More stories

  • in

    Global seasonal Sentinel-1 interferometric coherence and backscatter data set

    Sentinel-1 data selectionThe Copernicus Sentinel-1 mission was launched by the European Space Agency (ESA) in 2014 with the Sentinel-1A satellite, complemented with the second Sentinel-1B satellite in 2016. Each satellite has a 12-days repeat cycle. Continuity of the Sentinel-1 mission has been approved by ESA until 2030 and replacement satellites will be launched. The satellites operate in different acquisition modes over different parts of the globe. Land masses are covered primarily by the Interferometric Wide-Swath Mode (IW) with a 250 km swath width across-track. Single-look-complex (SLC) Level 1.1 data are required for interferometric processing. Along-track, Sentinel-1 data are sliced into consecutive frames (slices) of about 250 km length. Data are distributed via ESA’s Scientific Sentinel-1 Hub, which is mirrored at NASA’s Alaska Satellite Facility DAAC (ASF-DAAC). During production, Sentinel-1 SLC data were accessed on the ASF-DAAC data repository which resides on Amazon’s AWS S3 bucket in region us-west-2.Sentinel-1 satellites cover various parts of Earth in ascending and descending flight direction in a total of 175 relative orbits. ESA’s flight plan has some areas covered every six days and in both flight directions, predominantly over Europe. For the production of this data set, Sentinel-1 SLC frames were selected from all available scenes acquired between December 1st 2019 and November 30th 2020. Over the one-year timeframe, a maximum of 30 to 31 acquisitions at 12-days repeat, and 60 to 61 acquisitions at 6-days repeat intervals can be expected. The following selection criteria were applied consecutively to achieve global coverage with uniform distribution of acquisitions across seasons (Fig. 1):

    Global descending data (Fig. 1a) were selected where the one-year stack size had at least 25 acquisitions.

    Spatial gaps were filled with ascending data (Fig. 1a) where the one-year stack size had at least 25 acquisitions.

    For spatial consistency, over conterminous North America north of Panama, preference was given to ascending data where both ascending and descending data existed with stack sizes over 25 acquisitions.

    For stack sizes less than 25 acquisitions, preference was given to the flight direction with the larger number of acquisitions.

    Remaining gaps were filled with data from the flight direction available.

    Fig. 1Flight direction, polarization mode, and InSAR stack sizes of 6- and 12-days repeat coverage of Sentinel-1 data acquired between December 1st 2019 and November 30th 2020 selected for processing.Full size imageArctic and Antarctic regions are typically covered with polarization modes of horizontal transmit (HH single- or HH/HV dual-polarization). Figure 1b shows the global distribution of the processed data in horizontal and vertical polarization transmit modes, respectively. Table 1 summarizes the number of selected scenes in the two flight directions and various polarization modes. The total number of processed Sentinel-1 SLC frames came to ~205,000 scenes with a total raw input data volume of about 850 Terabytes. Figure 1c,d show the spatial distribution of the final scene selection with the number of 6- and 12-days repeat-pass image pairs. Consistent 6-days repeat coverage with about sixty image pairs from either ascending or descending orbits could be processed over Europe, the coastal areas of Greenland and Antarctica, and some smaller areas around the world; note that in some regions (e.g., India, interior Greenland, Northern Canada, Eastern China) 6-days repeat coverage was available in certain seasons only (Fig. 1c). A consistent coverage with 12-days repeat-pass imagery, instead, could be processed almost globally with the nominal maximum of about thirty repeat-pass pairs in areas where only one satellite, Sentinel-1A or Sentinel-1B, acquired data in all but few areas above 60° N in Canada, Greenland, or Russia (Fig. 1d). In some small areas in the Midwestern United States, the Khabarovsk region in Far-Eastern Russia, or in the Northern Sahara, neither Sentinel-1A nor Sentinel-1B acquire data in IW mode, leading to small gaps in the final data set.Table 1 Number of Sentinel-1 Single Look Complex scenes processed.Full size tableProcessing approachThe overall processing workflow was developed based on the interferometric processing software developed by GAMMA Remote Sensing and geared towards efficient processing in the Amazon Web Services (AWS) cloud environment utilizing Earth Big Data LLC’s cloud scaling solutions. The workflow is divided into three main blocks as illustrated in Fig. 2. Sentinel-1A and -1B acquire data along 175 relative orbits/orbital tracks. Blocks 1 and 2 were processed on a per relative orbit basis; block 3 was initiated after blocks 1 and 2 had been completed for all relative orbits.Fig. 2Implementation of the Sentinel-1 interferometric processor in the AWS cloud environment.Full size imageProcessing Block 1For each SLC of a given relative orbit, processing block 1 entailed:

    1.

    Conversion of SLC image files to a GAMMA specific format. Each Sentinel-1 SLC, covering an area of ~250 × 250 km, consists of six SLC image files (one SLC image file for each of the three sub-swaths in co- (VV or HH) and cross-polarizations (VH or HV).

    2.

    Compensation of the SLC amplitudes for the noise equivalent sigma zero (NESZ).

    3.

    The orbit state vectors provided with the original Sentinel-1 SLCs were updated with the precision state vectors (AUX_POEORB) distributed by the Sentinel-1 payload data ground segment 20 days after data take with a precision (3σ) generally of the order of 1 cm (target requirement  More

  • in

    Pet-directed speech improves horses’ attention toward humans

    Jardat, P. & Lansade, L. Cognition and the human–animal relationship: a review of the sociocognitive skills of domestic mammals toward humans. Anim. Cogn. https://doi.org/10.1007/s10071-021-01557-6 (2021).Article 
    PubMed 

    Google Scholar 
    Knolle, F., Goncalves, R. P. & Jennifer Morton, A. Sheep recognize familiar and unfamiliar human faces from two-dimensional images. R. Soc. Open Sci. 4, 171228 (2017).Nawroth, C. & McElligott, A. G. Human head orientation and eye visibility as indicators of attention for goats (Capra hircus). PeerJ 5, e3073 (2017).Albuquerque, N. et al. Dogs recognize dog and human emotions. Biol. Lett. 12, 20150883 (2016).Article 

    Google Scholar 
    Albuquerque, N., Guo, K., Wilkinson, A., Resende, B. & Mills, D. S. Mouth-licking by dogs as a response to emotional stimuli. Behav. Processes 146, 42–45 (2018).Article 

    Google Scholar 
    Quaranta, A., D’ingeo, S., Amoruso, R. & Siniscalchi, M. Emotion recognition in cats. Animals 10, 1107 (2020).Sabiniewicz, A., Tarnowska, K., Świątek, R., Sorokowski, P. & Laska, M. Olfactory-based interspecific recognition of human emotions: Horses (Equus ferus caballus) can recognize fear and happiness body odour from humans (Homo sapiens). Appl. Anim. Behav. Sci. 230, 105072 (2020).Smith, A. V., Proops, L., Grounds, K., Wathan, J. & McComb, K. Functionally relevant responses to human facial expressions of emotion in the domestic horse (Equus caballus). Biol. Lett. 12, 20150907 (2016).Article 

    Google Scholar 
    Smith, A. V. et al. Domestic horses (Equus caballus) discriminate between negative and positive human nonverbal vocalisations. Sci. Rep. 8, 13052 (2018).ADS 
    Article 

    Google Scholar 
    Nakamura, K., Takimoto-Inose, A. & Hasegawa, T. Cross-modal perception of human emotion in domestic horses (Equus caballus). Sci. Rep. 8, 8660 (2018).ADS 
    Article 

    Google Scholar 
    Trösch, M. et al. Horses categorize human emotions cross-modally based on facial expression and non-verbal vocalizations. Animals 9, 862 (2019).Article 

    Google Scholar 
    Sankey, C., Henry, S., André, N., Richard-Yris, M. A. & Hausberger, M. Do horses have a concept of person? PLoS One 6, e18331 (2011).Trösch, M., Bertin, E., Calandreau, L., Nowak, R. & Lansade, L. Unwilling or willing but unable: can horses interpret human actions as goal directed?. Anim. Cogn. 23, 1035–1040 (2020).Article 

    Google Scholar 
    Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl. Acad. Sci. 109, 8202–8206 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    VanDierendonck, M. C. & Goodwin, D. Social contact in horses: implications for human-horse interactions. in The human-animal relationship. Forever and a day (eds. de Jonge, F. H. & van den Bos, R.) 65–81 (Royal van Gorcum, 2005).Saint-Georges, C. et al. Motherese in Interaction: At the Cross-Road of Emotion and Cognition? (A Systematic Review). PLoS ONE 8, 78103 (2013).ADS 
    Article 

