More stories

  • in

    Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales

    Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS 
    Article 

    Google Scholar 
    Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS 
    Article 

    Google Scholar 
    Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article 

    Google Scholar 
    McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS 
    Article 

    Google Scholar 
    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article 

    Google Scholar 
    Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS 
    Article 

    Google Scholar 
    Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article 

    Google Scholar 
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article 

    Google Scholar 
    Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
    Google Scholar 
    Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article 
    PubMed 

    Google Scholar 
    Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article 

    Google Scholar 
    Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article 

    Google Scholar 
    Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
    Google Scholar 
    Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS 
    Article 

    Google Scholar 
    Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article 

    Google Scholar 
    Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article 

    Google Scholar 
    Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article 

    Google Scholar 
    Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article 

    Google Scholar 
    Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS 
    Article 

    Google Scholar 
    Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS 
    Article 

    Google Scholar 
    Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article 

    Google Scholar  More

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More

  • in

    Stop ignoring map uncertainty in biodiversity science and conservation policy

    WEF. The Global Risk Report 2021 (World Economic Forum, 2021).IPBES. The Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Unedited Draft Chapter 4: Plausible Futures of Nature, its Contributions to People and their Good Quality of Life (IPBES secretariat, 2019).Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Glob. Change Biol. 16, 1145–1157 (2010).Article 

    Google Scholar 
    Beale, C. M. & Lennon, J. J. Phil. Trans. R. Soc. Lond. B 367, 247–258 (2012).Article 

    Google Scholar 
    Porfirio, L. L. et al. PLoS ONE 9, e113749 (2014).Article 

    Google Scholar 
    Zurell, D. et al. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Rocchini, D. et al. Prog. Phys. Geogr. 35, 211–226 (2011).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    Barry, S. & Elith, J. J. Appl. Ecol. 43, 413–423 (2006).Article 

    Google Scholar 
    Stoklosa, J., Daly, C., Foster, S. D., Ashcroft, M. B. & Warton, D. I. Methods Ecol. Evol. 6, 412–423 (2015).Article 

    Google Scholar 
    Hill, N. et al. Methods Ecol. Evol. 11, 1258–1272 (2020).Article 

    Google Scholar 
    Lucchesi, L., Kuhnert, P. & Wikle, C. J. Open Source Softw. 6, 2409 (2021).Article 

    Google Scholar 
    Popov, V., Shah, P., Runting, R. K. & Rhodes, J. R. Methods Ecol. Evol. 13, 230–242 (2022).Article 

    Google Scholar 
    Costa, B., Kendall, M. & McKagan, S. PLoS ONE 13, e0204569 (2018).Article 

    Google Scholar  More

  • in

    Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes

    Schindler, D. W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 54, 2349–2358 (2009).CAS 
    Article 

    Google Scholar 
    Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. AMBIO J. Hum. Environ. 36, 614–621 (2007).Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: The great acceleration. Anthropoc. Rev. 2, 81–98 (2015).Article 

    Google Scholar 
    Richardson, D. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2014). Water 9, 442 (2017).Article 

    Google Scholar 
    Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smol, J. P. Pollution of lakes and rivers: a paleoenvironmental perspective. (Blackwell Pub, 2008).Bennion, H., Simpson, G. L. & Goldsmith, B. J. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Front. Ecol. Evol. 3, (2015).Arseneau, K. M. A., Driscoll, C. T., Cummings, C. M., Pope, G. & Cumming, B. F. Adirondack (NY, USA) reference lakes show a pronounced shift in chrysophyte species composition since ca. 1900. J. Paleolimnol. 56, 349–364 (2016).Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 169 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl. Acad. Sci. 110, 8609–8614 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capo, E., Domaizon, I., Maier, D., Debroas, D. & Bigler, C. To what extent is the DNA of microbial eukaryotes modified during burying into lake sediments? A repeat-coring approach on annually laminated sediments. J. Paleolimnol. 58, 479–495 (2017).Article 

    Google Scholar 
    Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming: Long-term dynamics of microbial eukaryotes. Environ. Microbiol. 19, 2873–2892 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: New opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10, 3817–3838 (2013).Article 

    Google Scholar 
    Zhang, H. et al. Climate and nutrient-driven regime shifts of cyanobacterial communities in low-latitude plateau lakes. Environ. Sci. Technol. 55, 3408–3418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keck, F. et al. Assessing the response of micro-eukaryotic diversity to the Great acceleration using lake sedimentary DNA. Nat. Commun. 11, 3831 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cockrell, C. The value of microorganisms. Environ. Ethics 27, 375–390 (2005).Article 

    Google Scholar 
    Sagova-Mareckova, M. et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 191, 116767 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Likens, G. Plankton of Inland Waters a derivative of Encyclopedia of Inland Waters. in (Elsevier Science & Technology Books, 2010).Weisse, T. Functional diversity of aquatic ciliates. Eur. J. Protistol. 61, 331–358 (2017).PubMed 
    Article 

    Google Scholar 
    Finlay, B. J. & Esteban, G. F. Freshwater protozoa: Biodiversity and ecological function. Biodivers. Conserv. 7, 1163–1186 (1998).Article 

    Google Scholar 
    Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: A pan-arctic review. Front. Mar. Sci. 5, 292 (2018).Article 

