More stories

  • in

    Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming

    Climate dataMonthly climate data (air temperature at 2 m and cloudiness) with a spatial resolution of 0.5° were obtained from the CRU Time Series 4.0.15 We extracted data from 1982 to 2018 to match the time series of satellite vegetation observations. The VPD was calculated as the difference between saturated water-vapour pressure and actual water-vapour pressure31. Temperature and vapour-pressure data used for the VPD calculation were obtained from CRU.Soil moisture dataThe daily root-zone soil moisture with a spatial resolution of 0.25° for the period 1980–2018 was obtained from the Global Land Evaporation Amsterdam Model (GLEAM v.3.3a)32. The dataset is based on radiation and air temperature from a reanalysis, a combination of gauge-based, reanalysis-based and satellite-based precipitation and satellite-based vegetation optical depth.Fire emission dataMonthly carbon emissions from biomass burning were obtained from the fourth-generation Global Fire Emission Database33. This dataset has a spatial resolution of 0.25° and provides global data on the burning area and emissions on three-hourly, daily and monthly timescales and estimates the contributions of different fire types. Emissions data can be obtained for different substances, such as carbon (C), dry matter (DM), carbon dioxide (CO2), carbon monoxide (CO) and methane (CH4).Satellite vegetation greenness dataThe satellite-based NDVI archived from the MODIS NDVI dataset with a spatial resolution of 0.5° and a temporal resolution of 16 days was used here to detect vegetation greenness changes. In addition, the solar-induced chlorophyll fluorescence product was used as a proxy of vegetation photosynthesis. We furthermore used the four-day clear-sky CSIF time series (2000–2019) with a spatial resolution of 0.05° × 0.05° from ref. 34 (https://osf.io/8xqy6/).GPP based on NIRvThe NIRv is a newly developed satellite vegetation index combining NDVI and near-infrared band reflectivity of vegetation and is recognized as a proxy of GPP35,36. We obtained the 0.05° NIRv_GPP from 1982 to 2018 from ref. 37. This product was produced by upscaling the relationships between NIRv and observed GPP to the global scale and was judged to perform well in capturing interannual trends of GPP37.Atmospheric CO2 dataIn situ observations of daily CO2 concentration at Point Barrow were obtained from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory network. According to analyses of atmospheric transport and mixing processes, the CO2 signals detected at Barrow are suggested to be an integrated measure of carbon fluxes over both the high latitudes and the middle latitudes20.Ecosystem carbon fluxesSimulations of ecosystem carbon fluxes (GPP, TER and NEE) derived from process-based model simulations (TRENDY), empirical models based on flux tower observations (FLUXCOM) and atmospheric CO2 inversion models were jointly used for the investigation of net ecosystem carbon exchange over the northern middle and high latitudes.The TRENDY dataset is an ensemble of dynamic global vegetation model (DGVM) simulations that are forced by CRU–National Centers for Environmental Prediction historical climate and CO2 inputs38. The DGVMs use a bottom‐up approach to simulate terrestrial CO2 fluxes (for example, GPP, TER and NEE), and were extensively used to explore the mechanisms driving changes in carbon uptake and fluxes. The simulated GPP, TER and NEE from nine models of TRENDYv.8 (Supplementary Table 1) were used in this study. The S2 experiment, which considered the effect of both observed changes of CO2 and climate on ecosystem carbon fluxes, was selected for studying the changes of ecosystem carbon fluxes before and after the temperature shift.The FLUXCOM dataset is an upscaling product using empirical models forced by eddy-covariance data from 224 flux towers, remote sensing data and climate data8,9,10. It provides estimates of global energy and carbon fluxes (http://www.fluxcom.org/). The empirical models were trained by three machine learning algorithms, including Random Forests, Artificial Neural Networks and Multivariate Adaptive Regression Spline, and thus provide a series of estimates of global carbon fluxes. We used the FLUXCOM carbon fluxes data driven by the European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5) climate reanalysis from 1979 to 2018.The atmospheric CO2 inversion datasets provide estimates of NEE over land from long-term atmospheric CO2 measurements using atmospheric transport models. Three atmospheric CO2 inversion products were used here: monthly net biome production with a spatial resolution of 3.75° × 2.5° from the JENA CarboScope (version s76_vo2020) for the period 1976–2019, long-term global CO2 fluxes estimated by the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) between 1990 and 2019 and the Copernicus Atmosphere Monitoring Service12 (CAMS v.19r1) dataset between 1979 and 2019.Eddy-covariance CO2 observation dataThe eddy-covariance measurements of carbon fluxes from tower sites were obtained from the Integrated Carbon Observation System 2018 and the FLUXNET Network 2015. We selected 48 eddy-covariance CO2 observation sites with 10 yr continuous data (Supplementary Table 2) located north of 25° N and extracted temperature and NEE data from September to November to explore the change of ecosystem carbon exchange in autumn.NEE estimationThe monthly NEE was estimated as the difference between TER and GPP. The autumn (September to November) GPP and TER derived from TRENDY and FLUXCOM over the study region were obtained by aggregating GPP and TER from each grid cell weighted by the grid-cell area. The NEE derived from atmospheric CO2 inversions was directly used and compared against those from TRENDY and FLUXCOM. To compare the NEE before and after the temperature turning point, we divided the NEE time series into two periods: 1982–2003 and 2004–2018.Calculation of the AZCWe used observations of CO2 from Point Barrow to characterize the trends in the zero-crossing date of CO2 (downward in spring and upward in autumn). These trends roughly correspond to the beginning of net carbon uptake in spring and the beginning of net carbon release in autumn. According to the method of ref. 39, we obtained the detrended seasonal CO2 curve by separating the seasonal cycle from the long-term trend and short-term variations, fitting a function consisting of a quadratic polynomial for the long-term trend and four harmonics for the annual cycle to the daily data. The residuals from this function fit are then obtained. A 1.5-month and a 390-day full-width half-maximum-value averaging filter were used for the digital filtering of residuals to remove the short-term variations and the long-term trend, respectively. Then we got the zero-crossing dates when the detrended seasonal CO2 curve crosses the zero line from positive to negative and negative to positive, respectively.The autumn carbon release is calculated as the amount of CO2 released between the autumn zero-crossing date and the first week of September following ref. 21.Identification of turning point of temperatureWe used the piecewise linear regression method to determine the turning point of the mean autumn (September to November) temperature during 1982–2018 over the area north of 25° N. In addition, a moving t-test method was used to verify the turning-point identification. Then, the temporal trends of the mean autumn temperature before and after the turning point were calculated using the Mann–Kendall non-parametric trend test method, and the confidence intervals were determined using Sen’s slope statistics. According to the temperature trends before and after the turning point, we further identified the CAs as where the autumn temperature shows a decreasing trend after the turning point (2004) relative to that before the turning point, and WAs as regions outside the CAs. To maintain spatial integrity and continuity, we ignored the significance of the temperature trend when dividing the CAs and WAs.To verify that our analysis is not affected by the division of the time period and regions, we also identified the temperature turning point at each grid point using the piecewise linear regression method and then extracted those grid points with significant temperature change and significant NEE change (P  More

