More stories

  • in

    DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.) 320, 1034–1039 (2008).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry, edited by H. D. Schulz & M. Zabel (Springer, 2006), 271–309.Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).ADS 
    CAS 

    Google Scholar 
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24(Pt 3), 185–196 (2015).
    Google Scholar 
    Starke, R., Pylro, V. S. & Morais, D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb. Ecol. 81, 535–539 (2021).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vrieze, J., Pinto, A. J., Sloan, W. T. & Ijaz, U. Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6, 63 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, K. M., Petersen, I. A. B., Tobi, E., Korte, L. & Bohannan, B. J. M. Use of RNA and DNA to identify mechanisms of bacterial community homogenization. Front. Microbiol. 10, 2066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
    Google Scholar 
    Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmitt, S. et al. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depositional Rec. 5, 212–229 (2019).
    Google Scholar 
    Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8, e66662 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. et al. Sediment microbial communities and their potential role as environmental pollution indicators in Xuande Atoll, South China Sea. Front. Microbiol. 11, 1011 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E. et al. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific). FEMS Microbiol. Ecol. 79, 203–217 (2012).CAS 
    PubMed 

    Google Scholar 
    Stoddart, D. R. The conservation of Aldabra. Geogr. J. 134, 471 (1968).
    Google Scholar 
    Farrow, G. E. & Brander, K. M. Tidal studies on Aldabra. Phil. Trans. R. Soc. Lond. B 260, 93–121 (1971).ADS 

    Google Scholar 
    Gaillard, C., Bernier, P. & Gruet, Y. L. lagon d’Aldabra (Seychelles, Océan indien), un modèle pour le paléoenvironnement de Cerin (Kimméridgien supérieur, Jura méridional, France). Geobios 27, 331–348 (1994).
    Google Scholar 
    Hamylton, S., Spencer, T. & Hagan, A. B. Spatial modelling of benthic cover using remote sensing data in the Aldabra lagoon, western Indian Ocean. Mar. Ecol. Prog. Ser. 460, 35–47 (2012).ADS 

    Google Scholar 
    Braithwaite, C. J. R. Last interglacial changes in sea level on Aldabra, western Indian Ocean. Sedimentology 67, 3236–3258 (2020).
    Google Scholar 
    Haverkamp, P. J. et al. Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecol. Ind. 80, 354–362 (2017).
    Google Scholar 
    Hughes, R. N. & Gamble, J. C. A quantitative survey of the biota of intertidal soft substrata on Aldabra Atoll, Indian Ocean. Phil. Trans. R. Soc. Lond. B 279, 327–355 (1977).ADS 

    Google Scholar 
    Braithwaite, C., Casanova, J., Frevert, T. & Whitton, B. A. Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 145–165 (1989).
    Google Scholar 
    Potts, M. & Whitton, B. A. Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27, 275–283 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Potts, M. & Whitton, B. A. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proc. R. Soc. Lond. B. 208, 13–55 (1980).ADS 

    Google Scholar 
    Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).ADS 
    CAS 

    Google Scholar 
    Choi, A., Lee, K., Oh, H.-M., Feng, J. & Cho, J.-C. Litoricola marina sp. nov.. Int. J. Syst. Evolut. Microbiol. 60, 1303–1306 (2010).CAS 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand Genom. Sci. 9, 632–645 (2014).
    Google Scholar 
    Boehm, A. B., Yamahara, K. M. & Sassoubre, L. M. Diversity and transport of microorganisms in intertidal sands of the California coast. Appl. Environ. Microbiol. 80, 3943–3951 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12, 623–633 (2018).PubMed 

    Google Scholar 
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).ADS 
    CAS 

    Google Scholar 
    Diaz, M. R., Piggot, A. M., Eberli, G. P. & Klaus, J. S. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485, 9–24 (2013).ADS 

    Google Scholar 
    Cui, H., Yang, K., Pagaling, E. & Yan, T. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Appl. Environ. Microbiol. 79, 3601–3609 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petriglieri, F., Nierychlo, M., Nielsen, P. H. & McIlroy, S. J. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE 13, e0206255 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wietz, M., Gram, L., Jørgensen, B. & Schramm, A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179–189 (2010).
    Google Scholar 
    Wemheuer, B. et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol. Ecol. 87, 378–389 (2014).CAS 
    PubMed 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Part I 43, 555–578 (1996).
    Google Scholar 
    Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their Use in Microbial Ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 293–352 (Springer, 1989).
    Google Scholar 
    Watson, J. et al. Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int. J. Syst. Evol. Microbiol. 50(Pt 3), 1035–1042 (2000).CAS 
    PubMed 

    Google Scholar 
    Sasi, J. T. S., Rahul, K., Ramaprasad, E. V. V., Sasikala, C. & Ramana, C. V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evolut. Microbiol. 63, 4619–4625 (2013).
    Google Scholar 
    Rinke, C. et al. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont ‘Candidatus Thiobios zoothamnicoli’. FEMS Microbiol. Ecol. 67, 229–241 (2009).CAS 
    PubMed 

    Google Scholar 
    Vartoukian, S. R., Palmer, R. M. & Wade, W. G. The division “Synergistes”. Anaerobe 13, 99–106 (2007).CAS 
    PubMed 

    Google Scholar 
    Janssen, P. H. & Liesack, W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch. Microbiol. 164, 29–35 (1995).CAS 
    PubMed 

    Google Scholar 
    Shiozaki, T. et al. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J. 10, 2184–2197 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Domenech, C. M., Martínez-Checa, F., Béjar, V. & Quesada, E. Denitrification as an important taxonomic marker within the genus Halomonas. Syst. Appl. Microbiol. 33, 85–93 (2010).PubMed 

    Google Scholar 
    Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. The Book. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–79 (Wiley, 2016).
    Google Scholar 
    Ventosa, A. & Haba, R. R. in Bergey’s Manual of Systematics of Archaea and Bacteria, edited by W. B. Whitman, et al. (Wiley, 2015), 1–16.Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2021).PubMed 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 