    Google Scholar 
    Bick, H. Ciliated protozoa : an illustrated guide to the species used as biological indicators in freshwater biology. (World Health Organisation, 1972).Curds, C. R. An illustrated key to the British Freshwater Ciliated Protozoa commonly found in activated sludge. (Her Majesty’s Stationary Office, 1969).Pitsch, G. et al. Seasonality of planktonic freshwater ciliates: Are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts?. Front. Microbiol. 10, 248 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lynn, D. H. The Ciliated Protozoa. (Springer, 2010).Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibrahim, A. et al. Anthropogenic impact on the historical phytoplankton community of Lake Constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol. Ecol. 30, 3040–3056 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mosher, J. J. & Findlay, R. H. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams. Appl. Environ. Microbiol. 77, 7681–7688 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennion, H., Monteith, D. & Appleby, P. Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub)fossil diatoms and aquatic macrophytes. Freshw. Biol. 45, 394–412 (2000).Article 

    Google Scholar 
    Hornung, M. et al. The sensitivity of surface waters of Great Britain to acidification predicted from catchment characteristics. Environ. Pollut. 87, 207–214 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).PubMed 
    Article 

    Google Scholar 
    Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 

    Google Scholar 
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petsch, D. K. Causes and consequences of biotic homogenization in freshwater ecosystems: Biotic homogenization of freshwater systems. Internat. Rev. Hydrobiol. 101, 113–122 (2016).Article 

    Google Scholar 
    Perga, M.-E. et al. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming. Front. Ecol. Evol. 3, (2015).Rioual, P. Limnological characteristics of 25 lakes of the French Massif Central. Ann. Limnol. Int. J. Lim. 38, 311–327 (2002).Article 

    Google Scholar 
    Belle, S. et al. Increase in benthic trophic reliance on methane in 14 French lakes during the Anthropocene. Freshw. Biol. 61, 1105–1118 (2016).CAS 
    Article 

    Google Scholar 
    Télesphore, S.-N. Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat. Sci. 57, 91–105 (1995).Article 

    Google Scholar 
    Esteban, G. F., Fenchel, T. & Finlay, B. J. Mixotrophy in Ciliates. Protist 161, 621–641 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woelfl, S. & Geller, W. Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile). Freshw. Biol. 47, 231–242 (2002).Article 

    Google Scholar 
    Berninger, U.-G., Finlay, B. J. & Canter, H. M. The spatial distribution and ecology of Zoochlorellae-bearing ciliates in a productive pond. J. Protozool. 33, 557–563 (1986).Article 

    Google Scholar 
    Haraguchi, L., Jakobsen, H. H., Lundholm, N. & Carstensen, J. Phytoplankton community dynamic: A driver for ciliate trophic strategies. Front. Mar. Sci. 5, 272 (2018).Article 

    Google Scholar 
    Staehr, P. A., Testa, J. & Carstensen, J. Decadal changes in water quality and net productivity of a shallow danish estuary following significant nutrient reductions. Estuaries Coasts 40, 63–79 (2017).CAS 
    Article 

    Google Scholar 
    Jeppesen, E., Pierson, D. & Jennings, E. Effect of extreme climate events on lake ecosystems. Water 13, 282 (2021).Article 

    Google Scholar 
    Sonntag, B., Strüder-Kypke, M. C. & Summerer, M. Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes. Denisia 23, 279–288 (2008).Mitra, A. et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11, 995–1005 (2014).Article 

    Google Scholar 
    Munawar, M., Niblock, H., Fitzpatrick, M. & Lorimer, J. Ciliate ecology in the eutrophic Bay of Quinte, Lake Ontario: Community structure and feeding characteristics. Aquat. Ecosyst. Health Manage. 23, 35–44 (2020).Article 

    Google Scholar 
    Carrick, H. J. An under-appreciated component of biodiversity in plankton communities: The role of protozoa in Lake Michigan (a case study). Hydrobiologia 551, 17–32 (2005).Article 

    Google Scholar 
    Beaver, J. R. & Crisman, T. L. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin France. Aquat. Microb. Ecol. 24, 163–174 (2001).Article 

    Google Scholar 
    Sherr, E. B. & Sherr, B. F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81, 293–308 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Wichelen, J. et al. Planktonic ciliate community structure in shallow lakes of lowland Western Europe. Eur. J. Protistol. 49, 538–551 (2013).PubMed 
    Article 

    Google Scholar 
    Posch, T. et al. Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6, (2015).DeNicola, D. M. & Kelly, M. Role of periphyton in ecological assessment of lakes. Freshw. Sci. 33, 619–638 (2014).Article 

    Google Scholar 
    Hao, B. et al. Warming effects on periphyton community and abundance in different seasons are influenced by nutrient state and plant type: A shallow lake mesocosm study. Front. Plant Sci. 11, 404 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schindler, D. E. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl. Acad. Sci. USA 114, 9764–9765 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Millet, L. et al. Diagnostic fonctionnel des systèmes lacustres de Gérardmer, Longemer et RetournemerUne approche combinée limnologie/paléolimnologie. 38 (2015).Sabart, M. Projet DIVERSITOX (DIVERSIté des cyanoTOXines dans différents milieux aquatiques ligériens et relation avec la biodiversité microbienne). 28 (2018).Jenny, J.-P. et al. A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol. Oceanogr. 58, 1395–1408 (2013).CAS 
    Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, C. J. & Beman, J. M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA: Lake microbial ecology along an elevation gradient. Environ. Microbiol. 18, 1782–1791 (2016).PubMed 
    Article 

    Google Scholar 
    Catalan, J. et al. Global change revealed by palaeolimnological records from remote lakes: A review. J. Paleolimnol. 49, 513–535 (2013).Article 

    Google Scholar 
    Novotny, A., Zamora-Terol, S. & Winder, M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc. R. Soc. B. 288, 20210908 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lei, Y., Stumm, K., Wickham, S. A. & Berninger, U. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61, 493–508 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foissner, W. & Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 35, 375–482 (1996).Article 