    Google Scholar 
    Benjamin, A. & Slocombe, K. ‘Who’s a good boy?!’ Dogs prefer naturalistic dog-directed speech. Anim. Cogn. 21, 353–364 (2018).Article 

    Google Scholar 
    Ben-Aderet, T., Gallego-Abenza, M., Reby, D. & Mathevon, N. Dog-directed speech: Why do we use it and do dogs pay attention to it?. Proc. R. Soc. B Biol. Sci. 284, 20162429 (2017).Article 

    Google Scholar 
    Jeannin, S., Gilbert, C., Amy, M. & Leboucher, G. Pet-directed speech draws adult dogs’ attention more efficiently than Adult-directed speech. Sci. Rep. 7, 4980 (2017).ADS 
    Article 

    Google Scholar 
    Lesch, R. et al. Talking to dogs: Companion animal-directed speech in a stress test. Animals 9, 417 (2019).Article 

    Google Scholar 
    Lansade, L. et al. Horses are sensitive to baby talk : Pet-directed speech facilitates communication with humans in a pointing task and during grooming. Anim. Cogn. 5, 999–1006 (2021).Article 

    Google Scholar 
    Schachner, A. & Hannon, E. E. Infant-Directed Speech Drives Social Preferences in 5-Month-Old Infants. Dev. Psychol. 47, 19–25 (2011).Article 

    Google Scholar 
    Fernald, A. Approval and Disapproval: Infant Responsiveness to Vocal Affect in Familiar and Unfamiliar Languages. Child Dev. 64, 657–674 (1993).CAS 
    Article 

    Google Scholar 
    Slonecker, E. M., Simpson, E. A., Suomi, S. J. & Paukner, A. Who’s my little monkey? Effects of infant-directed speech on visual retention in infant rhesus macaques. Dev. Sci. 21, 12519 (2018).Article 

    Google Scholar 
    Kaplan, P. S., Goldstein, M. H., Huckeby, E. R. & Cooper, R. P. Habituation, sensitization, and infants’ responses to motherse speech. Dev. Psychobiol. 28, 45–57 (1995).CAS 
    Article 

    Google Scholar 
    Lansade, L. et al. Facial expression and oxytocin as possible markers of positive emotions in horses. Sci. Rep. 8, 14680 (2018).ADS 
    Article 

    Google Scholar 
    Hausberger, M. et al. Mutual interactions between cognition and welfare: The horse as an animal model. Neurosci. Biobehav. Rev. 107, 540–559 (2019).CAS 
    Article 

    Google Scholar 
    Fortin, M. et al. Emotional state and personality influence cognitive flexibility in horses (Equus caballus). J. Comp. Psychol. 132, 130–140 (2018).Article 

    Google Scholar 
    Trösch, M. et al. Horses feel emotions when they watch positive and negative horse–human interactions in a video and transpose what they saw to real life. Anim. Cogn. 23, 643–653 (2020).Article 

    Google Scholar 
    Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374 (2007).CAS 
    Article 

    Google Scholar 
    Lansade, L., Bouissou, M. F. & Erhard, H. W. Fearfulness in horses: A temperament trait stable across time and situations. Appl. Anim. Behav. Sci. 115, 182–200 (2008).Article 

    Google Scholar 
    Stomp, M. et al. An unexpected acoustic indicator of positive emotions in horses. PLoS One 13, e0197898 (2018).Briefer, E. F. et al. Segregation of information about emotional arousal and valence in horse whinnies. Sci. Rep. 5, 9989 (2015).ADS 
    Article 

    Google Scholar 
    Briefer, E. F., Tettamanti, F. & McElligott, A. G. Emotions in goats: Mapping physiological, behavioural and vocal profiles. Anim. Behav. 99, 131–143 (2015).Article 

    Google Scholar 
    Mendl, M., Burman, O. H. P. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. in Proceedings of the Royal Society B: Biological Sciences vol. 277 2895–2904 (Royal Society, 2010).Siniscalchi, M., D’Ingeo, S. & Quaranta, A. Orienting asymmetries and physiological reactivity in dogs’ response to human emotional faces. Learn. Behav. 46, 574–585 (2018).Article 

    Google Scholar 
    Munsters, C. C. B. M., Visser, K. E. K., van den Broek, J. & Sloet van Oldruitenborgh-Oosterbaan, M. M. The influence of challenging objects and horse-rider matching on heart rate, heart rate variability and behavioural score in riding horses. Vet. J. 192, 75–80 (2012).Siniscalchi, M., D’Ingeo, S., Minunno, M. & Quaranta, A. Communication in dogs. Animals 8, 131 (2018).Article 

    Google Scholar 
    Call, J., Hare, B., Carpenter, M. & Tomasello, M. ‘Unwilling’ versus ‘unable’: Chimpanzees’ understanding of human intentional action. Dev. Sci. 7, 488–498 (2004).Article 

    Google Scholar 
    Kaminski, J., Schulz, L. & Tomasello, M. How dogs know when communication is intended for them. Dev. Sci. 15, 222–232 (2012).Article 

    Google Scholar 
    Pongrácz, P., Szapu, J. S. & Faragó, T. Cats (Felis silvestris catus) read human gaze for referential information. Intelligence 74, 43–52 (2019).Article 

    Google Scholar 
    Pongrácz, P. & Onofer, D. L. Cats show an unexpected pattern of response to human ostensive cues in a series of A-not-B error tests. Anim. Cogn. 23, 681–689 (2020).Article 

    Google Scholar 
    Proops, L., Grounds, K., Smith, A. V. & McComb, K. Animals remember previous facial expressions that specific humans have exhibited. Curr. Biol. 28, 1428-1432.e4 (2018).CAS 
    Article 

    Google Scholar 
    Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).Article 

    Google Scholar 
    von Borell, E. et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 92, 293–316 (2007).Article 

