More stories

  • in

    Intra- and inter-spatial variability of meiofauna in hadal trenches is linked to microbial activity and food availability

    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 

    Google Scholar 
    Smith, C. R., Hoover, D. J. & Doan, S. E. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Oceanogr. Lit. Rev. 4, 318 (1997).
    Google Scholar 
    Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).ADS 

    Google Scholar 
    Clough, L. M., Renaud, P. E. & Ambrose, W. G. Jr. Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can. J. Fish. Aquat. Sci. 62, 1756–1765 (2005).CAS 

    Google Scholar 
    Gorska, B., Soltwedel, T., Schewe, I. & Wlodarska-Kowalczuk, M. Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76–5561 m, Fram Strait). Prog. Oceanogr. 186, 102370 (2020).
    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
    Google Scholar 
    Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
    Google Scholar 
    Rosli, N., Leduc, D., Rowden, A. A. & Probert, P. K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 48, 13–34 (2018).
    Google Scholar 
    Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
    Google Scholar 
    Berg, P., Rysgaard, S., Funch, P. & Sejr, M. K. Effects of bioturbation on solutes and solids in marine sediments. Aquat. Microb. Ecol. 26, 81–94 (2001).
    Google Scholar 
    Aller, R. C. & Aller, J. Y. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033 (1992).ADS 
    CAS 

    Google Scholar 
    Leduc, D. et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep Sea Res. Part Oceanogr. Res. Pap. 116, 264–275 (2016).ADS 

    Google Scholar 
    Schmidt, C. & Martínez Arbizu, P. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains. Deep Sea Res. Part II Top. Stud. Oceanogr. 111, 60–75 (2015).ADS 
    CAS 

    Google Scholar 
    Danovaro, R., Gambi, C. & DellaCroce, N. Meiofauna hotspot in the Atacama Trench, eastern south Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 49, 843–857 (2002).ADS 
    CAS 

    Google Scholar 
    Ichino, M. C. et al. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res. Part Oceanogr. Res. Pap. 100, 21–33 (2015).ADS 
    CAS 

    Google Scholar 
    Shirayama, Y. The abundance of deep-sea meiobenthos in the western pacific in relation to environmental-factors. Oceanol. Acta 7, 113–121 (1984).
    Google Scholar 
    Leduc, D. & Rowden, A. A. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 134, 23–31 (2018).ADS 

    Google Scholar 
    Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).
    Google Scholar 
    Schmidt, C., Escobar Wolf, K., Lins, L., Martínez Arbizu, P. & Brandt, A. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 223–235 (2018).ADS 

    Google Scholar 
    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Jamieson, A. J. Ecology of deep oceans: hadal trenches. eLS https://doi.org/10.1002/9780470015902.a0023606 (2011).Article 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Wenzhöfer, F. et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res. Part Oceanogr Res Pap. 116, 276–286 (2016).ADS 

    Google Scholar 
    Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 1–8 (2021).ADS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Xu, Y. et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosciences 126, e2020JG006189 (2021).ADS 
    CAS 

    Google Scholar 
    Itou, M., Matsumura, I. & Noriki, S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. Part Oceanogr. Res. Pap. 47, 1987–1998 (2000).ADS 
    CAS 

    Google Scholar 
    Oguri, K. et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Sci. Rep. 3, 1–6 (2013).
    Google Scholar 
    Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).ADS 
    CAS 

    Google Scholar 
    Itoh, M. et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 58, 86–97 (2011).ADS 

    Google Scholar 
    Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S. & Wilke, R. J. Meiobenthos of the hatteras abyssal plain and Puerto Rico trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1567–1577 (1989).ADS 

    Google Scholar 
    Richardson, M. D., Briggs, K. B., Bowles, F. A. & Tietjen, J. H. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto Rico Trench. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 351–364 (1995).ADS 

    Google Scholar 
    Tietjen, J. H. Ecology of deep-sea nematodes from the Puerto Rico trench area and Hatteras Abyssal plain. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1579–1594 (1989).ADS 

    Google Scholar 
    Shirayama, Y. & Kojima, S. Abundance of deep-sea meiobenthos off Sanriku, Northeastern Japan. J. Oceanogr. 50, 109–117 (1994).
    Google Scholar 
    Ingels, J. et al. Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar. Ecol. Prog. Ser. 406, 121–133 (2010).ADS 
    CAS 

    Google Scholar 
    Guilini, K., Oevelen, D. V., Soetaert, K., Middelburg, J. J. & Vanreusela, A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: Results of an isotope tracer experiment. Limnol. Oceanogr. 55, 1977–1989 (2010).ADS 
    CAS 

    Google Scholar 
    Moens, T., Verbeeck, L., de Maeyer, A., Swings, J. & Vincx, M. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176, 165–178 (1999).ADS 

    Google Scholar 
    Schmidt, C., Sattarova, V. V., Katrynski, L. & Arbizu, P. M. New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Prog. Oceanogr. 173, 192–207 (2019).ADS 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 

    Google Scholar 
    Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. Part Oceanogr. Res. Pap. 48, 2453–2472 (2001).ADS 
    CAS 

    Google Scholar 
    Soltwedel, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr. 46, 59–84 (2000).ADS 

    Google Scholar 
    Rowe, G. T., Sibuet, M., Deming, J., Tietjen, J. & Khripounoff, A. Organic carbon turnover time in deep-sea benthos. Prog. Oceanogr. 24, 141–160 (1990).ADS 

    Google Scholar 
    Tselepides, A. et al. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46, 311–344 (2000).ADS 

    Google Scholar 
    Hansen, J. & Josefson, A. Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Mar. Biol. 139, 289–299 (2001).CAS 

    Google Scholar 
    Hargraves, P. E. & French, S. Survival characteristics of marine diatom resting spores. in JOURNAL OF PHYCOLOGY vol. 11 6–6 (PHYCOLOGICAL SOC AMER INC 810 EAST 10TH ST, LAWRENCE, KS 66044, 1975).Schauberger, C. et al. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol. Oceanogr. 66(6), 2095–2109 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Oevelen, D. et al. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Sea Res. Part Oceanogr. Res. Pap. 58, 1069–1083 (2011).ADS 

    Google Scholar 
    Heip, C. H. R. et al. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3223–3243 (2001).ADS 
    CAS 

    Google Scholar 
    Rowe, G. T. et al. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2699–2711 (2008).ADS 
    CAS 

    Google Scholar 
    Baguley, J. G., Montagna, P. A., Hyde, L. J. & Rowe, G. T. Metazoan meiofauna biomass, grazing, and weight-dependent respiration in the Northern Gulf of Mexico deep sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2607–2616 (2008).ADS 
    CAS 

    Google Scholar 
    Maciute, A. et al. A microsensor-based method for measuring respiration of individual nematodes. Methods Ecol. Evol. 12(10), 1841–1847. https://doi.org/10.1111/2041-210X.13674 (2021).
    Article 

    Google Scholar 
    Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. (1984).Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 127, 1–13 (1996).CAS 

    Google Scholar 
    Pape, E., van Oevelen, D., Moodley, L., Soetaert, K. & Vanreusel, A. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Res. Part Oceanogr. Res. Pap. 80, 94–110 (2013).ADS 
    CAS 

    Google Scholar 
    Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden mari- nen Nematoden. Ark. För Zool. 2, 439–484 (1953).
    Google Scholar 
    Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 77, 211–227 (1997).
    Google Scholar 
    Moens, T. et al. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol. 31, 1–13 (2007).
    Google Scholar 
    Ingels, J., Kiriakoulakis, K., Wolff, G. A. & Vanreusel, A. Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1521–1539 (2009).ADS 
    CAS 

    Google Scholar 
    Gambi, C., Vanreusel, A. & Danovaro, R. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. Part Oceanogr. Res. Pap. 50, 103–117 (2003).ADS 

    Google Scholar 
    Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Res. Part II Top Stud. Oceanogr. 51, 1665–1687 (2004).ADS 

    Google Scholar 
    Jumars, P. A. & Hessler, R. R. Hadal community structure: implications from the Aleutian Trench. J. Mar. Res. 34, 547–560 (1976).
    Google Scholar 
    Kim, D.-S. & Min, W.-G. Meiobenthic communities in extreme deep-sea environment. Korean J. Fish. Aquat. Sci. 39, 203–213 (2006).
    Google Scholar 
    Wenzhöfer, F. The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018. Berichte Zur Polar- Meeresforsch. Rep. Polar Mar. Res. 729, 111. https://doi.org/10.2312/BzPM_0729_2019 (2019).Article 

