More stories

  • in

    Novel wheat varieties facilitate deep sowing to beat the heat of changing climates

    World Food and Agriculture—Statistical Yearbook 2020 (FAO, 2020).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 

    Google Scholar 
    Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).CAS 

    Google Scholar 
    Hochman, Z., Gobbett, D. L. & Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Change Biol. 23, 2071–2081 (2017).
    Google Scholar 
    Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2018).
    Google Scholar 
    Rebetzke, G. J. et al. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res. 100, 10–23 (2007).
    Google Scholar 
    Gan, Y., Stobbe, E. H. & Moes, J. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 32, 1275–1281 (1992).
    Google Scholar 
    Rebetzke, G., Ingvordsen, C., Bovill, W., Trethowan, R. & Fletcher, A. in Australian Agriculture in 2020: From Conservation to Automation (eds Pratley, J. & Kirkegaard, J.) 273–288 (Agronomy Australia and Charles Sturt Univ., 2019).Schillinger, W. F., Donaldson, E., Allan, R. E. & Jones, S. S. Winter wheat seedling emergence from deep sowing depths. Agron. J. 90, 582–586 (1998).
    Google Scholar 
    Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).
    Google Scholar 
    Richards, R. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust. J. Agric. Res. 43, 517–527 (1992).
    Google Scholar 
    Rebetzke, G. et al. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 52, 1221–1234 (2001).CAS 

    Google Scholar 
    Rebetzke, G., Richards, R., Sirault, X. & Morrison, A. Genetic analysis of coleoptile length and diameter in wheat. Aust. J. Agric. Res. 55, 733–743 (2004).
    Google Scholar 
    Rebetzke, G. J., Zheng, B. & Chapman, S. C. Do wheat breeders have suitable genetic variation to overcome short coleoptiles and poor establishment in the warmer soils of future climates? Funct. Plant Biol. 43, 961–972 (2016).
    Google Scholar 
    Rebetzke, G. J. et al. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res. 126, 87–96 (2012).
    Google Scholar 
    Zhao, Z., Rebetzke, G. J., Zheng, B., Chapman, S. C. & Wang, E. Modelling impact of early vigour on wheat yield in dryland regions. J. Exp. Bot. 70, 2535–2548 (2019).CAS 

    Google Scholar 
    Brown, H. E. et al. Plant Modelling Framework: software for building and running crop models on the APSIM platform. Environ. Model. Softw. 62, 385–398 (2014).
    Google Scholar 
    Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).
    Google Scholar 
    Smith, C. J. et al. Using fertiliser to maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental cost. Agric. Ecosyst. Environ. 286, 106644 (2019).CAS 

    Google Scholar 
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    Google Scholar 
    Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).
    Google Scholar 
    Anderson, W. K., Stephens, D. & Siddique, K. H. M. in Innovations in Dryland Agriculture (eds Farooq, M. & Siddique, K. H. M.) 299–319 (Springer International, 2016).Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Evans, J. R. & Lilley, J. M. Genotype × management strategies to stabilise the flowering time of wheat in the south-eastern Australian wheatbelt. Crop Pasture Sci. 69, 547–560 (2018).
    Google Scholar 
    Rebetzke, G., Botwright, T., Moore, C., Richards, R. & Condon, A. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res. 88, 179–189 (2004).
    Google Scholar 
    Richards, R. A. & Lukacs, Z. Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust. J. Agric. Res. 53, 41–50 (2002).CAS 

    Google Scholar 
    López-Castañeda, C. & Richards, R. A. Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crops Res. 39, 85–98 (1994).
    Google Scholar 
    Zerner, M. C., Rebetzke, G. J. & Gill, G. S. Genotypic stability of weed competitive ability for bread wheat (Triticum aestivum) genotypes in multiple environments. Crop Pasture Sci. 67, 695–702 (2016).
    Google Scholar 
    Allan, R. E., Vogel, O. A. & Peterson, C. J. Jr Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. Agron. J. 54, 347–350 (1962).
    Google Scholar 
    Towards a Global Programme on Sustainable Dryland Agriculture (FAO, 2020); https://www.fao.org/3/nd366en/nd366en.pdfAntle, J. M., Cho, S., Tabatabaie, S. H. & Valdivia, R. O. Economic and environmental performance of dryland wheat-based farming systems in a 1.5 C world. Mitig. Adapt. Strateg. Glob. Change 24, 165–180 (2019).
    Google Scholar 
    Kirkegaard, J. & Hunt, J. Increasing productivity by matching farming system management and genotype in water-limited environments. J. Exp. Bot. 61, 4129–4143 (2010).CAS 

    Google Scholar 
    Rebetzke, G. J. et al. Agronomic assessment of the durum Rht18 dwarfing gene in bread wheat. Crop Pasture Sci. https://doi.org/10.1071/CP21645 (2022).Bathgate, J. The Influence of Wheat (Triticum aestivum L.) Semi-dwarfing Genes and the Lcol-A1 QTL on the Coleoptile, Seedling Vigour, and Establishment from Deep Sowing. Honours thesis, Charles Sturt Univ. (2021).Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: using wheat as a case study. Eur. J. Agron. 100, 141–150 (2018).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, T. & Richards, R. The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Funct. Plant Biol. 28, 417–423 (2001).
    Google Scholar 
    Ellis, M. H. et al. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31, 583–589 (2004).CAS 

    Google Scholar 
    Whan, B. The association between coleoptile length and culm length in semidwarf and standard wheats. J. Aust. Inst. Agric. Sci. 42, 194–196 (1976).
    Google Scholar 
    Whan, B. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust. J. Exp. Agric. 16, 411–416 (1976).
    Google Scholar 
    Bush, M. & Evans, L. Growth and development in tall and dwarf isogenic lines of spring wheat. Field Crops Res. 18, 243–270 (1988).
    Google Scholar 
    Rebetzke, G. J., Bonnett, D. G. & Ellis, M. H. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 127, 17–25 (2012).
    Google Scholar 
    Miralles, D., Calderini, D., Pomar, K. & D’Ambrogio, A. Dwarfing genes and cell dimensions in different organs of wheat. J. Exp. Bot. 49, 1119–1127 (1998).CAS 

    Google Scholar 
    Radford, B. Effect of constant and fluctuating temperature regimes and seed source on the coleoptile length of tall and semidwarf wheats. Aust. J. Exp. Agric. 27, 113–117 (1987).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, A. & Richards, R. Influence of variety, seed position and seed source on screening for coleoptile length in bread wheat (Triticum aestivum L.). Euphytica 119, 349–356 (2001).
    Google Scholar 
    Cornish, P. & Hindmarsh, S. Seed size influences the coleoptile length of wheat. Aust. J. Exp. Agric. 28, 521–523 (1988).
    Google Scholar 
    Zheng, B., Chenu, K. & Doherty, A. The APSIM-Wheat Module (7.5 R3008) (APSIM Initiative, 2015); https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdfZadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421 (1974).
    Google Scholar 
    Bell, L. W., Lilley, J. M., Hunt, J. R. & Kirkegaard, J. A. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat. Crop Pasture Sci. 66, 332–348 (2015).
    Google Scholar 
    Flohr, B. M., Hunt, J. R., Kirkegaard, J. A. & Evans, J. R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 209, 108–119 (2017).
    Google Scholar 
    Chen, C. et al. Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Res. 247, 107710 (2020).
    Google Scholar 
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Google Scholar 
    Liu, B. et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Change Biol. 25, 1428–1444 (2019).
    Google Scholar 
    Zhao, Z., Wang, E., Rebetzke, G. J. & Kirkegaard, J. A. Supporting data for ‘Sowing deep to beat the heat using novel genetics adapts wheat to a changing climate’. CSIRO Data Access Portal https://data.csiro.au/collection/csiro:53658 (2022).Holzworth, D. et al. APSIM Next Generation: overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 103, 43–51 (2018).
    Google Scholar 
    APSIM Initiative. Source code of APSIM Next Generation. GitHub https://github.com/APSIMInitiative/ApsimX (2021). More

  • in

    Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China

    Froehner, S., Rizzi, J., Vieira, L. M. & Sanez, J. PAHs in water, sediment and biota in an area with port activities. Arch. Environ. Contam. Toxicol. 75, 236–246. https://doi.org/10.1007/s00244-018-0538-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anyanwu, I. N., Sikoki, F. D. & Semple, K. T. Risk assessment of PAHs and N-PAH analogues in sediment cores from the Niger Delta. Mar. Pollut. Bull. 161, 111684. https://doi.org/10.1016/j.marpolbul.2020.111684 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, B., Cui, D. Y., Liu, A., Li, Q. & Zheng, L. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Daya Bay, South China. Environ. Sci. Pollut. Res. 28, 25858–25865. https://doi.org/10.1007/s11356-020-11956-w (2021).CAS 
    Article 

    Google Scholar 
    Li, J. W. et al. Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J. Hazardous Mater. 173, 75–81. https://doi.org/10.1016/j.jhazmat.2009.08.050 (2010).CAS 
    Article 

    Google Scholar 
    Honda, M. & Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17, 1363. https://doi.org/10.3390/ijerph17041363 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Lu, G. N., Tao, X. Q., Dang, Z., Yi, X. Y. & Yang, C. Estimation of n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons by quantum chemical descriptors. Cent. Eur. J. Chem. 6, 310–318. https://doi.org/10.2478/s11532-008-0010-y (2008).CAS 
    Article 

    Google Scholar 
    Yuan, H. Z., Zhang, E. L., Lin, Q., Wang, R. & Liu, E. F. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China. Environ. Sci. Pollut. Res. 23, 4430–4441. https://doi.org/10.1007/s11356-015-5626-9 (2016).CAS 
    Article 