  • in

    Hibernation slows epigenetic ageing in yellow-bellied marmots

    Flatt, T. A new definition of aging? Front. Genet. 3, 148 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11, 181–186 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, K. H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of aging: from function to molecular biology. Nutrients 8, 338 (2016).
    Google Scholar 
    Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, T. E. Recent results: biomarkers of aging. Exp. Gerontol. 41, 1243–1246 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 195, 172–185 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ito, G., Yoshimura, K. & Momoi, Y. Analysis of DNA methylation of potential age-related methylation sites in canine peripheral blood leukocytes. J. Vet. Med. Sci. 79, 745–750 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, M. J., von Holdt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Zaghlool, S. B. et al. Association of DNA methylation with age, gender, and smoking in an Arab population. Clin. Epigenetics 7, 6 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, X., Zhang, Y., Breitling, L. P. & Brenner, H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 7, 46878–46889 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45, 424–432 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. H. et al. DNA methylation‐based measures of biological age: meta‐analysis predicting time to death. Aging 8, 1844–1859 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. J. Infect. Dis. 212, 1563–1573 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. Trends Ecol. Evol. 34, 767–770 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, W. Epigenetic aging clocks in mice and men. Genome Biol. 18, 107 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 11, 176–185 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Austad, S. N. Comparative biology of aging. J. Gerontol. A 64, 199–201 (2009).
    Google Scholar 
    Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. Biomol. Concepts 7, 41–52 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
    Google Scholar 
    Chen, Y. et al. Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40, 11565–11570 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knight, J. E. et al. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol. Cell. Biol. 20, 6374–6379 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, J., Barnes, B. M., Kohl, F. & Marr, T. G. Modulation of gene expression in hibernating arctic ground squirrels. Physiol. Genomics 32, 170–181 (2008).CAS 

    Google Scholar 
    Van Breukelen, F. & Martin, S. L. Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
    Google Scholar 
    Morin, P. & Storey, K. B. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53, 310–318 (2006).CAS 

    Google Scholar 
    van Breukelen, F. & Martin, S. L. Reversible depression of transcription during hibernation. J. Comp. Physiol. B 172, 355–361 (2002).
    Google Scholar 
    Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).
    Google Scholar 
    Schrack, J. A., Knuth, N. D., Simonsick, E. M. & Ferrucci, L. ‘IDEAL’ aging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 62, 667–672 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Al-attar, R. & Storey, K. B. Suspended in time: molecular responses to hibernation also promote longevity. Exp. Gerontol. 134, 110889 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Ruf, T., Smith, S. & Bieber, C. Seasonal variation in telomere length of a hibernating rodent. Biol. Lett. 9, 20121095 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Smith, S., Deimel, C. & Ruf, T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol. Lett. 8, 304–307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Armitage, K. B., Blumstein, D. T. & Woods, B. C. Energetics of hibernating yellow-bellied marmots (Marmota flaviventris). Comp. Biochem. Physiol. A 134, 101–114 (2003).
    Google Scholar 
    Armitage, K. B. in Molecules to Migration: the Pressures of Life (eds Morris, S. & Vosloo, A.) 591–602 (Medimond Publishing, 2008).Haghani, A. et al. DNA methylation networks underlying mammalian traits. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435708 (2021).Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).Yang, S. et al. Rare mutations in AHDC1 in patients with obstructive sleep apnea. Biomed. Res. Int. https://doi.org/10.1155/2019/5907361 (2019).De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).CAS 

    Google Scholar 
    Armitage, K. B. Reproductive strategies of yellow-bellied marmots: energy conservation and differences between the sexes. J. Mammal. 79, 385–393 (1998).
    Google Scholar 
    Armitage, K. B. in Adaptive Strategies and Diversity in Marmots (eds Ramousse, R. et al.) 133–142 (International Marmot Network, 2003).Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S., VonHoldt, B. M. & Pellegrini, M. A statistical framework to identify deviation from time linearity in epigenetic aging. PLoS Comput. Biol. 12, e1005183 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker: modeling epigenetic states under an evolutionary framework. Bioinformatics 36, 4662–4663 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. Tracking the epigenetic clock across the human life course: a meta-analysis of longitudinal cohort data. J. Gerontol. A 74, 57–61 (2019).
    Google Scholar 
    El Khoury, L. Y. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 20, 283 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kilgore, D. L. & Armitage, K. B. Energetics of yellow-bellied marmot populations. Ecology 59, 78–88 (1978).
    Google Scholar 
    Armitage, K. B. Social and population dynamics of yellow-bellied marmots: results from long-term research. Annu. Rev. Ecol. Syst. 22, 379–407 (1991).
    Google Scholar 
    Webb, D. R. Environmental harshness, heat stress, and Marmota flaviventris. Oecologia 44, 390–395 (1980).
    Google Scholar 
    Armitage, K. B. Evolution of sociality in marmots. J. Mammal. 80, 1–10 (1999).
    Google Scholar 
    Allainé, D. Sociality, mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Processes 51, 21–34 (2000).
    Google Scholar 
    Arnold, W. The evolution of marmot sociality. II. Costs and benefits of joint hibernation. Behav. Ecol. Sociobiol. 27, 239–246 (1990).
    Google Scholar 
    Villanueva-Cañas, J. L., Faherty, S. L., Yoder, A. D. & Albà, M. M. Comparative genomics of mammalian hibernators using gene networks. Integr. Comp. Biol. 54, 452–462 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lyman, C. P., O’Brien, R. C., Greene, G. C. & Papafrangos, E. D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212, 668–670 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirby, R., Johnson, H. E., Alldredge, M. W. & Pauli, J. N. The cascading effects of human food on hibernation and cellular aging in free-ranging black bears. Sci. Rep. 9, 2197 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Giroud, S. et al. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. Lond. B 281, 20141131 (2014).
    Google Scholar 
    Hoelzl, F. et al. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Sci. Rep. 6, 36856 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haussmann, M. F. & Mauck, R. A. Telomeres and longevity: testing an evolutionary hypothesis. Mol. Biol. Evol. 25, 220–228 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Lieshout, S. H. J. et al. Individual variation in early-life telomere length and survival in a wild mammal. Mol. Ecol. 28, 4152–4165 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kabacik, S., Horvath, S., Cohen, H. & Raj, K. Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging 10, 2800–2815 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keil, G., Cummings, E. & Magalhães, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Means, L. W., Higgins, J. L. & Fernandez, T. J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol. Behav. 54, 503–508 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Aspects Med. 32, 159–221 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A 52, B179–B183 (1997).CAS 

    Google Scholar 
    Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).CAS 

    Google Scholar 
    Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gribble, K. E., Moran, B. M., Jones, S., Corey, E. L. & Mark Welch, D. B. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp. Gerontol. 114, 99–106 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Behav. Ecol. Sociobiol. 5, 133–157 (1979).
    Google Scholar 
    Armitage, K. B. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 10, 319–331 (1962).
    Google Scholar 
    Armitage, K. B. Vernal behaviour of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 13, 59–68 (1965).
    Google Scholar 
    Armitage, K. B., Melcher, J. C. & Ward, J. M. Oxygen consumption and body temperature in yellow-bellied marmot populations from montane-mesic and lowland-xeric environments. J. Comp. Physiol. B 160, 491–502 (1990).
    Google Scholar 
    Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, B. M. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J. Comp. Physiol. B 182, 841–847 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Schwartz, C., Hampton, M. & Andrews, M. T. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav. 14, 310–318 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE 8, e85157 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lindner, M. et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 22, 36 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Viitaniemi, H. M. et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol. Evol. 11, 970–983 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Johnston, R. A., Paxton, K. L., Moore, F. R., Wayne, R. K. & Smith, T. B. Seasonal gene expression in a migratory songbird. Mol. Ecol. 25, 5680–5691 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyer, B. B. & Barnes, B. M. Molecular and metabolic aspects of mammalian hibernation. Bioscience 49, 713–724 (1999).
    Google Scholar 
    Siutz, C., Ammann, V. & Millesi, E. Shallow torpor expression in free-ranging common hamsters with and without food supplements. Front. Ecol. Evol. 6, 190 (2018).
    Google Scholar 
    Langer, F., Havenstein, N. & Fietz, J. Flexibility is the key: metabolic and thermoregulatory behaviour in a small endotherm. J. Comp. Physiol. B 188, 553–563 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bieber, C., Turbill, C. & Ruf, T. Effects of aging on timing of hibernation and reproduction. Sci. Rep. 8, 13881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Aestivation: signaling and hypometabolism. J. Exp. Biol. 215, 1425–1433 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krivoruchko, A. & Storey, K. B. Forever young: mechanisms of natural anoxia tolerance and potential links to longevity. Oxid. Med. Cell. Longev. 3, 186–198 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. 79, 207–233 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Puspitasari, A. et al. Hibernation as a tool for radiation protection in space exploration. Life 11, 54 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blumstein, D. T. Yellow-bellied marmots: insights from an emergent view of sociality. Philos. Trans. R. Soc. Lond. B 368, 20120349 (2013).
    Google Scholar 
    Armitage, K. B. & Downhower, J. F. Demography of yellow-bellied marmot populations. Ecology 55, 1233–1245 (1974).
    Google Scholar 
    Zhou, W., Triche, T. J., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Labarre, B. A. et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 12, 79 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S., Wolf, Y. I. & Koonin, E. V. Universal pacemaker of genome evolution. PLoS Comput. Biol. 8, e1002785 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).
    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using mgcv and lme4, R package version 0.2-3 (2014); http://cran.r-project.org/package=gamm4R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development Environment for R (RStudio Inc., 2019).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016); https://doi.org/10.3233/978-1-61499-649-1-87Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots https://cran.r-project.org/package=ggpubr (2020).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Mclean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinho, G. M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots data sets. OSF https://doi.org/10.17605/OSF.IO/E42ZV (2021). More