    Google Scholar 
    Posch, T. et al. Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: A study from a continuous cultivation system. Microb. Ecol. 42, 217–227 (2001).PubMed 
    Article 

    Google Scholar 
    Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).PubMed 
    Article 

    Google Scholar 
    Ogram, Andrew., Sayler, G. S., Gustin, Denise. & Lewis, R. J. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. 7, 189 (2019).Article 

    Google Scholar 
    Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. B 370, 20130383 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epp, L. S. A global perspective for biodiversity history with ancient environmental DNA. Mol. Ecol. 28, 2456–2458 (2019).PubMed 
    Article 

    Google Scholar 
    Puitika, T., Kasahara, Y., Miyoshi, N., Sato, Y. & Shimano, S. A taxon-specific oligonucleotide primer set for PCR-based detection of soil ciliate. Microb. Environ. 22, 78–81 (2007).Article 

    Google Scholar 
    Dopheide, A., Lear, G., Stott, R. & Lewis, G. Molecular characterization of ciliate diversity in stream biofilms. Appl. Environ. Microbiol. 74, 1740–1747 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mangot, J.-F. et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ. Microbiol. 15, 1745–1758 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. AEM 75, 7537–7541 (2009).CAS 
    Article 

    Google Scholar 
    Vaulot, D. pr2database/pr2database: PR2 version 4.12.0. (Zenodo, 2019). 10.5281/ZENODO.3362765.Stoeck, T. et al. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16, 430–444 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, F. et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 6, 24874 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foissner, W., Chao, A. & Katz, L. A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17, 345–363 (2008).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Oksanen, J. et al. vegan: Community Ecology PackageJari. (2020).Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. (2019).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Conover, W. J., Johnson, M. E. & Johnson, M. M. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361 (1981).Article 

    Google Scholar 
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 48, 907–911 (1952).MATH 
    Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User manual/tutorial. (PRIMER-E, 2006).QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2021).Wickham, H. ggplot2: elegant graphics for dada analysis. (Springer-Verlag, 2016).Pedersen, T. L. & Crameri, F. scico: colour palettes based on the scientific colour-maps. (2020).Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    International food trade benefits biodiversity and food security in low-income countries

    Sustainable Development Goals (United Nations, 2015); https://sustainabledevelopment.un.orgNilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).ADS 
    PubMed 

    Google Scholar 
    Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Policy: five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).ADS 
    PubMed 

    Google Scholar 
    Xu, Z. et al. Impacts of international trade on global sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-020-0572-z (2020).Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).
    Google Scholar 
    Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141749 (2020).Liu, J. in The International Encyclopedia of Geography: People, the Earth, Environment, and Technology (eds Richardson, D. et al.) 1–8 (John Wiley & Sons, 2020).Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Carole, D. & Ignacio, R.-I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).
    Google Scholar 
    Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).ADS 
    CAS 

    Google Scholar 
    Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).
    Google Scholar 
    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).
    Google Scholar 
    MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).
    Google Scholar 
    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905618116 (2019).Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).World Development Indicators (World Bank, 2020); https://data.worldbank.orgLiu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).CAS 

    Google Scholar 
    Hull, V. & Liu, J. Telecoupling: a new frontier for global sustainability. Ecol. Soc. https://doi.org/10.5751/ES-10494-230441 (2018).Kapsar, K. E. et al. Telecoupling research: the first five years. Sustainability 11, 1033 (2019).
    Google Scholar 
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chung, M. G., Kapsar, K., Frank, K. A. & Liu, J. The spatial and temporal dynamics of global meat trade networks. Sci. Rep. 10, 16657 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).ADS 

    Google Scholar 
    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).
    Google Scholar 
    Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).
    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).
    Google Scholar 
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).
    Google Scholar 
    Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1718153115 (2018).Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 

    Google Scholar 
    Post-2020 Global Biodiversity Framework: Discussion Paper Adopted by the Conference of the Parties CBD/POST2020/PREP/1/1 (UNEP, 2019); https://www.cbd.int/doc/c/d0f3/aca0/d42fa469029f5a4d69f4da8e/post2020-prep-01-01-en.pdfEhrlich, P. R. & Harte, J. Food security requires a new revolution. Int. J. Environ. Stud. 72, 908–920 (2015).
    Google Scholar 
    Redford, K. H. et al. Mainstreaming biodiversity: conservation for the twenty-first century. Front. Ecol. Evol. 3, 137 (2015).
    Google Scholar 
    Pe’er, G. et al. EU agricultural reform fails on biodiversity. Science 344, 1090–1092 (2014).ADS 
    PubMed 

    Google Scholar 
    Liu, J. Consumption Patterns and Biodiversity (Biodiversity Programme of the Royal Society, 2020); https://royalsociety.org/topics-policy/projects/biodiversity/consumption-patterns-and-biodiversityLiu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    World Population Prospects (United Nations Department of Economic and Social Affairs Population Division, 2019); https://population.un.org/wpp/Download/Standard/Population/FAOSTAT Statistics Database (UN FAO, 2020); https://www.fao.org/faostatR Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.r-project.orgKastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).
    Google Scholar 
    Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 1, 230–250 (2014).
    Google Scholar 
    Torres-Reyna, O. Getting Started in Fixed/Random Effects Models Using R (Data & Statistical Services, Princeton Univ., 2010).Chung, M. G., Dietz, T. & Liu, J. Global relationships between biodiversity and nature-based tourism in protected areas. Ecosyst. Serv. 34, 11–23 (2018).
    Google Scholar 
    O’Brien, R. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar  More