    Google Scholar 
    Souza, M. R. R. et al. Concentration, distribution and source apportionment of polycyclic aromatic hydrocarbons (PAH) in Poxim River sediments, Brazil. Mar. Pollut. Bull. 127, 478–483. https://doi.org/10.1016/j.marpolbul.2017.12.045 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis, E. et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci. Total Environ. 691, 528–537. https://doi.org/10.1016/j.scitotenv.2019.07.114 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Dreyer, A., Radke, M., Turunen, J. & Blodau, C. Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of eastern Canada. Environ. Sci. Technol. 39, 3918–3924. https://doi.org/10.1021/es0481880 (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ma, W. L. et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China. Environ. Monitoring Assessment 185, 8399–8409. https://doi.org/10.1007/s10661-013-3182-7 (2013).CAS 
    Article 

    Google Scholar 
    Yang, Y. Y. et al. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. Mar. Pollut. Bull. 152, 10923. https://doi.org/10.1016/j.marpolbul.2020.110923 (2020).CAS 
    Article 

    Google Scholar 
    Rahmanpoor, S., Ghafourian, H., Hashtroudi, S. M. & Bastami, K. D. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait, Persian Gulf. Mar. Pollut. Bull. 78, 224–229. https://doi.org/10.1016/j.marpolbul.2013.10.032 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aghadadashi, V., Mehdinia, A., Bakhtiari, A. R., Mohammadi, J. & Moradi, M. Source, spatial distribution, and toxicity potential of Polycyclic Aromatic Hydrocarbons in sediments from Iran’s environmentally hot zones, the Persian Gulf. Ecotoxicol. Environ. Saf. 173, 514–525. https://doi.org/10.1016/j.ecoenv.2019.02.029 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, L., Zhu, B., Gao, J. H. & Kang, H. Q. Impact of Taihu Lake on city ozone in the Yangtze River Delta. Adv. Atmos. Sci. 34, 226–234. https://doi.org/10.1007/s00376-016-6099-6 (2017).CAS 
    Article 

    Google Scholar 
    Huang, S. B., Qiao, M., Wang, H. & Wang, Z. J. Organchlorinated pesticides in surface sediments of meiliang bay in Taihu Lake, China. J. Environ. Sci. Health Part a-Toxic/Hazardous Substances Environ. Eng. 41, 223–234. https://doi.org/10.1080/10934520500354664 (2006).CAS 
    Article 

    Google Scholar 
    Su, H. L. et al. Distribution characteristics and risk assessments of PAHs in fish from Lake Taihu, China. Hum. Ecol. Risk Assessment 21, 1753–1765. https://doi.org/10.1080/10807039.2014.975003 (2015).CAS 
    Article 

    Google Scholar 
    Wang, W. W., Qu, X. L., Lin, D. H. & Yang, K. Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China. Environ. Pollut. 288, 117709. https://doi.org/10.1016/j.envpol.2021.117709 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peng, X. Z., Zhang, G., Zheng, L. P., Mai, B. X. & Zeng, S. W. The vertical variations of hydrocarbon pollutants and organochlorine pesticide residues in a sediment core in Lake Taihu, East China. Geochem.-Exploration Environ. Anal. 5, 99–104. https://doi.org/10.1144/1467-7873/03-038 (2005).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Lu, Y. & Zhao, W. Y. Spatial distribution of polycyclic aromatic hydrocarbons from Lake Taihu, China. Bull. Environ. Contam. Toxicol. 87, 80–85. https://doi.org/10.1007/s00128-011-0292-1 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dong, Y. B. et al. Polycyclic aromatic hydrocarbons in sediments from typical Algae, Macrophyte Lake Bay and adjoining river of Taihu Lake, China: Distribution, sources, and risk assessment. Water 13, 470. https://doi.org/10.3390/w13040470 (2021).CAS 
    Article 

    Google Scholar 
    Chen, P. & Liang, J. Polycyclic aromatic hydrocarbons in green space soils in Shanghai: Source, distribution, and risk assessment. J. Soils Sediments 21, 967–977. https://doi.org/10.1007/s11368-020-02838-2 (2021).CAS 
    Article 

    Google Scholar 
    Xia, Z. et al. New approaches to reduce sample processing times for the determination of polycyclic aromatic compounds in environmental samples. Chemosphere 274, 129738. https://doi.org/10.1016/j.chemosphere.2021.129738 (2021).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Sun, T., Wang, Y. H., Tian, J. M. & Kong, X. G. Characteristics of PAHs in soils under different land-use types and their associated health risks in the northern Taihu Basin, China. J. Soils Sediments 22, 134–145. https://doi.org/10.1007/s11368-021-03050-6 (2022).CAS 
    Article 

    Google Scholar 
    Abdollahi, S. et al. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar. Pollut. Bull. 72, 336–345. https://doi.org/10.1016/j.marpolbul.2013.01.025 (2013).CAS 
    Article 

    Google Scholar 
    Santos, E. et al. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment. Mar. Pollut. Bull. 127, 352–358. https://doi.org/10.1016/j.marpolbul.2017.12.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Long, E. R., Field, L. J. & Macdonald, D. D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 17, 714–727. https://doi.org/10.1002/etc.5620170428 (1998).CAS 
    Article 

    Google Scholar 
    Han, B., Liu, A., He, S., Li, Q. & Zheng, L. Composition, content, source, and risk assessment of PAHs in intertidal sediment in Shilaoren Bay, Qingdao, China. Mar. Pollut. Bull. 159, 111499. https://doi.org/10.1016/j.marpolbul.2020.111499 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abba, E. J., Unnikrishnan, S., Kumar, R., Yeole, B. & Chowdhury, Z. Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int. J. Environ. Health Res. 22, 134–149. https://doi.org/10.1080/09603123.2011.613112 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ji, H., Zhang, D. & Shinohara, R. Size distribution and estimated carcinogenic potential of particulate polycyclic aromatic hydrocarbons collected at a downtown site in Kumamoto, Japan, in Spring. J. Health Sci. 53, 700–707. https://doi.org/10.1248/jhs.53.700 (2007).CAS 
    Article 

    Google Scholar 
    Lei, P., Zhang, H. & Shan, B. Q. Vertical records of sedimentary PAHs and their freely dissolved fractions in porewater profiles from the northern bays of Taihu Lake, Eastern China. RSC Adv. 6, 98835–98844. https://doi.org/10.1039/c6ra11180g (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Li, A. L. et al. Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China. Environ. Pollut. 246, 198–206. https://doi.org/10.1016/j.envpol.2018.11.112 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 46, 3065–3073. https://doi.org/10.1016/j.watres.2012.03.006 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H. & Wang, Z. J. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ. Int. 32, 28–33. https://doi.org/10.1016/j.envint.2005.04.005 (2016).CAS 
    Article 

    Google Scholar 
    Sun, L., Zang, S. Y. & Sun, H. J. Sources and history of PAHs in lake sediments from oil-producing and industrial areas, northeast China. Int. J. Environ. Sci. Technol. 11, 2051–2060. https://doi.org/10.1007/s13762-013-0396-8 (2014).CAS 
    Article 

    Google Scholar 
    Guo, J. Y. et al. Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Arch. Environ. Contam. Toxicol. 60, 590–596. https://doi.org/10.1007/s00244-010-9568-4 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Z. D. et al. A study on PAHs in the surface soil of the region around Qinghai Lake in the Tibet plateau: Evaluation of distribution characteristics, sources and ecological risks. Environ. Res. Commun. 3, 041005. https://doi.org/10.1088/2515-7620/abf3d9 (2021).Article 

    Google Scholar 
    Li, C. C. et al. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China. Environ. Sci. Pollut. Res. 21, 12028–12039. https://doi.org/10.1007/s11356-014-3137-8 (2014).CAS 
    Article 

    Google Scholar 
    Romo-Gomez, C., Monks, S., Pulido-Flores, G. & Gordillo-Martinez, A. J. Determination of polycyclic aromatic hydrocarbons (PAHs) in superficial water and sediment of Lake Tecocomulco, Mexico. Interciencia 35, 905–911 (2010).
    Google Scholar 
    Yuan, Z. J. et al. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk. Ecotoxicol. Environ. Saf. 214, 112095. https://doi.org/10.1016/10.1016/j.ecoenv.2021.112095 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, B. B., Wu, J. L. & Zhao, Z. H. Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface waters, soils and sediments of the Kaidu River catchment, northwest China. Int. J. Environ. Pollut. 63, 104–116. https://doi.org/10.1504/IJEP.2018.10014155 (2018).CAS 
    Article 

    Google Scholar 
    Yan, W., Chi, J. S., Wang, Z. Y., Huang, W. X. & Zhang, G. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ. Pollut. 157, 1823–1830. https://doi.org/10.1016/j.envpol.2009.01.023 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias, A. H. et al. Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahia Blanca estuary, Argentina. Environ. Monitor. Assess. 160, 301–314. https://doi.org/10.1007/s10661-008-0696-5 (2010).CAS 
    Article 

    Google Scholar 
    Yunker, M. B. et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5 (2002).CAS 
    Article 

    Google Scholar 
    Tobiszewski, M. & Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, M. H., Li, C. H., Ye, C. & Xu, S. H. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbon in sediments from Zhushan Bay littoral zone, Lake Taihu. J. Environ. Eng. Technol. 4, 199–205 (2014) (in Chinese).
    Google Scholar 
    Zhao, Q., Yu, Q. & Chen, L. M. Particulate matter and particle-bound polycyclic aromatic hydrocarbons in the Dapu road tunnel in Shanghai. Int. J. Environ. Pollut. 41, 21–37. https://doi.org/10.1504/IJEP.2010.032243 (2010).CAS 
    Article 