    Google Scholar 
    Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M. & Dedeles, G. R. Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds. J. Health Pollut. 8, 180915 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. MBio 10, 1002 (2019).
    Google Scholar 
    Moulton, O. M. et al. Microbial associations with macrobiota in coastal ecosystems: Patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14, 200–208 (2016).
    Google Scholar 
    Park, S., Park, J.-M., Kang, C.-H. & Yoon, J.-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 64, 1841–1846 (2014).CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Members of Marinobacter and Arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian Basin. Front. Microbiol. 9, 2646 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm, R. C. Following the terrestrial tracks of Caulobacter – redefining the ecology of a reputed aquatic oligotroph. ISME J. 12, 3025–3037 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int. J. Syst. Evol. Microbiol. 57, 520–526 (2007).CAS 
    PubMed 

    Google Scholar 
    Dawson, K. S., Scheller, S., Dillon, J. G. & Orphan, V. J. Stable isotope phenotyping via cluster analysis of nanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front. Microbiol. 7, 774 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fadhlaoui, K. et al. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int. J. Syst. Evol. Microbiol. 65, 3501–3506 (2015).CAS 
    PubMed 

    Google Scholar 
    Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).CAS 
    PubMed 

    Google Scholar 
    Schneider, D., Wemheuer, F., Pfeiffer, B. & Wemheuer, B. Extraction of total DNA and RNA from marine filter samples and generation of a cDNA as universal template for marker gene studies. Methods Mol. Biol. Clifton N J 1539, 13–22 (2017).CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7, 421 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Hoyningen-Huene, A. J. E. et al. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci. data 6, 163 (2019).
    Google Scholar 
    Tange, O. Gnu parallel-the command-line power tool. login: The USENIX Mag. 36, 42–47 (2011).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884–i890 (2018).
    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics (Oxford, England) 30, 614–620 (2014).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing (2016).Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    SILVAngs. SILVAngs – rDNA-based microbial community analysis using next-generation sequencing (NGS) data – user guide. Available at https://www.arb-silva.de/fileadmin/silva_databases/sngs/SILVAngs_User_Guide.pdf (2017).McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree – tree figure drawing tool (2018).R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: integrated development for R (RStudio Inc., 2021).Chen, L. et al. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).
    Google Scholar 
    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (2018).Oksanen, J. et al. vegan: Community ecology package (2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Harrel Jr, F. E., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation (2021).de Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 

    Google Scholar 
    Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esri Inc. ArcGIS Desktop (Esri Inc., 2019).Inkscape Developers. Inkscape (2020).Fussmann, D. et al. Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 17, 2085–2106 (2020).ADS 
    CAS 

    Google Scholar 
    Parkhurst, D. L. & Appelo, C. A. in U.S. Geological Survey Techniques and Methods (2013), Vol. 6, pp. 2328–7055. More

  • in

    Weather fluctuation can override the effects of integrated nutrient management on fungal disease incidence in the rice fields in Taiwan