  • in

    Habitat Protection Indexes – new monitoring measures for the conservation of coastal and marine habitats

    There are 23 international conventions related to protecting the marine environment and biodiversity, with five of these requiring the implementation of marine protected areas27. Targets for the effective protection of marine habitats that conserve nature and secure nature’s contributions to people are increasingly seen as critical in ensuring progress toward meeting treaty commitments. Aichi Target 11 and the Sustainable Development Goals Target 14.5 aim to conserve at least 10% of marine and coastal areas by 2020, reflecting a shift to a more target-driven conservation policy at the international level, although this is hotly debated. Warm-water corals, mangroves, and saltmarshes all have more than 30% of their extent within PCAs, with seagrasses and cold-water corals approaching 30%, which reveals a dedicated effort to their conservation of these critical habitats. However, the protection of the total global ocean area is still at 7.92%, with only 1.18% of ABNJ covered by PCAs, falling short of the 10% of Aichi Target 11 previously set for 202016.Standardized and open source tools and platforms are needed to allow robust monitoring of progress towards international targets. While tools are available to measure advancement in some targets24,25,26, fully replicable workflows that guide the user from data preparation to index calculations have been lacking. The workflow presented here provides one of the first steps to fill this gap. The indexes also give a global context for the conservation of the habitats, highlighting ecological representation and individual jurisdictions’ potential to contribute to future conservation efforts. Combining our indexes with other tools, such as spatial conservation planning, allows policymakers to balance tradeoffs with different priorities, such as climate mitigation and resource extraction (e.g.13).While our indexes do not measure the “equitably managed” component of the Aichi target 11, it is critical that a holistic, human rights-based approach is taken in meeting any targets set and efforts to improve biodiversity outcomes. The consideration of human rights of local communities and indigenous people and inclusion of their voices is absolutely necessary in the decision-making process28.Interpretation and Usefulness of the Workflow and IndexesThe LPHPI and GPHPI are consistent ways of measuring progress in establishing protected areas that have the potential to conserve habitats and biodiversity. Additionally, the completely open access workflow described in Fig. 5 is highly adaptable and can include a wide range of habitats as data become available, or it can be applied to different conservation features like species distributions. The workflow could also be adapted to calculate the amount of key biodiversity areas within PCAs per jurisdiction and globally, or human threats (e.g., pollution or heatwaves) when geospatial data is available. Notably, the workflow can also measure progress towards targets in the draft post-2020 global biodiversity framework (as of August 2020).Fig. 5A flow chart describing the key steps of the indexes calculations. We also connect each step to the R script available at: https://github.com/jkumagai96/Marine_Habitat_protection where a more detailed explanation on how to replicate the workflow is available.Full size imageSpecifically, the workflow and resulting LPHPI dataset can directly monitor the marine components T2.1 and T2.3 of Target 2 of the draft monitoring framework (reproduced in Table 1 for convenience). The workflow can also be easily adapted to calculate the freshwater and terrestrial aspects of Target 2 – component T2.1 and component T2.2. The Protected Area Representativeness Index and Species Protection Index currently proposed for T2.3 do not account for marine regions or species. We provide more data directly on the other indicator mentioned (Proportion of terrestrial, freshwater, and marine ecological areas within PCAs) for marine areas in a FAIR workflow. Our workflow and indexes are useful resources that monitor Target 2 of the draft monitoring framework for the post-2020 global biodiversity framework. Additionally, the inclusion of ABNJ in the indexes is extremely important given current discussions on a new implementing agreement for the United Nations Convention on the Law of the Sea to protect marine biodiversity in areas beyond national jurisdiction and thus the whole ocean29.Table 1 Subset of the draft monitoring framework for the post-2020 global biodiversity framework available online (https://www.cbd.int/sbstta/sbstta-24/post2020-monitoring-en.pdf).Full size tableThe GPHPI is a valuable index that reveals the protection status of habitats distributed globally. The index highlights that not all countries have the same amount of habitat, and international effort is needed to conserve biodiversity worldwide, aspects that the LPHPI does not readily show. It is valuable to understand where habitats are covered by protected areas and where further efforts need to be placed. For example, Norway has a relatively low LPHPI (0.168) and simultaneously a relatively high GPHPI (top 11%) because of the total area of mapped habitats within their jurisdiction and their efforts to conserve them. If they can improve their LPHPI to 0.3 (30%), their GPHPI would also increase since they have a large area of habitats. But even with less than 30% of these habitats in PCAs, the protection Norway has established, or other countries have in a similar situation, substantially contributes to the global effort.Jurisdictions have direct control over their LPHPI. Increasing the protected area coverage of their marine and coastal habitats will directly increase the index score. Small countries and territories with a limited area may see large improvements in their LPHPI through a few additional protected areas, while their GPHPI score will not increase much from this effort. For these jurisdictions, international strategies need to be implemented to promote the conservation of marine and coastal habitats. The GPHPI also reveals that each jurisdiction may physically contribute only a small percentage. However, when combined, these could provide the overall coverage of PCAs distributed around the world that is ecologically advisable to promote overall biodiversity.Within the targeted analysis of the global proportion of habitats protected, any jurisdiction that protects more than 30% of its habitat extent can move from a negative to a positive score; thus, it is relative to each jurisdiction. However, the targeted analysis also reflects the absolute contribution of each jurisdiction. In particular, the targeted analysis can be interpreted to reveal jurisdictions that have the highest opportunity to conserve the most habitat, if they can reach the 30% target. Thus, this informs part of goal D of the post-2020 biodiversity framework, which requires understanding where to prioritize effort. The jurisdictions that rank the lowest in the analysis, currently ABNJ, Norway, Papua New Guinea, Nigeria, and Iraq (Fig. 4), represent a great opportunity to further expand PCAs to 30% coverage of marine habitats within their territorial waters and coast, as these would contribute the most added area. The jurisdictions that score highest have the opportunity to monitor and improve the effectiveness of their PCAs to adequately protect these marine habitats and reduce surrounding pressures, especially since they contribute significantly to the total global extent of these habitats.LimitationsOne limitation of our indexes is that they do not distinguish between areas that are readily protected (e.g., due to remoteness) and those that most urgently need protection (e.g., highly threatened biodiverse locations)30,31. Additionally, the analysis presented here is sensitive to the choice of coastal and marine habitats included in the indexes. We selected these six habitats based on the availability of high-quality spatially explicit global data recognized by the scientific community. Each habitat dataset is published in a peer-reviewed journal and available online (https://data.unep-wcmc.org/datasets) within the UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) website and follows their data standards. The data represent the known and mapped distribution of habitats; thus, there are inherent knowledge gaps between the actual extent and available data. For example, it is likely that significant portions of cold-water corals, particularly in the ABNJ, are still unknown. Over time, the workflow will be updated and improved yearly to strengthen data coverage, and if additional high-quality data on habitats emerge, these will be included ensuring the indexes stay up to date and relevant. The original analysis with the same habitats will also be repeated to ensure a consistent time series of the indexes is provided.An important consideration when using these indexes is that habitat extent that spatially aligns with a PCA does not necessarily mean that a particular habitat is protected. For example, some PCAs enforce regulations on the water area (e.g., fishing exclusion), but do not prevent mangrove deforestation. Additionally, because of the buffering of points within the workflow, some of the habitats that are counted as protected may fall near a PCA but not within it. Nevertheless, our analysis assumes that habitats that fall within a PCA will be better conserved than habitats not within a PCA, as the primary purpose of protected areas is conservation. Similarly, we assume that other effective area-based conservation measures provide some conservation benefit and are often sustainably managed by local communities and indigenous peoples who live on them32,33.The LPHPI and GPHPI indexes report detailed information for policymakers, the scientific community, and stakeholders to understand the state of protection for marine and coastal habitats at both global and local levels. Simple metrics like these indexes that the public and politicians understand help communicate the plight of ocean health and efforts to improve it. The workflow, based on open-source programming and datasets, is reproducible and scalable and was developed to allow other scientists and data providers to calculate the indexes for any areas or habitats of interest and repeat and adapt our analysis for any target. The indexes will be updated annually to ensure continued relevance and the provision of a time series to track how the world is advancing towards the goals defined by global policy, such as aspects of the Sustainable Development Goal 14, therefore bringing to the forefront the importance and status of conserving critical marine and coastal habitats. Ultimately, transparency in protection efforts, effectiveness, and representation must be improved so policymakers can grasp the current conditions, possible scenarios, and make informed decisions to meet international policy commitments34. More