    Google Scholar 
    Tian, Y. Z. et al. Source contributions and spatiotemporal characteristics of PAHs in sediments: Using three-way source apportionment approach. Environ. Toxicol. Chem. 33, 1747–1753. https://doi.org/10.1002/etc.2628 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, F. et al. Polycyclic aromatic hydrocarbons (PAHs) and Pb isotopic ratios in a sediment core from Shilianghe Reservoir, eastern China: Implying pollution sources. Appl. Geochem. 66, 140–148. https://doi.org/10.1016/j.apgeochem.2015.12.010 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Harrison, R. M., Smith, D. J. T. & Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825–832. https://doi.org/10.1021/es950252d (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Simcik, M. F., Eisenreich, S. J. & Lioy, P. J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 33, 5071–5079. https://doi.org/10.1016/S1352-2310(99)00233-2 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    Yang, J., Xu, W. L. & Cheng, H. Y. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere 9, 63. https://doi.org/10.3390/atmos9020063 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    Cetin, B. Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Sci. Total Environ. 560, 160–169. https://doi.org/10.1016/j.scitotenv.2016.04.037 (2016).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ali-Taleshi, M. S., Squizzato, S., Riyahi Bakhtiari, A., Moeinaddini, M. & Masiol, M. Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM25-bound PAHs during heating and non-heating periods in a megacity in the Middle East. Environ. Res. 201, 111617. https://doi.org/10.1016/j.envres.2021.111617 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xu, J. et al. Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China. Sci. Total Environ. 470, 519–526. https://doi.org/10.1016/j.scitotenv.2013.10.022 (2014).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Wei, H., Liu, G. B., Yong, T. & Qin, Z. Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environ. Earth Sci. 74, 5557–5564. https://doi.org/10.1007/s12665-015-4570-9 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats

    Ballard JWO, Melvin RG, Katewa SD, Maas K (2007) Mitochondrial DNA variation is associated with measurable differences in life‐history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747. https://doi.org/10.1111/j.1558-5646.2007.00133.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Balloux F, Handley LJL, Jombart T, Liu H, Manica A (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. P R Soc B-Biol Sci 276:3447–3455. https://doi.org/10.1098/rspb.2009.0752CAS 
    Article 

    Google Scholar 
    Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. https://doi.org/10.1093/nar/27.8.1767CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brijs J, Sandblom E, Sundh H, Grans A, Hinchcliffe J, Ekstrom A, Sundell K, Olsson C, Axelsson M, Pichaud N (2017) Increased mitochondrial coupling and anaerobic capacity minimizes aerobic costs of trout in the sea. Sci Rep. 7:45778. https://doi.org/10.1038/srep45778CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caballero S, Duchene S, Garavito MF, Slikas B, Baker CS (2015) Initial evidence for adaptive selection on the NADH subunit two of freshwater dolphins by analyses of mitochondrial genomes. Plos One 10:e0123543. https://doi.org/10.1371/journal.pone.0123543CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camus MF, Wolff JN, Sgro CM, Dowling DK (2017) Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 34:2600–2612CAS 
    Article 

    Google Scholar 
    Carapelli A, Fanciulli PP, Frati F, Leo C (2019) Mitogenomic data to study the taxonomy of Antarctic springtail species (Hexapoda: Collembola) and their adaptation to extreme environments. Polar Biolo 1:1–8. https://doi.org/10.1007/s00300-019-02466-8Article 

    Google Scholar 
    Chang DD, Clayton DA (1986) Identification of primary transcriptional start sites of mouse mitochondrial DNA: accurate in vitro initiation of both heavy and light strand transcripts. Mol Cell Biol 6:1446–1453. https://doi.org/10.1128/MCB.6.5.1446CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen H, Sun S, Norenburg JL, Sundberg P (2014) Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea). Plos One 9:e85631. https://doi.org/10.1371/journal.pone.0085631CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478. https://doi.org/10.1146/annurev.cb.07.110191.002321CAS 
    Article 
    PubMed 

    Google Scholar 
    Consuegra S, John E, Verspoor E, De Leaniz CG (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 47:1–10. https://doi.org/10.1186/s12711-015-0138-0CAS 
    Article 

    Google Scholar 
    Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733. https://doi.org/10.1146/annurev.physiol.66.032102.150251CAS 
    Article 
    PubMed 

    Google Scholar 
    Da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119Article 

    Google Scholar 
    de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CR, Wolf JB (2021) Inferring adaptive codon preference to understand sources of selection shaping codon usage bias. Mol Biol Evol 38:3247–3266. https://doi.org/10.1093/molbev/msab099CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554. https://doi.org/10.1016/j.tree.2008.05.011Article 
    PubMed 

    Google Scholar 
    Egan JP, Bloom DD, Kuo CH, Hammer MP, Tongnunui P, Iglesias SP, Sheaves M, Grudpan C, Simons AM (2018) Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies). Mol Phylogenet Evol 124:151–161. https://doi.org/10.1016/j.ympev.2018.03.011Article 
    PubMed 

    Google Scholar 
    Elbassiouny AA, Lovejoy NR, Chang BS (2020) Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos T R Soc B 375:20190179. https://doi.org/10.1098/rstb.2019.0179CAS 
    Article 

    Google Scholar 
    Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177CAS 
    Article 

    Google Scholar 
    Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, Gilbert MT, Da Fonseca RR (2011) Positive selection on the killer whale mitogenome. Biol Lett 7:116–118. https://doi.org/10.1098/rsbl.2010.0638CAS 
    Article 
    PubMed 

    Google Scholar 
    Ganias K (2014) Biology and ecology of sardines and anchovies. CRC Press, Boca RatonBook 

    Google Scholar 
    Garvin MR, Bielawski JP, Gharrett AJ (2011) Positive Darwinian selection in the piston that powers protonpumps in complex I of the mitochondria of Pacific salmon. Plos One 6:e24127CAS 
    Article 

    Google Scholar 
    Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ (2015a) Review and meta‐analysis of natural selection in mitochondrial complex I in metazoans. J Zool Syst Evol Res 53:1–17. https://doi.org/10.1111/jzs.12079Article 

    Google Scholar 
    Garvin MR, Thorgaard GH, Narum SR (2015b) Differential expression of genes that control respiration contribute to thermal adaptation in redband trout (Oncorhynchus mykiss gairdneri). Genome Biol Evol 7:1404–1414. https://doi.org/10.1093/gbe/evv078CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J, Tsur A (2014) Disrupting mitochondrial–nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 6:2665–2680. https://doi.org/10.1093/gbe/evu208CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299. https://doi.org/10.1146/annurev.genet.42.110807.091442CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes LC, Somoza GM, Nguyen BN, Bernot JP, Gonzalez-Castro M, Díaz de Astarloa JM, Ortí G (2017) Transcriptomic differentiation underlying marine to freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes). Ecol Evol 7:5258–5268. https://doi.org/10.1002/ece3.3133Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Phys A 148:479–497. https://doi.org/10.1016/j.cbpa.2007.06.416CAS 
    Article 

    Google Scholar 
    Jacobsen MW, Da Fonseca RR, Bernatchez L, Hansen MM (2016) Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phyl Evol 95:161–170. https://doi.org/10.1016/j.ympev.2015.11.008CAS 
    Article 

    Google Scholar 
    Jia W, Higgs PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25:339–351. https://doi.org/10.1093/molbev/msm259CAS 
    Article 
    PubMed 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zídek A, Potapenko A, Bridgland A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. BBA-Bioenerg 1604:77–94. https://doi.org/10.1016/S0005-2728(03)00027-6CAS 
    Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai KP, Li JW, Gu J, Chan TF, Tse WK, Wong CK (2015) Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 16:1072. https://doi.org/10.1186/s12864-015-2271-0CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lajbner Z, Pnini R, Camus MF, Miller J, Dowling DK (2018) Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep.-UK 8:9500. https://doi.org/10.1038/s41598-018-27805-3CAS 
    Article 

    Google Scholar 
    Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S, Lam TJ, Ip YK (2014) Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15:921. https://doi.org/10.1186/1471-2164-15-921CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lavoue S, Konstantinidis P, Chen WJ (2014) Progress in clupeiform systematics. In: Ganias K (eds) Biology and ecology of sardines and anchovies. CRC Press, Boca Raton
    Google Scholar 
    Lavoue S, Miya M, Musikasinthorn P, Chen WJ, Nishida M (2013) Mitogenomic evidence for an Indo-west pacific origin of the Clupeoidei (Teleostei: Clupeiformes). Plos One 8:e56485. https://doi.org/10.1371/journal.pone.0056485CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li Y, Park JS, Deng JH, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38:283–291. https://doi.org/10.1007/s10863-006-9052-zCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu Y, Yang Q, Zhao F (2021) Synonymous but not silent: the codon usage code for gene expression and protein folding. Annu Rev Biochem 20:375–401. https://doi.org/10.1146/annurev-biochem-071320-112701CAS 
    Article 

    Google Scholar 
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404.6778:652–660. https://doi.org/10.1038/35007527Article 

    Google Scholar 
    McLean MJ, Wolfe KH, Devine KM (1998) Base composition skews, replication orientation and gene orientation in 12 prokaryote genomes. J Mol Evol 47:691–696. https://doi.org/10.1007/PL00006428CAS 
    Article 
    PubMed 

    Google Scholar 
    Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S et al. (2003) Natural selection shaped regional mtDNA variation in humans. P Natl Acad Sci USA 100:171–176CAS 
    Article 

    Google Scholar 
    Morales HE, Pavlova A, Joseph L, Sunnucks P (2015) Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 24:2820–2837CAS 
    Article 

    Google Scholar 
    Morales HE, Pavlova A, Amos N, Major R, Bragg J, Kilian A, Greening C, Sunnucks P (2016) Mitochondrial nuclear interactions maintain a deep mitochondrial split in the face of nuclear gene flow. Bio Rxiv 1:095596
    Google Scholar 
    Mossman JA, Jennifer YG, Navarro F, Rand DM (2019) Mitochondrial DNA fitness depends on nuclear genetic background in Drosophila. G3-Genes Genom Genet 9:1175–1188. https://doi.org/10.1534/g3.119.400067CAS 
    Article 