    Google Scholar  More

  • in

    Confronting the water potential information gap

    Brutsaert, W. Hydrology: An Introduction (Cambridge Univ. Press, 2005).Philip, J. Plant water relations: some physical aspects. Annu. Rev. Plant Physiol. 17, 245–268 (1966).
    Google Scholar 
    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).
    Google Scholar 
    Boyer, J. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46, 236–239 (1970).
    Google Scholar 
    Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B 273, 593–610 (1976).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    Google Scholar 
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    Whalley, W., Ober, E. & Jenkins, M. J. J. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Biol. 64, 3951–3963 (2013).
    Google Scholar 
    Yu, H., Yang, P. & Lin, H. Spatiotemporal patterns of soil matric potential in the Shale Hills Critical Zone Observatory. Vadose Zone J. https://doi.org/10.2136/vzj2014.11.0167 (2015).Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974).
    Google Scholar 
    van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).Scott, B. L. et al. New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Ocean. Technol. 30, 2585–2595 (2013).
    Google Scholar 
    Campbell, G. S. Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273 (1988).
    Google Scholar 
    Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).
    Google Scholar 
    Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).
    Google Scholar 
    Cosby, B., Hornberger, G., Clapp, R. & Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984).
    Google Scholar 
    Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).
    Google Scholar 
    Ghezzehei, T. A. & Albalasmeh, A. A. Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol. Modell. 298, 53–63 (2015).
    Google Scholar 
    Leung, A. K., Garg, A. & Ng, C. W. W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 193, 183–197 (2015).
    Google Scholar 
    Caplan, J. S. et al. Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Sci. Adv. 5, eaau6635 (2019).
    Google Scholar 
    Peña-Sancho, C., López, M., Gracia, R. & Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 55, 114–123 (2017).
    Google Scholar 
    Stoof, C. R., Wesseling, J. G. & Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma 159, 276–285 (2010).
    Google Scholar 
    Gutmann, E. & Small, E. The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett. 32, L02402 (2005).
    Google Scholar 
    Weihermüller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F. & Duffy, C. J. Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory. J. Hydrometeorol. 15, 279–299 (2014).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. & Yu, X. J. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Res. 83, 421–427 (2015).
    Google Scholar 
    Shi, Y. et al. Simulating high‐resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 29, 4624–4637 (2015).
    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
    Google Scholar 
    Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
    Google Scholar 
    Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite‐based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).
    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).
    Google Scholar 
    Baldocchi, D. D., Xu, L. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 123, 13–39 (2004).
    Google Scholar 
    Trugman, A. T., Anderegg, L. D., Shaw, J. D. & Anderegg, W. R. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
    Google Scholar 
    Martínez-Vilalta, J. et al. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytol. 232, 404–417 (2021).Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development 6th edn (Sinauer Associates, 2015).Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. & Hammel, H. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).
    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere https://doi.org/10.1890/es15-00170.1 (2015).Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C. & Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 13, 015004 (2018).
    Google Scholar 
    Hinckley, T. M., Lassoie, J. P. & Running, S. W. Temporal and spatial variations in the water status of forest trees. For. Sci. 24, a0001–z0001 (1978).
    Google Scholar 
    Marks, C. O. & Lechowicz, M. J. The ecological and functional correlates of nocturnal transpiration. Tree Physiol. 27, 577–584 (2007).
    Google Scholar 
    O’Keefe, K. & Nippert, J. B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 32, 1155–1167 (2018).
    Google Scholar 
    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).
    Google Scholar 
    Kannenberg, S. A. et al. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct. Ecol. 36, 24–37 (2022).Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Feng, X. et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses. Plant Cell Environ. 42, 1104–1111 (2019).
    Google Scholar 
    Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H. & Ogle, K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. N. Phytol. 225, 713–726 (2020).
    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).
    Google Scholar 
    Novick, K. A., Konings, A. G. & Gentine, P. Beyond soil water potential: an expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42, 1802–1815 (2019).
    Google Scholar 
    McCulloh, K. A. et al. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant Cell Environ. 42, 2789–2807 (2019).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Mirfenderesgi, G., Matheny, A. M. & Bohrer, G. Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology 12, e2041 (2019).
    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol. 212, 80–95 (2016).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Meinzer, F. C. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).
    Google Scholar 
    Scott, R. L., Cable, W. L. & Hultine, K. R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 44, W02440 (2008).
    Google Scholar 
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
    Google Scholar 
    Johnson, D. M. et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983–993 (2016).
    Google Scholar 
    Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).
    Google Scholar 
    Bezerra-Coelho, C. R., Zhuang, L., Barbosa, M. C., Soto, M. A. & Van Genuchten, M. T. Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. J. Hydrol. Hydromech. 66, 161–169 (2018).
    Google Scholar 
    Wullschleger, S., Dixon, M. & Oosterhuis, D. Field measurement of leaf water potential with a temperature‐corrected in situ thermocouple psychrometer. Plant Cell Environ. 11, 199–203 (1988).
    Google Scholar 
    Holtzman, N. M. et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18, 739–753 (2021).
    Google Scholar 
    Nagy, R. C. et al. Harnessing the NEON data revolution to advance open environmental science with a diverse and data‐capable community. Ecosphere 12, e03833 (2021).
    Google Scholar 
    Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).
    Google Scholar 
    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).
    Google Scholar 
    Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).Jackson, T. & Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Google Scholar 
    Konings, A. G., Rao, K. & Steele‐Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. N. Phytol. 223, 1166–1172 (2019).
    Google Scholar 
    Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. https://doi.org/10.1111/gcb.15872 (2021).Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Google Scholar 
    Simunek, J., Van Genuchten, M. T. & Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (Dept Environ. Sci. Univ. California Riverside, 2005).Naylor, S., Letsinger, S., Ficklin, D., Ellett, K. & Olyphant, G. A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid‐continental USA. Hydrol. Process. 30, 1594–1608 (2016).
    Google Scholar 
    Urbanski, S. et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 112, G02020 (2007).
    Google Scholar 
    Thum, T. et al. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B 59, 874–890 (2007).
    Google Scholar 
    Ardö, J., Mölder, M., El-Tahir, B. A. & Elkhidir, H. A. M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manage. 3, 7 (2008).
    Google Scholar 
    Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).
    Google Scholar 
    Fu, C. et al. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 20, 2001–2018 (2016).
    Google Scholar 
    Liang, J. et al. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geosci. Model Dev. 12, 1601–1612 (2019).Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017). More

  • in

    Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides

    Kumar, N. et al. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 6, 2287–2327. https://doi.org/10.3390/v6062287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. Rev. Sci. Tech. 34, 315–327. https://doi.org/10.20506/rst.34.2.2359 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rutkowska, D. A., Mokoena, N. B., Tsekoa, T. L., Dibakwane, V. S. & O’Kennedy, M. M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 15, 1. https://doi.org/10.1016/j.rvsc.2010.05.031 (2019).CAS 
    Article 

    Google Scholar 
    Barnard, B. J. H. Epidemiology of African horse sickness and the role of zebra in South Africa. Arch. Virol. Suppl. 14, 13–19. https://doi.org/10.1007/978-3-7091-6823-3_3 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hamblin, C., Salt, J. S., Mellor, P. S., Graham, S. D. & Wohlsein, P. Donkeys as reservoirs of African horse sickness virus. Arch. Virol. Suppl. 14, 37–47. https://doi.org/10.1007/978-3-7091-6823-3_5 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. P. T. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    Article 

    Google Scholar 
    Redmond, E. F., Jones, D. & Rushton, J. Economic assessment of african horse sickness vaccine impact. Equine Vet. J. https://doi.org/10.1111/j.2042-3306.1982.tb02404.x (2021).Article 
    PubMed 

    Google Scholar 
    Venter, G. J., Wright, I. M., Linde, T. C. V. D. & Paweska, J. T. The oral susceptibility of South African field populations of Culicoides to African horse sickness virus. Med. Vet. Entomol. 23, 367–378. https://doi.org/10.1111/j.1365-2915.2009.00829.x (2010).Article 

    Google Scholar 
    Mellor, P. S., Boned, J., Hamblin, C. & Graham, S. D. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 105, 447–454. https://doi.org/10.1017/s0950268800048020 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiswinkel, R. & Paweska, J. T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 60, 243–253. https://doi.org/10.1016/s0167-5877(02)00231-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The isolation and identification of further antigenic types of African horsesickness virus. Onderstepoort. J. Vet. Res. 29, 139–149 (1962).
    Google Scholar 
    Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness viruses. Arch. Virol. Suppl. 14, 3 (1998).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142. https://doi.org/10.1016/0378-1135(92)90041-q (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The 1960 epizootic of African Horsesickness in the Middle East and S.W. Asia (268KB) (268KB). J. South Afr. Vet. Med. Assoc. (1960).King, S., RajkoEnow, P., Ashby, M., Frost, L. & Batten, C. Outbreak of African Horse Sickness in Thailand, 2020. Transbound. Emerg. Dis. (2020).OIE. World Animal Health Information System. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33768 (2020).Castillo-Olivares, J. African horse sickness in Thailand: Challenges of Controlling an outbreak by vaccination. Equine Vet. J. (2020).Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe. Vet. Rec. 170, 58. https://doi.org/10.1136/vr.e292 (2012).Article 
    PubMed 

    Google Scholar 
    Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. & Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27, 427–442 (2008).CAS 
    Article 

    Google Scholar 
    Leta, S., Fetene, E., Mulatu, T., Amenu, K. & Revie, C. W. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    Thepparat, A., Bellis, G., Ketavan, C., Ruangsittichai, J. & Apiwathnasorn, C. T. species of Culicoides Latreille (Diptera: Ceratopogonidae) newly recorded from Thailand. Zootaxa 4033, 48–56. https://doi.org/10.11646/zootaxa.4033.1.2 (2015).Article 
    PubMed 

    Google Scholar 
    Raksakoon, C. & Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 10, 80 (2021).CAS 
    Article 

    Google Scholar 
    Gao, S. et al. Transboundary spread of peste des petits ruminants virus in western China: A prediction model. PLoS ONE 16, e0257898–e0257898. https://doi.org/10.1371/journal.pone.0257898 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Van Gils, H., Huang, L. & Wang, X. High probability areas for ASF infection in china along the russian and korean borders. Transbound. Emerg. Dis. https://doi.org/10.1016/j.watres.2015.05.061.Steven et al. Opening the black box: an open-source release of Maxent. Ecography (2017).Gils, H. V., Westinga, E., Carafa, M., Antonucci, A. & Ciaschetti, G. Where the bears roam in Majella National Park, Italy. J. Nat. Conser. 22, 23–34. https://doi.org/10.1016/j.jnc.2013.08.001 (2014).Article 

    Google Scholar 
    Duque-Lazo, J., Navarro-Cerrillo, R. M., Van Gils, H. & Groen, T. A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia : identification of priority areas for intervention. For. Ecol. Manage. 417, 122–136 (2018).Article 