    Plant materialRice (Oryza sativa L.) plants used for the experiment were from the collection of Taiwan Agricultural Research Institute. The rice variety (Tainan No. 11) used in this study has enhanced resistance to rice blast. The use of plant materials complies with international, national, and/or institutional guidelines and legislation.Field areaThis study was carried out in experimental rice fields under low-external-input and conventional farming in central Taiwan (23.5859 N, 120.4083 E; 8.0 ha). The annual average temperature ranged from 23 to 25 °C, the annual average relative humidity ranged from 75 to 92%, and the annual rainfall ranged from 1020 to 2873 mm year−1 (average data between 2006 and 2016 measured at a nearby weather station; Fig. 1). The experimental paddy plots were defined by considering the typical dimensions of the agricultural fields in Taiwan (0.5 to 1.0 ha). A long-term experiment was conducted from 2006 to 2016 to study the effects of different agronomic management on biodiversity, productivity, and environment, including traceability system, soil fertility, nitrogen leaching, production costs, disease incidence and severity, the abundance of pest and beneficial insects, and weed dynamics.The treatments consisted of conventional farming with high chemical fertilizer input (CF) and low-external-input farming with low fertilizer input (LF). In the CF farming, we followed the fertilizer recommendations that are constructed to meet the nutrient requirements of the crop. In the LF farming, the chemical fertilizers were largely reduced compared to the recommendation (see next paragraph for the details). The experiment was conducted as a randomized complete block design (RCBD) with four replicates. In agricultural experiments, the RCBD is a standard procedure by grouping experimental units into blocks. For example, the design can control variation in the experiments by considering spatial influences and adjusting the effects of target factors in fields. Each experimental unit consisted of a 0.58 ± 0.16 ha of the area of the field. Additional nutrient management in the LF system includes (1) nitrogen-fixing and cover crops, (2) manure and compost applications, (3) plant and soil nutrient analyses for adjusting fertilization, and (4) reduced tillage. Soil-available potassium gradually decreased during the 10-year study period in the area of the LF system. Over the study period, the LF system achieved the similar level of crop production as that of the CF system (Fig. S1).In our study area, there were two growing seasons within a year: one in the first half of the year (from February to June) and one in the second half (from August to December). The ground fertilizers were applied before rice seedlings were transplanted, followed by additional fertilizations during the tillering and boosting stages. The total amount of fertilizers used for the CF system included 140–180 and 120–140 kg N ha−1, 70–72 and 60 kg P2O5 ha−1, and 85 and 60 kg K2O ha−1 for the first and second seasons, respectively. For the LF system, 100 and 80 kg N ha−1, 30 and 30 kg P2O5 ha−1, and 30 and 30 kg K2O ha−1 were applied in the first and second seasons, respectively. The larger amount of fertilizers for the first season was due to its longer duration. For each rice growing season, fungicides were applied to both farming systems once during the boosting stage. During the fungicide application, a 10% mixture of Cartap plus Probenazole or 6% probenazole for rice blast (both 30 kg ha−1) and 1.5% Furametpyr for sheath blight (20 kg ha−1) were used.Rice disease monitoringThe major rice disease (rice blast; Fig. S2) was monitored biweekly in the CF and LF systems over the two growing seasons per year, with each growing season including (in chronological order) the tillering, flowering, and maturing stages. There was a total of 123 occasions during our study. The plants were disease free when planted out. When the lesion of the rice blast began to appear in the fields from the tillering stage to the maturing stage, the effects of the two treatments (CF and LF systems) in the paddy fields on the disease incidence of rice blast (caused by Pyricularia oryzae) were investigated. For each plot (or experimental unit), the incidence of rice disease was randomly examined at 5 points and for 25 plexuses (i.e., each derived from one primary tiller) per point. The disease incidence was quantified as the percentage of infected plexuses that were determined based on the presence of infected leaves.The area under the disease progress curve (AUDPC) was used to quantify disease incidences over time, and the relative AUDPC ((RAUDPC)) was used because of unequal sampling duration in the growing seasons during our study period. For each plot (or experimental unit), we used the (RAUDPC) to summarize the incidences of disease during each growing season as follows:$$RAUDPC=frac{sum_{i=1}^{n-1}frac{{y}_{i}+{y}_{i+1}}{2}times left({t}_{i+1}-{t}_{i}right)}{100 times left({t}_{n}-{t}_{1}right)},$$
    (1)
    where ({y}_{i}) and ({t}_{i}) are the disease incidence (%) and time (day) at the (i)th observation, respectively, and (n) is the total number of observations.Bayesian modelingWe built a mechanistic model that was applied to assess the interplay within a network of relationships among weather fluctuation, farming system, and disease incidence in the paddy fields. The model describes how (1) temperature and relative humidity together influence the development of primary inoculum, (2) rainfall detaches the fungal spores on the host tissues, and (3) rainfall and wind catch the airborne spores onto the leaf area. These environmental processes determine the disease incidence in the model. In addition, this model considers that farming systems can suppress or accelerate disease incidence. By fitting our model to the observed incidence, Bayesian inference was used as the parameter estimation technique for the models. In addition, we tested the alternative mechanistic hypotheses based on a model-selection criterion and cross vaidation (see subsequent paragraphs).With a linearity assumption, the incidences of disease (RAUDPC) were modeled as an inverse-logit function of the progress rate of the development of primary inoculum ((IP) with values between 0 and 1) and the net catchment of the airborne spores by rainfall and wind ((CT) with values between 0 and 1; when subtracting the detachment of spores by rainfall from the host tissue) as follows:$$RAUDPC=invLogitleft({a}_{f}+{b}_{1}bullet logitleft(avg_IPright)+{b}_{2}bullet logitleft(avg_IPbullet avg_CTright)right),$$
    (2)
    where ({a}_{f}), ({b}_{1}), and ({b}_{2}) describe the constant baseline for different farming systems ((f) = the CF or LF system), the direct effect size of (avg_IP), and the mediating effect size of (avg_CT) through (IP), respectively. The two parameters ((avg_IP) and (avg_CT)) are averaged (IP) and (CT) during the growing season, respectively (see below for details). The effect sizes ({b}_{1}) and ({b}_{2}) have values more than zero. The constant baseline allows the management-specific acting in the model when they can influence the disease incidence.The process rate (IP) was simulated as a function of the temperature response ((fleft(Tright)) with values between 0 and 1) and hourly air relative humidity ((RH,) %) as follows20:$$IP= left{begin{array}{ll}0& mathrm{if}, RH 0) are the steepness and midpoint parameters to control the portion of spores caught by the wind, respectively.The Bayesian framework ‘Stan’49 and its R interface ‘RStan’50 were used to construct and fit the models. There were two competing models: either considering the difference between the CF and LF systems by not fixed to the same values of the constant baseline ({a}_{f}) in Formula (2) or not. For each model, four Markov Chain Monte Carlo (MCMC) chains (for numerical approximations of Bayesian inference) ran, each with 5,000 iterations, and the first half of the iterations of each chain were discarded as burn-in. The R-hat statistic of each parameter approaches a value of 1, indicating model convergence. With a total of 2,000 samples, collected as one sample for every 5 iterations for each chain, the model parameters and their posterior distribution were estimated. To compare the two competing models, we calculated the widely applicable information criterion (WAIC) using the R package ‘loo’51. The best model was determined based on the lowest WAIC. By using the same R package, we also performed the approximate leave-one-out cross-validation (LOO-CV) to estimate the predictive ability of the two Bayesian models. Here, we used the expected log predictive density (ELPD) to be the predictive performance.Compliance with ethical standardsThe authors declare that they have no conflict of interest. This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors. More

  • in

    Global seasonal Sentinel-1 interferometric coherence and backscatter data set

    Sentinel-1 data selectionThe Copernicus Sentinel-1 mission was launched by the European Space Agency (ESA) in 2014 with the Sentinel-1A satellite, complemented with the second Sentinel-1B satellite in 2016. Each satellite has a 12-days repeat cycle. Continuity of the Sentinel-1 mission has been approved by ESA until 2030 and replacement satellites will be launched. The satellites operate in different acquisition modes over different parts of the globe. Land masses are covered primarily by the Interferometric Wide-Swath Mode (IW) with a 250 km swath width across-track. Single-look-complex (SLC) Level 1.1 data are required for interferometric processing. Along-track, Sentinel-1 data are sliced into consecutive frames (slices) of about 250 km length. Data are distributed via ESA’s Scientific Sentinel-1 Hub, which is mirrored at NASA’s Alaska Satellite Facility DAAC (ASF-DAAC). During production, Sentinel-1 SLC data were accessed on the ASF-DAAC data repository which resides on Amazon’s AWS S3 bucket in region us-west-2.Sentinel-1 satellites cover various parts of Earth in ascending and descending flight direction in a total of 175 relative orbits. ESA’s flight plan has some areas covered every six days and in both flight directions, predominantly over Europe. For the production of this data set, Sentinel-1 SLC frames were selected from all available scenes acquired between December 1st 2019 and November 30th 2020. Over the one-year timeframe, a maximum of 30 to 31 acquisitions at 12-days repeat, and 60 to 61 acquisitions at 6-days repeat intervals can be expected. The following selection criteria were applied consecutively to achieve global coverage with uniform distribution of acquisitions across seasons (Fig. 1):

    Global descending data (Fig. 1a) were selected where the one-year stack size had at least 25 acquisitions.