    Google Scholar 
    Murrell B, Joel OW, Sasha M, Thomas W, Konrad S, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. Plos Genet 8:e1002764CAS 
    Article 

    Google Scholar 
    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Bio Evol 30:1196–1205CAS 
    Article 

    Google Scholar 
    Perna NT, Kocher TD (1995) Patterns of nucleotide composition at four fold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358. https://doi.org/10.1007/BF00186547CAS 
    Article 
    PubMed 

    Google Scholar 
    Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. Plos Biol 9:e1000602CAS 
    Article 

    Google Scholar 
    Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. https://doi.org/10.1038/nrg2899CAS 
    Article 
    PubMed 

    Google Scholar 
    Pond SLK, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. https://doi.org/10.1093/bioinformatics/bti320CAS 
    Article 
    PubMed 

    Google Scholar 
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 7:1253–1256. https://doi.org/10.1093/molbev/msn083CAS 
    Article 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/Rand DM, Kann LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102/103:393–407. https://doi.org/10.1023/A:1017006118852CAS 
    Article 

    Google Scholar 
    Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226CAS 
    Article 

    Google Scholar 
    Satoh TP, Sato Y, Masuyama N, Miya M, Nishida M (2010) Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics 11:479. https://doi.org/10.1186/1471-2164-11-479CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schreiber AM, Specker JL (2000) Metamorphosis in the summer flounder, Paralichthysdentatus: thyroidal status influences gill mitochondria-rich cells. Gen Comp Endocr 117:238–250. https://doi.org/10.1006/gcen.1999.7407CAS 
    Article 
    PubMed 

    Google Scholar 
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modelling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastian W, Sukumaran S, Zacharia PU, Muraleedharan KR, Dinesh Kumar PK, Gopalakrishnan A (2020) Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep.-UK 10:1–4. https://doi.org/10.1038/s41598-020-65905-1CAS 
    Article 

    Google Scholar 
    Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435. https://doi.org/10.1146/annurev.biochem.66.1.409CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP (2010) Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA 107:8666–8671. https://doi.org/10.1073/pnas.0912613107Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F (2014) Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. J Exp Biol 217:624–630CAS 
    PubMed 

    Google Scholar 
    Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci 85:2653–2657. https://doi.org/10.1073/pnas.85.8.2653CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, Beheregaray LB (2019) Thermal selection as a driver of marine ecological speciation. Proc R Soc B 286:20182023. https://doi.org/10.1098/rspb.2018.2023CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144. https://doi.org/10.1126/science.272.5265.1136CAS 
    Article 
    PubMed 

    Google Scholar 
    Whitehead A, Roach JL, Zhang S, Galvez F (2012) Salinity-and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J Exp Biol 215:1293–1305. https://doi.org/10.1242/jeb.062075Article 
    PubMed 

    Google Scholar 
    Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672. https://doi.org/10.1093/bioinformatics/btg043CAS 
    Article 
    PubMed 

    Google Scholar 
    Wright F (1990) The ‘effective number of codons’ used in a. Gene Gene 87:23–29. https://doi.org/10.1016/0378-1119(90)90491-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345:13–20. https://doi.org/10.1016/j.gene.2004.11.019CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728. https://doi.org/10.1093/molbev/mst064CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia X (2019) Is there a mutation gradient along vertebrate mitochondrial genome mediated by genome replication? Mitochondrion 46:30–40. https://doi.org/10.1016/j.mito.2018.06.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y (2017) RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). Plos One 12:e0173238. https://doi.org/10.1371/journal.pone.0173238CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao F, Zhou Z, Dang Y, Na H, Adam C, Lipzen A, Ng V, Grigoriev IV, Liu Y (2021) Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci USA 9:118. https://doi.org/10.1073/pnas.2022590118CAS 
    Article 

    Google Scholar  More

  • in

    Rewilding Argentina: lessons for the 2030 biodiversity targets

    Download PDF

    When Mariuá, a 1.5-year-old female jaguar, set foot in our breeding centre in Argentina in December 2018, we did not know that she would make history. Two years later, she walked out with two cubs: the first jaguars to roam the 1.4 million hectares of the Iberá wetlands of northeastern Argentina for at least 70 years. Mariuá and her cubs have started to reverse a process that some had thought irreversible.Within decades, one million species out of a total of some eight million could go extinct globally1. Hunting, habitat loss and ecosystem degradation are propelling this unprecedented biodiversity crisis. Current extinction rates are 100 to 1,000 times higher than in the past several million years.Argentina is no exception. Over the past 150 years, 5 bird and 4 mammal species have gone extinct. Today, about 17% of the country’s 3,000 vertebrate species are imperilled2, and 13 out of the 18 extant species of large mammal, from anteaters to tapirs, are experiencing catastrophic declines, in terms of both number and geographical range (see http://cma.sarem.org.ar).In 1998, we started a rewilding programme in Argentina to try to reverse this appalling loss. Our non-profit foundation, Fundación Rewilding Argentina, was spun out from the US non-profit organization Tompkins Conservation. We create protected areas where we can reintroduce native species, re-establish their interactions, restore ecosystem functionality and build valuable ecotourism based on wildlife viewing.Both rewilding and ecotourism can be controversial. We think that our work is an instructive example of how active restoration of crucial species, when done responsibly, can benefit both ecosystems and local people. It should be in the toolkit for meeting the 2030 biodiversity targets that will be discussed at the Convention on Biological Diversity’s Conference of the Parties in Kunming, China, next month.Three stepsThe popularity of rewilding projects is growing. These include: wolves brought back to Yellowstone National Park in Wyoming, beavers to England, bison and musk ox to northern Russia, leopards to Mozambique and Tasmanian devils to mainland Australia. The International Union for Conservation of Nature reports that, since 2008, at least 418 reintroduction projects have been started3. Most of these projects occur in protected areas and involve one or a few species. Our work in Argentina is broader.As a first step, we acquire private lands with philanthropic funds, reintroduce many species and form government-protected areas that are donated to federal and provincial governments. So far, we have purchased and donated about 400,000 hectares, with an estimated market value of US$91 million. This has created and enlarged six national parks, one national reserve and two provincial parks. Another 100,000 hectares are being donated. Together, these lands comprise a little over 10% of the total terrestrial area currently managed by the National Parks Administration of Argentina.The second step is to restore ecosystems, mainly by reintroducing species at an unprecedented scale. We spend more than $3 million each year on rewilding activities in three regions: the Iberá wetlands in the northeast, the dry Chaco forests in the north and the Patagonian steppe and coast in the south. Most often, we work with species deemed to have large impacts at the ecosystem level, such as large predators and herbivores.

    Jaguars now roam Argentina’s Iberá wetlands for the first time in more than 70 years.Credit: Matías Rebak

    Thus far, we have successfully reintroduced pampas deer, giant anteaters and collared peccaries (a pig-like, hoofed animal). We have also started founding populations of jaguars, coypus (large aquatic rodents), Wolffsohn’s viscachas (rodents that resemble a large chinchilla), red-and-green macaws and bare-faced curassows (birds related to chickens and pheasants). We are currently working on the reintroduction of 14 species.As they become abundant, reintroduced species re-weave the fabric of ecological relationships. For example, jaguars (Panthera onca) and macaws (Ara chloropterus) are reviving a crucial interaction: predation. Jaguars have begun to prey on eight species, including native rodents and feral hogs, which could limit those populations and thus benefit vegetation growth. The macaws are consuming 49 plant species, which could enhance seed dispersal, although this remains to be tested.
    Include the true value of nature when rebuilding economies after coronavirus
    Third, we invest heavily in infrastructure, capacity building and publicity to create an economy based on ecotourism. The species we work with are often highly charismatic, which benefits local communities, creating an economic incentive to conserve native wildlife and habitats. We organize workshops and courses so that locals can train as nature guides, cooks, craftspeople and more. In Iberá, where our work is most advanced, tourist visits increased by 87% between 2015 and 2021, according to official data from the Iberá wetland management agency. There were more than 50,000 visitors last year, despite the COVID-19 pandemic.All of these steps are important: simply setting aside protected areas is not enough. Globally, most modern ecosystems are ecologically damaged4, even in long-standing protected areas5. In Argentina, for example, functional populations of jaguars are missing from 19 of 22 national parks where historical distribution data suggest this key apex predator should occur.Jaguars and capybarasOur flagship project is the rewilding of the Iberá wetland. There, we are working on the restoration of nine species, including jaguars, which were eradicated from this area more than 70 years ago. We have now established a founding population of eight individuals: one adult male and three adult females, two of which (including Mariuá) were each released with two cubs aged four months. Our goal is to release a total of 20 individuals by 2027.Of all the species we work with, giant otters (Pteronura brasiliensis) and macaws have been the most difficult. Both species are extinct in the wild in Argentina. Bureaucratic hurdles have made sourcing wild individuals from neighbouring countries impossible.We obtained two pairs of giant otters from European zoos, and are holding them in pens in the core of Iberá. After several attempts, one pair bred successfully and the female gave birth to three cubs, producing the first litter born in the country for more than 30 years. We plan to release this family to the wild next year.