  • in

    Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm

    Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).CAS 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    Google Scholar 
    Angilletta, M. J. Jr Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 

    Google Scholar 
    Gangloff, E. J. & Telemeco, R. S. High temperature, oxygen, and performance: insights from reptiles and amphibians. Integr. Comp. Biol. 58, 9–24 (2018).CAS 
    PubMed 

    Google Scholar 
    Perry, G. M., Danzmann, R. G., Ferguson, M. M. & Gibson, J. P. Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86, 333–341 (2001).CAS 
    PubMed 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). J. Comp. Physiol. B 182, 49–62 (2012).PubMed 

    Google Scholar 
    Hu, X. P. & Appel, A. G. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environ. Entomol. 33, 197–205 (2004).CAS 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).
    Google Scholar 
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Padfield, D., Castledine, M. & Buckling, A. Temperature-dependent changes to host–parasite interactions alter the thermal performance of a bacterial host. ISME J. 14, 389–398 (2020).PubMed 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed 

    Google Scholar 
    Kohl, K. D. & Carey, H. V. A place for host–microbe symbiosis in the comparative physiologist’s toolbox. J. Exp. Biol. 219, 3496–3504 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. Optimal integration between host physiology and functions of the gut microbiome. Phil. Trans. R. Soc. B 375, 20190594 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).
    Google Scholar 
    Jaramillo, A. & Castaneda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 886 (2021).
    Google Scholar 
    Moghadam, N. N. et al. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 12, 1–12 (2018).PubMed 

    Google Scholar 
    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).
    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. The gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a non‐invasive congener. Mol. Ecol. 29, 2449–2462 (2020).PubMed 

    Google Scholar 
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Google Scholar 
    Zhu, L. et al. Environmental temperatures affect the gastrointestinal microbes of the Chinese giant salamander. Front. Microbiol. 12, 493 (2021).
    Google Scholar 
    Moeller, A. H. et al. The lizard gut microbiome changes with temperature and is associated with heat tolerance. Appl. Environ. Microbiol. 86, e01181-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7, e36398 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hanage, W. P. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 512, 247–248 (2014).CAS 
    PubMed 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Mykles, D. L., Ghalambor, C. K., Stillman, J. H. & Tomanek, L. Grand challenges in comparative physiology: integration across disciplines and across levels of biological organization. Integr. Comp. Biol. 50, 6–16 (2010).PubMed 

    Google Scholar 
    Kohl, K. D. A microbial perspective on the grand challenges in comparative animal physiology. mSystems 3, e00146-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gray, K. T., Escobar, A. M., Schaeffer, P. J., Mineo, P. M. & Berner, N. J. Thermal acclimatization in overwintering tadpoles of the green frog, Lithobates clamitans (Latreille, 1801). J. Exp. Zool. A 325, 285–293 (2016).
    Google Scholar 
    Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).
    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 86 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J. Anim. Ecol. 88, 845–856 (2019).PubMed 

    Google Scholar 
    Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).CAS 
    PubMed 

    Google Scholar 
    Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).PubMed 

    Google Scholar 
    Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).
    Google Scholar 
    Fontaine, S. S., Mineo, P. M. & Kohl, K. D. Changes in the gut microbial community of the eastern newt (Notophthalmus viridescens) across its three distinct life stages. FEMS Microbiol. Ecol. 97, fiab021 (2021).CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 11, 384 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Arango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. Experimental warming reduces survival, cold tolerance, and gut prokaryotic diversity of the eastern subterranean termite, Reticulitermes flavipes (Kollar). Front. Microbiol. 12, 1116 (2021).
    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 

    Google Scholar 
    Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B 277, 2185–2191 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell. Infect. Microbiol. 10, 729 (2020).
    Google Scholar 
    Sheremet, A. et al. Ecological and genomic analyses of candidate phylum WPS‐2 bacteria in an unvegetated soil. Environ. Microbiol. 22, 3143–3157 (2020).CAS 
    PubMed 

    Google Scholar 
    Correa, D. T. et al. Multilevel community assembly of the tadpole gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.188698 (2020).Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr. Comp. Biol. 57, 786–794 (2017).PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Daloso, D. M. The ecological context of bilateral symmetry of organ and organisms. Nat. Sci. 6, 43340 (2014).
    Google Scholar 
    Goldstein, J. A., Hoff, K. v. S. & Hillyard, S. D. The effect of temperature on development and behaviour of relict leopard frog tadpoles. Conserv. Physiol. 5, cow075 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Harkey, G. A. & Semlitsch, R. D. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1998, 1001–1007 (1988).
    Google Scholar 
    Marian, M. & Pandian, T. Effect of temperature on development, growth and bioenergetics of the bullfrog tadpole Rana tigrina. J. Therm. Biol. 10, 157–161 (1985).
    Google Scholar 
    Alvarez, D. & Nicieza, A. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16, 640–648 (2002).
    Google Scholar 
    Kohl, K. D., Brun, A., Bordenstein, S. R., Caviedes‐Vidal, E. & Karasov, W. H. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr. Zool. 13, 139–151 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Potti, J. et al. Bacteria divert resources from growth for Magellanic penguin chicks. Ecol. Lett. 5, 709–714 (2002).
    Google Scholar 
    Coates, M. E., Fuller, R., Harrison, G., Lev, M. & Suffolk, S. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17, 141–150 (1963).CAS 
    PubMed 

    Google Scholar 
    Gaskins, H., Collier, C. & Anderson, D. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).CAS 
    PubMed 

    Google Scholar 
    Gitsels, A., Sanders, N. & Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 10, 2329 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Denver, R. J. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 37, 172–184 (1997).CAS 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Khakisahneh, S., Zhang, X.-Y., Nouri, Z. & Wang, D.-H. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems 5, e00514–e00520 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, B. et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 7, 1544–1555 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez‐Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).
    Google Scholar 
    Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed 

    Google Scholar 
    Semlitsch, R. D. Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can. J. Zool. 68, 1027–1030 (1990).
    Google Scholar 
    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Tejedo, M. Effects of body size and timing of reproduction on reproductive success in female natterjack toads (Bufo calamita). J. Zool. 228, 545–555 (1992).
    Google Scholar 
    Warne, R. W., Crespi, E. J. & Brunner, J. L. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct. Ecol. 25, 139–146 (2011).
    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Pearce, T. A. & Paustian, M. E. Are temperate land snails susceptible to climate change through reduced altitudinal ranges? A Pennsylvania example. Am. Malacol. 31, 213–224 (2013).
    Google Scholar 
    Wolfe, D. W. et al. Projected change in climate thresholds in the northeastern US: implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Change 13, 555–575 (2008).
    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 
    PubMed 

    Google Scholar 
    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. 259, R253–R258 (1990).CAS 
    PubMed 