    Spatial gaps were filled with ascending data (Fig. 1a) where the one-year stack size had at least 25 acquisitions.

    For spatial consistency, over conterminous North America north of Panama, preference was given to ascending data where both ascending and descending data existed with stack sizes over 25 acquisitions.

    For stack sizes less than 25 acquisitions, preference was given to the flight direction with the larger number of acquisitions.

    Remaining gaps were filled with data from the flight direction available.

    Fig. 1Flight direction, polarization mode, and InSAR stack sizes of 6- and 12-days repeat coverage of Sentinel-1 data acquired between December 1st 2019 and November 30th 2020 selected for processing.Full size imageArctic and Antarctic regions are typically covered with polarization modes of horizontal transmit (HH single- or HH/HV dual-polarization). Figure 1b shows the global distribution of the processed data in horizontal and vertical polarization transmit modes, respectively. Table 1 summarizes the number of selected scenes in the two flight directions and various polarization modes. The total number of processed Sentinel-1 SLC frames came to ~205,000 scenes with a total raw input data volume of about 850 Terabytes. Figure 1c,d show the spatial distribution of the final scene selection with the number of 6- and 12-days repeat-pass image pairs. Consistent 6-days repeat coverage with about sixty image pairs from either ascending or descending orbits could be processed over Europe, the coastal areas of Greenland and Antarctica, and some smaller areas around the world; note that in some regions (e.g., India, interior Greenland, Northern Canada, Eastern China) 6-days repeat coverage was available in certain seasons only (Fig. 1c). A consistent coverage with 12-days repeat-pass imagery, instead, could be processed almost globally with the nominal maximum of about thirty repeat-pass pairs in areas where only one satellite, Sentinel-1A or Sentinel-1B, acquired data in all but few areas above 60° N in Canada, Greenland, or Russia (Fig. 1d). In some small areas in the Midwestern United States, the Khabarovsk region in Far-Eastern Russia, or in the Northern Sahara, neither Sentinel-1A nor Sentinel-1B acquire data in IW mode, leading to small gaps in the final data set.Table 1 Number of Sentinel-1 Single Look Complex scenes processed.Full size tableProcessing approachThe overall processing workflow was developed based on the interferometric processing software developed by GAMMA Remote Sensing and geared towards efficient processing in the Amazon Web Services (AWS) cloud environment utilizing Earth Big Data LLC’s cloud scaling solutions. The workflow is divided into three main blocks as illustrated in Fig. 2. Sentinel-1A and -1B acquire data along 175 relative orbits/orbital tracks. Blocks 1 and 2 were processed on a per relative orbit basis; block 3 was initiated after blocks 1 and 2 had been completed for all relative orbits.Fig. 2Implementation of the Sentinel-1 interferometric processor in the AWS cloud environment.Full size imageProcessing Block 1For each SLC of a given relative orbit, processing block 1 entailed:

    1.

    Conversion of SLC image files to a GAMMA specific format. Each Sentinel-1 SLC, covering an area of ~250 × 250 km, consists of six SLC image files (one SLC image file for each of the three sub-swaths in co- (VV or HH) and cross-polarizations (VH or HV).

    2.

    Compensation of the SLC amplitudes for the noise equivalent sigma zero (NESZ).

    3.

    The orbit state vectors provided with the original Sentinel-1 SLCs were updated with the precision state vectors (AUX_POEORB) distributed by the Sentinel-1 payload data ground segment 20 days after data take with a precision (3σ) generally of the order of 1 cm (target requirement  More

  • in

    Pet-directed speech improves horses’ attention toward humans

    Jardat, P. & Lansade, L. Cognition and the human–animal relationship: a review of the sociocognitive skills of domestic mammals toward humans. Anim. Cogn. https://doi.org/10.1007/s10071-021-01557-6 (2021).Article 
    PubMed 

    Google Scholar 
    Knolle, F., Goncalves, R. P. & Jennifer Morton, A. Sheep recognize familiar and unfamiliar human faces from two-dimensional images. R. Soc. Open Sci. 4, 171228 (2017).Nawroth, C. & McElligott, A. G. Human head orientation and eye visibility as indicators of attention for goats (Capra hircus). PeerJ 5, e3073 (2017).Albuquerque, N. et al. Dogs recognize dog and human emotions. Biol. Lett. 12, 20150883 (2016).Article 

    Google Scholar 
    Albuquerque, N., Guo, K., Wilkinson, A., Resende, B. & Mills, D. S. Mouth-licking by dogs as a response to emotional stimuli. Behav. Processes 146, 42–45 (2018).Article 

    Google Scholar 
    Quaranta, A., D’ingeo, S., Amoruso, R. & Siniscalchi, M. Emotion recognition in cats. Animals 10, 1107 (2020).Sabiniewicz, A., Tarnowska, K., Świątek, R., Sorokowski, P. & Laska, M. Olfactory-based interspecific recognition of human emotions: Horses (Equus ferus caballus) can recognize fear and happiness body odour from humans (Homo sapiens). Appl. Anim. Behav. Sci. 230, 105072 (2020).Smith, A. V., Proops, L., Grounds, K., Wathan, J. & McComb, K. Functionally relevant responses to human facial expressions of emotion in the domestic horse (Equus caballus). Biol. Lett. 12, 20150907 (2016).Article 

    Google Scholar 
    Smith, A. V. et al. Domestic horses (Equus caballus) discriminate between negative and positive human nonverbal vocalisations. Sci. Rep. 8, 13052 (2018).ADS 
    Article 

    Google Scholar 
    Nakamura, K., Takimoto-Inose, A. & Hasegawa, T. Cross-modal perception of human emotion in domestic horses (Equus caballus). Sci. Rep. 8, 8660 (2018).ADS 
    Article 

    Google Scholar 
    Trösch, M. et al. Horses categorize human emotions cross-modally based on facial expression and non-verbal vocalizations. Animals 9, 862 (2019).Article 

    Google Scholar 
    Sankey, C., Henry, S., André, N., Richard-Yris, M. A. & Hausberger, M. Do horses have a concept of person? PLoS One 6, e18331 (2011).Trösch, M., Bertin, E., Calandreau, L., Nowak, R. & Lansade, L. Unwilling or willing but unable: can horses interpret human actions as goal directed?. Anim. Cogn. 23, 1035–1040 (2020).Article 