    Google Scholar 
    Duque-Lazo, J., Gils, H. V., Groen, T. A. & Cerrillo, R. M. N. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 320, 62–70 (2016).Article 

    Google Scholar 
    Zeng, Z., Gao, S., Wang, H.-N., Huang, L.-Y. & Wang, X.-L. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS ONE 16, e0257094–e0257094. https://doi.org/10.1371/journal.pone.0257094 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Wang, H., van Gils, H. & Wang, X. Could wild boar be the Trans-Siberian transmitter of African swine fever?. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13814 (2020).Article 
    PubMed 

    Google Scholar 
    Robin, M., Page, P., Archer, D. & Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 48, 659–669. https://doi.org/10.1111/evj.12600 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maclachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    M. et al. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. https://doi.org/10.1111/evj.12600 (2016).Eagles, D., Melville, L., Weir, R. & Davis, S. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Vet. Res. 10, 1. https://doi.org/10.1186/1746-6148-10-135 (2014).Article 

    Google Scholar 
    Pedgley, D. E. & Tucker, M. R. Possible spread of African horse sickness on the wind. J. Hygiene 79, 279–298 (1977).CAS 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 1 (2019).Article 

    Google Scholar 
    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness Virus: History, transmission, and current status. Annu. Rev. Entomol. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports. (Accessed 12 August 2020).OIE. African horse sickness(updated April 2013). OIE Technical Disease Cards, Paris, France: World Organisation for Animal Health. (2013).Ciss, M. et al. Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology 19, doi:https://doi.org/10.1186/s12898-019-0261-9 (2019).Harrup, L. E. et al. Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Vet. Parasitol. 201, 137–145. https://doi.org/10.1016/j.vetpar.2013.11.028 (2013).Article 
    PubMed 

    Google Scholar 
    Hoch, A. L., Roberts, D. R. & Pinheiro, F. P. Host-seeking behavior and seasonal abundance of Culicoides paraensis (Diptera: Ceratopogonidae) in Brazil. J. Am. Mosq. Control Assoc. 6, 110–114 (1990).CAS 
    PubMed 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 100, 102–113. https://doi.org/10.1016/j.antiviral.2013.07.020 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carpenter, S., Wilson, A., Barber, J., Veronesi, E. & Gubbins, S. Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE 6, e27987. https://doi.org/10.1371/journal.pone.0027987 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanase, T. et al. Molecular Identification of Field-CollectedCulicoidesLarvae in the Southern Part of Japan. J. Med. Entomol. (2013).Meiswinkel, R. Afrotropical Culicoides: C (Avaritia) miombo sp. nov., a widespread species closely allied to C. (A.) imicola Kieffer, 1913 (Diptera: Ceratopogonidae). Onderstepoort. J. Vet. Res. 58, 155–170 (1991).Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, 1 (2019).Article 

    Google Scholar 
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).CAS 
    Article 

    Google Scholar 
    L. et al. Investigating Incursions of Bluetongue Virus Using a Model of Long-Distance Culicoides Biting Midge Dispersal. Transbound. Emerg. Dis. https://doi.org/10.1111/j.1865-1682.2012.01345.x (2013).Notice of the general office of the Ministry of agriculture and rural areas and the general office of the State General Administration of sports on printing and distributing the national horse industry development plan (2020–2025). (Animal Husbandry and Veterinary Bureau, 2020.09.29). More

  • in

    Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges

    Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs. 2014;12:4539–77.PubMed 
    PubMed Central 

    Google Scholar 
    Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol. 2005;7:142–62.CAS 

    Google Scholar 
    Dobson CM. Chemical space and biology. Nature. 2004;432:824–8.CAS 
    PubMed 

    Google Scholar 
    Indraningrat AAG, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar Drugs. 2019;17:578.CAS 
    PubMed Central 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 

    Google Scholar 
    Webster NS, Thomas T. The sponge hologenome. mBio. 2016;7:e00135–16.PubMed 
    PubMed Central 

    Google Scholar 
    de Oliveira MRF, de Maringá UE, da Costa C, Benedito E. Trends and gaps in scientific production on freshwater sponges. Oecologia Austrlis. 2020;24:61–75.
    Google Scholar 
    Manconi R, Pronzato R. How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia. 2016;782:11–22.
    Google Scholar 
    Manconi R, Pronzato R. Chapter 8 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Ecology and general biology. Thorp and Covich’s freshwater invertebrates. vol 1 (4th ed.) New York: Academic Press; 2015. p. 133–157.Manconi R, Pronzato R. Chapter 3 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Keys to Nearctic fauna. Thorp and Covich’s freshwater invertebrates vol 2(4th ed.) San Diego: Academic Press, Elsevier; 2016. p. 39–83.Leidy J. On Spongilla. In: Proceedings of the Academy of Natural Sciences of Philadelphia. Philadelphia: Academy of Natural Sciences of Philadelphia; 1850. p. 278.Smith F. Distribution of the fresh-water sponges of North America. INHS Bull. 1921;14:9–22.
    Google Scholar 
    Old MC. Environmental selection of the fresh-water sponges (Spongillidae) of Michigan. Trans Am Microsc Soc. 1932;51:129–36.CAS 

    Google Scholar 
    Ashley JM. Fresh water sponges of Illinois and Michigan. Urbana-Champaign: Master of Arts, University of Illinois; 1913.Jewell ME. An ecological study of the fresh-water sponges of northeastern Wisconsin. Ecol Monogr. 1935;5:461–504.CAS 

    Google Scholar 
    Kolomyjec SH, Willford RA. The fall 2019 genetics class. Phylogenetic analysis of Michigan’s freshwater sponges (Porifera, Spongillidae) using extended COI mtDNA sequences. bioRxiv. 2020; https://doi.org/10.1101/2020.04.26.062448.Copeland J, Kunigelis S, Tussing J, Jett T, Rich C. Freshwater sponges (Porifera: Spongillida) of Tennessee. Am Midl Nat. 2019;181:310–26.
    Google Scholar 
    Lauer TE, Spacie A. An association between freshwater sponges and the zebra mussel in a southern Lake Michigan harbor. J Freshw Ecol. 2004;19:631–7.
    Google Scholar 
    Skelton J, Strand M. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia. 2013;709:227–35.CAS 

    Google Scholar 
    Early TA, Glonek T. Zebra mussel destruction by a Lake Michigan sponge: populations, in vivo 31P nuclear magnetic resonance, and phospholipid profiling. Environ Sci Technol. 1999;33:1957–62.CAS 

    Google Scholar 
    Early TA, Kundrat JT, Schorp T, Glonek T. Lake Michigan sponge phospholipid variations with habitat: A 31P nuclear magnetic resonance study. Comp Biochem Physiol. 1996;114:77–89.
    Google Scholar 
    Dembitsky VM, Rezanka T, Srebnik M. Lipid compounds of freshwater sponges: family Spongillidae, class Demospongiae. Chem Phys Lipids. 2003;123:117–55.CAS 
    PubMed 

    Google Scholar 
    Řezanka T, Sigler K, Dembitsky VM. Syriacin, a novel unusual sulfated ceramide glycoside from the freshwater sponge Ephydatia syriaca (Porifera, Demospongiae, Spongillidae). Tetrahedron. 2006;62:5937–43.
    Google Scholar 
    Radnaeva LD, Bazarsadueva SV, Taraskin VV, Tulokhonov AK. First data on lipids and microorganisms of deepwater endemic sponge Baikalospongia intermedia and sediments from hydrothermal discharge area of the Frolikha Bay (North Baikal, Siberia). J Great Lakes Res. 2020;46:67–74.CAS 

    Google Scholar 
    Manconi R, Piccialli V, Pronzato R, Sica D. Steroids in porifera, sterols from freshwater sponges Ephydatia fluviatilis (L.) and Spongilla lacustris (L.). Comp Biochem Physiol. 1988;91:237–45.
    Google Scholar 
    Belikov S, Belkova N, Butina T, Chernogor L, Kley AM-V, Nalian A, et al. Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities. PLoS ONE. 2019;14:e0213926.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costa R, Keller-Costa T, Gomes NCM, da Rocha UN, van Overbeek L, van Elsas JD. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microb Ecol. 2013;65:232–44.PubMed 

    Google Scholar 
    Laport MS, Pinheiro U, Rachid CTCC. Freshwater sponge Tubella variabilis presents richer microbiota than marine sponge species. Front Microbiol. 2019;10:2799.PubMed 
    PubMed Central 