    Google Scholar 
    Scholl, D. W., Christensen, M. N., von Huene, R. & Marlow, M. S. Peru-Chile trench sediments and sea-floor spreading. Geol. Soc. Am. Bull. 81, 1339–1360 (1970).ADS 

    Google Scholar 
    Fisher, R. L. & Raitt, R. W. Topography and structure of the Peru-Chile trench. In Deep Sea Research and Oceanographic Abstracts vol. 9 423–443 (Elsevier, 1962).Bandy, O. L. & Rodolfo, K. S. Distribution of foraminifera and sediments, Peru-Chile Trench area. In Deep Sea Research and Oceanographic Abstracts vol. 11 817–837 (Elsevier, 1964).Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003706 (2007).Article 

    Google Scholar 
    Carrie, J., Sanei, H. & Stern, G. Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org. Geochem. 46, 38–53 (2012).CAS 

    Google Scholar 
    Shuman, F. R. & Lorenzen, C. J. Quantitative degradation of chlorophyll by a marine herbivore 1. Limnol. Oceanogr. 20, 580–586 (1975).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. In situ microscale variation in distribution and consumption of 2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnol. Oceanogr. 54, 1–12 (2009).ADS 
    CAS 

    Google Scholar 
    Revsbech, N. P. An oxygen microelectrode with a guard cathode. Linnol. Oceanogr. 34, 474–487 (1989).ADS 
    CAS 

    Google Scholar 
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).ADS 
    CAS 

    Google Scholar 
    Feller, R. J. & Warwick, R. M. Energetics. in Feller, R.J. and Warwick, R.M. (1988) Energetics. In: Higgins, R.P. and Thiel, H., (eds.) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, D.C, pp. 181–196. (eds. Higgins, R. P. & Thiel, H.) 181–196 (Smithsonian Institution Press, 1988).Mahaut, M.-L., Sibuet, M. & Shirayama, Y. Weight-dependent respiration rates in deep-sea organisms. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 1575–1582 (1995).ADS 

    Google Scholar  More

  • in

    Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere

    Sun, J. et al. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Sci. Rep. 4, 7463 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiffney, B. H. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. Harv. Univ. 66, 73–94 (1985).
    Google Scholar 
    Tiffney, B. H. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. Harv. Univ. 66, 243–273 (1985).
    Google Scholar 
    Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, E. J. et al. Convergence, consilience, and the evolution of temperate deciduous forests. Am. Nat. 190, S87–S104 (2017).PubMed 

    Google Scholar 
    Segovia, R. A. et al. Freezing and water availability structure the evolutionary diversity of trees across the Americas. Sci. Adv. 6, eaaz5373 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3–S17 (2001).
    Google Scholar 
    Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).CAS 
    PubMed 

    Google Scholar 
    Axelrod, D. I. Biogeography of oaks in the Arcto-Tertiary province. Ann. Mo. Bot. Gard. 70, 629–657 (1983).
    Google Scholar 
    Axelrod, D. I., Ai-Shehbaz, I. & Raven, P. H. History of the Modern Flora of China. (Springer, 1996).Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. N. Phytol. 221, 669–692 (2019).
    Google Scholar 
    Delcourt, H. R. & A., D. P. North American Terrestrial Vegetation. (Cambridge University Press, 2000).Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems (1983).Soepadmo, E. Flora Malesiana Series I. Vol. 7 (Noordhoff International Publishing, 1972).Vogt, K. A. et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219 (1996).CAS 

    Google Scholar 
    Whitmore, T. C. Tropical Rain Forest of the Far East. (Oxford University Press, 1984).Zhu, H. Ecological and biogeographical studies on the tropical rain forest of south Yunnan, SW China with a special reference to its relation with rain forests of tropical Asia. J. Biogeogr. 24, 647–662 (1997).
    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, F., Kohler, A., Murat, C., Veneault-Fourrey, C. & Hibbett, D. S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14, 760–773 (2016).CAS 
    PubMed 

    Google Scholar 
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis, 2nd edn. (Academic Press, 1997).Abrahamson, W. G. & Melika, G. Gall-inducing insects (Cynipinae) provide insights into plant systematic relationships. Am. J. Bot. 85, 111–111 (1998).
    Google Scholar 
    Raman, A. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. Int. J. Ecol. Environ. Sci. 22, 133–143 (1996).
    Google Scholar 
    Stone, G. N. et al. Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63, 854–869 (2009).CAS 
    PubMed 

    Google Scholar 
    Johnson, W. C. & Webb, T. The role of bluejays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J. Biogeogr. 16, 561–571 (1989).
    Google Scholar 
    Koenig, W. D. & Haydock, J. Oaks, acorns, and the geographical ecology of acorn woodpeckers. J. Biogeogr. 26, 159–165 (1999).
    Google Scholar 
    Payne, J. & Francis, C. M. A Field Guide to the Mammals of Borneo. (Sabah Society with World Wildlife Fund Malaysia, 1985).Steele, M. A. Oak Seed Dispersal. (The Johns Hopkins University Press, 2021).Vander Wall, S. B. The evolutionary ecology of nut dispersal. Bot. Rev. 67, 74–117 (2001).
    Google Scholar 
    Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365, 989–997 (2010).
    Google Scholar 
    Barrón, E. et al. in Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. (eds. Eustaquio Gil-Pelegrín, José Javier Peguero-Pina, & Domingo Sancho-Knapik) 39–105 (Springer International Publishing, 2017).Crepet, W. L. & Nixon, K. C. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Am. J. Bot. 76, 842–855 (1989).
    Google Scholar 
    Denk, T. & Grimm, G. W. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int. J. Plant Sci. 170, 926–940 (2009).
    Google Scholar 
    Denk, T., Grímsson, F. & Zetter, R. Fagaceae from the early Oligocene of Central Europe: Persisting new world and emerging old world biogeographic links. Rev. Palaeobot. Palynol. 169, 7–20 (2012).
    Google Scholar 
    Grímsson, F., Grimm, G. W., Zetter, R. & Denk, T. Cretaceous and Paleogene Fagaceae from North America and Greenland: Evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica 56, 247–305 (2016).
    Google Scholar 
    Jones, J. H. Evolution of the Fagaceae: the implications of foliar features. Ann. Mo. Bot. Gard. 73, 228–275 (1986).
    Google Scholar 
    Manchester, S. R. Biogeographical relationships of North American Tertiary floras. Ann. Mo. Bot. Gard. 86, 472–522 (1999).
    Google Scholar 
    Sadowski, E. M., Schmidt, A. R. & Denk, T. Staminate inflorescences with in situ pollen from Eocene Baltic amber reveal high diversity in Fagaceae (oak family). Willdenowia 50, 405–517 (2020).
    Google Scholar 
    Bouchal, J., Zetter, R., Grimsson, F. & Denk, T. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am. J. Bot. 101, 1332–1349 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Naryshkina, N. N. & Evstigneeva, T. A. Fagaceae in the Eocene palynoflora of the south of primorskii region: New data on taxonomy and morphology. Paleontol. J. 54, 429–439 (2020).
    Google Scholar 
    Sadowski, E.-M., Hammel, J. U. & Denk, T. Synchrotron X-ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber. Am. J. Bot. 105, 2025–2036 (2018).PubMed 

    Google Scholar 
    Gandolfo, M. A., Nixon, K. C., Crepet, W. L. & Grimaldi, D. A. A late Cretaceous fagalean inflorescence preserved in amber from New Jersey. Am. J. Bot. 105, 1424–1435 (2018).PubMed 

    Google Scholar 
    Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. N. Phytol. 226, 1198–1212 (2020).CAS 

    Google Scholar 
    Wilf, P., Nixon, K. C., Gandolfo, M. A. & Cuneo, N. R. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364, eaaw5139 (2019).CAS 
    PubMed 