    Google Scholar 
    Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl. Acad. Sci. 109, 8202–8206 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    VanDierendonck, M. C. & Goodwin, D. Social contact in horses: implications for human-horse interactions. in The human-animal relationship. Forever and a day (eds. de Jonge, F. H. & van den Bos, R.) 65–81 (Royal van Gorcum, 2005).Saint-Georges, C. et al. Motherese in Interaction: At the Cross-Road of Emotion and Cognition? (A Systematic Review). PLoS ONE 8, 78103 (2013).ADS 
    Article 

    Google Scholar 
    Benjamin, A. & Slocombe, K. ‘Who’s a good boy?!’ Dogs prefer naturalistic dog-directed speech. Anim. Cogn. 21, 353–364 (2018).Article 

    Google Scholar 
    Ben-Aderet, T., Gallego-Abenza, M., Reby, D. & Mathevon, N. Dog-directed speech: Why do we use it and do dogs pay attention to it?. Proc. R. Soc. B Biol. Sci. 284, 20162429 (2017).Article 

    Google Scholar 
    Jeannin, S., Gilbert, C., Amy, M. & Leboucher, G. Pet-directed speech draws adult dogs’ attention more efficiently than Adult-directed speech. Sci. Rep. 7, 4980 (2017).ADS 
    Article 

    Google Scholar 
    Lesch, R. et al. Talking to dogs: Companion animal-directed speech in a stress test. Animals 9, 417 (2019).Article 

    Google Scholar 
    Lansade, L. et al. Horses are sensitive to baby talk : Pet-directed speech facilitates communication with humans in a pointing task and during grooming. Anim. Cogn. 5, 999–1006 (2021).Article 

    Google Scholar 
    Schachner, A. & Hannon, E. E. Infant-Directed Speech Drives Social Preferences in 5-Month-Old Infants. Dev. Psychol. 47, 19–25 (2011).Article 

    Google Scholar 
    Fernald, A. Approval and Disapproval: Infant Responsiveness to Vocal Affect in Familiar and Unfamiliar Languages. Child Dev. 64, 657–674 (1993).CAS 
    Article 

    Google Scholar 
    Slonecker, E. M., Simpson, E. A., Suomi, S. J. & Paukner, A. Who’s my little monkey? Effects of infant-directed speech on visual retention in infant rhesus macaques. Dev. Sci. 21, 12519 (2018).Article 

    Google Scholar 
    Kaplan, P. S., Goldstein, M. H., Huckeby, E. R. & Cooper, R. P. Habituation, sensitization, and infants’ responses to motherse speech. Dev. Psychobiol. 28, 45–57 (1995).CAS 
    Article 

    Google Scholar 
    Lansade, L. et al. Facial expression and oxytocin as possible markers of positive emotions in horses. Sci. Rep. 8, 14680 (2018).ADS 
    Article 

    Google Scholar 
    Hausberger, M. et al. Mutual interactions between cognition and welfare: The horse as an animal model. Neurosci. Biobehav. Rev. 107, 540–559 (2019).CAS 
    Article 

    Google Scholar 
    Fortin, M. et al. Emotional state and personality influence cognitive flexibility in horses (Equus caballus). J. Comp. Psychol. 132, 130–140 (2018).Article 

    Google Scholar 
    Trösch, M. et al. Horses feel emotions when they watch positive and negative horse–human interactions in a video and transpose what they saw to real life. Anim. Cogn. 23, 643–653 (2020).Article 

    Google Scholar 
    Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374 (2007).CAS 
    Article 

    Google Scholar 
    Lansade, L., Bouissou, M. F. & Erhard, H. W. Fearfulness in horses: A temperament trait stable across time and situations. Appl. Anim. Behav. Sci. 115, 182–200 (2008).Article 

    Google Scholar 
    Stomp, M. et al. An unexpected acoustic indicator of positive emotions in horses. PLoS One 13, e0197898 (2018).Briefer, E. F. et al. Segregation of information about emotional arousal and valence in horse whinnies. Sci. Rep. 5, 9989 (2015).ADS 
    Article 

    Google Scholar 
    Briefer, E. F., Tettamanti, F. & McElligott, A. G. Emotions in goats: Mapping physiological, behavioural and vocal profiles. Anim. Behav. 99, 131–143 (2015).Article 

    Google Scholar 
    Mendl, M., Burman, O. H. P. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. in Proceedings of the Royal Society B: Biological Sciences vol. 277 2895–2904 (Royal Society, 2010).Siniscalchi, M., D’Ingeo, S. & Quaranta, A. Orienting asymmetries and physiological reactivity in dogs’ response to human emotional faces. Learn. Behav. 46, 574–585 (2018).Article 

    Google Scholar 
    Munsters, C. C. B. M., Visser, K. E. K., van den Broek, J. & Sloet van Oldruitenborgh-Oosterbaan, M. M. The influence of challenging objects and horse-rider matching on heart rate, heart rate variability and behavioural score in riding horses. Vet. J. 192, 75–80 (2012).Siniscalchi, M., D’Ingeo, S., Minunno, M. & Quaranta, A. Communication in dogs. Animals 8, 131 (2018).Article 

    Google Scholar 
    Call, J., Hare, B., Carpenter, M. & Tomasello, M. ‘Unwilling’ versus ‘unable’: Chimpanzees’ understanding of human intentional action. Dev. Sci. 7, 488–498 (2004).Article 

    Google Scholar 
    Kaminski, J., Schulz, L. & Tomasello, M. How dogs know when communication is intended for them. Dev. Sci. 15, 222–232 (2012).Article 

    Google Scholar 
    Pongrácz, P., Szapu, J. S. & Faragó, T. Cats (Felis silvestris catus) read human gaze for referential information. Intelligence 74, 43–52 (2019).Article 

    Google Scholar 
    Pongrácz, P. & Onofer, D. L. Cats show an unexpected pattern of response to human ostensive cues in a series of A-not-B error tests. Anim. Cogn. 23, 681–689 (2020).Article 