    Google Scholar 
    Seebacher, F. & Walter, I. Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism. J. Exp. Biol. 215, 663–670 (2012).CAS 
    PubMed 

    Google Scholar 
    Husak, J. F., Fox, S. F., Lovern, M. B. & Bussche, R. A. V. D. Faster lizards sire more offspring: sexual selection on whole‐animal performance. Evolution 60, 2122–2130 (2006).CAS 
    PubMed 

    Google Scholar 
    Mineo, P. M., Waldrup, C., Berner, N. J. & Schaeffer, P. J. Differential plasticity of membrane fatty acids in northern and southern populations of the eastern newt (Notophthalmus viridescens). J. Comp. Physiol. B 189, 249–260 (2019).CAS 
    PubMed 

    Google Scholar 
    Chung, D. J., Sparagna, G. C., Chicco, A. J. & Schulte, P. M. Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress. J. Exp. Biol. 221, 174458 (2018).
    Google Scholar 
    Gladwell, R., Bowler, K. & Duncan, C. Heat death in crayfish Austropotamobius pallipes: ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1, 79–94 (1976).CAS 

    Google Scholar 
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).PubMed 

    Google Scholar 
    Gräns, A. et al. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J. Exp. Biol. 217, 711–717 (2014).PubMed 

    Google Scholar 
    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, 169615 (2018).
    Google Scholar 
    St-Pierre, J., Charest, P.-M. & Guderley, H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 201, 2961–2970 (1998).CAS 

    Google Scholar 
    Grim, J., Miles, D. & Crockett, E. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. J. Exp. Biol. 213, 445–452 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    LeMoine, C. M., Genge, C. E. & Moyes, C. D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 211, 1448–1455 (2008).CAS 
    PubMed 

    Google Scholar 
    McClelland, G. B., Craig, P. M., Dhekney, K. & Dipardo, S. Temperature‐ and exercise‐induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577, 739–751 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichaud, N. et al. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci. Rep. 9, 17832 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., Guderley, H., Elsey, R. M. & Trosclair, P. L. Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J. Exp. Biol. 206, 1193–1200 (2003).CAS 
    PubMed 

    Google Scholar 
    Berner, N. J. & Bessay, E. P. Correlation of seasonal acclimatization in metabolic enzyme activity with preferred body temperature in the eastern red spotted newt (Notophthalmus viridescens viridescens). Comp. Biochem. Physiol. A 144, 429–436 (2006).
    Google Scholar 
    Vigelsø, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 84–101 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Park, J.-S., Deng, J.-H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pryor, G. S. & Bjorndal, K. A. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).PubMed 

    Google Scholar 
    Clark, A. & Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 8, 319 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Google Scholar 
    Van Dijk, P., Tesch, C., Hardewig, I. & Portner, H. Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202, 3611–3621 (1999).PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Hoppeler, H. & Weibel, E. R. Scaling functions to body size: theories and facts. J. Exp. Biol. 208, 1573–1574 (2005).PubMed 

    Google Scholar 
    Hopkins, W. A., Rowe, C. L. & Congdon, J. D. Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ. Toxicol. Chem. 18, 1258–1263 (1999).CAS 

    Google Scholar 
    Sokolova, I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J. Exp. Biol. 224, 236802 (2021).
    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).
    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).
    Google Scholar 
    Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).
    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).
    Google Scholar 
    Swaddle, J. P. Fluctuating asymmetry, animal behavior, and evolution. Adv. Study Behav. 32, 169–205 (2003).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing v.3.4.3 (R Foundation for Statistical Computing, 2019).Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3 (2017).Hulbert, A., Pamplona, R., Buffenstein, R. & Buttemer, W. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213 (2007).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2 (2013).Mary-Huard, T., Daudin, J.-J., Baccini, M., Biggeri, A. & Bar-Hen, A. Biases induced by pooling samples in microarray experiments. Bioinformatics 23, i313–i318 (2007).CAS 
    PubMed 

    Google Scholar 
    Singer, J. D. & Willett, J. B. It’s about time: using discrete-time survival analysis to study duration and the timing of events. J. Educ. Stat. 18, 155–195 (1993).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e100442 (2021).
    Google Scholar  More

  • in

    Seasonal variation in space use and territoriality in a large mammal (Sus scrofa)

    Schoener, T. W. & Schoener, A. Intraspecific variation in home-range size in some Anolis lizards. Ecology 63, 809–823 (1982).
    Google Scholar 
    Grigione, M. M. et al. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5(4), 317–324 (2002).
    Google Scholar 
    Wolf, J. B., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).
    Google Scholar 
    Gehrt, S. D. & Frttzell, E. K. Sexual differences in home ranges of raccoons. J. Mammal. 78, 921–931 (1997).
    Google Scholar 
    Clutton-Brock, T. H., Iason, G. R. & Guinness, F. E. Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). J. Zool. 211(2), 275–289 (1987).
    Google Scholar 
    Ji, W., White, P. C. & Clout, M. N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42(3), 595–604 (2005).
    Google Scholar 
    Böhm, M., Palphramand, K. L., Newton-Cross, G., Hutchings, M. R. & White, P. C. Dynamic interactions among badgers: Implications for sociality and disease transmission. J. Anim. Ecol. 77, 735–745 (2008).PubMed 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Ostfeld, R. S., Glass, G. E. & Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 20, 328–336 (2005).PubMed 

    Google Scholar 
    Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).CAS 
    PubMed 

    Google Scholar 
    Cubaynes, S. et al. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83, 1344–1356 (2014).PubMed 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    McGuire, J. M., Scribner, K. T. & Congdon, J. D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv. Genet. 14, 1029–1042 (2013).
    Google Scholar 
    Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).PubMed 

    Google Scholar 
    Loveridge, A. J. & Macdonald, D. W. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J. Zool. 253, 101–111 (2001).
    Google Scholar 
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32(8), 567–577 (2017).PubMed 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 57–63 (1943).
    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).
    Google Scholar 
    Kaufman, J. H. On the definitions and functions of dominance and territoriality. Biol. Revue 58, 1–20 (1983).
    Google Scholar 
    Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).
    Google Scholar 
    Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Anim. Ecol. Controversies Conseq. 1, 476 (2000).
    Google Scholar 
    Kerr, G. D. & Bull, C. M. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behav. Ecol. 17, 380–391 (2006).
    Google Scholar 
    DiPierro, E., Molinari, A., Tosi, G. & Wauters, L. A. Exclusive core areas and intrasexual territoriality in Eurasian red squirrels (Sciurus vulgaris) revealed by incremental cluster polygon analysis. Ecol. Res. 23, 529–542 (2008).
    Google Scholar 
    Poole, K. G. Spatial organization of a lynx population. Can. J. Zool. 73, 632–641 (1995).ADS 

    Google Scholar 
    Chamberlain, M. J. & Leopold, B. D. Spatio-temporal relationships among adult raccoons (Procyon lotor) in central Mississippi. Am. Midl. Nat. 148, 297–309 (2002).
    Google Scholar 
    Darden, S. K. & Dabelsteen, T. Acoustic territorial signaling in a small, socially monogamous canid. Anim. Behav. 75(3), 905–912 (2008).
    Google Scholar 
    Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247(3), 311–322 (1999).
    Google Scholar 
    Seiler, N., Boesch, C., Mundry, R., Stephens, C. & Robbins, M. M. Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. R. Soc. Open Sci. 4(11), 170720 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).
    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sonnichsen, L. & Jedrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9, 1–11 (2014).
    Google Scholar 
    Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
    Google Scholar 
    Saunders, G. & Kay, B. Movements of feral pigs at Sunny Corner, New South Wales. Wildl. Res. 18, 49–61 (1990).
    Google Scholar 
    Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).
    Google Scholar 
    Dexter, N. The influence of pasture distribution, temperature and sex on home-range size of feral pigs in a semi-arid environment. Wildl. Res. 26, 755–762 (1999).
    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Hayes, R., Riffell, S., Minnis, R. & Holder, B. Survival and habitat use of feral hogs in Mississippi. Southeast. Nat. 8, 411–427 (2009).
    Google Scholar 
    Fattebert, J., Baubet, E., Slotow, R. & Fischer, C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 63(2), 32 (2017).
    Google Scholar 
    Clontz, L. M., Pepin, K. M., VerCauteren, K. C., & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78(3), 914–928 (2021).PubMed 

