual indications of mortality may lag significantly behind environmental drivers16). In addition, chronic drought conditions commonly span multiple years, cumulatively predisposing eventual, lagged mortality events13,26,27—consistent with our observed “3-year hotter-drier window,” centered on the nominal mortality year (Fig. 3).Our global-scale hotter-drought fingerprint, focused on acute hotter-drought extremes, represents a cohesive signal for climatic drivers of tree die-off in many of Earth’s forests. Other approaches could consider other temporal dimensions of climate signals (e.g., shorter-term heat-wave stress, longer-term chronic drought, changes in seasonal drought duration or timing), which may further improve our understanding of climatic drivers of tree mortality. Ideally, future efforts to harmonize global forest inventory and monitoring methodologies, including their currently-disparate documentation of tree mortality, will reduce the inherent sampling biases (typically favoring northern hemisphere and/or areas adjacent to well-funded research institutions) and presence-only limitations of our present database11.Additionally, we found that many of Earth’s forests may become increasingly imperiled by further warming and drought, as the frequency of lethal climate conditions observed with recently documented global mortality events will accelerate with further warming (Fig. 6d). Although our approach does not reveal the particular detailed mechanistic ecophysiological responses to the hotter drought that are driving mortality for each specific site, it exemplifies the powerful utility and practical potential of empirical approaches that link direct observations of tree mortality from diverse precisely georeferenced locations to observed climate drivers. While multiple emerging lines of evidence indicate that warming puts trees at greater risk under drought conditions9,14,15,19,24,35, the quantitative hotter-drought fingerprint we identified here suggests that further warming may accelerate global forest die-off across many biomes. The impact of this hotter-drought fingerprint is acting on Earth’s forests already, with nearly half a billion trees having died from hotter-drought events in Texas and California alone since 201036,37. In central Europe, hotter drought starting in 2018 has led to extensive dieback of forests that is ongoing—and of yet undetermined magnitude and extent—which could lead to significant ecological transitions38. Other notable global tree mortality events documented during hotter-drought episodes include three pulses of large-tree mortality since 2005 across Amazon basin tropical moist forests39,40, and historically unprecedented hotter-drought-triggered dieback in Jarrah forests of southwest Australia in 20118,19.Individual trees and forest ecosystems may benefit in various ways (e.g., increased water-use efficiency, stored non-structural carbon, etc.) from productivity gains under elevated atmospheric CO222—when soil nutrients and water are not limiting. However, the net effects of increasing CO2 in combination with a changing climate on the mortality of global forests during hotter drought are uncertain4,9,35. In particular, during hotter-drought events, plant uptake of CO2 is limited by the initial closing of stomata—with CO2 uptake eventually blocked as leaves lose turgor, followed by failure of the coupled plant water-and-carbon transport system which may ultimately result in death16,28. Thus, potential amelioration of tree mortality risk by the ~85 ppm atmospheric CO2 increase during the timeframe in our database (1970–2018) might have been overwhelmed by the concurrent increases in temperature during mortality-event years (Fig. 5). This warming presents a triple threat to tree survival in the form of amplified soil drought, atmospheric drought, and heat stress, and our results are consistent with experimental findings that drought and warming can negate or overcome the effects of elevated CO217,18.Earth’s historical forests are especially vulnerableAs the longest-lived organisms on Earth, trees routinely are imbued with historical and cultural significance by human societies, while also persistently sequestering carbon and amplifying local biodiversity for centuries, sometimes millennia. In contrast, extreme climate stress events occur on the scale of days to months to a few years, and in these relatively brief periods, large old trees—exemplars of Earth’s historical forests6—can be especially susceptible to mortality5,41,42,43,44. Forests will certainly persist and thrive over large areas into Earth’s future, but increasingly they will have to rapidly shift in physiological function, morphology, genetics, species composition, structure, and geographic distribution in response to anticipated climate changes. Where the pace of climate change outruns the adaptive or acclimation capacities of historically-dominant tree individuals and species, additional die-off events are likely to occur and some forests may even cease to exist. In particular, the current tree communities of Earth’s historical old-growth forests—which took centuries, sometimes millennia, to grow to structural dominance under now locally-shifted climate conditions—may continue to often be most negatively affected by continued warming and drying4,43, as novel hotter-drought extremes increasingly exceed their range of survivable climate across diverse forested biomes. The expected near-term outcome is simplified tree communities, where more drought- and heat-tolerant species survive, and less tolerant species diminish or perish. In many cases, this may lead to lasting changes in vegetation composition, stature, and spacing, where surviving woody plants in these communities do not maintain or develop the complex canopy structure typical of historical old-growth forests4,9,35,45.Underestimation of tree mortality from hotter droughtsWhile our projections for an increase by up to 140% in the frequency of climate conditions associated with recent forest die-off under +4 °C may seem severe, they are modest in comparison to some current empirical and mechanistic process-based model predictions for catastrophic forest die-off at continental scales under hotter droughts12,14. Our projections for increasing die-offs under further warming are consistent with projections showing the potential for large increases in mortality under future hotter drought12,14,46, although these projections are often limited to single species or single biomes. Even continental-scale projections for up to 40% increases in the frequency of mortality-inducing hotter droughts under ~+2.5 °C since pre-industrial20 are in general agreement with our global analysis’s 20% under +2 °C (Fig. 6d). Further, our projections of increasingly frequent, historically lethal climate conditions for Earth’s forests may be conservative for several reasons:

    (1)

    Requiring that all six climate variables meet or exceed mortality year conditions, concurrently in the same year, is a strong filter. For example, TMAX, VPD, and PDSI all exceed mortality-year conditions under +4 °C in about 4 out of every 5 years (Supplementary Fig. S3), whereas under the same warming scenario, all six metrics exceeded the hotter-drought fingerprint only half as often.

    (2)

    Tree mortality involves diverse disturbance processes that amplify forest die-off in the presence of global warming and hotter droughts4,24,35 but these were excluded in our analysis, including insects44,47, pathogens48, wind40,49, and lightning50. Additionally, anthropogenic warming promotes greater wildfire activity, particularly fire extent and severity in many forests worldwide7,51, driving further declines in some of Earth’s forests. We also have not considered disturbance interactions among these many amplifying and synergistic agents of tree mortality49,52—but conversely, we also acknowledge that thinning from either climate-triggered mortality or these associated synergistic agents, may partially buffer against future losses35,45.

    (3)

    Our findings indicate that climate anomalies of tree mortality event years are trending towards ever hotter and drier conditions (Fig. 5, Supplementary Fig. S7), concurrent with any potential ongoing forest acclimation to temperature and/or CO2 fertilization15,22. Yet the potential for tree species to acclimate to ongoing climate warming, even with increasing atmospheric CO2 concentrations, is not unlimited—and when exhausted—forest die-off may rapidly accelerate9,35,53. Since projected warmer climate conditions include unprecedented extremes of hotter drought for which there are no observed analogs, the potential for crossing historically unknown tipping-point climatic stress thresholds may increase, further amplifying tree mortality35.

    (4)

    Our analysis of mortality-year frequency uses monthly climate data, yet important drivers can occur on longer (e.g., drought26), and shorter (e.g., heatwave8,19) timescales. For example, the 4-year-prior signal of cooler/wetter climate (Fig. 3) may reflect favorable pre-drought conditions promoting structural overshoot of trees, which could amplify dieback and mortality risk during subsequent years of hotter drought45.