    Google Scholar 
    Proops, L., Grounds, K., Smith, A. V. & McComb, K. Animals remember previous facial expressions that specific humans have exhibited. Curr. Biol. 28, 1428-1432.e4 (2018).CAS 
    Article 

    Google Scholar 
    Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).Article 

    Google Scholar 
    von Borell, E. et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 92, 293–316 (2007).Article 

    Google Scholar  More

  • in

    Confronting the water potential information gap

    Brutsaert, W. Hydrology: An Introduction (Cambridge Univ. Press, 2005).Philip, J. Plant water relations: some physical aspects. Annu. Rev. Plant Physiol. 17, 245–268 (1966).
    Google Scholar 
    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).
    Google Scholar 
    Boyer, J. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46, 236–239 (1970).
    Google Scholar 
    Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B 273, 593–610 (1976).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    Google Scholar 
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    Whalley, W., Ober, E. & Jenkins, M. J. J. Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Biol. 64, 3951–3963 (2013).
    Google Scholar 
    Yu, H., Yang, P. & Lin, H. Spatiotemporal patterns of soil matric potential in the Shale Hills Critical Zone Observatory. Vadose Zone J. https://doi.org/10.2136/vzj2014.11.0167 (2015).Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314 (1974).
    Google Scholar 
    van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).Scott, B. L. et al. New soil property database improves Oklahoma Mesonet soil moisture estimates. J. Atmos. Ocean. Technol. 30, 2585–2595 (2013).
    Google Scholar 
    Campbell, G. S. Soil water potential measurement: an overview. Irrig. Sci. 9, 265–273 (1988).
    Google Scholar 
    Van Looy, K. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55, 1199–1256 (2017).
    Google Scholar 
    Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978).
    Google Scholar 
    Cosby, B., Hornberger, G., Clapp, R. & Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984).
    Google Scholar 
    Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 547, 39–53 (2017).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).
    Google Scholar 
    Ghezzehei, T. A. & Albalasmeh, A. A. Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol. Modell. 298, 53–63 (2015).
    Google Scholar 
    Leung, A. K., Garg, A. & Ng, C. W. W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 193, 183–197 (2015).
    Google Scholar 
    Caplan, J. S. et al. Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation. Sci. Adv. 5, eaau6635 (2019).
    Google Scholar 
    Peña-Sancho, C., López, M., Gracia, R. & Moret-Fernández, D. Effects of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 55, 114–123 (2017).
    Google Scholar 
    Stoof, C. R., Wesseling, J. G. & Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma 159, 276–285 (2010).
    Google Scholar 
    Gutmann, E. & Small, E. The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett. 32, L02402 (2005).
    Google Scholar 
    Weihermüller, L. et al. Choice of pedotransfer functions matters when simulating soil water balance fluxes. J. Adv. Model. Earth Syst. 13, e2020MS002404 (2021).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F. & Duffy, C. J. Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory. J. Hydrometeorol. 15, 279–299 (2014).
    Google Scholar 
    Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. & Yu, X. J. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Res. 83, 421–427 (2015).
    Google Scholar 
    Shi, Y. et al. Simulating high‐resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrol. Process. 29, 4624–4637 (2015).
    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).
    Google Scholar 
    Boucher, O. et al. Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
    Google Scholar 
    Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL‐CM6A‐LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).
    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
    Google Scholar 
    Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite‐based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).
    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).
    Google Scholar 
    Baldocchi, D. D., Xu, L. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 123, 13–39 (2004).
    Google Scholar 
    Trugman, A. T., Anderegg, L. D., Shaw, J. D. & Anderegg, W. R. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
    Google Scholar 
    Martínez-Vilalta, J. et al. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. New Phytol. 232, 404–417 (2021).Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development 6th edn (Sinauer Associates, 2015).Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. & Hammel, H. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).
    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Matheny, A. M. et al. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere https://doi.org/10.1890/es15-00170.1 (2015).Wood, J. D., Knapp, B. O., Muzika, R.-M., Stambaugh, M. C. & Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 13, 015004 (2018).
    Google Scholar 
    Hinckley, T. M., Lassoie, J. P. & Running, S. W. Temporal and spatial variations in the water status of forest trees. For. Sci. 24, a0001–z0001 (1978).
    Google Scholar 
    Marks, C. O. & Lechowicz, M. J. The ecological and functional correlates of nocturnal transpiration. Tree Physiol. 27, 577–584 (2007).
    Google Scholar 
    O’Keefe, K. & Nippert, J. B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 32, 1155–1167 (2018).
    Google Scholar 
    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).
    Google Scholar 
    Kannenberg, S. A. et al. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct. Ecol. 36, 24–37 (2022).Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).Feng, X. et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses. Plant Cell Environ. 42, 1104–1111 (2019).
    Google Scholar 
    Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H. & Ogle, K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. N. Phytol. 225, 713–726 (2020).
    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).
    Google Scholar 
    Novick, K. A., Konings, A. G. & Gentine, P. Beyond soil water potential: an expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42, 1802–1815 (2019).
    Google Scholar 
    McCulloh, K. A. et al. A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant Cell Environ. 42, 2789–2807 (2019).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Mirfenderesgi, G., Matheny, A. M. & Bohrer, G. Hydrodynamic trait coordination and cost–benefit trade‐offs throughout the isohydric–anisohydric continuum in trees. Ecohydrology 12, e2041 (2019).
    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol. 212, 80–95 (2016).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Meinzer, F. C. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol. 24, 919–928 (2004).
    Google Scholar 
    Scott, R. L., Cable, W. L. & Hultine, K. R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 44, W02440 (2008).
    Google Scholar 
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
    Google Scholar 
    Johnson, D. M. et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983–993 (2016).
    Google Scholar 
    Lehto, T. & Zwiazek, J. J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011).
    Google Scholar 
    Bezerra-Coelho, C. R., Zhuang, L., Barbosa, M. C., Soto, M. A. & Van Genuchten, M. T. Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. J. Hydrol. Hydromech. 66, 161–169 (2018).
    Google Scholar 
    Wullschleger, S., Dixon, M. & Oosterhuis, D. Field measurement of leaf water potential with a temperature‐corrected in situ thermocouple psychrometer. Plant Cell Environ. 11, 199–203 (1988).
    Google Scholar 
    Holtzman, N. M. et al. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences 18, 739–753 (2021).
    Google Scholar 
    Nagy, R. C. et al. Harnessing the NEON data revolution to advance open environmental science with a diverse and data‐capable community. Ecosphere 12, e03833 (2021).
    Google Scholar 
    Novick, K. A. et al. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).
    Google Scholar 
    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).
    Google Scholar 
    Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).Jackson, T. & Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).
    Google Scholar 
    Konings, A. G., Rao, K. & Steele‐Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. N. Phytol. 223, 1166–1172 (2019).
    Google Scholar 
    Konings, A. G. et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Change Biol. https://doi.org/10.1111/gcb.15872 (2021).Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).
    Google Scholar 
    Simunek, J., Van Genuchten, M. T. & Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (Dept Environ. Sci. Univ. California Riverside, 2005).Naylor, S., Letsinger, S., Ficklin, D., Ellett, K. & Olyphant, G. A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid‐continental USA. Hydrol. Process. 30, 1594–1608 (2016).
    Google Scholar 
    Urbanski, S. et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 112, G02020 (2007).
    Google Scholar 
    Thum, T. et al. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B 59, 874–890 (2007).
    Google Scholar 
    Ardö, J., Mölder, M., El-Tahir, B. A. & Elkhidir, H. A. M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manage. 3, 7 (2008).
    Google Scholar 
    Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).
    Google Scholar 
    Fu, C. et al. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrol. Earth Syst. Sci. 20, 2001–2018 (2016).
    Google Scholar 
    Liang, J. et al. Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geosci. Model Dev. 12, 1601–1612 (2019).Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017). More