  • in

    Urban conservation gardening in the decade of restoration

    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article 

    Google Scholar 
    Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).Article 

    Google Scholar 
    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS 
    Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS 
    Article 

    Google Scholar 
    McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).CAS 
    Article 

    Google Scholar 
    Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).Article 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).Article 

    Google Scholar 
    Rosenzweig, M. L. Reconciliation ecology and the future of species diversity. Oryx 37, 194–205 (2003).Article 

    Google Scholar 
    Dunn, R. R., Gavin, M. C., Sanchez, M. C. & Solomon, J. N. The pigeon paradox: dependence of global conservation on urban nature. Conserv. Biol. 20, 1814–1816 (2006).Article 

    Google Scholar 
    Callaghan, C. T. et al. How to build a biodiverse city: environmental determinants of bird diversity within and among 1581 cities. Biodivers. Conserv. 30, 217–234 (2021).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. in Rewilding (eds Pettorelli, N. et al.) Ch. 9 (Cambridge, Univ. Press, 2019).Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).Article 

    Google Scholar 
    Prévot, A.-C., Cheval, H., Raymond, R. & Cosquer, A. Routine experiences of nature in cities can increase personal commitment toward biodiversity conservation. Biol. Conserv. 226, 1–8 (2018).Article 

    Google Scholar 
    Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).Article 

    Google Scholar 
    van Heezik, Y., Freeman, C., Davidson, K. & Lewis, B. Uptake and engagement of activities to promote native species in private gardens. Environ. Manag. 66, 42–55 (2020).Article 

    Google Scholar 
    Jorgensen, A. & Keenan, R. Urban Wildscapes (Routledge, 2012).Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).Article 

    Google Scholar 
    Tallamy, D. W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants (Timber Press, 2007).Burghardt, K. T., Tallamy, D. W. & Gregory Shriver, W. Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv. Biol. 23, 219–224 (2009).Article 

    Google Scholar 
    Kraljevic, A. & Mitlacher, G. Barometer on CBD’s Target for International Resource Mobilization (WWF, 2020).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).Article 

    Google Scholar 
    Lughadha, E. N. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Metzing, D., Hofbauer, N., Ludwig, G. & Matzke-Hajek, G. Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands: Pflanzen/Redaktion: Detlev Metzing, Natalie Hofbauer, Gerhard Ludwig und Günter Matzke-Hajek (Bundesamt für Naturschutz, 2018).Kalusová, V. et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA 114, 13756–13761 (2017).Article 
    CAS 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).Article 