    Google Scholar 
    Mcloughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: A comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).
    Google Scholar 
    Golabek, K. A., Ridley, A. R. & Radford, A. N. Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619 (2012).
    Google Scholar 
    Kilgo, J. C. et al. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci. Rep. 11(1), 1–11 (2021).
    Google Scholar 
    Geist, V. A comparison of social adaptations in relations to ecology in gallinaceous bird and ungulate societies. Annu. Rev. Ecol. Syst. 8, 193–207 (1977).
    Google Scholar 
    Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).
    Google Scholar 
    Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).
    Google Scholar 
    Barrett, R. The feral hog at Dye Creek ranch, California. Hilgardia 46, 283–355 (1978).
    Google Scholar 
    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1986).
    Google Scholar 
    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pepin, K. M. et al. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7(3), e01230. https://doi.org/10.1002/ecs2.1230 (2016).Article 

    Google Scholar 
    Singh, J. S. & Yadava, P. S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 44(3), 351–376 (1974).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).
    Google Scholar 
    Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L. & Hayes, W. K. Home range, spatial overlap, and burrow use of the desert tortoise in the West Mojave Desert. Copeia 2, 378–389 (2009).
    Google Scholar 
    Lewis, J. S. et al. Contact networks reveal potential for interspecific interactions of sympatric wild felids driven by space use. Ecosphere 8(3), e01707 (2017).
    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013).CAS 
    PubMed 

    Google Scholar 
    Vander Waal, K. L. et al. The “strength of weak ties” and helminth parasitism in giraffe social networks. Behav. Ecol. 27(4), 1190–1197 (2016).
    Google Scholar 
    Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).
    Google Scholar 
    D’Andrea, L., Durio, P., Perrone, A. & Pirone, S. Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. IBEX J. Mountain Ecol. 3, 117–121 (2014).
    Google Scholar 
    Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 54, 403–412 (2008).
    Google Scholar 
    Hixon, M. A. Food production and competitor density as the determinants of feeding territory size. Am. Nat. 115(4), 510–530 (1980).MathSciNet 

    Google Scholar 
    Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77(1), 85–95 (2021).CAS 
    PubMed 

    Google Scholar 
    Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143(1), 1–30 (2000).
    Google Scholar 
    Mendl, M., Randle, K. & Pope, S. Young female pigs can discriminate individual differences in odours from conspecific urine. Anim. Behav. 64, 97–101 (2002).
    Google Scholar 
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. L. Spatial and temporal heterogeneities in the contact behaviour of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Google Scholar 
    Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90(4), 820–833 (2021).PubMed 

    Google Scholar 
    Lavelle, M. J. et al. Assessing risk of disease transmission: Direct implications for an indirect science. Bioscience 64, 524–530 (2014).
    Google Scholar 
    Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).
    Google Scholar 
    Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahamson, W. G., Johnson, A. F., Layne, J. N. & Peroni, P. A. Vegetation of the Archbold Biological Station, Florida: An example of the southern Lake Wales ridge. Florida Sci. 47, 209–250 (1984).
    Google Scholar 
    Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invasions 16(10), 2105–2114 (2014).
    Google Scholar 
    Ko, J., Williams, B., Smith, V., McGrath, C. & Jacobson, J. Comparison of Telazol, Telazol–ketamine, Telazol–xylazine, and Telazol–ketamine–xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim. Sci. 43(5), 476–480 (1993).CAS 
    PubMed 

    Google Scholar 
    Gabor, T. M., Hellgren, E. C. & Silvy, N. J. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol® and xylazine. J. Wildl. Dis. 33(1), 161–164 (1997).CAS 
    PubMed 

    Google Scholar 
    Sweitzer, R. A. et al. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol® and xylazine hydrochloride. J. Wildl. Dis. 33(2), 198–205 (1997).CAS 
    PubMed 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).PubMed 

    Google Scholar 
    Tracey, J. A. mkde. R Core Development Team. (2014). https://cran.r-project.org/web/packages/mkde/index.Html. Accessed 27 Mar 2021R Development Core Team. R: a language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. (2018). https://www.r-project.org/. Accessed 27 Mar 2021Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 

    Google Scholar 
    Vander Wal, E., Laforge, M. P. & McLoughlin, P. D. Density dependence in social behaviour: Home range overlap and density interacts to affect conspecific encounter rates in a gregarious ungulate. Behav. Ecol. Sociobiol. 68(3), 383–390 (2014).
    Google Scholar 
    Schauber, E. M., Nielsen, C. K., Kjær, L. J., Anderson, C. W. & Storm, D. J. Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal. 96(1), 16–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Robert, K., Garant, D. & Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).
    Google Scholar 
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Google Scholar 
    Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B., & Walker, S. lme4: linear mixed effects models using Eigen and S4. R package version 1.1-9. (2014) https://cran.rproject.org/package/lme4. (accessed 30 Jan 2019).Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multi-model Inference 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory. (eds. Petrov, B. N. & Csaki, F.) 267–281 (Academiai Kiado, 1973). More

  • in

    The biology of beauty sleep

    Wang, L. C. H. & Lee, T.-F. in Life in the Cold (eds Heldmaier, G. & Klingenspor, M.) 149–158 (Springer, 2000).van Breukelen, F. & Martin, S. L. J. Appl. Physiol. 92, 2640–2647 (2002).Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
    Google Scholar 
    Pinho, G. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01679-1 (2022).Article 

    Google Scholar 
    Oli, M. K. & Armitage, K. B. Oecologia 136, 543–550 (2003).Article 

    Google Scholar 
    Horvath, S. Genome Biol. 14, 3156 (2013).Article 

    Google Scholar 
    Anderson, J. A. et al. eLife 10, e66128 (2021).CAS 
    Article 

    Google Scholar 
    Larison, B. et al. Commun. Biol. 4, 1412 (2021).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. Nature 429, 825–826 (2004).CAS 
    Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. et al. Biol. Lett. 15, 20180860 (2019).Article 

    Google Scholar 
    Jansen, H. T. et al. Commun. Biol. 2, 336 (2019).Article 

    Google Scholar 
    Medawar, P. B. An Unsolved Problem Of Biology (H. K. Lewis & Co., 1952). More