    Google Scholar 
    Kenny NJ, Plese B, Riesgo A, Itskovich VB. Symbiosis, selection, and novelty: freshwater adaptation in the unique sponges of Lake Baikal. Mol Biol Evol. 2019;36:2462–80.CAS 
    PubMed Central 

    Google Scholar 
    Gaikwad S, Shouche YS, Gade WN. Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express. 2016;6:40.PubMed 
    PubMed Central 

    Google Scholar 
    Gernert C, Glöckner FO, Krohne G, Hentschel U. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol. 2005;50:206–12.CAS 
    PubMed 

    Google Scholar 
    Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep. 2021;38:292–300.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li C-Q, Liu W-C, Zhu P, Yang J-L, Cheng K-D. Phylogenetic diversity of bacteria associated with the marine sponge Gelliodes carnosa collected from the Hainan Island coastal waters of the South China Sea. Microb Ecol. 2011;62:800–12.PubMed 

    Google Scholar 
    Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S, Blanch HW. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol. 2011;77:2130–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo NF, Davis J, Vicente J, Pittiglio R, Ravel J, Hill RT. Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE. 2014;9:e90517.PubMed 
    PubMed Central 

    Google Scholar 
    Elfeki M, Alanjary M, Green SJ, Ziemert N, Murphy BT. Assessing the efficiency of cultivation techniques to recover natural product biosynthetic gene populations from sediment. ACS Chem Biol. 2018;13:2074–81.CAS 
    PubMed 

    Google Scholar 
    Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol. 2005;67:539–48.CAS 
    PubMed 

    Google Scholar 
    Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing taxonomic and natural product redundancy in microbial libraries using MALDI-TOF MS and the bioinformatics pipeline IDBac. J Nat Prod. 2019;82:2167–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Sanchez LM, Murphy BT. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA. 2018;115:4981–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Conley E, Li E, Sanchez LM, Murphy BT. Using the open-source MALDI TOF-MS IDBac pipeline for analysis of microbial protein and specialized metabolite data. J Vis Exp. 2019;147:e59219.
    Google Scholar 
    Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73:746–50.CAS 
    PubMed 

    Google Scholar 
    Welker M, Moore ERB. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol. 2011;34:2–11.CAS 
    PubMed 

    Google Scholar 
    Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. 2013;32:188–217.CAS 
    PubMed 

    Google Scholar 
    Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P. Development of a custom MALDI-TOF MS database for species-level identification of bacterial isolates collected from spacecraft and associated surfaces. Front Microbiol. 2018;9:780.PubMed 
    PubMed Central 

    Google Scholar 
    Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol. 2018;9:1294.PubMed 
    PubMed Central 

    Google Scholar 
    Giraud-Gatineau A, Texier G, Garnotel E, Raoult D, Chaudet H. Insights into subspecies discrimination potentiality from bacteria MALDI-TOF mass spectra by using data mining and diversity studies. Front Microbiol. 2020;11:1931.PubMed 
    PubMed Central 

    Google Scholar 
    LaMontagne MG, Tran PL, Benavidez A, Morano LD. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ. 2021;9:e11359.PubMed 
    PubMed Central 

    Google Scholar 
    Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4:732–42.CAS 
    PubMed 

    Google Scholar 
    Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407.CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance. 2019;24:1800193. PubMed Central 

    Google Scholar 
    Rahi P, Vaishampayan P. MALDI-TOF MS application in microbial ecology studies. Front Microbiol. 2019;10:2954.PubMed 

    Google Scholar 
    Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res. 2017;152:7–16.PubMed 

    Google Scholar 
    Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization Time-of-Flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol. 2016;7:1359.PubMed 
    PubMed Central 

    Google Scholar 
    Schumann P, Maier T. Chapter 13 – MALDI-TOF mass spectrometry applied to classification and identification of bacteria. In: Methods in microbiology, vol 41, ISSN 0580-9517. Goodfellow M, Sutcliffe I, Chun J, editors. Academic Press; 2014. p. 275–306.Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31:274–95.
    Google Scholar 
    Batagelj V. Generalized Ward and related clustering problems. In: Bock HH, editor. North Holland, Amsterdam: Proceedings of the First Conference of the International Federation of Classification Societies; 1988. p. 67–74.van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019;5:1824–33.PubMed 
    PubMed Central 

    Google Scholar 
    Ghyselinck J, Van Hoorde K, Hoste B, Heylen K, De Vos P. Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. J Microbiol Meth. 2011;86:327–36.CAS 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, et al. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol. 2020;86:e00943–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun. 2018;9:1–10.CAS 

    Google Scholar 
    Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–52.CAS 
    PubMed 

    Google Scholar 
    Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci USA. 2014;111:E1130–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruns H, Crüsemann M, Letzel A-C, Alanjary M, McInerney JO, Jensen PR, et al. Function-related replacement of bacterial siderophore pathways. ISME J. 2018;12:320–9.CAS 
    PubMed 

    Google Scholar 
    Chase AB, Sweeney D, Muskat MN, Guillén-Matus DG, Jensen PR. Vertical inheritance facilitates interspecies diversification in biosynthetic gene clusters and specialized metabolites. MBio. 2021;12:e0270021.PubMed 

    Google Scholar 
    Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem. 2021;90:763–88.CAS 
    PubMed 

    Google Scholar 
    Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426.PubMed 
    PubMed Central 

    Google Scholar 
    Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol. 2019;46:257–71.CAS 
    PubMed 

    Google Scholar 
    Zdouc MM, Iorio M, Maffioli SI, Crüsemann M, Donadio S, Sosio M. Planomonospora: a metabolomics perspective on an underexplored Actinobacteria genus. J Nat Prod. 2021;84:204–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang D, Shoaie S, Jacquiod S, Sørensen SJ, Ledesma-Amaro R. Comparative genomics analysis of keratin-degrading Chryseobacterium species reveals their keratinolytic potential for secondary metabolite production. Microorganisms. 2021;9:1042.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021;595:415–20.CAS 
    PubMed 

    Google Scholar 
    Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.CAS 
    PubMed 

    Google Scholar 
    Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16.CAS 

    Google Scholar 
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibb S, Strimmer K. Mass spectrometry analysis using MALDIquant. In: Datta S, Mertens BJA, editors. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. Cham: Springer International Publishing; 2017. p. 101–24.Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–1.CAS 
    PubMed 

    Google Scholar 
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    NetGAM: Using generalized additive models to improve the predictive power of ecological network analyses constructed using time-series data