    Google Scholar 
    Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol., Evol. Syst. 37, 187–214 (2006).
    Google Scholar 
    Smith, S. A. & Donoghue, M. J. Rates of molecular evolution are linked to life history in flowering plants. Science 322, 86–89 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boucher, F. C., Verboom, G. A., Musker, S. & Ellis, A. G. Plant size: A key determinant of diversification? N. Phytol. 216, 24–31 (2017).
    Google Scholar 
    Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation. Proc. Natl Acad. Sci. USA 118, e2023058118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denk, T., Grimm, G. W., Manos, P. S., Deng, M. & Hipp, A. L. in Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Vol. 7 Tree Physiology (eds. GilPelegrin, E., PegueroPina, J. J., & SanchoKnapik, D.) 13–38 (Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330, Switzerland, 2017).Deng, M., Jiang, X. L., Hipp, A. L., Manos, P. S. & Hahn, M. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogen. Evol. 119, 170–181 (2018).
    Google Scholar 
    Hipp, A. L. et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. N. Phytol. 217, 439–452 (2018).CAS 

    Google Scholar 
    Crowl, A. A. et al. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). N. Phytol. 226, 1158–1170 (2020).CAS 

    Google Scholar 
    Hauser, D. A., Keuter, A., McVay, J. D., Hipp, A. L. & Manos, P. S. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). Am. J. Bot. 104, 1581–1595 (2017).PubMed 

    Google Scholar 
    McVay, J. D., Hauser, D., Hipp, A. L. & Manos, P. S. Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America. Genome 60, 733–742 (2017).PubMed 

    Google Scholar 
    McVay, J. D., Hipp, A. L. & Manos, P. S. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc. R. Soc. B. 284, 20170300 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Manos, P. S., Doyle, J. J. & Nixon, K. C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogen. Evol. 12, 333–349 (1999).CAS 

    Google Scholar 
    Pham, K. K., Hipp, A. L., Manos, P. S. & Cronn, R. C. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome 60, 720–732 (2017).PubMed 

    Google Scholar 
    Simeone, M. C. et al. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4, e1897 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Oh, S.-H. & Manos, P. S. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57, 434–451 (2008).
    Google Scholar 
    Renne, P. R. et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–687 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Koenen, E. J. M. et al. The origin of the Legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event. Syst. Biol. 70, 508–526 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W. et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. N. Phytol. 195, 470–478 (2012).
    Google Scholar 
    Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of Neoavian birds. PLoS Biol. 13, e1002224 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Y. J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864–E5870 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).PubMed 

    Google Scholar 
    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martinez, I. & Gonzalez-Taboada, F. Seed dispersal patterns in a temperate forest during a mast event: performance of alternative dispersal kernels. Oecologia 159, 389–400 (2009).ADS 
    PubMed 

    Google Scholar 
    Larson-Johnson, K. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. N. Phytol. 209, 418–435 (2016).CAS 

    Google Scholar 
    Xiang, X. G. et al. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect. Plant Ecol. Evol. Syst. 16, 101–110 (2014).
    Google Scholar 
    Casanovas-Vilar, I. et al. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. Elife 7, e39270 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Huchon, D. et al. Rodent phylogeny and a timescale for the evolution of glires: Evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19, 1053–1065 (2002).CAS 
    PubMed 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roth, V. L. & Mercer, J. M. The Effects of Cenozoic Global Change on Squirrel Phylogeny. Science 299, 1568–1572 (2003).ADS 
    PubMed 

    Google Scholar 
    Jonsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Ayes: Corvides). Mol. Phylogen. Evol. 94, 87–94 (2016).
    Google Scholar 
    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benz, B. W., Robbins, M. B. & Peterson, A. T. Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree. Mol. Phylogen. Evol. 40, 389–399 (2006).CAS 

    Google Scholar 
    Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).ADS 
    PubMed 

    Google Scholar 
    Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varga, T. et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y. Y., Qu, X. J., Zhang, R., Stull, G. W. & Yi, T. S. Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Mol. Phylogen. Evol. 163, 107232 (2021).
    Google Scholar 
    Whittemore, A. T. & Schaal, B. A. Interspecific gene flow in sympatric oaks. Proc. Natl Acad. Sci. USA 88, 2540–2544 (1991).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kremer, A. & Hipp, A. L. Oaks: an evolutionary success story. N. Phytol. 226, 987–1011 (2020).
    Google Scholar 
    Petit, R. et al. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. Ecol. Manag. 176, 595–599 (2003).
    Google Scholar 
    Petit, R. et al. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl Acad. Sci. USA 94, 9996–10001 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petit, R. J. & Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–393 (2009).PubMed 

    Google Scholar 
    Premoli, A. C., Mathiasen, P., Cristina Acosta, M. & Ramos, V. A. Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? N. Phytol. 193, 261–275 (2012).CAS 

    Google Scholar 
    Tsuda, Y., Semerikov, V., Sebastiani, F., Vendramin, G. G. & Lascoux, M. Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Mol. Ecol. 26, 589–605 (2017).PubMed 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 

    Google Scholar 
    Bock, R. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51, 1–22 (2017).CAS 
    PubMed 

    Google Scholar 
    Hill, W. G. Disequilibrium among several linked neutral genes in finite population: II. Variances and covariances of disequilibria. Theor. Popul. Biol. 6, 184–198 (1974).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, Y. et al. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol. 22, 237 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X. et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc. Natl Acad. Sci. USA 118, e2020803118 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavender-Bares, J., Gonzalez-Rodriguez, A., Pahlich, A., Koehler, K. & Deacon, N. Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. J. Biogeogr. 38, 962–981 (2011).
    Google Scholar 
    Chen, D. et al. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS ONE 7, e47268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leroy, T. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks. N. Phytol. 226, 1171–1182 (2020).
    Google Scholar 
    O’Donnell, S. T., Fitz-Gibbon, S. T. & Sork, V. L. Ancient introgression between distantly related White Oaks (Quercus sect. Quercus) shows evidence of climate-associated asymmetric gene exchange. J. Hered. 112, 663–670 (2021).PubMed 

    Google Scholar 
    Nagamitsu, T., Uchiyama, K., Izuno, A., Shimizu, H. & Nakanishi, A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. N. Phytol. 226, 1018–1028 (2020).CAS 

    Google Scholar 
    Maxwell, L. M., Walsh, J., Olsen, B. J. & Kovach, A. I. Patterns of introgression vary within an avian hybrid zone. BMC Ecol. Evol. 21, 14 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hewitt, G. M. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).CAS 
    PubMed 

    Google Scholar 
    Gernandt, D. S., Resendiz Arias, C., Terrazas, T., Aguirre Dugua, X. & Willyard, A. Incorporating fossils into the Pinaceae tree of life. Am. J. Bot. 105, 1329–1344 (2018).CAS 
    PubMed 

    Google Scholar 
    Rose, J. P., Toledo, C. A. P., Lemmon, E. M., Lemmon, A. R. & Sytsma, K. J. Out of sight, out of mind: Widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70, 162–180 (2021).CAS 
    PubMed 

    Google Scholar 
    Truffaut, L. et al. Fine-scale species distribution changes in a mixed oak stand over two successive generations. N. Phytol. 215, 126–139 (2017).CAS 

    Google Scholar 
    Petit, R. J., Bodénès, C., Ducousso, A., Roussel, G. & Kremer, A. Hybridization as a mechanism of invasion in oaks. N. Phytol. 161, 151–164 (2003).
    Google Scholar 
    Sork, V. L. et al. Phylogeny and introgression of California scrub White Oaks (Quercus section Quercus). Int. Oaks J. 27, 61–74 (2016).
    Google Scholar 
    Quang, N. D., Ikeda, S. & Harada, K. Nucleotide variation in Quercus crispula Blume. Heredity (Edinb.) 101, 166–174 (2008).CAS 

    Google Scholar 
    Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. J. Syst. Evol. 56, 405–429 (2018).
    Google Scholar 
    Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, e47268 (2018).
    Google Scholar 
    Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).PubMed 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: Old ideas, new techniques. Plant Physiol. 173, 65–78 (2017).CAS 
    PubMed 