    This female giant river otter, together with a male and their three cubs, will be released to the wild in Argentina next year to create a founding population.Credit: Matías Rebak

    We source macaws, which have been extinct in the wild in Argentina for 100 years, from zoos, wildlife shelters and breeding centres. Because of their captive origin, we must give them the opportunity to practise flying in an aviary. We provide them with native foods, so that they learn what to eat, and we use a remote-controlled stuffed fox to teach them to avoid predators. This training isn’t always successful. Out of the 87 macaws that we have worked with, 48 were healthy and skilled enough to release. Two founding populations now thrive in the wild; one of them began reproducing in 2020.Efforts elsewhere have demonstrated the powerful effects of restoring species. In the northeast Pacific Ocean, reintroduced sea otters (Enhydra lutris) have voraciously eaten sea urchins, which in turn has allowed the return of lush kelp forests6. In Yellowstone Park, some researchers argue that reintroduced wolves have discouraged herbivores from foraging along stream edges, which might have increased tree growth and stabilized stream banks7. In Mozambique’s Gorongosa Park, the return of wildebeest and other large herbivores has curtailed Mimosa pigra, an undesirable invasive shrub8.
    Biodiversity needs every tool in the box: use OECMs
    Our rewilding work in Argentina could also have profound impacts. Close monitoring of the female jaguars and their cubs in the Iberá wetland has shown that they are largely feeding on the most abundant native prey: capybaras (Hydrochoerus hydrochaeris). Reducing the number of capybaras is expected to allow more vegetation to thrive, providing habitat for arthropods and small vertebrates, and possibly increasing carbon sequestration9. It could also help to reduce the transmission of sarcoptic mange, a density-dependent disease plaguing the capybara population. Jaguars also prey on foxes, which might benefit threatened bird species. We are working with several academic institutions to test how the return of the jaguar is reshaping the ecosystem.Challenges and caveatsAs our rewilding work gained momentum, critics ramped up from different fronts. At first, some were fearful of our policy of acquiring private lands with funds provided largely by foreign philanthropists. Those concerns faded when we began donating the land to federal and provincial governments.Then, ranchers argued that we were taking agricultural land out of production and reintroducing or boosting populations of animals that would conflict with their livestock. For example, in Patagonia, we established several protected areas where pumas (Puma concolor) and guanacos (Lama guanicoe, a relative of the llama) thrive. For almost a century, ranchers have trapped, shot and poisoned these animals, blaming them for killing sheep and competing for forage, respectively. We are conducting research to quantify the impact of pumas and guanacos on livestock, and offering alternative job opportunities based on wildlife viewing.

    Red-and-green macaws went extinct in Argentina in the late 1800s. Rewilding efforts that began in 2016 have now established two founding populations in the Iberá wetlands.Credit: Matías Rebak

    Federal and state managers, and often academics, argue that some founding populations of reintroduced species are too small and genetically related to create a viable, long-term population. This is true in some cases. But careful releases of unrelated animals can sidestep this issue. Worries about the spread of diseases when translocating individuals is also often invoked as a reason to halt rewilding activities. We implement thorough health checks and rigorous quarantines to decrease the risk of introducing unwanted diseases in the regions where we work.Concerns are sometimes raised about whether reintroduced species will recreate historical conditions, or instead create something new. Rewilding, however, seeks to regenerate and maintain ecological processes and biodiversity, rather than reaching some specific, historical equilibrium10. We think it is preferable to assume the uncertainties in trying to restore ecosystems, rather than accepting their degraded state.
    Protect the last of the wild
    Another worry is the possible impacts that tourism can have on climate, biodiversity and society — for instance, on water use, aviation emissions, road building and so on. Our strategy is to limit visitor numbers and avoid crowding by constructing multiple access gates on existing dirt roads.There are many policies that hinder rather than help rewilding. In Argentina, the laws that regulate transportation of wildlife species are built on the assumption that such activities always represent a threat to conservation. Wild animals can typically be imported to the country only through an airport in Buenos Aires. Because of this, an animal that could be driven in a truck from Brazil in a few hours must instead fly more than 1,500 kilometres and then be driven all the way back to its release area. Receiving wild animals at another international port, or moving them around within the country, requires special permits that often take months to obtain. Regulations could be altered to ease rewilding efforts while still policing the illegal wildlife trade.Next stepsNature-based tourism has been growing globally at rates of more than 4% per year, particularly in low- and middle-income countries11. Charismatic fauna, including large predators, are becoming increasingly important. In the Brazilian Pantanal, the world’s largest wetland, wildlife viewing — mostly of jaguars — generated an annual revenue of $6.8 million in 2015. This is three times the revenue obtained from traditional cattle ranching in that region12.With about 97% of the planet’s land surface ravaged by humans4, nature is facing its last stand. Urgent measures are needed not only to halt but also to reverse ecosystem and biodiversity loss. The active reintroduction of key species is one powerful way to heal some degraded ecosystems.This daunting task should not fall solely to non-profit organizations that have limited funds and staff, like us. The United Nations launched its Decade on Ecosystem Restoration in June 2021, calling for massive restoration efforts worldwide to heal nature and the climate. To achieve meaningful results at a global scale, rewilding needs the support of many stakeholders and effective international cooperation. Crucially, it requires the active involvement of governments to facilitate, fund and lead restoration efforts.

    Nature 603, 225-227 (2022)
    doi: https://doi.org/10.1038/d41586-022-00631-4

    ReferencesIPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Diaz, S. et al.) (IPBES, 2019).
    Google Scholar 
    Bauni, V. et al. Zookeys 1085, 101–127 (2022).Article 

    Google Scholar 
    Soorae, P. S. (ed.) Global Conservation Translocation Perspectives: 2021. Case Studies from Around the Globe (IUCN SSC Conservation Translocation Specialist Group, Environment Agency — Abu Dhabi & Calgary Zoo, 2021).
    Google Scholar 
    Plumptre, A. J. et al. Front. For. Glob. Chang. https://doi.org/10.3389/ffgc.2021.626635 (2021).Article 

    Google Scholar 
    Jones, K. R. et al. Science 360, 788–791 (2018).PubMed 
    Article 

    Google Scholar 
    Estes, J. A. & Duggins, D. O. Ecol. Monogr. 65, 75–100 (1995).Article 

    Google Scholar 
    Allen, B. L. et al. Food Webs 12, 64–75 (2017).Article 

    Google Scholar 
    Guyton, J. A. et al. Nature Ecol. Evol. 4, 712–724 (2020).PubMed 
    Article 

    Google Scholar 
    Schmitz, O. J. et al. Science 362, eaar3213 (2018).PubMed 
    Article 

    Google Scholar 
    Svenning, J. C., Munk, M. & Schweiger, A. in Rewilding (eds Pettorelli, N., Durant, S. M. & Du Toit, J. T.) 73–98 (Cambridge Univ. Press, 2019).
    Google Scholar 
    Balmford, A. et al. PLoS Biol. 7, e1000144 (2009).PubMed 
    Article 

    Google Scholar 
    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. Glob. Ecol. Conserv. 11, 106–114 (2017).Article 

    Google Scholar 
    Download references

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    Biodiversity needs every tool in the box: use OECMs

    Collection: Global biodiversity policy post-2020

    Protect the last of the wild

    Include the true value of nature when rebuilding economies after coronavirus

    Georgina Mace (1953–2020)

    Subjects

    Ecology

    Conservation biology

    Biodiversity

    Latest on:

    Ecology

    How itchy vicuñas remade a vast wilderness
    Research Highlight 04 MAR 22

    How colonialism fed the flames of Australia’s catastrophic wildfires
    Research Highlight 24 FEB 22

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Biodiversity

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Do not downplay biodiversity loss
    Matters Arising 26 JAN 22

    Shifting baselines and biodiversity success stories
    Matters Arising 26 JAN 22

    Jobs

    Senior Scientific Officer – Functional Genomics (Dr Rachael Natrajan)

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Senior Laboratory Research Scientist

    Francis Crick Institute
    London, United Kingdom

    Postdoctoral Training Fellow – Proteomics

    Francis Crick Institute
    London, United Kingdom

    Laboratory Operations Lead / Hub Lead as Science Support Manager

    Francis Crick Institute
    London, United Kingdom More

  • in

    Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Google Scholar 
    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).
    Google Scholar 
    Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 2013–2016 (2019).
    Google Scholar 
    Seastedt, T. R. & Crossley, D. A. The influence of arthropods on ecosystems. Bioscience 34, 157–161 (1984).
    Google Scholar 
    Brussaard, L. et al. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
    Google Scholar 
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).CAS 
    PubMed 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).PubMed 

    Google Scholar 
    Schowalter, T. D., Noriega, J. A. & Tscharntke, T. Insect effects on ecosystem services: Introduction. Basic Appl. Ecol. 26, 1–7 (2018).
    Google Scholar 
    Dangles, O. & Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 35, 109–115 (2019).
    Google Scholar 
    van der Sluijs, J. P. Insect decline, an emerging global environmental risk. Curr. Opin. Environ. Sustain. 46, 39–42 (2020).
    Google Scholar 
    Metcalfe, H., Hassall, K. L., Boinot, S. & Storkey, J. The contribution of spatial mass effects to plant diversity in arable fields. J. Appl. Ecol. 56, 1560–1574 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blaise, C. et al. The key role of inter-row vegetation and ants on predation in Mediterranean organic vineyards. Agric. Ecosyst. Environ. 311, 107237 (2021).
    Google Scholar 
    Hoffmann, C. et al. Can flowering greencover crops promote biological control in German vineyards?. Insects 8, 121 (2017).PubMed Central 