    Our general strategy was to compare the performance of four approaches for inferring microbial associations from abundance data with overlying time-series signals. The approaches were (1) pairwise spearman correlation analysis (SCC) [1, 29], (2) Graphical lasso analysis (Glasso) [30, 31], (3) pairwise SCC analysis with a pre-processing step where seasonal and long-term splines were fit to and subtracted from each variable using a GAM (GAM-SCC), and (4) Glasso with the same GAM subtraction approach (GAM-Glasso). Our validation strategy for the GAM transformation consisted of generating mock datasets with underlying associations, masking those associations by adding seasonal and long-term signals to the abundance data, and comparing the predicted associations obtained from each network inference method to the true species-species associations.Data simulation: generating mock abundance data with time-series propertiesWe generated mock abundance datasets that had a predetermined, underlying network structure and contained long-term and seasonal species abundance patterns. First, a covariance matrix was generated to describe the relationships between species in a mock dataset (Fig. S1, Panel 1). The covariance matrices were constructed with underlying network structures that followed either a scale-free Barabási-Albert model, a random Erdős-Rényi model, or a model of network topology based on a real microbial dataset (American Gut dataset; Fig. S1) [32, 33]. The Erdős-Rényi and Barabási-Albert model datasets were generated so that each dataset contained 400 species and 200 samples, and the American Gut datasets were created so that each dataset contained 127 species and 200 samples. A random Bernoulli distribution was used to simulate the covariance matrix for the Erdős-Rényi networks. We set the probability of interactions occurring between species in a given Erdős-Rényi network to 1%. The Barabási-Albert networks were generated using the “sample_pa” function in the igraph package [34]. The “graph2prec” function in the SpiecEasi package was used to predict the covariance matrix of the American Gut dataset [33]. The covariance between species in a dataset was considered “high” or “low” when the true associations in the covariance matrix were set to 100 or 10 respectively (Fig. S1, Panel 1). These covariance matrices describe the “real”, underlying species interactions in our mock datasets.After generating a covariance matrix, the mean abundance for each species was generated from a normal distribution with a mean of 10 and a variance of 1. These mean abundance values and the covariance matrix were used to parameterize a multivariate normal distribution from which species abundance values for all 200 samples in a dataset were drawn (Fig. S1, Panel 2). The values generated from this multivariate normal distribution were the species abundance values without time-series features confounding the relationship between two associated species (Fig. S1, Panel 2).“Gradual” or “abrupt” seasonal trends were added to 0%, 25%, 50% or 100% of the species in each mock dataset. The gradual seasonal trend increased over 5 months, peaked at a specific month, and decreased over 5 months. Conversely, the abrupt seasonal signal increased over 2 months, peaked at a specific month, and decreased over 2 months (Fig. S1, Panel 3). These seasonal signals were generated by plugging a vector of consecutive integers of length 200 (Nt) into the gradual (Eq. (1)) or abrupt (Eq. (2)) seasonal equations (Fig. S1, Panel 3)…$$Gradual:S_t = left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5$$
    (1)
    $$Abrupt:,S_t = left( {left( {frac{{cos left( {N_t ast 2 ast frac{pi }{{12}}} right)}}{2}} right) + 0.5} right)^{10}$$
    (2)
    where N is the random vector of consecutive integers, S is the output seasonal vector, and t is the index of vectors N and S. The starting value of vector Nt was drawn at random for each species to allow the seasonal peaks to be centered at different months. Each element in the seasonal vector (St) was then multiplied by the corresponding element in the abundance vector (Xt) of a specific species to obtain mock species abundance values with a gradual or abrupt seasonal trend (Fig. S1, Panel 3).A long-term time-series trend was added to the abundance values of 0% or 50% of the species in the mock datasets (Fig. S1, Panel 4). When a long-term signal was applied to 50% of the species in a dataset, half of the species were randomly selected to have this long-term trend. Then, a vector of linear values was generated following Eq. (3) such that…$$Long – term,trend:,L_t = pm mleft( {L_{t – 1}} right) + 0.01$$
    (3)
    where Lt is the point in the line at the next time point and m is the slope of the line. The slope parameter (m) was generated from a random normal distribution with a mean of 0.01 and a variance of 0.01. The slope parameter (m) was also multiplied by −1 half of the time to ensure that half of the long-term trends increased over time and half decreased over time (Fig. S1, Panel 4). After generating the vector of linear values (Lt), each element of this vector was added to each element of the abundance vector (Xt) of a specific species to simulate long-term time-series trends (Fig. S1, Panel 4).Time-series predictor columns were added to each dataset after applying monthly and long-term abundance trends to a portion of the species in the mock datasets. The predictors that were used in the downstream GAM-based data transformation were the month of the year (i.e., 1–12) and the day of the time-series (i.e., 1–200). In total, we generated 100 mock datasets for every combination of conditions (84 combinations total; Table S1), resulting in 8400 mock time-series datasets that were used in the downstream count data transformation, GAM subtraction, and network analysis procedures.Data simulation: Simulating count data from abundance valuesThe 8400 time-series datasets that were generated using the methods described above were transformed to make the abundance values resemble high-throughput sequencing data because microbial time-series sampling efforts are often processed using such molecular methods (e.g., tag-sequencing, meta-omics). Analysis of high-throughput sequencing data is complicated by the compositional (i.e., relative) nature of the data and by the high number of zeros that may be prevalent in a dataset (i.e., zero-inflation; see Supplementary Information) [35, 36]. Relative abundances of different species in natural communities are also highly skewed, so that relatively few species constitute most of the organisms in a sample although many rare species are also present [37, 38]. Therefore, species abundances were first exponentiated to increase the prevalence of abundant species and to decrease the prevalence of rare species (Fig. S1, Panel 5). The exponentiated species abundance values were then converted to relative abundance values by dividing each species count by the sum of all species counts in a sample (Fig. S1, Panel 6). The resulting relative abundance values and time-series predictor variables were used in data normalization and GAM-transformation steps prior to carrying out the network analyses.Network inference: Count data normalization and GAM transformationSeveral steps were taken to back out the species-species relationships in the mock datasets. We advocate these steps to infer network structure from a real time-series dataset. A centered log-ratio (CLR) transformation was first applied to the species relative abundance values to normalize the mock species abundance data across samples using the “clr” function in the compositions package in R (Fig. 1) [39]. This transformation step is important to avoid spurious inferences induced by the inherent compositionality of relative abundance data [31, 33, 36]. In addition to the CLR transformation used in our main network iterations, we carried out additional network iterations using the modified CLR [40], cumulative sum scaling [41], and total sum scaling [42] transformations (see Supplementary Information). In all cases, the normalized dataset was copied, with one copy subjected to a subsequent GAM transformation, and the other one not GAM-transformed.Fig. 1: Steps used to carry out the GAM-based transformation of time-series species abundance data prior to carrying out pairwise spearman correlation (SCC) and graphical lasso (Glasso) ecological network analyses.The raw, species abundance data were first CLR-transformed (1). Generalized additive models (GAMs) were then fit to each species in the dataset (2) and the residuals of each GAM were checked for significant autocorrelation (3). The residuals of each GAM were extracted (4) and were used as input in the SCC and Glasso network analysis methods (5). Finally, the GAM-transformed network outputs were obtained (6; see text for additional details).Full size imageThe GAM transformation was carried out by fitting GAMs to each individual species in the dataset to remove monthly signals, long-term trends, and autocorrelation from the species abundance data. These GAMs were fit using the “gamm” function in the mgcv package in R [43, 44]. The GAMs that were used included the “month of year” parameter as a cyclical spline predictor and the “day of time-series” parameter as a penalized thin-plate spline predictor (“ts” in the mgcv package; Fig. 1), which given our one-dimensional data is analogous to a natural cubic spline. In addition, the first GAM included a continuous AR1 (“corCAR1” in the mgcv package) correlation structure term in the model. This corCAR1 model was revised for specific species when the GAM could not be resolved or when significant autocorrelation was detected in the GAM residuals (Fig. 1). The GAM revision step fit 4 new GAMs with different correlation structure terms (i.e., “AR1”, “CompSymm”, “Exp”, and “Gaus”) to the species that could not be fit using the corCAR1 model or that contained significant autocorrelation in the corCAR1 GAM residuals. Then, the correlation structure term that addressed these issues for the largest number of individuals was used as the GAM model for this group of species. After fitting a GAM to all of the species in the input dataset, the residuals of each GAM were extracted and were used as the new, GAM-transformed abundance values (Fig. 1). These GAM residuals represent species abundance values with a reduced influence of time (Fig. 2) and were used as input in the downstream GAM-SCC and GAM-Glasso network analyses.Fig. 2: A conceptual figure that demonstrates how the GAM transformation can remove seasonal signals while preserving ecologically relevant species co-occurrence patterns.In this example, the co-occurrence pattern between Species A and Species B persists even after the seasonal signals are removed by the GAM transformation.Full size imageNetwork inference: Network runs and statistical analysesThe pre-processed species abundance data with and without the GAM-removal of time-series signals were used in SCC and Glasso networks in order to compare the outputs of the SCC, GAM-SCC, Glasso, and GAM-Glasso network inference approaches (Fig. 1). Additional network iterations were also carried out using the CCLasso [45] and SPRING [40] network inference approaches (see Supplementary Information). For the SCC and Glasso network iterations, a nonparanormal transformation was applied to the species abundance datasets with and without the GAM transformation using the “huge.npn” function in the huge package in R [46]. Spearman correlation networks were then constructed by calculating the correlation between every pair of species in the mock abundance datasets. A Bonferroni-corrected p value of 0.01 was used as a cutoff to identify edges in these SCC networks. The Glasso networks were constructed by testing 30 regularization parameter values (i.e., lambdas) in each network using the “batch.pulsar” (criterion = “stars”; rep.num = 50) function in the pulsar package in R [47]. The lambda that resulted in the most stable network output was selected using the StARS method [48]. Finally, the graph that resulted from the StARS output was used to obtain a species adjacency matrix for the Glasso networks.The species-species associations predicted by the SCC, GAM-SCC, Glasso, and GAM-Glasso networks were compared to the true species-species associations and the F1 scores of the network predictions were calculated. The F1 score is a measure of classification performance (presence or absence of an edge) that accounts for uneven classes, which is essential when dealing with sparse networks. The F1 scores of the GAM-transformed networks were compared to the networks that did not undergo GAM transformation using paired Wilcoxon tests with Bonferroni correction. An adjusted p value of 0.01 was used as a cutoff to identify under what circumstances the GAM significantly improved the F1 score of a Glasso or SCC network.Network inference: Comparison of predicted network structuresAdditional networks were generated using the methods described above to compare the predicted network structures obtained from the GAM-Glasso, Glasso, GAM-SCC, and SCC approaches to the real network structures. These additional networks were constructed using smaller mock datasets to allow for better visualization of the network outputs and contained species with a gradual seasonal signal and high species-species covariance (see Supplementary Information). The average clustering coefficient and the degree distribution of these additional network outputs were calculated and used for the network structure comparisons. The average clustering coefficient of a network describes the likelihood that two species that are both associated with a third species are also associated with each other [49], and in a sense describes the “clumpiness” of a network. The network degree distributions describe the probability distribution of the number of interactions per node in a network [50]. More