    Google Scholar 
    Mitchell, N. et al. Correlates of hybridization in plants. Evol. Lett. 3, 570–585 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodenes, C. et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 12, 153 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cannon, C. H. & Petit, R. J. The oak syngameon: More than the sum of its parts. N. Phytol. 226, 978–983 (2020).
    Google Scholar 
    Chen, S. C., Cannon, C. H., Kua, C. S., Liu, J. J. & Galbraith, D. W. Genome size variation in the Fagaceae and its implications for trees. Tree Genet. Genom. 10, 977–988 (2014).
    Google Scholar 
    Kremer, A. et al. Genomics of Fagaceae. Tree Genet. Genom. 8, 583–610 (2012).
    Google Scholar 
    Neale, D. B., Martinez-Garcia, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).CAS 
    PubMed 

    Google Scholar 
    Staton, M. et al. Substantial genome synteny preservation among woody angiosperm species: Comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genomics 16, 744 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Manos, P. S. & Stanford, A. M. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. Int. J. Plant Sci. 162, S77–S93 (2001).
    Google Scholar 
    Salojarvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).CAS 
    PubMed 

    Google Scholar 
    Mishra, B. et al. A reference genome of the European beech (Fagus sylvatica L.). Gigascience 7, giy063 (2018).ADS 
    PubMed Central 

    Google Scholar 
    Xing, Y. et al. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 8, giz112 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sork, V. L. et al. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Preprint at bioRxiv https://doi.org/10.1101/2021.04.09.439191 (2021).Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST plus: architecture and applications. BMC Bioinforma. 10, 421 (2009).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997v2 (2013).McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertels, F., Silander, O. K., Pachkov, M., Rainey, P. B. & van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 31, 1077–1088 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haudry, A. et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891–898 (2013).CAS 
    PubMed 

    Google Scholar 
    Hupalo, D. & Kern, A. D. Conservation and functional element discovery in 20 angiosperm plant genomes. Mol. Biol. Evol. 30, 1729–1744 (2013).CAS 
    PubMed 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).PubMed 

    Google Scholar 
    Qu, X. J., Moore, M. J., Li, D. Z. & Yi, T. S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ronquist, F. et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Akaike, H. New look at statistical-model identification. Ieee Trans. Autom. Control AC19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).
    Google Scholar 
    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    PAUP*. Phylogenetic analysis using parsimony (* and other methods). v. Version 4. (Sinauer Associates, Sunderland, 2003).Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 

    Google Scholar 
    dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).PubMed 

    Google Scholar 
    Chen, D. et al. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol. Evol. 21, 209 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Johns, C. A., Toussaint, E. F. A., Breinholt, J. W. & Kawahara, A. Y. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc. R. Soc. B. 285, 20181047 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Google Scholar 
    Salichos, L., Stamatakis, A. & Rokas, A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol. Biol. Evol. 31, 1261–1271 (2014).CAS 
    PubMed 

    Google Scholar 
    Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, X. H., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogen. Evol. 26, 1–7 (2003).CAS 

    Google Scholar 
    Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McInerney, J. O. GCUA: general codon usage analysis. Bioinformatics 14, 372–373 (1998).CAS 
    PubMed 

    Google Scholar 
    Folk, R. A., Mandel, J. R. & Freudenstein, J. V. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320–337 (2017).CAS 
    PubMed 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 

    Google Scholar 
    Olave, M., Avila, L. J., Sites, J. W., Morando, M. & Freckleton, R. Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models. Methods Ecol. Evol. 9, 121–133 (2017).
    Google Scholar 
    Than, C. & Nakhleh, L. Species tree inference by minimizing deep coalescences. PLoS Comp. Biol. 5, e1000501 (2009).ADS 
    MathSciNet 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite – Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Solis-Lemus, C. & Ane, C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12, e1005896 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Solis-Lemus, C., Bastide, P. & Ane, C. Phylonetworks: A package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).CAS 
    PubMed 

    Google Scholar 
    Hejase, H. A. & Liu, K. J. A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinforma. 17, 422 (2016).
    Google Scholar 
    Shen, X. X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 126 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Norway spruce postglacial recolonization of Fennoscandia

    Lindquist, B. The main varieties of Picea abies (L.) Karst. In Europe, with a contribution to the theory of a forest vegetation in Scandinavia during the last Pleistocene glaciation. Acta Horti Bergiani 14, 249–342 (1948).
    Google Scholar 
    Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parducci, L. et al. Response to comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–10 (2012).
    Google Scholar 
    Birks, H. H. et al. Comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–11 (2012). 2012.
    Google Scholar 
    Chen, J. et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolut. Appl. 12, 1539–1551 (2019).
    Google Scholar 
    Giesecke, T. & Bennett, K. D. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J. Biogeogr. 31, 1523–1548 (2004).
    Google Scholar 
    Latałowa, M. & van der Knaap, W. O. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat. Sci. Rev. 25, 2780–2805 (2006).ADS 

    Google Scholar 
    Brewer, S. et al. Late-glacial and Holocene European pollen data. J. Maps 13, 921–928 (2017).
    Google Scholar 
    Heikkilä, M., Fontana, S. L. & Seppä, H. Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J. Quat. Sci. 24, 802–815 (2009).
    Google Scholar 
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).
    Google Scholar 
    Segerström, U. & Von Stedingk, H. Early-Holocene spruce, Picea abies (L.) Karst., in west central Sweden as revealed by pollen analysis. Holocene 13, 897–906 (2003).ADS 

    Google Scholar 
    Kullman, L. New and Firm Evidence for Mid-Holocene Appearance of Piceaa abies in the Scandes Mountains, Sweden. J. Ecol. 83, 439 (1995).
    Google Scholar 
    Kullman, L. Boreal tree taxa in the central Scandes during the Late-Glacial: Implications for Late-Quaternary forest history. J. Biogeogr. 29, 1117–1124 (2002).
    Google Scholar 
    Öberg, L. & Kullman, L. Ancient Subalpine Clonal Spruces (Picea abies): Sources of Postglacial Vegetation History in the Swedish Scandes. Arctic 64, 183–196 (2011).
    Google Scholar 
    Paus, A., Velle, G. & Berge, J. The Lateglacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two Lateglacial nunatak lakes. Quat. Sci. Rev. 30, 1780–1796 (2011).ADS 

    Google Scholar 
    Birks, H. H., Larsen, E. & Birks, H. J. B. Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). J. Biogeogr. 32, 461–1471 (2005).
    Google Scholar 
    Tollefsrud, M. M. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 17, 4134–4150 (2008).CAS 
    PubMed 

    Google Scholar 
    Tsuda, Y. et al. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol. Ecol. 25, 2773–2789 (2016).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).
    Google Scholar 
    Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemdahl, G. & Berglund, B. E. Senglaciala granskogar i Sydsverige? [Late glacial spruce forests in southern Sweden?]. Sven. Botanisk Tidskr. 99, 183–186 (2005).
    Google Scholar 
    Hicks, S. When no pollen does not mean no trees. Vegetation Hist. Archaeobotany 15, 253–261 (2006).
    Google Scholar 
    Birks, H. H., Larsen, E. & Birks, H. J. B. On the presence of late-glacial trees in western Norway and the Scandes: A further comment. J. Biogeogr. 33, 376–377 (2006).
    Google Scholar 
    Kullman, L. Ecological tree line history and palaeoclimate – review of megafossil evidence from the Swedish Scandes. Boreas 42, 555–567 (2013).
    Google Scholar 
    Giesecke, T. Changing Plant Distributions and Abundances. In: S. A. Elias (ed.) The encyclopedia of quaternary science, vol 3, pp. 854– 860. Elsevier, Amsterdam, NL (2013).Tollefsrud, M. M. et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102, 549–562 (2009).CAS 
    PubMed 

    Google Scholar 
    Edwards, M. E., Armbruster, W. S. & Elias, S. E. Constraints on post-glacial boreal tree expansion out of far-northern refugia. Glob. Ecol. Biogeogr. 23, 1198–1208 (2014).
    Google Scholar 
    Li, L., et al. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. bioRxiv https://doi.org/10.1101/2022.01.11.475794 (2022).Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytologist 214, 924–942 (2017).CAS 

    Google Scholar 
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Naydenov, K., Senneville, S., Beaulieu, J., Tremblay, F. & Bousquet, J. Glacial vicariance in Eurasia: Mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolut. Biol. 7, 233 (2007).
    Google Scholar 
    Kullman, L. Palaeoecological, Biogeographical and Palaeoclimatological Implications of Early Holocene Immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Glob. Ecol. Biogeogr. Lett. 7, 181 (1998).
    Google Scholar 
    Kullman, L. Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quat. Sci. Rev. 27, 2467–2472 (2008).ADS 