  • in

    Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019

    Daily change in primary pollutantsTo elucidate the change trend of primary pollutants under the 13th Five-Year Plan, we calculated the daily primary pollutants in 2015 and 2019 based on formula (1) and formula (2). Such diurnal comparisons can reduce the effects of seasonal weather to some extent. From the 19 UAs (224 prefecture-level cities), the heat diagram of the daily change transfer matrix of primary pollutants from 2015 to 2019 is shown in Fig. 2, including six primary pollutants and clean day conditions.Figure 2Transfer change matrix heatmap of primary pollutants from 2015 to 2019.Full size imageFrom the sum of the diagonal numbers, 37% of the primary pollutants had no shift during the 13th Five-Year Plan period. PM2.5, PM10 and O3 were the main primary pollutants, especially PM2.5. More primary pollutants were diverted to ozone pollution, indicating that the proportion of O3 as the primary pollutant is gradually increasing. In addition, the proportion of clean air has increased significantly, which shows that pollution control has been effectively reflected during the 13th Five-Year Plan period. However, the proportion of NO2 before and after metastasis was approximately the same, with approximately 5% NO2 pollution. This may imply that the governance of NO2 pollution was rendered nonsignificant. It is noteworthy that ozone pollution in China has become an increasingly prominent task in recent years. Similar to Xiao’s16 research on ozone pollution, they argue that present-day ozone levels in major Chinese cities are comparable to or even higher than the 1980 levels in the United States. Taken together, ozone and PM2.5 have become the top two air pollution pollutants in China.Monthly distribution of primary pollutantsTo further explore the spatiotemporal distribution of the primary pollutants across the UAs, we obtained the most primary pollutants per month by dividing the number of days with the most pollutants by the number of cities in each UA from the 2019 data. In Fig. 3, the UAs location was plotted on the abscissa, and the monthly variance of the primary pollutant was plotted on the ordinate. As shown in Fig. 3, PM2.5 appeared as dark green, PM10 appeared as light green, O3 appeared as orange, NO2 appeared as yellow, and clean days appear as dark blue. The main pollutants in the 19 UAs are PM2.5, PM10 and O3. NO2, as the primary pollutant, only appeared in the HBOY UA in January. Ordos, located in HBOY, possess rich oil and coal resources, with coal mining as its leading industry38. According to the China Energy Statistical Yearbook 2019, nearly 250 million tons of raw coal were used for thermal power generation in Inner Mongolia Autonomous Region, making it the region with the largest amount of raw coal for thermal power generation in China39. To a certain extent, the increase of heating40 and the imperfect denitration technology41 are both contributing to the increase of NO2 pollution in the atmosphere. CO and SO2 did not become major pollutants. Clean days (where AQI  More

  • in

    Photoperiod-driven rhythms reveal multi-decadal stability of phytoplankton communities in a highly fluctuating coastal environment

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 108, 17905–17909 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS 
    CAS 

    Google Scholar 
    Doney, S. C. Plankton in a warmer world. Nature 444, 695–696 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 

    Google Scholar 
    Zingone, A., Phlips, E. J. & Harrison, P. J. Multiscale variability of twenty-two coastal phytoplankton time series: A global scale comparison. Estuaries Coasts 33, 224–229 (2010).CAS 

    Google Scholar 
    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).ADS 

    Google Scholar 
    Cloern, J. E. & Jassby, A. D. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries Coasts 33, 230–241 (2010).CAS 

    Google Scholar 
    Romagnan, J.-B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS ONE 10, e0119219 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Guadayol, Ò. et al. Responses of coastal osmotrophic planktonic communities to simulated events of turbulence and nutrient load throughout a year. J. Plankton Res. 31, 583–600 (2009).CAS 

    Google Scholar 
    Totti, C. et al. Phytoplankton communities in the northwestern Adriatic Sea: Interdecadal variability over a 30-years period (1988–2016) and relationships with meteoclimatic drivers. J. Mar. Syst. 193, 137–153 (2019).
    Google Scholar 
    Zingone, A. et al. Coastal phytoplankton do not rest in winter. Estuaries Coasts 33, 342–361 (2010).CAS 

    Google Scholar 
    Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. & Somerfield, P. J. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32, 643–655 (2010).
    Google Scholar 
    Harding, L. W. et al. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Sci. Rep. 6, 1–16 (2016).
    Google Scholar 
    Suikkanen, S., Laamanen, M. & Huttunen, M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71, 580–592 (2007).ADS 