    Google Scholar 
    Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 

    Google Scholar 
    Lundholm, J. T. & Richardson, P. J. Mini-Review: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975 (2010).Article 

    Google Scholar 
    Ellenberg, H. Gefahrdung wildlebender Pflanzenarten in der Bundesrepublik Deutschland, Versuch einer okologischen Betrachtung. Forstarchiv 57, 127–133 (1983).
    Google Scholar 
    Deeb, M. et al. Using constructed soils for green infrastructure—challenges and limitations. Soil 6, 413–434 (2020).CAS 
    Article 

    Google Scholar 
    BuGG-Marktreport Gebäudegrün 2020 Dach-, Fassaden-und Innenraumbegrünung Deutschland Neu begrünte Flächen Bestand und Potenziale Kommunale Förderung (BuGG, 2020).Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States: most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. Bioscience 51, 103–113 (2001).Article 

    Google Scholar 
    der Lippe, M. & Kowarik, I. Do cities export biodiversity? Traffic as dispersal vector across urban—rural gradients. Divers. Distrib. 14, 18–25 (2008).Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    Article 

    Google Scholar 
    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).Article 

    Google Scholar 
    Sharrock, S. Plant Conservation Report 2020: A Review of Progress Towards the Global Strategy for Plant Conservation 2011–2020 CBD Technical Series No. 95 (Convention on Biological Diversity, 2020).Ismail, S. A., Pouteau, R., van Kleunen, M., Maurel, N. & Kueffer, C. Horticultural plant use as a so-far neglected pillar of ex situ conservation. Conserv. Lett. 14, e12825 (2021).Article 

    Google Scholar 
    Wüstemann, H., Kalisch, D. & Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 164, 124–131 (2017).Article 

    Google Scholar 
    Kleingärten im Wandel—Innovationen für verdichtete Räume (BBSR, 2018).Rudd, H., Vala, J. & Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor. Ecol. 10, 368–375 (2002).Article 

    Google Scholar 
    Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).Article 

    Google Scholar 
    du Toit, M. J., Shackleton, C. M., Cilliers, S. S. & Davoren, E. in Urban Ecology in the Global South (eds Shackleton, C. M. et al.) 433–461 (Springer, 2021).Sawyer, J. Saving threatened native plant species in cities—from traffic islands to real islands. In Greening the City: Bringing Biodiversity Back Into the Urban Environment: Proc. (ed Dawson, M. I.) 111–117 (Royal New Zealand Institute of Horticulture, 2005).Webb, E. L. A Guide to the Native Ornamental Trees of American Samoa (National Univ. Singapore, 2011).Pan, K. et al. Urban green spaces as potential habitats for introducing a native endangered plant, Calycanthus chinensis. Urban For. Urban Green. 46, 126444 (2019).Article 

    Google Scholar 
    Gardening sales value worldwide from 2015 to 2020, with a forecast up to 2024. Statista statista.com/statistics/1220222/global-gardening-sales-value/ (2021).Warenstromanalyse 2018: Blumen, Zierpflanzen & Gehölze (AMI, 2020).Nature Awareness Study (Bundesamt für Naturschutz (BfN), 2019).Abbandonato, H., Pedrini, S., Pritchard, H. W., De Vitis, M. & Bonomi, C. Native seed trade of herbaceous species for restoration: a European policy perspective with global implications. Restor. Ecol. 26, 820–826 (2018).Article 

    Google Scholar 
    Hancock, N., Gibson-Roy, P., Driver, M. & Broadhurst, L. The Australian Native Seed Survey Report (Australian Network for Plant Conservation, 2020).Wilkinson, D. M. Is local provenance important in habitat creation? J. Appl. Ecol. 38, 1371–1373 (2001).Article 

    Google Scholar 
    Pedrini, S. & Dixon, K. W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 28, S286–S303 (2020).
    Google Scholar 
    De Vitis, M. et al. The European native seed industry: characterization and perspectives in grassland restoration. Sustainability 9, 1682 (2017).Article 

    Google Scholar 
    Westwood, M., Cavender, N., Meyer, A. & Smith, P. Botanic garden solutions to the plant extinction crisis. Plants People Planet 3, 22–32 (2021).Article 

    Google Scholar 
    Mounce, R., Smith, P. & Brockington, S. Ex situ conservation of plant diversity in the world’s botanic gardens. Nat. Plants 3, 795–802 (2017).Article 

    Google Scholar 
    Pedrini, S. et al. Collection and production of native seeds for ecological restoration. Restor. Ecol. 28, S228–S238 (2020).
    Google Scholar 
    Groves, R. H. Can Australian native plants be weeds. Plant Prot. Q. 16, 114–117 (2001).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographic Scheme for Recording Plant Distributions 2nd edn (Hunt Institute for Botanical Documentation, 2001).Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).CAS 
    Article 

    Google Scholar 
    Mumaw, L. & Bekessy, S. Wildlife gardening for collaborative public—private biodiversity conservation. Australas. J. Environ. Manag. 24, 242–260 (2017).Article 

    Google Scholar 
    Mumaw, L. Transforming urban gardeners into land stewards. J. Environ. Psychol. 52, 92–103 (2017).Article 

    Google Scholar 
    Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313 (2020).Article 

    Google Scholar 
    Ladouceur, E. et al. Native seed supply and the restoration species pool. Conserv. Lett. 11, e12381 (2018).Article 

    Google Scholar 
    Hyvärinen, M.-T. Rubus humulifolius rescued by narrowest possible margin, conserved ex situ, and reintroduced in the wild. J. Nat. Conserv. 55, 125819 (2020).Article 