  • in

    Pronounced loss of Amazon rainforest resilience since the early 2000s

    DatasetsWe use the Amazon basin (http://worldmap.harvard.edu/data/geonode:amapoly_ivb, accessed 28 January 2021) as our region of study. To determine the grid cells that are contained within Brazil for a subset of analysis, we use the ‘maps’ package in R (v.3.3.0; https://CRAN.R-project.org/package=maps). This is also used in the plotting of country outlines. The main dataset used to determine forest health is from VODCA33, of which we use the Ku-band product. These data are available at 0.25° × 0.25° at a monthly resolution from January 1988 to December 2016. We also use NOAA AVHRR NDVI34. For precipitation data, we use the CHIRPS dataset40 downloaded from Google Earth Engine at a monthly resolution. Finally, to determine land cover types, we used the IGBP MODIS land cover dataset MCD12C1 (ref. 37). All these datasets are at a higher spatial resolution than the VODCA dataset and thus we downscale them to match the lower resolution. Our SST data comes from HadISST49, where we define a North Atlantic region (15–70° W, 5–25° N), for which we take the spatial mean. The mean monthly cycle is then removed to produce anomalies.For the vegetation datasets that we measure the resilience indicators on (below), we use STL decomposition (seasonal and trend decomposition using Loess)51 using the stl() function in R. This splits time series in each grid cell into an overall trend, a repeating annual cycle (by using the ‘periodic’ option for the seasonal window) and a residual component. We use the residual component in our resilience analysis. The first 3 yr of data had large jumps in VOD which were seen when testing other regions of the world as well as in the Amazon region. Hence, we restrict our analysis to the period January 1991 to December 2016.To test the robustness of the detrending, we also vary the size of the trend window in the stl() function. The results from these alternatively detrended time series are shown in Supplementary Fig. 4. The results are also robust to varying the window used to calculate the seasonal component rather than using ‘periodic’; at the strictest plausible value of 13, we still see the same increases in AR(1) (Supplementary Fig. 5).For the AMO index shown in Supplementary Fig. 13, data come from the Kaplan SST dataset and can be downloaded from https://psl.noaa.gov/data/timeseries/AMO/.Grid cell selectionWe use the IGBP MODIS land cover dataset at the resolution described above to determine which grid cells to use in our analysis. The dataset is available at an annual resolution from 2001 to 2018 (but we only use the time series up to 2016 to match the time span of our VOD and NDVI datasets). To focus on changes in forest resilience, we use grid cells where the evergreen BL fraction is ≥80% in 2001. Grid cells are treated as human land-use area if the built-up, croplands or vegetation mosaics fraction is >0%. We remove grid cells that have human land use in them from our forest analysis, regardless of if there is ≥80% BL fraction in the grid cell.We measure the minimum distance between forested Amazon basin grid cells and human land-use grid cells in 2016 (believing this to be the most cautious and least biased way to measure distance) using the latitude and longitude of each grid point and computing the great-circle distance. We use human land-use grid cells over a larger area than the basin, so that we can determine the closest distance to human land use, regardless of whether this human land use lies within the basin. We also measure the minimum distance from human land use or roads in Brazil, where we have reliable data on state and federal roads (https://datacatalog.worldbank.org/dataset/brazil-road-network-federal-and-state-highways). As in the main text, we reiterate that these minimum distances can be viewed as the maximum distance from human land use as our data will not include roads for the full Amazon basin, or non-federal or non-state roads in Brazil that will have human activity associated with them.To ensure that the pattern of changes in resilience is not a consequence of more settlements being in the southeast of the region, combined with the gradient of rainfall from northwest to southeast typical of the rainforest, we measure the correlation between MAP and the distances from the urban grid cells, which is very weak (Spearman’s ρ = 0.109, P  More

  • in

    Novel wheat varieties facilitate deep sowing to beat the heat of changing climates

    World Food and Agriculture—Statistical Yearbook 2020 (FAO, 2020).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 

    Google Scholar 
    Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).CAS 

    Google Scholar 
    Hochman, Z., Gobbett, D. L. & Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Change Biol. 23, 2071–2081 (2017).
    Google Scholar 
    Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2018).
    Google Scholar 
    Rebetzke, G. J. et al. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res. 100, 10–23 (2007).
    Google Scholar 
    Gan, Y., Stobbe, E. H. & Moes, J. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 32, 1275–1281 (1992).
    Google Scholar 
    Rebetzke, G., Ingvordsen, C., Bovill, W., Trethowan, R. & Fletcher, A. in Australian Agriculture in 2020: From Conservation to Automation (eds Pratley, J. & Kirkegaard, J.) 273–288 (Agronomy Australia and Charles Sturt Univ., 2019).Schillinger, W. F., Donaldson, E., Allan, R. E. & Jones, S. S. Winter wheat seedling emergence from deep sowing depths. Agron. J. 90, 582–586 (1998).
    Google Scholar 
    Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).
    Google Scholar 
    Richards, R. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust. J. Agric. Res. 43, 517–527 (1992).
    Google Scholar 
    Rebetzke, G. et al. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 52, 1221–1234 (2001).CAS 

    Google Scholar 
    Rebetzke, G., Richards, R., Sirault, X. & Morrison, A. Genetic analysis of coleoptile length and diameter in wheat. Aust. J. Agric. Res. 55, 733–743 (2004).
    Google Scholar 
    Rebetzke, G. J., Zheng, B. & Chapman, S. C. Do wheat breeders have suitable genetic variation to overcome short coleoptiles and poor establishment in the warmer soils of future climates? Funct. Plant Biol. 43, 961–972 (2016).
    Google Scholar 
    Rebetzke, G. J. et al. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res. 126, 87–96 (2012).
    Google Scholar 
    Zhao, Z., Rebetzke, G. J., Zheng, B., Chapman, S. C. & Wang, E. Modelling impact of early vigour on wheat yield in dryland regions. J. Exp. Bot. 70, 2535–2548 (2019).CAS 

    Google Scholar 
    Brown, H. E. et al. Plant Modelling Framework: software for building and running crop models on the APSIM platform. Environ. Model. Softw. 62, 385–398 (2014).
    Google Scholar 
    Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).
    Google Scholar 
    Smith, C. J. et al. Using fertiliser to maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental cost. Agric. Ecosyst. Environ. 286, 106644 (2019).CAS 

    Google Scholar 
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    Google Scholar 
    Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).
    Google Scholar 
    Anderson, W. K., Stephens, D. & Siddique, K. H. M. in Innovations in Dryland Agriculture (eds Farooq, M. & Siddique, K. H. M.) 299–319 (Springer International, 2016).Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Evans, J. R. & Lilley, J. M. Genotype × management strategies to stabilise the flowering time of wheat in the south-eastern Australian wheatbelt. Crop Pasture Sci. 69, 547–560 (2018).
    Google Scholar 
    Rebetzke, G., Botwright, T., Moore, C., Richards, R. & Condon, A. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res. 88, 179–189 (2004).
    Google Scholar 
    Richards, R. A. & Lukacs, Z. Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust. J. Agric. Res. 53, 41–50 (2002).CAS 

    Google Scholar 
    López-Castañeda, C. & Richards, R. A. Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crops Res. 39, 85–98 (1994).
    Google Scholar 
    Zerner, M. C., Rebetzke, G. J. & Gill, G. S. Genotypic stability of weed competitive ability for bread wheat (Triticum aestivum) genotypes in multiple environments. Crop Pasture Sci. 67, 695–702 (2016).
    Google Scholar 
    Allan, R. E., Vogel, O. A. & Peterson, C. J. Jr Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. Agron. J. 54, 347–350 (1962).
    Google Scholar 
    Towards a Global Programme on Sustainable Dryland Agriculture (FAO, 2020); https://www.fao.org/3/nd366en/nd366en.pdfAntle, J. M., Cho, S., Tabatabaie, S. H. & Valdivia, R. O. Economic and environmental performance of dryland wheat-based farming systems in a 1.5 C world. Mitig. Adapt. Strateg. Glob. Change 24, 165–180 (2019).
    Google Scholar 
    Kirkegaard, J. & Hunt, J. Increasing productivity by matching farming system management and genotype in water-limited environments. J. Exp. Bot. 61, 4129–4143 (2010).CAS 

    Google Scholar 
    Rebetzke, G. J. et al. Agronomic assessment of the durum Rht18 dwarfing gene in bread wheat. Crop Pasture Sci. https://doi.org/10.1071/CP21645 (2022).Bathgate, J. The Influence of Wheat (Triticum aestivum L.) Semi-dwarfing Genes and the Lcol-A1 QTL on the Coleoptile, Seedling Vigour, and Establishment from Deep Sowing. Honours thesis, Charles Sturt Univ. (2021).Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: using wheat as a case study. Eur. J. Agron. 100, 141–150 (2018).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, T. & Richards, R. The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Funct. Plant Biol. 28, 417–423 (2001).
    Google Scholar 
    Ellis, M. H. et al. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31, 583–589 (2004).CAS 