    Google Scholar 
    Suyama, Y. & Matsuki, Y. MIG-seq: An effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zale, R. et al. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1? Quat. Sci. Rev. 185, 222–229 (2018).ADS 

    Google Scholar 
    Kylander, M. E., Klaminder, J., Wohlfarth, B. & Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50, 57–70 (2013).ADS 

    Google Scholar 
    Ampel, L., Kylander, M. E., Steinthorsdottir, M. & Wohlfarth, B. Abrupt climate change and early lake development – the Lateglacial diatom flora at Hässeldala Port, southeastern Sweden. Boreas 44, 94–102 (2015).
    Google Scholar 
    Wohlfarth, B. et al. Hässeldala – a key site for Last Termination climate events in northern Europe. Boreas 46, 143–161 (2017).
    Google Scholar 
    Wohlfarth, B. et al. Climate and environment in southwest Sweden 15.5–11.3 cal. ka BP. Boreas 47, 687–710 (2018).
    Google Scholar 
    Parducci, L., et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol., 7, 189 (2019).Nilsson, T. Die pollenanalytische zonengliederung der spät- und postglazialen bildungen schonens. GFF 57, 385–562 (1935).
    Google Scholar 
    Lindbladh, M. När granen kom till byn några tankar kring granens invandring i södra Sverige. Sven. Botanisk Tidskr. 98, 249–262 (2004).
    Google Scholar 
    Schenk, F. et al. Floral evidence for high summer temperatures in southern Scandinavia during 15–11 cal ka BP. Quat. Sci. Rev. 233, 106243 (2020).
    Google Scholar 
    Nikolov, N., & Helmisaari, H. Silvics of the circumpolar boreal forest tree species. In A Systems Analysis of the Global Boreal Forest (pp. 13–84). Cambridge University Press (1992).Wohlfarth, B. Ice-free conditions in Sweden during Marine Oxygen Isotope Stage 3? Boreas 39, 377–398 (2010).
    Google Scholar 
    Sarala, P., Väliranta, M., Eskola, T. & Vaikutiené, G. First physical evidence for forested environment in the Arctic during MIS 3. Sci. Rep. 6, 29054 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Svenning, J.-C., Normand, S. & Kageyama, M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J. Ecol. 96, 1117–1127 (2008).
    Google Scholar 
    Wang, X., Bernhardsson, C. & Ingvarsson, P. K. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies). Genome Biol. Evolution 12, 3803–3817 (2020).
    Google Scholar 
    Binney, H. A. et al. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat. Sci. Rev. 28, 2445–2464 (2009).ADS 

    Google Scholar 
    Krüger, S., Dörfler, W., Bennike, O. & Wolters, S. Life in Doggerland – palynological investigations of the environment of prehistoric hunter-gatherer societies in the North Sea Basin. EG – Quat. Sci. J. 66, 3–13 (2017).
    Google Scholar 
    Alsos, I. G. et al. Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot.”. Quat. Sci. Rev. 239, 106364 (2020).
    Google Scholar 
    Alsos, I. G. et al. Frequent Long-Distance Plant Colonization in the Changing Arctic. Science 316, 1606–1609 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).CAS 
    PubMed 

    Google Scholar 
    Capo, E. et al. Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary 4, 6 (2021).
    Google Scholar 
    Kullman, L. Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nord. J. Bot. 21, 39–54 (2001).
    Google Scholar 
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences, and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).CAS 
    PubMed 

    Google Scholar 
    Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics (2013) arXiv:1303.3997Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).CAS 
    PubMed 

    Google Scholar 
    Karney, C. F. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).ADS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing https://www.r-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    The hardy Hawaiian corals that could thrive in warming seas

    .readcube-buybox { display: none !important;}

    Some species of coral might be able to adapt to a world altered by climate change, at least if countries curb their greenhouse-gas emissions1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00719-x

    ReferencesMcLachlan, R. H. et al. Sci. Rep. 12, 3712 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria
    Article 09 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    How itchy vicuñas remade a vast wilderness
    Research Highlight 04 MAR 22

    Jobs

    Postdoctoral Research Fellow

    Center for Genomic Medicine (CGM), MGH
    Boston, MA, United States

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Doctoral Candidate (PhD student) in Hybrid Satellite-Terrestrial Connectivity Solutions for Emerging IoT/MTC Systems

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Research Associate (Postdoc) in Artificial Intelligence for Space Applications

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg More

  • in

    Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luong, A. D., Dewulf, J. & De Laender, F. Quantifying the primary biotic resource use by fisheries: A global assessment. Sci. Total Environ. 719, 137352 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. How the global fish market contributes to human micronutrient deficiencies. Nature 574, 41–42 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020 (FAO, 2020). https://doi.org/10.4060/ca9229en.Book 

    Google Scholar 
    Shin, Y.-J., Rochet, M.-J., Jennings, S., Field, J. G. & Gislason, H. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar. Sci. 62, 384–396 (2005).
    Google Scholar 
    Perry, A. L. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Novaglio, C., Smith, A. D. M., Frusher, S. & Ferretti, F. Identifying historical baseline at the onset of exploitation to improve understanding of fishing impacts. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 475–485 (2020).
    Google Scholar 
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl. Acad. Sci. 112, 13272–13277 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 832, 829–832 (2020).ADS 

    Google Scholar 
    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wing, S. R., Durante, L. M., Connolly, A. J., Sabadel, A. J. M. & Wing, L. C. Overexploitation and decline in kelp forests inflate the bioenergetic costs of fisheries. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13448 (2021).Article 

    Google Scholar 
    Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS One 12, e0182826 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    Chown, S. L. Marine food webs destabilized. Science 369, 770–771 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, 1–13 (2014).
    Google Scholar 
    Gilby, B. L. et al. Human actions alter tidal marsh seascapes and the provision of ecosystem services. Estuaries Coasts https://doi.org/10.1007/s12237-020-00830-0 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Shifting trophic architecture of marine fisheries in New Zealand: Implications for guiding effective ecosystem-based management. Fish Fish. 21, 813–830 (2020).
    Google Scholar 
    Shears, N. T. & Bowen, M. M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 7, 1–9 (2017).CAS 

    Google Scholar 
    Wing, S. R. & Wing, E. Prehistoric fisheries in the Caribbean. Coral Reefs 20, 1–8 (2001).
    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irwin, G. & Walrond, C. ‘When was New Zealand first settled?—Extinction and decline’. Te Ara—the Encyclopedia of New Zealand 8 (2016). http://www.teara.govt.nz/en/when-was-new-zealand-first-settled/page-7. Accessed 4 June 2019.Johnson, D. & Haworth, J. Hooked—The Sory of New Zealand Fishing Industry (Hazard Press, 2004).
    Google Scholar 
    Urlich, S. C. & Handley, S. J. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean Coast. Manage. 198, 105349 (2020).
    Google Scholar 
    Ramos, R. & González-Solís, J. Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10, 258–266 (2012).
    Google Scholar 
    Graham, D. H. Food of fishes of Otago Harbour and Adjacent Sea. R. Soc. N. Z. 20, 421–436 (1939).
    Google Scholar 
    Hanchet, S. Diet of spiny dogfish, Squalus acanthias Linnaeus, on the east coast, South Island, New Zealand. J. Fish Biol. 39, 313–323 (1991).
    Google Scholar 
    Connell, A., Dunn, M. & Forman, J. Diet and dietary variation of New Zealand hoki Macruronus novaezelandiae. NZ J. Mar. Freshw. Res. 44, 289–308 (2010).
    Google Scholar 
    Forman, J. & Dunn, M. The influence of ontogeny and environment on the diet of lookdown dory, Cyttus traversi. NZ J. Mar. Freshw. Res. 44, 329–342 (2010).
    Google Scholar 
    Horn, P. L., Forman, J. S. & Dunn, M. R. Dietary partitioning by two sympatric fish species, red cod (Pseudophycis bachus) and sea perch ( Helicolenus percoides), on Chatham Rise, New Zealand. Mar. Biol. Res. 8, 624–634 (2012).
    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment Plenary, May 2020: Stock Assessments and Stock Status (2020).Ladds, M., Pinkerton, M. H., Jones, E., Durante, L. & Dunn, M. Relationship between morphometrics and trophic levels in deep-sea fishes. Mar. Ecol. Prog. Ser. 637, 225–235 (2020).ADS 