    Google Scholar 
    Eckert, M., Mathulwe, L. L., Gaigher, R., der Merwe, L. J. & Pryke, J. S. Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. J. Insect Conserv. 24, 133–149 (2019).
    Google Scholar 
    Sáenz-Romo, M. G. et al. Ground cover management in a Mediterranean vineyard: Impact on insect abundance and diversity. Agric. Ecosyst. Environ. 283, 106571 (2019).
    Google Scholar 
    Capó-Bauçà, S., Marqués, A., Llopis-Vidal, N., Bota, J. & Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285–291 (2019).
    Google Scholar 
    Garcia, L. et al. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 251, 158–170 (2018).
    Google Scholar 
    Nicholls, C. I., Altieri, M. A. & Ponti, L. Enhancing plant diversity for improved insect pest management in Northern California organic vineyards. Acta Hortic. 785, 263–278 (2008).
    Google Scholar 
    Franin, K., Barić, B. & Kuštera, G. The role of ecological infrastructure on beneficial arthropods in vineyards. Spanish J. Agric. Res. 14, e303 (2016).
    Google Scholar 
    Shapira, I. et al. Habitat use by crop pests and natural enemies in a Mediterranean vineyard agroecosystem. Agric. Ecosyst. Environ. 267, 109–118 (2018).
    Google Scholar 
    Judt, C. et al. Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in andalusian vineyards (Spain). Insects 10, 320 (2019).PubMed Central 

    Google Scholar 
    Geldenhuys, M., Gaigher, R., Pryke, J. S. & Samways, M. J. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric. Ecosyst. Environ. 307, 107222 (2021).CAS 

    Google Scholar 
    Medail, F. & Quezel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. https://doi.org/10.1046/j.1523-1739.1999.98467.x (1999).Article 

    Google Scholar 
    Carrère, P. La structure du vignoble du Vaucluse. Etudes Conjonct. 9, 931–949 (1957).
    Google Scholar 
    Nentwig, W. et al. Spiders of Europe. (2020). www.araneae.nmbe.ch.Tronquet, M. Catalogue des coléoptères de France. Rev. l’Assoc. Roussillonnaise d’Entomol. 23, 1–10 (2014).
    Google Scholar 
    Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 2 (2012).
    Google Scholar 
    Grace, J. B. Structural equation modeling and natural systems. Struct. Equ. Model. Nat. Syst. https://doi.org/10.1017/CBO9780511617799 (2006).Article 

    Google Scholar 
    Fiera, C. et al. Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in Central Romania. J. Insect Conserv. 24, 175–185 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    de Pedro, L., Perera-Fernández, L. G., López-Gallego, E., Pérez-Marcos, M. & Sanchez, J. A. The effect of cover crops on the ciodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agrono 10, 580 (2020).
    Google Scholar 
    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cobb, T. P., Langor, D. W. & Spence, J. R. Biodiversity and multiple disturbances: Boreal forest ground beetle (Coleoptera: Carabidae) responses to wildfire, harvesting, and herbicide. Can. J. For. Res. 37, 1310–1323 (2007).
    Google Scholar 
    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
    Google Scholar 
    Melbourne, B. A. Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Aust. J. Ecol. 24, 228–239 (1999).
    Google Scholar 
    Welti, E. A. R., Prather, R. M., Sanders, N. J., de Beurs, K. M. & Kaspari, M. Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J. Anim. Ecol. 89, 1286–1294 (2020).PubMed 

    Google Scholar 
    Gonçalves, F. et al. Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards?. Agric. Ecosyst. Environ. 294, 106863 (2020).
    Google Scholar 
    Muscas, E. et al. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 237, 203–212 (2017).
    Google Scholar 
    Nicholls, C. I., Parrella, M. P. & Altieri, M. A. Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. For. Entomol. 2, 107–113 (2000).
    Google Scholar 
    Vogelweith, F. & Thiéry, D. Cover crop differentially affects arthropods, but not diseases, occurring on grape leaves in vineyards. Aust. J. Grape Wine Res. 23, 426–431 (2017).
    Google Scholar 
    Hanna, R., Zalom, F. G. & Roltsch, W. J. Relative impact of spider predation and cover crop on population dynamics of Erythroneura variabilis in a raisin grape vineyard. Entomol. Exp. Appl. 107, 177–191 (2003).
    Google Scholar 
    Burgio, G. et al. Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res. 106, 759–768 (2016).CAS 
    PubMed 

    Google Scholar 
    Wisniewska, J. & Prokopy, R. Do spiders (Araneae) feed on rose leafhopper (Edwardsiana rosae; Auchenorrhyncha: Cicadellidae) pests of apple trees? (2013).Malumbres-Olarte, J., Vink, C. J., Ross, J. G., Cruickshank, R. H. & Paterson, A. M. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6, 124–134 (2013).
    Google Scholar 
    Wilson, H. et al. Summer flowering cover crops support wild bees in vineyards. Environ. Entomol. 47, 63–69 (2018).PubMed 

    Google Scholar 
    Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).
    Google Scholar 
    Gardarin, A., Pigot, J. & Valantin-Morison, M. The hump-shaped effect of plant functional diversity on the biological control of a multi-species pest community. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Serra, G., Lentini, A., Verdinelli, M. & Delrio, G. Effects of cover crop management on grape pests in a Mediterranean environment. IOBC/WPRS Bull. (2006).Sáenz-Romo, M. G. et al. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 10, 421 (2019).PubMed Central 

    Google Scholar 
    Barry, J. P., Baxter, C. H., Sagarin, R. D. & Gilman, S. E. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267, 672–675 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ewald, J. A. et al. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Glob. Chang. Biol. 21, 3931–3950 (2015).ADS 
    PubMed 

    Google Scholar 
    Celette, F., Findeling, A. & Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. https://doi.org/10.1016/j.eja.2008.07.003 (2009).Article 

    Google Scholar 
    Ruiz-Colmenero, M., Bienes, R. & Marques, M. J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 117, 211–223 (2011).
    Google Scholar  More