    Google Scholar 
    Whan, B. The association between coleoptile length and culm length in semidwarf and standard wheats. J. Aust. Inst. Agric. Sci. 42, 194–196 (1976).
    Google Scholar 
    Whan, B. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust. J. Exp. Agric. 16, 411–416 (1976).
    Google Scholar 
    Bush, M. & Evans, L. Growth and development in tall and dwarf isogenic lines of spring wheat. Field Crops Res. 18, 243–270 (1988).
    Google Scholar 
    Rebetzke, G. J., Bonnett, D. G. & Ellis, M. H. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 127, 17–25 (2012).
    Google Scholar 
    Miralles, D., Calderini, D., Pomar, K. & D’Ambrogio, A. Dwarfing genes and cell dimensions in different organs of wheat. J. Exp. Bot. 49, 1119–1127 (1998).CAS 

    Google Scholar 
    Radford, B. Effect of constant and fluctuating temperature regimes and seed source on the coleoptile length of tall and semidwarf wheats. Aust. J. Exp. Agric. 27, 113–117 (1987).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, A. & Richards, R. Influence of variety, seed position and seed source on screening for coleoptile length in bread wheat (Triticum aestivum L.). Euphytica 119, 349–356 (2001).
    Google Scholar 
    Cornish, P. & Hindmarsh, S. Seed size influences the coleoptile length of wheat. Aust. J. Exp. Agric. 28, 521–523 (1988).
    Google Scholar 
    Zheng, B., Chenu, K. & Doherty, A. The APSIM-Wheat Module (7.5 R3008) (APSIM Initiative, 2015); https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdfZadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421 (1974).
    Google Scholar 
    Bell, L. W., Lilley, J. M., Hunt, J. R. & Kirkegaard, J. A. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat. Crop Pasture Sci. 66, 332–348 (2015).
    Google Scholar 
    Flohr, B. M., Hunt, J. R., Kirkegaard, J. A. & Evans, J. R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 209, 108–119 (2017).
    Google Scholar 
    Chen, C. et al. Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Res. 247, 107710 (2020).
    Google Scholar 
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Google Scholar 
    Liu, B. et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Change Biol. 25, 1428–1444 (2019).
    Google Scholar 
    Zhao, Z., Wang, E., Rebetzke, G. J. & Kirkegaard, J. A. Supporting data for ‘Sowing deep to beat the heat using novel genetics adapts wheat to a changing climate’. CSIRO Data Access Portal https://data.csiro.au/collection/csiro:53658 (2022).Holzworth, D. et al. APSIM Next Generation: overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 103, 43–51 (2018).
    Google Scholar 
    APSIM Initiative. Source code of APSIM Next Generation. GitHub https://github.com/APSIMInitiative/ApsimX (2021). More

  • in

    Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China

    Froehner, S., Rizzi, J., Vieira, L. M. & Sanez, J. PAHs in water, sediment and biota in an area with port activities. Arch. Environ. Contam. Toxicol. 75, 236–246. https://doi.org/10.1007/s00244-018-0538-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anyanwu, I. N., Sikoki, F. D. & Semple, K. T. Risk assessment of PAHs and N-PAH analogues in sediment cores from the Niger Delta. Mar. Pollut. Bull. 161, 111684. https://doi.org/10.1016/j.marpolbul.2020.111684 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, B., Cui, D. Y., Liu, A., Li, Q. & Zheng, L. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Daya Bay, South China. Environ. Sci. Pollut. Res. 28, 25858–25865. https://doi.org/10.1007/s11356-020-11956-w (2021).CAS 
    Article 

    Google Scholar 
    Li, J. W. et al. Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J. Hazardous Mater. 173, 75–81. https://doi.org/10.1016/j.jhazmat.2009.08.050 (2010).CAS 
    Article 

    Google Scholar 
    Honda, M. & Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17, 1363. https://doi.org/10.3390/ijerph17041363 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Lu, G. N., Tao, X. Q., Dang, Z., Yi, X. Y. & Yang, C. Estimation of n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons by quantum chemical descriptors. Cent. Eur. J. Chem. 6, 310–318. https://doi.org/10.2478/s11532-008-0010-y (2008).CAS 
    Article 

    Google Scholar 
    Yuan, H. Z., Zhang, E. L., Lin, Q., Wang, R. & Liu, E. F. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China. Environ. Sci. Pollut. Res. 23, 4430–4441. https://doi.org/10.1007/s11356-015-5626-9 (2016).CAS 
    Article 

    Google Scholar 
    Souza, M. R. R. et al. Concentration, distribution and source apportionment of polycyclic aromatic hydrocarbons (PAH) in Poxim River sediments, Brazil. Mar. Pollut. Bull. 127, 478–483. https://doi.org/10.1016/j.marpolbul.2017.12.045 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis, E. et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci. Total Environ. 691, 528–537. https://doi.org/10.1016/j.scitotenv.2019.07.114 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Dreyer, A., Radke, M., Turunen, J. & Blodau, C. Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of eastern Canada. Environ. Sci. Technol. 39, 3918–3924. https://doi.org/10.1021/es0481880 (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ma, W. L. et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China. Environ. Monitoring Assessment 185, 8399–8409. https://doi.org/10.1007/s10661-013-3182-7 (2013).CAS 
    Article 

    Google Scholar 
    Yang, Y. Y. et al. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. Mar. Pollut. Bull. 152, 10923. https://doi.org/10.1016/j.marpolbul.2020.110923 (2020).CAS 
    Article 

    Google Scholar 
    Rahmanpoor, S., Ghafourian, H., Hashtroudi, S. M. & Bastami, K. D. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait, Persian Gulf. Mar. Pollut. Bull. 78, 224–229. https://doi.org/10.1016/j.marpolbul.2013.10.032 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aghadadashi, V., Mehdinia, A., Bakhtiari, A. R., Mohammadi, J. & Moradi, M. Source, spatial distribution, and toxicity potential of Polycyclic Aromatic Hydrocarbons in sediments from Iran’s environmentally hot zones, the Persian Gulf. Ecotoxicol. Environ. Saf. 173, 514–525. https://doi.org/10.1016/j.ecoenv.2019.02.029 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, L., Zhu, B., Gao, J. H. & Kang, H. Q. Impact of Taihu Lake on city ozone in the Yangtze River Delta. Adv. Atmos. Sci. 34, 226–234. https://doi.org/10.1007/s00376-016-6099-6 (2017).CAS 
    Article 

    Google Scholar 
    Huang, S. B., Qiao, M., Wang, H. & Wang, Z. J. Organchlorinated pesticides in surface sediments of meiliang bay in Taihu Lake, China. J. Environ. Sci. Health Part a-Toxic/Hazardous Substances Environ. Eng. 41, 223–234. https://doi.org/10.1080/10934520500354664 (2006).CAS 
    Article 

    Google Scholar 
    Su, H. L. et al. Distribution characteristics and risk assessments of PAHs in fish from Lake Taihu, China. Hum. Ecol. Risk Assessment 21, 1753–1765. https://doi.org/10.1080/10807039.2014.975003 (2015).CAS 
    Article 

    Google Scholar 
    Wang, W. W., Qu, X. L., Lin, D. H. & Yang, K. Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China. Environ. Pollut. 288, 117709. https://doi.org/10.1016/j.envpol.2021.117709 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peng, X. Z., Zhang, G., Zheng, L. P., Mai, B. X. & Zeng, S. W. The vertical variations of hydrocarbon pollutants and organochlorine pesticide residues in a sediment core in Lake Taihu, East China. Geochem.-Exploration Environ. Anal. 5, 99–104. https://doi.org/10.1144/1467-7873/03-038 (2005).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Lu, Y. & Zhao, W. Y. Spatial distribution of polycyclic aromatic hydrocarbons from Lake Taihu, China. Bull. Environ. Contam. Toxicol. 87, 80–85. https://doi.org/10.1007/s00128-011-0292-1 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dong, Y. B. et al. Polycyclic aromatic hydrocarbons in sediments from typical Algae, Macrophyte Lake Bay and adjoining river of Taihu Lake, China: Distribution, sources, and risk assessment. Water 13, 470. https://doi.org/10.3390/w13040470 (2021).CAS 
    Article 