    Google Scholar 
    Durante, L. M. et al. Oceanographic transport along frontal zones forms carbon, nitrogen, and oxygen isoscapes on the east coast of New Zealand : Implications for ecological studies. Cont. Shelf Res. 216, 1–15 (2021).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, 1–9 (2018).
    Google Scholar 
    Zeldis, J. R. & Jillett, J. B. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4, 839–857 (1982).
    Google Scholar 
    Durante, L. M., Beentjes, M. P. & Wing, S. R. Decadal changes in exploited fish communities and their relationship with temperature, fisheries exploitation, and ecological traits in New Zealand waters. NZ J. Mar. Freshw. Res. 10, 1–27 (2021).
    Google Scholar 
    Prugh, L. R. et al. The rise of the mesopredator. Bioscience 59, 779–791 (2009).
    Google Scholar 
    Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. NZ J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).Article 

    Google Scholar 
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Google Scholar 
    Pinkerton, M. H. et al. Changes to the food-web of the Hauraki Gulf during the period of human occupation: A mass-balance model approach. New Zealand Aquatic Environment and Biodiversity Report No. 160. (2015).Garrison, L. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2000).
    Google Scholar 
    Link, J. S. & Garrison, L. P. Changes in piscivory associated with fishing induced changes to the finfish community on Georges Bank. Fish. Res. 55, 71–86 (2002).
    Google Scholar 
    Wainright, S. C., Fogarty, M. J., Greenfield, R. C. & Fry, B. Long-term changes in the Georges Bank food web: Trends in stable isotopic compositions of fish scales. Mar. Biol. 115, 481–493 (1993).
    Google Scholar 
    Udy, J. A. et al. Regional differences in supply of organic matter from kelp forests drive trophodynamics of temperate reef fish. Mar. Ecol. Prog. Ser. 621, 19–32 (2019).ADS 

    Google Scholar 
    Koenigs, C., Miller, R. & Page, H. Top predators rely on carbon derived from giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 537, 1–8 (2015).ADS 
    CAS 

    Google Scholar 
    Clark, M. R., Anderson, O. F., Chris Francis, R. I. C. & Tracey, D. M. The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish. Res. 45, 217–238 (2000).
    Google Scholar 
    Fenaughty, J. M. & Bagley, N. M. WJ Scott New Zealand Trawling Survey—South Island East Coast. Technical Report 157. (1981).Brodeur, R. & Pearcy, W. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser. 84, 101–119 (1992).ADS 

    Google Scholar 
    Tam, J., Purca, S., Duarte, L. O., Blaskovic, V. & Espinoza, P. Changes in the diet of hake associated with El Niño 1997–1998 in the northern Humboldt Current ecosystem. Adv. Geosci. 6, 63–67 (2006).
    Google Scholar 
    Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford-Grieve, J. M. & Boyd, P. W. Phytoplankton distributions around New Zealand derived from SeaWiFS remotely-sensed ocean colour data. NZ J. Mar. Freshw. Res. 35, 343–362 (2001).
    Google Scholar 
    Zeldis, J. Ecology of Munida gregaria (Decapoda, Anomura) distribution and abundance, population dynamics and fisheries. Mar. Ecol. Prog. Ser. 22, 77–99 (1985).ADS 

    Google Scholar 
    Williams, B. G. The effect of the environment on the morphology of Munida Gregaria (Fabricius) (Decapoda, Anomura). Crustaceana 24, 197–210 (1973).
    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Udy, J. A. et al. Organic matter derived from kelp supports a large proportion of biomass in temperate rocky reef fish communities: Implications for ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1503–1519 (2019).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).
    Google Scholar 
    MacGibbon, D. J., Beentjes, M. P., Lyon, W. L. & Ladroit, Y. Inshore trawl survey of Canterbury Bight and Pegasus Bay, April–June 2018 (KAH1803). New Zealand Fisheries Assessment Report 2019/03. (2019).Stevens, W. D., O’Driscoll, R. L., Ballara, S. L. & Schimel, A. C. G. Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2018 (TAN1801). New Zealand Fisheries Assessment Report 2018/41. (2018).Durante, L. M., Sabadel, A. J. M., Frew, R. D., Ingram, T. & Wing, S. R. Effects of fixatives on stable isotopes of fish muscle tissue: Implications for trophic studies on preserved specimens. Ecol. Appl. 30, 1–16 (2020).
    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 
    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 

    Google Scholar 
    Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 

    Google Scholar 
    Sabadel, A., Durante, L. & Wing, S. Stable isotopes of amino acids from reef fishes uncover Suess and nitrogen enrichment effects on local ecosystems. Mar. Ecol. Prog. Ser. 647, 149–160 (2020).ADS 
    CAS 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 

    Google Scholar 
    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, 1–26 (2016).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 

    Google Scholar 
    Whiteman, J. P., Smith, E. A. E., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 1–18 (2019).
    Google Scholar 
    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Change Biol. 12, 611–625 (2006).ADS 

    Google Scholar 
    Lorrain, A. et al. Nitrogen and carbon isotope values of individual amino acids: A tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391, 293–306 (2009).ADS 
    CAS 

    Google Scholar 
    Quillfeldt, P. & Masello, J. F. Compound-specific stable isotope analyses in Falkland Islands seabirds reveal seasonal changes in trophic positions. BMC Ecol. 20, 1–12 (2020).
    Google Scholar 
    Sabadel, A. J. M., Woodward, E. M. S., Van Hale, R. & Frew, R. D. Compound-specific isotope analysis of amino acids: A tool to unravel complex symbiotic trophic relationships. Food Webs 6, 9–18 (2016).
    Google Scholar 
    Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl e. Rapid Commun. Mass Spectrom. 26, 2328–2334 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. J. W. Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179 (2001).ADS 
    PubMed 

    Google Scholar 
    Jack, L. & Wing, S. R. Individual variability in trophic position and diet of a marine omnivore is linked to kelp bed habitat. Mar. Ecol. Prog. Ser. 443, 129–139 (2011).ADS 
    CAS 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 

    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & Mccarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087 (2015).ADS 
    CAS 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 

    Google Scholar 
    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 

    Google Scholar 
    Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 

    Google Scholar 
    Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. 1, 1:218 (2008).Mullan, A. Influence of Southern Oscillation on New Zealand Weather. In Proceedings of Western Pacific International Meeting and Workshop on TOGA-COARE (1996).Francis, M. P., Hurst, R. J., McArdle, B. H., Bagley, N. W. & Anderson, O. F. New Zealand demersal fish assemblages. Environ. Biol. Fishes 65, 215–234 (2002).
    Google Scholar 
    Beentjes, M. P., Bull, B., Hurst, R. J. & Bagley, N. W. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. NZ J. Mar. Freshw. Res. 36, 197–223 (2002).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).SAS Institute. JMP. (2018).Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (PRIMER-E, 2006). More