    Google Scholar 
    Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet https://doi.org/10.1002/ppp3.10251 (2022).Brodie, J. F. et al. Global policy for assisted colonization of species. Science 372, 456–458 (2021).CAS 
    Article 

    Google Scholar 
    Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 27, S1–S46 (2019).Article 

    Google Scholar 
    Bower, A. D., Clair, J. B. S. & Erickson, V. Generalized provisional seed zones for native plants. Ecol. Appl. 24, 913–919 (2014).Article 

    Google Scholar 
    Goddard, M. A., Dougill, A. J. & Benton, T. G. Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecol. Econ. 86, 258–273 (2013).Article 

    Google Scholar 
    Ignatieva, M. & Ahrné, K. Biodiverse green infrastructure for the 21st century: from “green desert” of lawns to biophilic cities. J. Archit. Urban. 37, 1–9 (2013).Article 

    Google Scholar 
    van Heezik, Y. M., Dickinson, K. J. M. & Freeman, C. Closing the gap: communicating to change gardening practices in support of native biodiversity in urban private gardens. Ecol. Soc. 17, 34 (2012).
    Google Scholar 
    Shaw, A. E. & Miller, K. K. Preaching to the converted? Designing wildlife gardening programs to engage the unengaged. Appl. Environ. Educ. Commun. 15, 214–224 (2016).Article 

    Google Scholar 
    Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).Article 

    Google Scholar 
    Niemiec, R., Jones, M. S., Lischka, S. & Champine, V. Efficacy-based and normative interventions for facilitating the diffusion of conservation behavior through social networks. Conserv. Biol. 35, 1073–1085 (2021).Article 

    Google Scholar 
    Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).Article 

    Google Scholar 
    Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).Article 

    Google Scholar 
    Nassauer, J. I. Messy ecosystems, orderly frames. Landsc. J. 14, 161–170 (1995).Article 

    Google Scholar 
    Cavender, N., Smith, P. & Marfleet, K. BGCI Technical Review: The Role of Botanic Gardens in Urban Greening and Conserving Urban Biodiversity (BGCI, 2019). More

  • in

    Male-biased sex ratio in the crawling individuals of an invasive naticid snail during summer: implications for population management

    Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).Article 

    Google Scholar 
    Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).Article 

    Google Scholar 
    Genovesi, P. Eradications of invasive alien species in Europe: A review. Biol. Invasions 7, 127–133 (2005).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Takeshita, F. & Maekawa, T. Paratectonatica tigrina (Gastropoda: Naticidae) adjusts its predation tactics depending on the chosen prey and their shell weight relative to its own. J. Mar. Biol. Assoc. U. K. 100, 921–926 (2020).Article 

    Google Scholar 
    Wiltse, W. I. Effects of Polinices duplicatus (Gastropoda: Naticidae) on infaunal community structure at Barnstable Harbor, Massachusetts, USA. Mar. Biol. 56, 301–310 (1980).Article 

    Google Scholar 
    Commito, J. A. Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA. Mar. Biol. 69, 187–193 (1982).Article 

    Google Scholar 
    Ansell, A. D. Experimental studies of a benthic predator–prey relationship. I. Feeding, growth, and egg-collar production in long-term cultures of the gastropod drill Polinices alderi (Forbes) feeding on the bivalve Tellina tenuis (da Costa). J. Exp. Mar. Biol. Ecol. 56, 235–255 (1982).Article 

    Google Scholar 
    Savazzi, E. & Reyment, R. A. Subaerial hunting behaviour in Natica gualteriana (naticid gastropod). Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 355–364 (1989).Article 

    Google Scholar 
    Gonor, J. J. Predator–prey reactions between two marine prosobranch gastropods. The Veliger 7, 228–232 (1969).
    Google Scholar 
    Hughes, R. N. Predatory behaviour of Natica unifasciata feeding intertidally on gastropods. J. Molluscan Stud. 51, 331–335 (1985).Article 

    Google Scholar 
    Pahari, A. et al. Subaerial naticid gastropod drilling predation by Natica tigrina on the intertidal molluscan community of Chandipur, Eastern Coast of India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 110–123 (2016).Article 

    Google Scholar 
    Sakai, K. Predation of the moon snail Neverita didyma, on the Manila clam Ruditapes philippinarum, at the culture ground in Mangoku-ura Inlet. Bull. Miyagi Prefect. Fish. Res. Dev. Cent. 16, 109–111 (2000) (in Japanese).
    Google Scholar 
    Tomiyama, T. et al. Unintentional introduction and the distribution of the nonindigenous moonsnail Euspira fortunei in Matsukawaura Lagoon, Japan. Nippon Suisan Gakkaishi 77, 1020–1026 (2011) (in Japanese with English abstract).Article 

    Google Scholar 
    Okoshi, K. Alien species introduced with imported clams: The clam-eating moon snail Euspira fortunei and other unintentionally introduced species. Japanese J. Benthol. 59, 74–82 (2004) (in Japanese with English abstract).
    Google Scholar 
    Okoshi, K. & Sato-Okoshi, W. Euspira fortunei: Biology and fisheries science of an invasive species (Kouseishakouseikaku Press, 2011).
    Google Scholar 
    Tomiyama, T. Lethal and non-lethal effects of an invasive naticid gastropod on the production of a native clam. Biol. Invasions 20, 2005–2014 (2018).Article 