  • in

    A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa

    Middle and Late Pleistocene climates of MSA occupationsWe first examined MSA occupations (n = 84, Fig. 2) spanning the Middle to Late Pleistocene using simulated climate data (see Methods). We extracted mean annual temperature (bio01) and total annual precipitation (bio12) values from the climate model33 within a 50 km radii, centred on the occupation’s mid-age date range rounded to the nearest 1000 year (kyr) time slice, to characterise environments across the wider logistical landscape (following Blinkhorn and Grove10,11). The climatic conditions for each occupation can be found in Supplementary Table S1 and are illustrated in Fig. 1.Figure 2Distribution of the eastern African Middle Stone Age occupations studied. This map was created in ArcGIS 10.5 using an SRTM (NASA).Full size imageWe found that average temperatures at eastern African MSA occupations varied between 9 °C and 25 °C, with 59 occupations falling within the 68% confidence interval of 14–23 °C. The warmest environments occupied were found in coastal regions, such as Abdur along the Red Sea coast of modern-day Eritrea (25 °C) and Panga Ya Saidi situated on the Kenyan coast (24 °C), as well as in the Lower Omo Valley of southwestern Ethiopia (24–23 °C). These hot environments were inhabited during MIS 5 and MIS 7. On the other hand, the coldest environments inhabited were at high altitude, at Fincha Habera in the Bale Mountains of southern Ethiopia (9–10 °C) and at Kenyan Rift Valley occupations of Marmonet Drift (10–14 °C) and Enkapune ya Muto (13 °C), most of which date to MIS 3. Average precipitation levels experienced by Middle to Late Pleistocene MSA populations in eastern Africa ranged between 396 and 1593 mm, with 59 occupations falling within the 68% confidence interval of 620-1150 mm, corresponding to the precipitation bracket of sub-humid landscapes. The wettest habitats were located on islands within and along the shore of Lake Victoria at Rusinga Nyamtia (1593 mm) and Karungu (1374-1499 mm) in MIS 3 and 5, as well as within the Ethiopian Rift Valley at Gademotta (1368 mm), the Ethiopian Highlands at Mochena Borango (1270-1297 mm), and the Kenyan Rift Valley at Marmonet Drift (1173-1368 mm) in MIS 3, 5 and 7. On the other hand, the driest occupations occurred at Laas Geel in Somaliland during MIS 3 (396 mm) as well as within the Lower Omo Valley (534-582 mm) during MIS 5 and 7.Classifying biomes and ecotones at MSA occupationsWe then used the modelled biome dataset (biome4output)33 to classify the local ecology of each MSA occupation within a 50 km radius. We found that 38% of the occupations (n = 32) had access to only tropical xerophytic shrubland within their logistical landscape (see Fig. 3. for modern examples of this biome), and a further 42% with this biome among others within a 50 km radius (n = 35). Tropical xerophytic shrubland was persistently occupied throughout the Middle to Late Pleistocene (Fig. 1), and whilst it was the most prevalent biome type available, representing 61.9% of the biomes present during occupational phases across the region (Supplementary Fig. S2 and Table S2), eastern African MSA adaptive systems were likely specialised for engagement with tropical xerophytic shrubland, and its modulation may therefore have influenced patterns of Middle to Late Pleistocene human distribution. Nonetheless, the proportion of occupations with access to tropical xerophytic shrubland was significantly higher using a 2-sample proportion test than the proportion of the biome available across the region throughout MSA occupational phases (Z-value = 3.38, p-value = 0.0007; Supplementary Table S2), suggesting preferential occupation of tropical xerophytic shrubland and emphasising it as an important ecosystem for MSA populations.Figure 3Examples of xerophytic shrubland environments in modern eastern Africa, including typical species (sp.). (A) Acacia tortilis (B) Commiphora sp. (C) Acacia sp. and Duosperma eremophilum. (D) Hyphaene compressa, Acacia sp., Salvadora persica, Cyperacea and Lawsonia inermis (E) Acacia sp. and Duosperma eremophilum, (F) Acacia tortilis (background: Commiphora sp. Capparaceae sp. Tephrosia sp. and Indigofera spinosa).Full size imageIn total, 57% of the occupations had a logistical landscape falling on the boundary between multiple biomes (n = 48; Supplementary Table S1). The majority of these ecotonal sites are situated between ‘open’ and ‘closed’ biome types, supporting the assertion of Basell9 that access to wooded ecologies was vital for MSA populations. Forest biomes made up relatively low proportions of the available environments available throughout the Middle to Late Pleistocene; however, importantly, we found the proportions of forest biomes occupied by MSA occupations to be significantly higher than would be expected based on the prevalence of these biomes, especially in MIS 3 and MIS 7 (see Supplementary Fig. S2 and Table S2), supporting the contention that MSA hominins preferred the rarer habitats that were near to woods and forests. The most common ecotone occupied during the eastern African MSA was that between tropical xerophytic shrubland and temperate conifer forest, which is seen as far north as Goda Buticha in southeastern Ethiopia, and as far south as Mumba in Tanzania. However, the region to the east of Lake Victoria shows the most intense occupation of this ecotone, the boundary of which fluctuates through time and space (Supplementary Table S1).We found that MIS 7 saw the preferential occupation of closed ecotones between temperate conifer forest and warm mixed forest, as well as tropical xerophytic shrubland and associated ecotones which are generally occupied throughout the period. MIS 5 saw a slight increase in habitat diversity, though expansions primarily involved the tracking of tropical xerophytic shrubland environments (as shown by all occupations in MIS 5 having access to this biome within 50 km) with exposure to new ecotones occurring at the peripheries. This can be seen at occupations distributed widely across the region; for example, certain occupations at Omo would have involved engagement with deserts alongside tropical xerophytic shrubland, whereas some MSA populations at Panga Ya Saidi had access to tropical deciduous forest and tropical savannah environments within their logistical landscape. MIS 3 saw the greatest variety in the ecologies occupied, where expansions can be seen into new and previously uninhabited environments, such as steppe tundra and warm mixed forest, with a distinct emphasis on temperate conifer forest rather than tropical xerophytic shrubland. Importantly, a chi-square test revealed that the relative proportions of biomes in the region do not differ significantly between the Marine Isotope Stages (χ2 = 9.07, p-value = 0.99), strongly suggesting that variation in the environments occupied through time reflects a shift in preference as opposed to fluctuation in the underlying ecology (see Supplementary Table S2).Characterising MSA environments throughout the Middle to Late PleistoceneWe used cluster analyses to group the occupations based on their climatic values to assess patterns in habitat choice. To do this, we scaled and combined the temperature and precipitation data and employed an automated clustering algorithm (the average silhouette method) to ascertain the optimal number (k) of clusters in the data. The algorithm found ten clusters to represent the best division of the data (Fig. 4, Supplementary Fig. S1).Figure 4Hierarchical clustering of the occupations according to mean annual temperature and total annual precipitation. K means clustering identified ten clusters as the optimal division of the dendrogram, which have been highlighted here as well as the range of environmental conditions occupied by each cluster and the percentage of cells within 50 km of that biome for all occupations within that cluster.Full size imageMost of the occupations (n = 45) fall within warm to temperate sub-humid clusters (2,4,5 and 7) with a broad temperature range of 13–19 °C and a precipitation range of 613-1297 mm. These clusters are dominated by tropical xerophytic shrubland and temperate conifer forest environments and their ecotones. We found that only two clusters (8,9) did not include occupations with access to tropical xerophytic shrubland, indicating that this biome was present across a large portion of the MSA climatic range, except at the coldest extreme. We found that the coldest cluster, cluster 9 (temperature range 9–10 °C), was the most ecotonal, with all occupations situated at high altitude where populations would have had access to steppe tundra, temperate conifer forest, temperate sclerophyll woodland and warm mixed forest, the complex topography allowing diverse biomes to appear closer together than is usually possible34. Extremely humid occupations from around Lake Victoria (Karungu and Rusinga Nyamita) formed cluster 10 (1374-1593 mm precipitation). These occupations have moderate temperatures (16–18 °C) and occupy an ecotone between tropical xerophytic shrubland and temperate conifer forest. Panga Ya Saidi and Laas Geel form their own respective clusters (3 and 6) due to their distinctively hot temperatures; however, at Panga Ya Saidi, this is coupled with moist sub-humid conditions and a diverse tropical environment (24 °C, 996-1153 mm), whereas Laas Geel possesses the lowest annual precipitation of all the occupations (18 °C, 396 mm), making its hot-dry environment unique for the eastern African MSA. However, the occupation at Laas Geel falls within the tropical xerophytic shrubland biome, with access to some open conifer woodland within 50 km, suggesting that whilst occupying a climatic extreme, this distinct habitat represents an extension of the types of environments that eastern African MSA populations were already well-adapted to.Phased habitability modelsWe used the precipitation and temperature data from the occupations as the parameters to produce phased ‘habitability’ models for the more abundantly populated interglacial phases of the MSA, demonstrating the extent of the landscape that experienced comparable climatic settings to occupations dated within that period. The climatic range produced by each phased subset was projected throughout every 1000-year time interval for that MIS, and then the percentage of ‘habitable’ cells (i.e., cells that remain within that climatic range) was calculated to identify areas that were persistently habitable, as well as the geographic range and temporal scope of impersistent habitable landscapes.Figure 5 demonstrates the temperature, precipitation, and combined habitability models for each phase. MIS 9 shows the most limited habitable zone out of the interglacial phases, however the lower number of occupations available to construct the distribution likely has impacted the construction of the models. MIS 7 marks a period of expansion, with the region surrounding Lake Victoria and the Eastern Rift Valley Lakes and the Ethiopian Highlands showing the most persistent habitability across the region. For temperature, large areas of the Horn and modern-day Sudan show less persistent habitability (ca. 40–50% cells falling within the temperature range of 12–23 °C seen at MIS 7 occupations), with pockets of unsuitability along the coast of the Baab el Mandeb and the border between modern-day Ethiopian and Somalia. However, arid zones of the southern Sahara are completely uninhabitable in terms of precipitation (0% of cells fall within the precipitation range of 582-1368 mm at MIS 7 occupations), as is the tip of the Horn. Precipitation is thus the limiting factor when considering habitability for MIS 7, as the area deemed habitable in terms of precipitation is more geographically restricted than that derived from temperature. MIS 5 sees the largest increase in habitable area for temperature, with all cells showing temperature values within the MIS 5 occupation range of 13–25 °C for at least 60% of the period. Precipitation habitability, that we considered here to be ranging between 554-1385 mm, is however more fragmented, with pockets of uninhabitability forming around the northeast edge of Lake Victoria, in the region to the south of Lake Tana, and within modern-day Tanzania. Like MIS 7, this means that habitability is limited by precipitation in MIS 5. However, the habitability models for MIS 3 demonstrates the opposite pattern. Temperature habitability, defined as between 9–19 °C by the sites dating to MIS 3, shows the most restricted distribution of all the models, with habitable areas concentrated to the areas around Lake Victoria and the Ethiopian highlands, which are linked towards the southeast of Lake Turkana. Yet, MIS 3 shows the most persistent and widely distributed zone of habitability for precipitation, where much of eastern Africa, except towards the Sahara and the very tip of the Horn of Africa, remains persistently within the range of precipitation values experienced by MIS3 occupations (396-1593 mm). Overall, these models propose that interglacial MSA occupations, especially in MIS 5, may have been much more spatially diverse than presently known, however we note that these distributions are based purely on climatic data and ignore the potential effects of volcanic eruptions and subsequent ashfalls that have also been argued to have conditioned habitability in this region9.Figures 5Mean annual temperature (top), total annual precipitation (middle) and combined (bottom) phased models of habitability, demonstrating the percentage of time intervals (1000 years per interval) that remain within the climatic range of the occupations dated to that Marine Isotope Stage (MIS). The palaeocoastline has been estimated based on the predicted mean sea-level for each MIS.Full size imageFigures 6Scatterplots of the Mantel test results (Table 1, Supplementary Table S4–S5) between the pairwise distance matrix of toolkit composition (top) and raw material use (bottom) and the other distances matrices excluding the two binary variables, site type and method.Full size imageExploring the relationship between climate and Middle Stone Age occupationsWe then examined the extent to which patterns of variability in stone tool assemblage composition and raw material use correlated with environmental conditions within a 50 km radius at the mid-age of occupation of each assemblage, as well as a suite of other variables recorded by Blinkhorn and Grove11 (see Methods and Supplementary Methods S1 details). Figure 6 demonstrates the relationships between these variables and toolkit composition and raw material use, revealed using simple Mantel tests (Table 1 and Supplementary Table S4–S5). We found that MSA assemblage composition was correlated with differences in both mean annual temperature (adj. p = 0.001; Table 1) and total annual precipitation (adj. p = 0.003; Table 1), and raw material use also shows statistically significant relationships with both mean annual temperature (adj. p = 0.001; Table 1) and total annual precipitation (adj. p = 0.003; Table 1). With the use of Pleistocene climate models at high temporal resolutions, these results refine the findings of Blinkhorn and Grove11, which relied on comparisons of the climatic extremes of the LGM and LIG.Table 1 Simple Mantel test results for the effects of precipitation and temperature on toolkit composition and raw material. Statistical significance highlighted at p  More

  • in

    Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bousquet, P. et al. Regional changes of CO2 fluxes of land and oceans since 1980. Science 290, 1253–1262 (2000).
    Google Scholar 
    Lee, K., Wanninkhof, R., Takahashi, T., Doney, S. C. & Feely, R. A. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396, 155 (1998).ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 (2009).ADS 

    Google Scholar 
    Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 3170 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. History of El Niño impacts on the global carbon cycle 1957–2017: A quantification from atmospheric CO2 data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170303 (2018).Peylin, P. et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895 LP–895899 (2015).ADS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 

    Google Scholar 
    Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2 growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS 
    CAS 

    Google Scholar 
    Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proc. Natl Acad. Sci. 100, 5852–5857 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosciences 114, 1–12 (2009).
    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).ADS 
    CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. 112, 201521479 (2015).
    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, V. et al. Soil moisture – atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).ADS 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought–mortality relationships for tropical forests Oliver. N. Phytol. 187, 631–646 (2010).
    Google Scholar 
    Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).
    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 363, 1779–1785 (2008).
    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Chang. Biol. 24, 3546–3559 (2018).ADS 
    PubMed 