  • in

    Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019

    Daily change in primary pollutantsTo elucidate the change trend of primary pollutants under the 13th Five-Year Plan, we calculated the daily primary pollutants in 2015 and 2019 based on formula (1) and formula (2). Such diurnal comparisons can reduce the effects of seasonal weather to some extent. From the 19 UAs (224 prefecture-level cities), the heat diagram of the daily change transfer matrix of primary pollutants from 2015 to 2019 is shown in Fig. 2, including six primary pollutants and clean day conditions.Figure 2Transfer change matrix heatmap of primary pollutants from 2015 to 2019.Full size imageFrom the sum of the diagonal numbers, 37% of the primary pollutants had no shift during the 13th Five-Year Plan period. PM2.5, PM10 and O3 were the main primary pollutants, especially PM2.5. More primary pollutants were diverted to ozone pollution, indicating that the proportion of O3 as the primary pollutant is gradually increasing. In addition, the proportion of clean air has increased significantly, which shows that pollution control has been effectively reflected during the 13th Five-Year Plan period. However, the proportion of NO2 before and after metastasis was approximately the same, with approximately 5% NO2 pollution. This may imply that the governance of NO2 pollution was rendered nonsignificant. It is noteworthy that ozone pollution in China has become an increasingly prominent task in recent years. Similar to Xiao’s16 research on ozone pollution, they argue that present-day ozone levels in major Chinese cities are comparable to or even higher than the 1980 levels in the United States. Taken together, ozone and PM2.5 have become the top two air pollution pollutants in China.Monthly distribution of primary pollutantsTo further explore the spatiotemporal distribution of the primary pollutants across the UAs, we obtained the most primary pollutants per month by dividing the number of days with the most pollutants by the number of cities in each UA from the 2019 data. In Fig. 3, the UAs location was plotted on the abscissa, and the monthly variance of the primary pollutant was plotted on the ordinate. As shown in Fig. 3, PM2.5 appeared as dark green, PM10 appeared as light green, O3 appeared as orange, NO2 appeared as yellow, and clean days appear as dark blue. The main pollutants in the 19 UAs are PM2.5, PM10 and O3. NO2, as the primary pollutant, only appeared in the HBOY UA in January. Ordos, located in HBOY, possess rich oil and coal resources, with coal mining as its leading industry38. According to the China Energy Statistical Yearbook 2019, nearly 250 million tons of raw coal were used for thermal power generation in Inner Mongolia Autonomous Region, making it the region with the largest amount of raw coal for thermal power generation in China39. To a certain extent, the increase of heating40 and the imperfect denitration technology41 are both contributing to the increase of NO2 pollution in the atmosphere. CO and SO2 did not become major pollutants. Clean days (where AQI  More

  • in

    Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota

    European Commission. Report from the commission to the European Parliament and the council on the implementation of the measures concerning the apiculture sector of Regulation (EU) No 1308/2013 of the European Parliament and of the Council establishing a common organisation of the markets in agricultural products. p. 1–16. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52016DC0776 (2016).Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: Effects of intensity, duration, and timing of exposure. msystems 5, e00268-e1220. https://doi.org/10.1128/mSystems.00268-20 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. PNAS 103, 13890–13895. https://doi.org/10.1073/pnas.0600929103 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, I. H. The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 20, 20 (1994).
    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22. https://doi.org/10.3896/ibra.1.49.1.02 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS One 3, 6. https://doi.org/10.1371/journal.pone.0004071 (2008).CAS 
    Article 

    Google Scholar 
    Chagnon, M. Fédération Canadienne de la Faune (Bureau régional du Québec, 2008).
    Google Scholar 
    Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 (2012).Article 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & vanEngelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in US beekeeping operations. J. Econ. Entomol. https://doi.org/10.1093/jee/toz088 (2019).Article 
    PubMed 

    Google Scholar 
    Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363. https://doi.org/10.1051/apido/2010017 (2010).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/IBRA.1.49.1.30 (2010).Article 

    Google Scholar 
    Chauzat, M. P. et al. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol 38, 514–523. https://doi.org/10.1603/022.038.0302 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Juan-Borras, M., Domenech, E. & Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 67, 127–134. https://doi.org/10.1016/j.foodcont.2016.02.051 (2016).CAS 
    Article 

    Google Scholar 
    Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total. Environ 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in north american apiaries: Implications for honey bee health. PLoS One 5, 19. https://doi.org/10.1371/journal.pone.0009754 (2010).CAS 
    Article 

    Google Scholar 
    Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alptekin, S. et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Mol. Biol. 25, 171–180. https://doi.org/10.1111/imb.12211 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443. https://doi.org/10.1016/j.envpol.2019.113443 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gregore, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-33348-4 (2018).Article 

    Google Scholar 
    Schneider, C. W., Tautz, J., Grunewald, B. & Fuchs, S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7, 9. https://doi.org/10.1371/journal.pone.0030023 (2012).CAS 
    Article 

    Google Scholar 
    Vazquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A. & Farina, W. M. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One https://doi.org/10.1371/journal.pone.0205074 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. E., Latorre-Estivalis, J. M., Ons, S. & Farina, W. M. Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114148 (2020).Article 
    PubMed 

    Google Scholar 
    Farina, W. M., Balbuena, M., Herbert, L. T., Mengoni Goñalons, C. & Vázquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: Individual impairments with implications for the hive. Insects 10, 354. https://doi.org/10.3390/insects10100354 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wang, Y. H., Zhu, Y. C. & Li, W. H. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotox. Environ. Safe 190, 10. https://doi.org/10.1016/j.ecoenv.2019.110100 (2020).CAS 
    Article 

    Google Scholar 
    Kretschmann, A., Gottardi, M., Dalhoff, K. & Cedergreen, N. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna. Aquat. Toxicol. 162, 94–101. https://doi.org/10.1016/j.aquatox.2015.02.011 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yuan, X. et al. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere https://doi.org/10.1016/j.chemosphere.2019.04.088 (2019).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 249, 860–867. https://doi.org/10.1016/j.envpol.2019.03.077 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x (2011).Article 
    PubMed 

    Google Scholar 
    Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9, 13. https://doi.org/10.1371/journal.pone.0095056 (2014).CAS 
    Article 

    Google Scholar 
    Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One https://doi.org/10.1371/journal.pone.0036393 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76. https://doi.org/10.1016/j.mib.2017.12.009 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814. https://doi.org/10.1038/s41396-019-0568-8 (2020).Article 
    PubMed 

    Google Scholar 
    Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. Nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157. https://doi.org/10.1099/ijs.0.053033-0 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Forsgren, E., Olofsson, T. C., Váasquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108. https://doi.org/10.1051/apido/2009065 (2010).Article 

    Google Scholar 
    Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect Sci. 10, 1–7. https://doi.org/10.1016/j.cois.2015.04.006 (2015).Article 
    PubMed 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, 28. https://doi.org/10.1371/journal.pbio.2003467 (2017).CAS 
    Article 

    Google Scholar 
    Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815. https://doi.org/10.1111/1462-2920.12526 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blot, N., Veillat, L., Rouze, R. & Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 14, 16. https://doi.org/10.1371/journal.pone.0215466 (2019).CAS 
    Article 

    Google Scholar 
    Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, 13. https://doi.org/10.1128/aem.00545-18 (2018).CAS 
    Article 

    Google Scholar 
    Rouze, R., Mone, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 34, 226–233. https://doi.org/10.1264/jsme2.ME18169 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeGrandi-Hoffman, G., Corby-Harris, V., DeJong, E. W., Chambers, M. & Hidalgo, G. Honey bee gut microbial communities are robust to the fungicide PristineA (R) consumed in pollen. Apidologie 48, 340–352. https://doi.org/10.1007/s13592-016-0478-y (2017).CAS 
    Article 

    Google Scholar 
    Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard. Mater. 389, 11. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).CAS 
    Article 

    Google Scholar 
    Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The effect of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).CAS 
    Article 

    Google Scholar 
    Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 10, 463–470. https://doi.org/10.1002/ieam.1529 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motta, E. V. S. et al. Oral and topical exposure to glyphosate in herbicide formulation impact the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01150-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, C. J. et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE 13, e0198876. https://doi.org/10.1371/journal.pone.0198876 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubio, F., Guo, E. & Kamp, L. Survey of glyphosate residues in honey, corn, and soy products. Abstr. Pap. Am. Chem. Soc. https://doi.org/10.4172/2161-0525.1000249 (2015).Article 

    Google Scholar 
    El Agrebi, N. et al. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total. Environ. 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kubik, M. et al. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard. Apidologie 31, 531–541 (2000).CAS 
    Article 

    Google Scholar 
    Lopez, S. H., Lozano, A., Sosa, A., Hernando, M. D. & Fernandez-Alba, A. R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163, 44–53. https://doi.org/10.1016/j.chemosphere.2016.07.008 (2016).CAS 
    Article 

    Google Scholar 
    Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0070182 (2013).CAS 
    Article 

    Google Scholar 
    Abdallah, O. I., Hanafi, A., Ghani, S. B. A., Ghisoni, S. & Lucini, L. Pesticides contamination in Egyptian honey samples. J. Consum. Prot. Food Sci. 12, 317–327. https://doi.org/10.1007/s00003-017-1133-x (2017).CAS 
    Article 

    Google Scholar 
    Blaga, G. V. et al. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes https://doi.org/10.1080/03601234.2020.1724016 (2020).Article 

    Google Scholar 
    Piechowicz, B., Wos, I., Podbielska, M. & Grodzicki, P. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 53, 18–24. https://doi.org/10.1080/03601234.2017.1369320 (2018).CAS 
    Article 

    Google Scholar 
    Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013. https://doi.org/10.1016/j.ecoenv.2020.111013 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590. https://doi.org/10.1111/mec.14058 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yanez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw147 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tornisielo, V. L., Botelho, R. G., Alves, P. A. T., Bonfleur, E. J. & Monteiro, S. H. Pesticide tank mixes: an environmental point of view. in Herbicides-Current Research and Case Studies in Use. 473–487 (InTech, 2013).