    Roadmap for research enabled by a quantitative ground-based global databaseThe widespread global coherence of our empirically quantified hotter-drought fingerprint may provide immediate opportunities to validate projections of tree mortality in existing models of the Earth system, while also enabling diverse future analyses. Although global in geographic extent, our database is limited by the availability of peer-reviewed, ground-based empirical studies of climate-induced tree mortality, and thus only sparsely covers some regions, particularly large portions of boreal and tropical forests. For example, our hotter-drought fingerprint was consistent across all biomes except the tropical rainforest (Fig. 4)—despite published direct observations of hotter drought as a driver of tree mortality at these tropical rainforest sites39,40. Additionally, this biome may experience pulses of tree mortality in response to different climate fingerprints, particularly involving longer-duration dry seasons—not just intensified single monthly extremes.Despite this and some other limitations, our database represents a globally-distributed dataset with precisely geo-referenced sites where ground-based heat- and drought-induced tree mortality has been documented. Our use of this database to quantify a global hotter-drought fingerprint of tree mortality illustrates the potential for rapid progress in empirical modeling of forest mortality drivers and thresholds at spatial scales from local to global, where direct observations of forest responses to climate stress can help identify and quantify mortality drivers. Toward the goal of fostering further rapid community development of many more such direct observational records of climate-induced forest stress and tree mortality worldwide—with methods ranging from local ground-based sites to synoptic remote-sensing—this database immediately will be served as an open-access resource at the International Tree Mortality Network (https://www.tree-mortality.net), an academic networking initiative associated with the International Union of Forest Research Organizations’ (IUFRO) task force on monitoring global tree mortality patterns and trends (https://www.iufro.org/science/task-forces/tree-mortality-patterns). The complete database—along with an interactive version of Fig. 1 from this paper—will allow users to zoom in on dense plot networks, with direct links to the supporting literature for each point. This online database includes the reference for each plot, its precise coordinates, dominant species, associated biotic agents, and the year of mortality onset. To further update and rapidly increase the quantity and spatial representativeness of global tree mortality observations, ongoing online contributions from diverse observer groups, ranging from practicing foresters and field ecologists to remote-sensing scientists, can be integrated into the website in near-real-time via a user-friendly entry form.As the only global set of ground-truthed observations of drought- and heat-induced tree mortality, this database can immediately aid in validating remote-sensing technologies for eventual synoptic monitoring in near-real-time of tree mortality (which could then feedback into the database). Additional groups to benefit from the database are those interested in climate and physiological mechanisms of tree mortality, including the connected fates of all forest-dependent life5,19, with an aim toward improving the representation of climate-induced tree mortality representations in Earth system models. Related future research opportunities associated with this initial online database include:

    (1)

    Identify additional chronic (e.g., seasonal to decadal) and acute (daily to weekly) climatic signals of tree mortality, including thorough analyses that quantitatively consider antecedent and lagging factors, and duration and seasonality of drought stress;

    (2)

    Synthesize mortality observations from extensive forestry plot inventory networks, to increase spatial representation for the global climate signal of tree mortality, and to identify where during these events trees did not die-off;

    (3)

    Apply remote-sensing approaches to mortality detection using this spatially precise (and in some places plot-dense) database for ground-truthing, to determine the full spatial extent of known mortality events, and aid in ongoing monitoring of forest stress and tree mortality events in near-real-time;

    (4)

    Benchmark state-of-the-art Earth system models via hindcasting, to assess the accuracy of tree mortality event representation—and to do so across spatial resolutions (as in Supplementary Fig. S4) at which these planetary models operate;

    (5)

    Develop approaches to understand potentially unique features and drivers of hotter-drought mortality in tropical rainforests (differing climate signals, e.g., extended dry seasons, where warming/drying of typically moderate shoulder seasons may matter more than intensified single-month extremes), the single biome in which our global approach did not reveal a strong hotter-drought fingerprint;

    (6)

    Investigate how the severity of forest die-off events will respond to further warming; and

    (7)

    Invest in monitoring, documenting, and gathering mortality data for forests under-represented in this initial global database—especially in the extensive critical carbon sinks of boreal forests and tropical rainforests.

    Future challenges for Earth’s forests and societies under hotter droughtIn conclusion, our findings reveal the emergence of a global acceleration of lethal climate conditions, associated with recent forest mortality events, under further warming. Earth’s historical forests in particular face a challenging future, including dramatic changes in the extent, composition, age, and structure of these unique and irreplaceable forests, with planetary-scale consequences for biodiversity and the cycling of water and carbon. Our findings both corroborate earlier studies of hotter-drought driven mortality at local to regional scales8,13,19,20,24,36,38 and extend these findings by quantifying the commonality in climate anomalies across this planetary-scale observation-based database of tree die-off. Although forests often are invoked as an important part of the solution to the present global climate crisis, their role as reliable carbon sinks in mitigating climate change depends upon their ability to survive further warming10,22,52—which our global hotter-drought fingerprint identifies as an imminent threat. Our findings show that limiting warming to +2 °C over pre-industrial levels could reduce the frequency of these climate conditions associated with observed tree mortality events to less than half that predicted at +4 °C. Efforts to protect the world’s climate from excessive warming likely will be decisive in determining the future persistence of many of Earth’s forests. More