    Google Scholar 
    Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. 118, e2019377118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 1–9 (2016).CAS 

    Google Scholar 
    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 14, 2015–2039 (2008).ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 

    Google Scholar 
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013). https://doi.org/10.1017/CBO9781107415324.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 

    Google Scholar 
    Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).ADS 

    Google Scholar 
    Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS 
    PubMed 

    Google Scholar 
    Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS 
    CAS 

    Google Scholar 
    Tan, Z. H. et al. Optimum air temperature for tropical forest photosynthesis: Mechanisms involved and implications for climate warming. Environ. Res. Lett. 12, 054022 (2017).Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10 (2020).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 

    Google Scholar 
    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 31, 1–4 (2004).
    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zscheischler, J., Mahecha, M. D. & Buttlar, J. Von. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).ADS 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. U. S. A. 110, 565–570 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, I. N., Torn, M. S., Riley, W. J. & Wehner, M. F. Impacts of climate extremes on gross primary production under global warming. Environ. Res. Lett. 9, 094011 (2014).Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Sci. (80-.). 368, 251.2–252 (2020).
    Google Scholar 
    Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).ADS 

    Google Scholar 
    Hawkins, L., Kumar, J., Luo, X., Sihi, D. & Zhou, S. Measuring, Monitoring, and Modeling Ecosystem Cycling. Eos (Washington. DC). 101, (2020).Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 

    Google Scholar 
    Besnard, S. et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS One 14, 1–22 (2019).
    Google Scholar 
    Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593 (1995).ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 

    Google Scholar 
    Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).ADS 
    CAS 

    Google Scholar 
    Ballantyne, A. P., Alden, C. B., Miller, J. B., Trans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–73 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).ADS 

    Google Scholar 
    Priestley, C. H. B. & Taylor, R. J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92 (1972).ADS 

    Google Scholar 
    Muller, A., Rohde, R., Jacobsen, R., R., Muller, E. & Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics Geostatistics Overv. 01, 1–7 (2013).
    Google Scholar 
    Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. Atmos. 111, 1–21 (2006).
    Google Scholar 
    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, 1–29 (2010).
    Google Scholar 
    Willmott, C. J. & Matsuura, K. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. 34, 2577–2586 (1995).ADS 

    Google Scholar 
    Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere (Basel). 8, 30052 (2017).Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).ADS 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS 

    Google Scholar 
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).ADS 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).ADS 

    Google Scholar 
    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. Manag. Risks Extrem. Events Disasters Adv. Clim. Chang. Adapt. Spec. Rep. Intergov. Panel Clim. Chang. 9781107025, 109–230 (2012).
    Google Scholar 
    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar  More

  • in

    Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming

    Climate dataMonthly climate data (air temperature at 2 m and cloudiness) with a spatial resolution of 0.5° were obtained from the CRU Time Series 4.0.15 We extracted data from 1982 to 2018 to match the time series of satellite vegetation observations. The VPD was calculated as the difference between saturated water-vapour pressure and actual water-vapour pressure31. Temperature and vapour-pressure data used for the VPD calculation were obtained from CRU.Soil moisture dataThe daily root-zone soil moisture with a spatial resolution of 0.25° for the period 1980–2018 was obtained from the Global Land Evaporation Amsterdam Model (GLEAM v.3.3a)32. The dataset is based on radiation and air temperature from a reanalysis, a combination of gauge-based, reanalysis-based and satellite-based precipitation and satellite-based vegetation optical depth.Fire emission dataMonthly carbon emissions from biomass burning were obtained from the fourth-generation Global Fire Emission Database33. This dataset has a spatial resolution of 0.25° and provides global data on the burning area and emissions on three-hourly, daily and monthly timescales and estimates the contributions of different fire types. Emissions data can be obtained for different substances, such as carbon (C), dry matter (DM), carbon dioxide (CO2), carbon monoxide (CO) and methane (CH4).Satellite vegetation greenness dataThe satellite-based NDVI archived from the MODIS NDVI dataset with a spatial resolution of 0.5° and a temporal resolution of 16 days was used here to detect vegetation greenness changes. In addition, the solar-induced chlorophyll fluorescence product was used as a proxy of vegetation photosynthesis. We furthermore used the four-day clear-sky CSIF time series (2000–2019) with a spatial resolution of 0.05° × 0.05° from ref. 34 (https://osf.io/8xqy6/).GPP based on NIRvThe NIRv is a newly developed satellite vegetation index combining NDVI and near-infrared band reflectivity of vegetation and is recognized as a proxy of GPP35,36. We obtained the 0.05° NIRv_GPP from 1982 to 2018 from ref. 37. This product was produced by upscaling the relationships between NIRv and observed GPP to the global scale and was judged to perform well in capturing interannual trends of GPP37.Atmospheric CO2 dataIn situ observations of daily CO2 concentration at Point Barrow were obtained from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory network. According to analyses of atmospheric transport and mixing processes, the CO2 signals detected at Barrow are suggested to be an integrated measure of carbon fluxes over both the high latitudes and the middle latitudes20.Ecosystem carbon fluxesSimulations of ecosystem carbon fluxes (GPP, TER and NEE) derived from process-based model simulations (TRENDY), empirical models based on flux tower observations (FLUXCOM) and atmospheric CO2 inversion models were jointly used for the investigation of net ecosystem carbon exchange over the northern middle and high latitudes.The TRENDY dataset is an ensemble of dynamic global vegetation model (DGVM) simulations that are forced by CRU–National Centers for Environmental Prediction historical climate and CO2 inputs38. The DGVMs use a bottom‐up approach to simulate terrestrial CO2 fluxes (for example, GPP, TER and NEE), and were extensively used to explore the mechanisms driving changes in carbon uptake and fluxes. The simulated GPP, TER and NEE from nine models of TRENDYv.8 (Supplementary Table 1) were used in this study. The S2 experiment, which considered the effect of both observed changes of CO2 and climate on ecosystem carbon fluxes, was selected for studying the changes of ecosystem carbon fluxes before and after the temperature shift.The FLUXCOM dataset is an upscaling product using empirical models forced by eddy-covariance data from 224 flux towers, remote sensing data and climate data8,9,10. It provides estimates of global energy and carbon fluxes (http://www.fluxcom.org/). The empirical models were trained by three machine learning algorithms, including Random Forests, Artificial Neural Networks and Multivariate Adaptive Regression Spline, and thus provide a series of estimates of global carbon fluxes. We used the FLUXCOM carbon fluxes data driven by the European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5) climate reanalysis from 1979 to 2018.The atmospheric CO2 inversion datasets provide estimates of NEE over land from long-term atmospheric CO2 measurements using atmospheric transport models. Three atmospheric CO2 inversion products were used here: monthly net biome production with a spatial resolution of 3.75° × 2.5° from the JENA CarboScope (version s76_vo2020) for the period 1976–2019, long-term global CO2 fluxes estimated by the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) between 1990 and 2019 and the Copernicus Atmosphere Monitoring Service12 (CAMS v.19r1) dataset between 1979 and 2019.Eddy-covariance CO2 observation dataThe eddy-covariance measurements of carbon fluxes from tower sites were obtained from the Integrated Carbon Observation System 2018 and the FLUXNET Network 2015. We selected 48 eddy-covariance CO2 observation sites with 10 yr continuous data (Supplementary Table 2) located north of 25° N and extracted temperature and NEE data from September to November to explore the change of ecosystem carbon exchange in autumn.NEE estimationThe monthly NEE was estimated as the difference between TER and GPP. The autumn (September to November) GPP and TER derived from TRENDY and FLUXCOM over the study region were obtained by aggregating GPP and TER from each grid cell weighted by the grid-cell area. The NEE derived from atmospheric CO2 inversions was directly used and compared against those from TRENDY and FLUXCOM. To compare the NEE before and after the temperature turning point, we divided the NEE time series into two periods: 1982–2003 and 2004–2018.Calculation of the AZCWe used observations of CO2 from Point Barrow to characterize the trends in the zero-crossing date of CO2 (downward in spring and upward in autumn). These trends roughly correspond to the beginning of net carbon uptake in spring and the beginning of net carbon release in autumn. According to the method of ref. 39, we obtained the detrended seasonal CO2 curve by separating the seasonal cycle from the long-term trend and short-term variations, fitting a function consisting of a quadratic polynomial for the long-term trend and four harmonics for the annual cycle to the daily data. The residuals from this function fit are then obtained. A 1.5-month and a 390-day full-width half-maximum-value averaging filter were used for the digital filtering of residuals to remove the short-term variations and the long-term trend, respectively. Then we got the zero-crossing dates when the detrended seasonal CO2 curve crosses the zero line from positive to negative and negative to positive, respectively.The autumn carbon release is calculated as the amount of CO2 released between the autumn zero-crossing date and the first week of September following ref. 21.Identification of turning point of temperatureWe used the piecewise linear regression method to determine the turning point of the mean autumn (September to November) temperature during 1982–2018 over the area north of 25° N. In addition, a moving t-test method was used to verify the turning-point identification. Then, the temporal trends of the mean autumn temperature before and after the turning point were calculated using the Mann–Kendall non-parametric trend test method, and the confidence intervals were determined using Sen’s slope statistics. According to the temperature trends before and after the turning point, we further identified the CAs as where the autumn temperature shows a decreasing trend after the turning point (2004) relative to that before the turning point, and WAs as regions outside the CAs. To maintain spatial integrity and continuity, we ignored the significance of the temperature trend when dividing the CAs and WAs.To verify that our analysis is not affected by the division of the time period and regions, we also identified the temperature turning point at each grid point using the piecewise linear regression method and then extracted those grid points with significant temperature change and significant NEE change (P  More