  • in

    Climate-change-driven growth decline of European beech forests

    IPCC. IPCC Fifth Assessment Report (AR5). 10–12 (IPCC, 2014).Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 

    Google Scholar 
    Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science https://doi.org/10.1126/science.1155121 (2008).Article 
    PubMed 

    Google Scholar 
    Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1–13 (2019).
    Google Scholar 
    van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lebaube, S., Le Goff, N. L., Ottorini, J. M. & Granier, A. Carbon balance and tree growth in a Fagus sylvatica stand. Ann. Sci. 57, 49–61 (2000).
    Google Scholar 
    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).
    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).
    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: Testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).PubMed 

    Google Scholar 
    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    Google Scholar 
    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 1–9 (2018).
    Google Scholar 
    Yousefpour, R. et al. Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci. Rep. 8, 1–11 (2018).CAS 

    Google Scholar 
    Giesecke, T., Hickler, T., Kunkel, T., Sykes, M. T. & Bradshaw, R. H. W. Towards an understanding of the Holocene distribution of Fagus sylvatica L. J. Biogeogr. 34, 118–131 (2007).
    Google Scholar 
    Fang, J. & Lechowicz, M. J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 33, 1804–1819 (2006).
    Google Scholar 
    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).CAS 
    PubMed 

    Google Scholar 
    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 24001 (2016).Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 1–14 (2017).
    Google Scholar 
    Walentowski, H. et al. Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. Res. 60, 101–126 (2017).
    Google Scholar 
    Mäkelä, A. et al. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20, 289–298 (2000).PubMed 

    Google Scholar 
    Leech, S. M., Almuedo, P. L. & Neill, G. O. Assisted migration: adapting forest management to a changing climate. BC J. Ecosyst. Manag. 12, 18–34 (2011).
    Google Scholar 
    Sass-Klaassen, U. G. W. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).CAS 
    PubMed 

    Google Scholar 
    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dorji, Y., Annighöfer, P., Ammer, C. & Seidel, D. Response of beech (Fagus sylvatica L.) trees to competition-new insights from using fractal analysis. Remote Sens. 11, 2656 (2019).Petit-Cailleux, C. et al. Combining statistical and mechanistic models to unravel the drivers of mortality within a rear-edge beech population. bioRxiv https://doi.org/10.1101/645747 (2019).Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. J. Veg. Sci. 30, 746–755 (2019).
    Google Scholar 
    Etzold, S. et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecol. Manag. 458, 117762 (2020).
    Google Scholar 
    Martínez-Sancho, E. et al. The GenTree dendroecological collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data 7, 1–7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hartl-Meier, C., Dittmar, C., Zang, C. & Rothe, A. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28, 819–829 (2014).
    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 

    Google Scholar 
    Martínez del Castillo, E. et al. Spatial patterns of climate – growth relationships across species distribution as a forest management tool in Moncayo Natural Park (Spain). Eur. J. Res. 138, 299 (2019).
    Google Scholar 
    Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).
    Google Scholar 
    van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26, 777–788 (2012).
    Google Scholar 
    Decuyper, M. et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – an integrated approach using remote sensing and tree-ring data. Agric. Meteorol. 287, 107925 (2020).
    Google Scholar 
    Kraus, C., Zang, C. & Menzel, A. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. Res. 135, 1011–1023 (2016).
    Google Scholar 
    Martínez del Castillo, E. et al. Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under mediterranean conditions. Front. Plant Sci. 7, 370 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Čufar, K. et al. Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26, 1091–1100 (2012).
    Google Scholar 
    Bontemps, J. D., Hervé, J. C. & Dhôte, J. F. Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259, 1455–1463 (2010).
    Google Scholar 
    Latte, N., Lebourgeois, F. & Claessens, H. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33, 69–77 (2015).
    Google Scholar 
    Zimmermann, J., Hauck, M., Dulamsuren, C. & Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central european mixed forests. Ecosystems 18, 560–572 (2015).CAS 

    Google Scholar 
    Tegel, W. et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. Res. 133, 61–71 (2014).
    Google Scholar 
    Hacket-Pain, A. J. & Friend, A. D. Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia 44, 22–30 (2017).
    Google Scholar 
    Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M. & Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31, 673–686 (2017).
    Google Scholar 
    Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth trends in European forests: studies from 12 countries. European Forest Institute Research Report (1996).Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 1–18 (2016).
    Google Scholar 
    Mette, T. et al. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 1–19 (2013).
    Google Scholar 
    Michelot, A., Simard, S., Rathgeber, C. B. K., Dufrêne, E. & Damesin, C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32, 1033–1045 (2012).PubMed 

    Google Scholar 
    Meier, I. C. & Leuschner, C. Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14, 2081–2095 (2008).
    Google Scholar 
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests. Vegetation Ecology of Central Europe. Vol. I (Springer, 2017).Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 6, 1–55 (2015).
    Google Scholar 
    Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C. & Lenka, Š. Ecological Informatics Modelling of the carbon sequestration and its prediction under climate change. https://doi.org/10.1016/j.ecoinf.2017.08.006 (2017).Speer, J. H. Fundamentals of Tree-Ring Research (University of Arizona Press, 2010).Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81–96 (2008).
    Google Scholar 
    Biondi, F. & Qeadan, F. Removing the tree-ring width biological trend using expected basal area increment. in USDA Forest Service RMRS-P-55 124–131 (2008).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol. 2, 449–458 (1926).Martínez del Castillo, E., Longares, L. A., Serrano-Notivoli, R. & de Luis, M. Modeling tree-growth: assessing climate suitability of temperate forests growing in Moncayo Natural Park (Spain). Ecol. Manag. 435, 128–137 (2019).
    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Calcagno, V. & Mazancourt, C. De. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).
    Google Scholar 
    Detry, M. A. & Ma, Y. Analyzing repeated measurements using mixed models. JAMA J. Am. Med. Assoc. 315, 407 (2016).CAS 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).CAS 

    Google Scholar 
    Karger, D. N. & Zimmermann, N. E. CHELSAcruts – High Resolution Temperature And Precipitation Timeseries For The 20th Century And Beyond. https://doi.org/10.16904/envidat.159 (2018).Norinder, U., Rybacka, A. & Andersson, P. L. Conformal prediction to define applicability domain – a case study on predicting ER and AR binding. SAR QSAR Environ. Res. 27, 303–316 (2016).CAS 
    PubMed 

    Google Scholar 
    Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).
    Google Scholar  More

  • in

    Metadata analysis indicates biased estimation of genetic parameters and gains using conventional pedigree information instead of genomic-based approaches in tree breeding

    Beaulieu, J. et al. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evol. Appl. 13, 2704–2722 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenz, P. et al. Multi-trait genomic selection for weevil resistance, growth and wood quality in Norway spruce. Evol. Appl. 13, 76–94 (2020).CAS 
    PubMed 

    Google Scholar 
    Lebedev, V. G., Lebedeva, T. N., Chernodubov, A. I. & Shestibratov, K. A. Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests 11, 1190 (2020).
    Google Scholar 
    Mullin, T. J. et al. Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifers (eds Plomion, C. et al.) (Science Publishers & CRC Press, 2011).
    Google Scholar 
    Zhang, J., Peter, G. F., Powell, G. L., White, T. L. & Gezan, S. A. Comparison of breeding values estimated between single-tree and multiple-tree plots for a slash pine population. Tree Genet. Genomes 11, 48 (2015).CAS 