    Google Scholar 
    Chen, P. & Liang, J. Polycyclic aromatic hydrocarbons in green space soils in Shanghai: Source, distribution, and risk assessment. J. Soils Sediments 21, 967–977. https://doi.org/10.1007/s11368-020-02838-2 (2021).CAS 
    Article 

    Google Scholar 
    Xia, Z. et al. New approaches to reduce sample processing times for the determination of polycyclic aromatic compounds in environmental samples. Chemosphere 274, 129738. https://doi.org/10.1016/j.chemosphere.2021.129738 (2021).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Sun, T., Wang, Y. H., Tian, J. M. & Kong, X. G. Characteristics of PAHs in soils under different land-use types and their associated health risks in the northern Taihu Basin, China. J. Soils Sediments 22, 134–145. https://doi.org/10.1007/s11368-021-03050-6 (2022).CAS 
    Article 

    Google Scholar 
    Abdollahi, S. et al. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar. Pollut. Bull. 72, 336–345. https://doi.org/10.1016/j.marpolbul.2013.01.025 (2013).CAS 
    Article 

    Google Scholar 
    Santos, E. et al. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment. Mar. Pollut. Bull. 127, 352–358. https://doi.org/10.1016/j.marpolbul.2017.12.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Long, E. R., Field, L. J. & Macdonald, D. D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 17, 714–727. https://doi.org/10.1002/etc.5620170428 (1998).CAS 
    Article 

    Google Scholar 
    Han, B., Liu, A., He, S., Li, Q. & Zheng, L. Composition, content, source, and risk assessment of PAHs in intertidal sediment in Shilaoren Bay, Qingdao, China. Mar. Pollut. Bull. 159, 111499. https://doi.org/10.1016/j.marpolbul.2020.111499 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abba, E. J., Unnikrishnan, S., Kumar, R., Yeole, B. & Chowdhury, Z. Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int. J. Environ. Health Res. 22, 134–149. https://doi.org/10.1080/09603123.2011.613112 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ji, H., Zhang, D. & Shinohara, R. Size distribution and estimated carcinogenic potential of particulate polycyclic aromatic hydrocarbons collected at a downtown site in Kumamoto, Japan, in Spring. J. Health Sci. 53, 700–707. https://doi.org/10.1248/jhs.53.700 (2007).CAS 
    Article 

    Google Scholar 
    Lei, P., Zhang, H. & Shan, B. Q. Vertical records of sedimentary PAHs and their freely dissolved fractions in porewater profiles from the northern bays of Taihu Lake, Eastern China. RSC Adv. 6, 98835–98844. https://doi.org/10.1039/c6ra11180g (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Li, A. L. et al. Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China. Environ. Pollut. 246, 198–206. https://doi.org/10.1016/j.envpol.2018.11.112 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 46, 3065–3073. https://doi.org/10.1016/j.watres.2012.03.006 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H. & Wang, Z. J. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ. Int. 32, 28–33. https://doi.org/10.1016/j.envint.2005.04.005 (2016).CAS 
    Article 

    Google Scholar 
    Sun, L., Zang, S. Y. & Sun, H. J. Sources and history of PAHs in lake sediments from oil-producing and industrial areas, northeast China. Int. J. Environ. Sci. Technol. 11, 2051–2060. https://doi.org/10.1007/s13762-013-0396-8 (2014).CAS 
    Article 

    Google Scholar 
    Guo, J. Y. et al. Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Arch. Environ. Contam. Toxicol. 60, 590–596. https://doi.org/10.1007/s00244-010-9568-4 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Z. D. et al. A study on PAHs in the surface soil of the region around Qinghai Lake in the Tibet plateau: Evaluation of distribution characteristics, sources and ecological risks. Environ. Res. Commun. 3, 041005. https://doi.org/10.1088/2515-7620/abf3d9 (2021).Article 

    Google Scholar 
    Li, C. C. et al. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China. Environ. Sci. Pollut. Res. 21, 12028–12039. https://doi.org/10.1007/s11356-014-3137-8 (2014).CAS 
    Article 

    Google Scholar 
    Romo-Gomez, C., Monks, S., Pulido-Flores, G. & Gordillo-Martinez, A. J. Determination of polycyclic aromatic hydrocarbons (PAHs) in superficial water and sediment of Lake Tecocomulco, Mexico. Interciencia 35, 905–911 (2010).
    Google Scholar 
    Yuan, Z. J. et al. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk. Ecotoxicol. Environ. Saf. 214, 112095. https://doi.org/10.1016/10.1016/j.ecoenv.2021.112095 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, B. B., Wu, J. L. & Zhao, Z. H. Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface waters, soils and sediments of the Kaidu River catchment, northwest China. Int. J. Environ. Pollut. 63, 104–116. https://doi.org/10.1504/IJEP.2018.10014155 (2018).CAS 
    Article 

    Google Scholar 
    Yan, W., Chi, J. S., Wang, Z. Y., Huang, W. X. & Zhang, G. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ. Pollut. 157, 1823–1830. https://doi.org/10.1016/j.envpol.2009.01.023 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias, A. H. et al. Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahia Blanca estuary, Argentina. Environ. Monitor. Assess. 160, 301–314. https://doi.org/10.1007/s10661-008-0696-5 (2010).CAS 
    Article 

    Google Scholar 
    Yunker, M. B. et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5 (2002).CAS 
    Article 

    Google Scholar 
    Tobiszewski, M. & Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, M. H., Li, C. H., Ye, C. & Xu, S. H. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbon in sediments from Zhushan Bay littoral zone, Lake Taihu. J. Environ. Eng. Technol. 4, 199–205 (2014) (in Chinese).
    Google Scholar 
    Zhao, Q., Yu, Q. & Chen, L. M. Particulate matter and particle-bound polycyclic aromatic hydrocarbons in the Dapu road tunnel in Shanghai. Int. J. Environ. Pollut. 41, 21–37. https://doi.org/10.1504/IJEP.2010.032243 (2010).CAS 
    Article 

    Google Scholar 
    Tian, Y. Z. et al. Source contributions and spatiotemporal characteristics of PAHs in sediments: Using three-way source apportionment approach. Environ. Toxicol. Chem. 33, 1747–1753. https://doi.org/10.1002/etc.2628 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, F. et al. Polycyclic aromatic hydrocarbons (PAHs) and Pb isotopic ratios in a sediment core from Shilianghe Reservoir, eastern China: Implying pollution sources. Appl. Geochem. 66, 140–148. https://doi.org/10.1016/j.apgeochem.2015.12.010 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Harrison, R. M., Smith, D. J. T. & Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825–832. https://doi.org/10.1021/es950252d (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Simcik, M. F., Eisenreich, S. J. & Lioy, P. J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 33, 5071–5079. https://doi.org/10.1016/S1352-2310(99)00233-2 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    Yang, J., Xu, W. L. & Cheng, H. Y. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere 9, 63. https://doi.org/10.3390/atmos9020063 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    Cetin, B. Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Sci. Total Environ. 560, 160–169. https://doi.org/10.1016/j.scitotenv.2016.04.037 (2016).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ali-Taleshi, M. S., Squizzato, S., Riyahi Bakhtiari, A., Moeinaddini, M. & Masiol, M. Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM25-bound PAHs during heating and non-heating periods in a megacity in the Middle East. Environ. Res. 201, 111617. https://doi.org/10.1016/j.envres.2021.111617 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xu, J. et al. Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China. Sci. Total Environ. 470, 519–526. https://doi.org/10.1016/j.scitotenv.2013.10.022 (2014).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Wei, H., Liu, G. B., Yong, T. & Qin, Z. Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environ. Earth Sci. 74, 5557–5564. https://doi.org/10.1007/s12665-015-4570-9 (2015).CAS 
    Article 

    Google Scholar  More