    Google Scholar 
    Sato, S., Chiba, T. & Hasegawa, H. Long-term fluctuations in mollusk populations before and after the appearance of the alien predator Euspira fortunei on the Tona coast, Miyagi Prefecture, northern Japan. Fish. Sci. 78, 589–595 (2012).CAS 
    Article 

    Google Scholar 
    Kinoshita, K., Sasaki, N., Seki, A., Matsumasa, M. & Takehara, A. Distribution of the invasive snail Laguncula pulchella and the effect of its predation on the mollusk populations in the Orikasa River Estuary after the 2011 off the Pacific Coast of Tohoku Earthquake. Japanese J. Benthol. 72, 61–70 (2018) (in Japanese with English abstract).
    Google Scholar 
    Sato, T., Iwasaki, T., Narita, K. & Matsumoto, I. Occurrence of the moonsnail Euspira fortunei after the earthquake in Matsukawaura Lagoon Japan. Bull. Fukushima Prefect. Fish. Exp. Stn. 79–82 (2016). (in Japanese).Chiba, T. & Sato, S. Size-selective predation and drillhole-site selectivity in Euspira fortunei (Gastropoda: Naticidae): Implications for ecological and palaeoecological studies. J. Molluscan Stud. 78, 205–212 (2012).Article 

    Google Scholar 
    Tanabe, T. Relationship between the shell height of the predatory moon snail Euspira fortunei and drilled hole diameter on the prey shell of manila clam Ruditapes philippinarum. Nippon Suisan Gakkaishi 78, 37–42 (2012) (in Japanese with English abstract).Article 

    Google Scholar 
    Hasegawa, H. & Sato, S. Predatory behaviour of the naticid Euspira fortunei: Why does it drill the left shell valve of Ruditapes philippinarum?. J. Molluscan Stud. 75, 147–151 (2009).Article 

    Google Scholar 
    Kingsley-Smith, P. R., Richardson, C. A. & Seed, R. Size-related and seasonal patterns of egg collar production in Polinices pulchellus (Gastropoda: Naticidae) Risso 1826. J. Exp. Mar. Biol. Ecol. 295, 191–206 (2003).Article 

    Google Scholar 
    Tomiyama, T. Timing and frequency of egg-collar production of the moonsnail Euspira fortunei. Fish. Sci. 79, 905–910 (2013).CAS 
    Article 

    Google Scholar 
    Sakai, K. & Suto, A. Early development and behavior of the moon snail Neverita didyma. Miyagi Prefect. Rep. Fish. Sci. 5, 55–58 (2005) (in Japanese).
    Google Scholar 
    Cook, N. & Bendell-Young, L. Determining the ecological role of Euspira lewisii: Part I: Feeding ecology. J. Shellfish Res. 29, 223–232 (2010).Article 

    Google Scholar 
    Peitso, E., Hui, E., Hartwick, B. & Bourne, N. Predation by the naticid gastropod Polinices lewisii (Gould) on littleneck clams Protothaca staminea (Conrad) in British Columbia. Can. J. Zool. 72, 319–325 (1994).Article 

    Google Scholar 
    Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005 (2010).ADS 
    Article 

    Google Scholar 
    Vaughn, D., Turnross, O. R. & Carrington, E. Sex-specific temperature dependence of foraging and growth of intertidal snails. Mar. Biol. 161, 75–87 (2014).Article 

    Google Scholar 
    Watson, P. J., Arnqvist, G. & Stallmann, R. R. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 151, 46–58 (1998).CAS 
    Article 

    Google Scholar 
    Schlacher, T. A. & Wooldridge, T. H. Patterns of selective predation by juvenile, benthivorous fish on estuarine macrofauna. Mar. Biol. 125, 241–247 (1996).Article 

    Google Scholar 
    Sudo, H. & Azeta, M. Selective predation on mature male Byblis japonicus (Amphipoda: Gammaridea) by the barface cardinalfish, Apogon semilineatus. Mar. Biol. 114, 211–217 (1992).Article 

    Google Scholar 
    Vadas, R. L., Burrows, M. T. & Hughes, R. N. Foraging strategies of dogwhelks, Nucella lapillus (L.): Interacting effects of age, diet and chemical cues to the threat of predation. Oecologia 100, 439–450 (1994).ADS 
    Article 

    Google Scholar 
    Donelan, S. C. & Trussell, G. C. Sex-specific differences in the response of prey to predation risk. Funct. Ecol. 34, 1235–1243 (2020).Article 

    Google Scholar 
    Yoshida, K., Sato, T., Narita, K. & Tomiyama, T. Abundance and body size of the moonsnail Laguncula pulchella in the Misuji River estuary, Seto Inland Sea, Japan: Comparison with a population in northern Japan. Plankt. Benthos Res. 12, 53–60 (2017).Article 

    Google Scholar 
    Sato, T., Ogata, Y., Nemoto, Y. & Shimamura, S. Status review and current concerns of the fishery for the short-neck clam, Ruditapes philippinarum, in Matsukawaura Lagoon, Fukushima Prefecture. Bull. Fukushima Prefect. Fish. Exp. Stn. 14, 57–67 (2007) (in Japanese).
    Google Scholar 
    Tomiyama, T. & Sato, T. Effects of translocation on the asari clam Ruditapes philippinarum at small spatial scales in Matsukawaura, Japan. Bull. Mar. Sci. 97, 647–664 (2021).Article 

    Google Scholar 
    Chiba, T. & Sato, S. Invasion of Laguncula pulchella (Gastropoda: Naticidae) and predator–prey interactions with bivalves on the Tona coast, Miyagi prefecture, northern Japan. Biol. Invasions 15, 587–598 (2013).Article 

    Google Scholar  More