    Google Scholar 
    Martínez-García, P. J. et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet. Genomes 13, 109 (2017).
    Google Scholar 
    Weng, Y., Ford, R., Tong, Z. & Krasowski, M. Genetic parameters for bole straightness and branch angle in Jack pine estimated using linear and generalized linear mixed models. For. Sci. 63, 111–117 (2017).
    Google Scholar 
    Mrode, R. A. Linear Models for the Prediction of Animal Breeding Values 2nd edn. (CAB International, 2005).
    Google Scholar 
    Henderson, C. R. Theoretical bias and computational methods for a number of different animal models. J. Dairy Sci. 71, 1–16 (1988).
    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn. (Longman Publishing Group, 1996).
    Google Scholar 
    Henderson, C. R. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32, 69–83 (1976).MATH 

    Google Scholar 
    Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).
    Google Scholar 
    Hill, W. G. & Weir, B. S. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet. Res. 93, 47–64 (2011).CAS 

    Google Scholar 
    Doerksen, T. K. & Herbinger, C. M. Male reproductive success and pedigree error in red spruce open-pollinated and polycross mating systems. Can. J. For. Res. 38, 1742–1749 (2008).
    Google Scholar 
    Godbout, J. et al. Development of a traceability system based on SNP array for the large-scale production of high-value white spruce (Picea glauca). Front. Plant Sci. 8, 1264 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Galeano, E., Bousquet, J. & Thomas, B. R. SNP-based analysis reveals unexpected features of genetic diversity, parental contributions and pollen contamination in a white spruce breeding program. Sci. Rep. 11, 4990 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenz, P. et al. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: An example from white spruce. Heredity 124, 562–578 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Askew, G. R. & El-Kassaby, Y. A. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor. Appl. Genet. 88, 267–272 (1994).CAS 
    PubMed 

    Google Scholar 
    Doerksen, T. K., Bousquet, J. & Beaulieu, J. Inbreeding depression in intra-provenance crosses driven by founder relatedness in white spruce. Tree Genet. Genomes 10, 203–212 (2014).
    Google Scholar 
    Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heffner, E. L., Lorenz, A. J., Jannink, J.-L. & Sorrels, M. E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 50, 1681–1690 (2010).
    Google Scholar 
    Grattapaglia, D. & Resende, M. D. V. Genomic selection in forest tree breeding. Tree Genet. Genomes 7, 241–255 (2011).
    Google Scholar 
    Beaulieu, J., Doerksen, T., Clément, S., MacKay, J. & Bousquet, J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113, 342–352 (2014).
    Google Scholar 
    Habier, D., Tetens, J., Seefried, F.-R., Lichtner, P. & Thaller, G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Gen. Select. Evol. 42, 5 (2010).
    Google Scholar 
    Perkel, J. SNP genotyping: six technologies that keyed a revolution. Nat. Methods 5, 447–454 (2008).CAS 

    Google Scholar 
    Pavy, N. et al. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol. Ecol. Res. 13, 324–336 (2013).CAS 

    Google Scholar 
    Thomson, M. J. High-throughput genotyping to accelerate crop improvement. Plant Breed. Biotechnol. 2, 195–212 (2014).
    Google Scholar 
    Beaulieu, J., Doerksen, T., MacKay, J., Rainville, A. & Bousquet, J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics 15, 1048 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, L., Chen, R., Fugina, C. J., Siegel, B. & Jackson, D. High-throughput and low-cost genotyping method for plant genome editing. Curr. Prot. 1, e100 (2021).CAS 

    Google Scholar 
    Lenz, P. et al. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics 18, 335 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D. & Calus, M. P. L. Whole-genome regression and prediction models applied to plant and animal breeding. Genetics 193, 327–345 (2013).PubMed Central 

    Google Scholar 
    Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12, 55–67 (1970).MATH 

    Google Scholar 
    Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Series B. 58, 267–288 (1996).MathSciNet 
    MATH 

    Google Scholar 
    VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).CAS 
    PubMed 

    Google Scholar 
    Legarra, A., Aguilar, I. & Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92, 4656–4663 (2009).CAS 
    PubMed 

    Google Scholar 
    Zapata-Valenzuela, J., Whetten, R. W., Neale, D., McKeand, S. & Isik, F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. Genes Genomes Genet. 3, 909–916 (2013).
    Google Scholar 
    Muñoz, P. R. et al. Unraveling additive from non-additive effects using genomic relationship matrices. Genetics 198, 1759–1768 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ratcliffe, B. et al. Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. Genes Genomes Genet. 7, 935–942 (2017).
    Google Scholar 
    Gamal El-Dien, O. et al. Multienvironment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca x engelmannii). Mol. Breed. 38, 26 (2018).
    Google Scholar 
    Zobel, B. J. & Sprague, J. R. Juvenile Wood in Forest Trees (Springer, 1988).
    Google Scholar 
    Osorio, L. F., White, T. L. & Huber, D. A. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silv. Genet. 50, 108–117 (2000).
    Google Scholar 
    Baltunis, B. S., Gapare, W. J. & Wu, H. X. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia. Silv. Genet. 59, 113–124 (2010).
    Google Scholar 
    Gamal El-Dien, O. et al. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16, 370 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Resende, M. D. V. et al. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194, 116–128 (2012).PubMed 

    Google Scholar 
    Chen, Z.-Q. et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics 19, 946 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Beaulieu, J., Perron, M. & Bousquet, J. Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana. Can. J. For. Res. 34, 531–545 (2004).
    Google Scholar 
    Li, P., Beaulieu, J. & Bousquet, J. Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Can. J. For. Res. 27, 189–198 (1997).
    Google Scholar 
    Namkoong, G. Inbreeding effects on estimation of genetic additive variance. For. Sci. 12, 8–13 (1966).
    Google Scholar 
    Squillace, A. E. Average genetic correlations among offspring from open-pollinated forest trees. Silv. Genet. 23, 149–156 (1974).
    Google Scholar 
    Muñoz, P. R. et al. Genomic relationship matrix for correcting pedigree errors in breeding populations: impact on genetic parameters and genomic selection accuracy. Crop Sci. 53, 1115–1123 (2014).
    Google Scholar 
    Tan, B. et al. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 17, 110 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Weigel, K. A., VanRaden, P. M., Norman, H. D. & Grosu, H. A 100-year review: Methods and impact of genetic selection in dairy cattle—From daughter-dam comparisons to deep learning algorithms. J. Dairy Sci. 100, 10234–10250 (2017).CAS 
    PubMed 

    Google Scholar 
    Grattapaglia, D. et al. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 9, 1693 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Park, Y.-S., Beaulieu, J. & Bousquet, J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In Vegetative Propagation of Forest Trees (eds Park, Y.-S. et al.) 302–322 (National Institute of Forest Science, 2016).
    Google Scholar 
    Bousquet, J. et al. Spruce population genomics. In Population Genomics: Forest Trees (ed. Rajora, O. P.) (Springer Nature, 2021).
    Google Scholar 
    Chamberland, V. et al. Conventional versus genomic selection for white spruce improvement: A comparison of costs and benefits of plantations on Quebec public lands. Tree Genet. Genomes 16, 17 (2020).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    MacFarland, T. W. & Yates, J. M. Wilcoxon matched-pairs signed-ranks test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R 133–175 (Springer, 2016) https://doi.org/10.1007/978-3-319-30634-6_5.Li, Y. et al. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genomics 20, 1026 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Calleja-Rodriguez, A. et al. Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics 21, 796 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ukrainetz, N. K. & Mansfield, S. D. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet. Genomes 16, 14 (2020).
    Google Scholar 
    Ukrainetz, N. K. & Mansfield, S. D. Prediction accuracy of single-step BLUP for growth and wood quality traits in the lodgepole pine breeding program in British Columbia. Tree Genet. Genomes 16, 64 (2020).
    Google Scholar 
    Thistlethwaite, F. R. et al. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics 18, 930 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Suontama, M. et al. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity 122, 370–379 (2019).CAS 
    PubMed 

    Google Scholar 
    Müller, B. S. F. et al. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 18, 524 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Thavamanikumar, S., Arnold, R. J., Luo, J. & Thumma, B. R. Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita. Genes Genomes Genet. 10, 3751–3763 (2020).CAS 

    Google Scholar 
    Resende, R. T. et al. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity 119, 245–255 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marco de Lima, B. et al. Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 14, e0218747 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouvet, J.-M., Makouanzi, G., Cros, D. & Vigneron, Ph. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: Prediction accuracy implications. Heredity 116, 146–157 (2016).CAS 
    PubMed 

    Google Scholar 
    Pégard, M. et al. Favorable conditions for genomic evaluation to outperform classical pedigree evaluation highlighted by a proof-of-concept study in poplar. Front. Plant Sci. 11, 581954 (2020).PubMed 
    PubMed Central 

    Google Scholar  More