    Google Scholar 
    Kanga, L. H., Siebert, S. C., Sheikh, M. & Legaspi, J. C. Pesticide residues in conventionally and organically managed Apiaries in South and North Florida. Curre. Investig. Agric. Curr. Res. https://doi.org/10.32474/CIACR.2019.07.000262 (2019).Article 

    Google Scholar 
    Lambert, O. et al. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One 8, 12. https://doi.org/10.1371/journal.pone.0067007 (2013).CAS 
    Article 

    Google Scholar 
    Mullins, J. W. Pest Control with Enhanced Environmental Safety, Vol 524 ACS Symposium Series, Vol. 13 183–198 (American Chemical Society, 1993).Book 

    Google Scholar 
    Nguyen, B. K. et al. Does imidacloprid seed-treated maize have an impact on honey bee mortality?. J. Econ. Entomol. 102, 616–623. https://doi.org/10.1603/029.102.0220 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pollak, P. Fine chemicals–the industry and the business. Chem. Int. 29, 22. https://doi.org/10.1515/ci.2007.29.5.22b (2007).Article 

    Google Scholar 
    Amrhein, N., Deus, B., Gehrke, P. & Steinrücken, H. C. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant. Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7, e38718. https://doi.org/10.1371/journal.pone.0038718 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266, 475–480. https://doi.org/10.1042/bj2660475 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, C. et al. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60, 135–142. https://doi.org/10.1159/000371837 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, C., Hamel, C., Vujanovic, V. & Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. https://doi.org/10.5402/2011/130289 (2011).Article 

    Google Scholar 
    Coupe, R. H., Kalkhoff, S. J., Capel, P. D. & Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 68, 16–30. https://doi.org/10.1002/ps.2212 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1002/etc.2268 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B. & Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 32, 1688–1700. https://doi.org/10.1002/etc.2268 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pareja, L. et al. Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Anal. Methods 11, 2123–2128. https://doi.org/10.1039/c9ay00543a (2019).CAS 
    Article 

    Google Scholar 
    Thompson, T. S., van den Heever, J. P. & Limanowka, R. E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry.. Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess 36, 434–446. https://doi.org/10.1080/19440049.2019.1577993 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dai, P. et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J. Agric. Food Chem. 66, 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    du Rand, E. E. et al. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. https://doi.org/10.1038/srep11779 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, W. J. et al. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 36, 259–267. https://doi.org/10.1038/aps.2014.137 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotox. Environ. Safe. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).CAS 
    Article 

    Google Scholar 
    Singh, A., Gupta, V., Siddiqi, N., Tiwari, S. & Gopesh, A. Time course studies on impact of low temperature exposure on the levels of protein and enzymes in fifth instar larvae of Eri Silkworm, Philosamia ricini (Lepidoptera: satuniidae). Biochem. Anal. Biochem. 6, 6. https://doi.org/10.4172/2161-1009.1000321 (2017).CAS 
    Article 

    Google Scholar 
    Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L. & Mrdaković, M. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Ecotox. Environ. Safe 72, 1148–1155. https://doi.org/10.1016/j.ecoenv.2008.03.012 (2009).CAS 
    Article 

    Google Scholar 
    Coleman, J. E. Structure and mechanism of alkaline-phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483. https://doi.org/10.1146/annurev.bb.21.060192.002301 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382. https://doi.org/10.1016/j.chom.2007.10.010 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9 (2008).Article 

    Google Scholar 
    Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health—a critical analysis. Biol. Rev. 91, 1006–1019. https://doi.org/10.1111/brv.12206 (2016).Article 
    PubMed 

    Google Scholar 
    Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021. https://doi.org/10.1007/s11356-014-2879-7 (2015).CAS 
    Article 

    Google Scholar 
    Efferth, T., Schwarzl, S. M., Smith, J. & Osieka, R. Role of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ. 13, 527–528. https://doi.org/10.1038/sj.cdd.4401807 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 15, 687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field, L. M., Devonshire, A. L., Ffrench-Constant, R. H. & Forde, B. G. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243, 323–327. https://doi.org/10.1016/0014-5793(89)80154-1 (1989).CAS 
    Article 

    Google Scholar 
    Ma, M. et al. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 144, 85–97. https://doi.org/10.1016/j.biochi.2017.10.022 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zou, F., Guo, Q., Shen, B. & Zhu, C. A cluster of CYP6 gene family associated with the major quantitative trait locus is responsible for the pyrethroid resistance in Culex pipiens pallen. Insect Mol. Biol. 28, 528–536. https://doi.org/10.1111/imb.12571 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lang, M. L., Braun, C. L., Kanost, M. R. & Gorman, M. J. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. PNAS 109, 13337–13342. https://doi.org/10.1073/pnas.1208703109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Habineza, P. et al. The promoting effect of gut microbiota on growth and development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01212 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003. https://doi.org/10.1098/rsos.170003 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, D., Berail, G., Bonmatin, J. M. & Belzunces, L. P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem 406, 621–633. https://doi.org/10.1007/s00216-013-7483-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wiest, L. et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218, 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zufelato, M. S., Lourenco, A. P., Simoes, Z. L. P., Jorge, J. A. & Bitondi, M. M. G. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34, 1257–1268. https://doi.org/10.1016/j.ibmb.2004.08.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gallup, J. M. qPCR inhibition and amplification of difficult templates. in PCR troubleshooting and optimization: the essential guide. 23–65 (Horizon Scientific Press, 2011).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1186/s40168-018-0605-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Belzunces, L. P., Theveniau, M., Masson, P. & Bounias, M. Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase-C interacts with an anti-CRD antibody. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 95, 609–612. https://doi.org/10.1016/0305-0491(90)90029-s (1990).Article 

    Google Scholar 
    Bergmeyer, H. U. & Gawehn, K. Principles of Enzymatic Analysis (Verlag Chemie, 1978).
    Google Scholar 
    Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 117–122. https://doi.org/10.1016/j.jinsphys.2008.10.010 (2009).CAS 
    Article 

    Google Scholar 
    Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione s-transferases—first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).CAS 
    Article 

    Google Scholar 
    Bounias, M., Kruk, I., Nectoux, M. & Popeskovic, D. Toxicology of cupric salts on honeybees. V. Gluconate and sulfate action on gut alkaline and acid phosphatases. Ecotox. Envirom. Safe 35, 67–76. https://doi.org/10.1006/eesa.1996.0082 (1996).CAS 
    Article 

    Google Scholar 
    Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therneau, T. “Survival”: A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survival. (2015).Kassambara, A. & Kosinski, M. “Survminer”: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. https://CRAN.R-project.org/package=survminer. (2018).de Mendiburu, F. Statistical Procedures for Agricultural Research. Package “Agricolae” Version 1.44. Comprehensive R Archive Network. Institute for Statistics and Mathematics, Vienna, Austria. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (2013).Caraux, G. & Pinloche, S. PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281. https://doi.org/10.1093/bioinformatics/bti141 (2004).Article 
    PubMed 

    Google Scholar  More

  • in

    Publisher Correction: Natural selection for imprecise vertical transmission in host–microbiota systems

    AffiliationsDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USAMarjolein Bruijning, Lucas P. Henry, Simon K. G. Forsberg, C. Jessica E. Metcalf & Julien F. AyrolesLewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USALucas P. Henry, Simon K. G. Forsberg & Julien F. AyrolesAuthorsMarjolein BruijningLucas P. HenrySimon K. G. ForsbergC. Jessica E. MetcalfJulien F. AyrolesCorresponding authorCorrespondence to
    Marjolein Bruijning. More