    Google Scholar 
    Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L. & Kraberg, A. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Mar. Syst. 87, 145–159 (2011).
    Google Scholar 
    Cloern, J. E. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7, 1367–1381 (1987).ADS 

    Google Scholar 
    Barbosa, A. B., Domingues, R. B. & Galvão, H. M. Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana Estuary, South-western Iberia): A decadal study of anthropogenic and climatic influences. Estuaries Coasts 33, 324–341 (2010).CAS 

    Google Scholar 
    Barrera-Alba, J. J., Abreu, P. C. & Tenenbaum, D. R. Seasonal and inter-annual variability in phytoplankton over a 22-year period in a tropical coastal region in the southwestern Atlantic Ocean. Cont. Shelf Res. 176, 51–63 (2019).ADS 

    Google Scholar 
    Brito, A. C. et al. Changes in the phytoplankton composition in a temperate estuarine system (1960 to 2010). Estuaries Coasts 38, 1678–1691 (2015).CAS 

    Google Scholar 
    Zingone, A. et al. Increasing the quality, comparability and accessibility of phytoplankton species composition time-series data. Estuar. Coast. Shelf Sci. 162, 151–160 (2015).ADS 

    Google Scholar 
    Smayda, T. J. Phytoplankton species succession. In The Physiological Ecology of Phytoplankton 493–570 (Blackwell Scientific Publications, 1980).
    Google Scholar 
    Kremer, C. T. & Klausmeier, C. A. Species packing in eco-evolutionary models of seasonally fluctuating environments. Ecol. Lett. 20, 1158–1168 (2017).PubMed 

    Google Scholar 
    Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA 115, 738–743 (2018).CAS 
    PubMed 

    Google Scholar 
    Wiltshire, K. H. et al. Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnol. Oceanogr. 53, 1294–1302 (2008).ADS 

    Google Scholar 
    Tsakalakis, I., Pahlow, M., Oschlies, A., Blasius, B. & Ryabov, A. B. Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecol. Model. 384, 241–248 (2018).
    Google Scholar 
    Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vantrepotte, V. & Melin, F. Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J. Mar. Sci. 66, 1547–1556 (2009).
    Google Scholar 
    McQuatters-Gollop, A. et al. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Mar. Policy 83, 1–10 (2017).
    Google Scholar 
    Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).PubMed 

    Google Scholar 
    Wentzky, V. C., Tittel, J., Jäger, C. G., Bruggeman, J. & Rinke, K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108, 1649–1663 (2020).CAS 

    Google Scholar 
    Karl, D. M. Oceanic ecosystem time-series programs: Ten lessons learned. Oceanography 23, 104–125 (2010).
    Google Scholar 
    d’Alcalà, M. R. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): An attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).
    Google Scholar 
    Mazzocchi, M. G., Dubroca, L., García-Comas, C., Capua, I. D. & Ribera d’Alcalà, M. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog. Oceanogr. 97–100, 135–151 (2012).ADS 

    Google Scholar 
    Thioulouse, J., Simier, M. & Chessel, D. Simultaneous analysis of a sequence of paired ecological tables. Ecology 85, 272–283 (2004).
    Google Scholar 
    Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to bivariate and multivariate analysis 119 (Scott Foresman Co, 1980).MATH 

    Google Scholar 
    Longobardi, L. From Data to Knowledge: Integrating Observational Data to Trace Phytoplankton Dynamics in a Changing World (Open Univ, 2021).
    Google Scholar 
    Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12, 132 (2020).ADS 

    Google Scholar 
    Zingone, A. et al. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. Nat. Conserv. 34, 273–310 (2019).
    Google Scholar 
    Zingone, A., Licandro, P. & Sarno, D. Revising paradigms and myths of phytoplankton ecology using biological time series. In Mediterranean Biological Time Series. CIESM Workshop Monographs 109–114 (2003).Cianelli, D. et al. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 7, 1–15 (2017).CAS 

    Google Scholar 
    Zingone, A., Casotti, R., d’Alcalà, M. R., Scardi, M. & Marino, D. ‘St Martin’s Summer’: The case of an autumn phytoplankton bloom in the Gulf of Naples (Mediterranean Sea). J. Plankton Res. 17, 575–593 (1995).
    Google Scholar 
    Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978).
    Google Scholar 
    Sommer, U. et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).
    Google Scholar 
    Reynolds, C. S. What factors influence the species composition of phytoplankton in lakes of different trophic status? In Phytoplankton and Trophic Gradients (eds Alvarez-Cobelas, M. et al.) 11–26 (Springer, 1998).
    Google Scholar 
    Zingone, A., Montresor, M. & Marino, D. Summer phytoplankton physiognomy in coastal waters of the Gulf of Naples. Mar. Ecol. 11, 157–172 (1990).ADS 

    Google Scholar 
    Harding, L. W. et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries Coasts 39, 664–681 (2016).CAS 

    Google Scholar 
    Andersen, J. H. et al. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 92, 135–149 (2017).PubMed 

    Google Scholar 
    Giner, C. R. et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol. Ecol. https://doi.org/10.1111/mec.14929 (2019).Article 
    PubMed 

    Google Scholar 
    Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B 370, 20130272 (2015).
    Google Scholar 
    Conversi, A. et al. The Mediterranean Sea Regime Shift at the End of the 1980s, and intriguing parallelisms with other European Basins. PLoS ONE 5, e10633 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eilertsen, H., Sandberg, S. & Tøllefsen, H. Photoperiodic control of diatom spore growth; a theory to explain the onset of phytoplankton blooms. Mar. Ecol. Prog. Ser. 116, 303–307 (1995).ADS 

    Google Scholar 
    Hensen, V. Ueber die Bestimmung des Plankton’s oder des im Meere treibenden Materials an Pflanzen und Thieren (Kiel Publishers, 1887).
    Google Scholar 
    Andersen, D. M. & Keafer, B. A. An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis. Nature 325, 616–617 (1987).ADS 

    Google Scholar 
    Kremp, A. & Anderson, D. M. Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea. J. Plankton Res. 22, 1311–1327 (2000).
    Google Scholar 
    Aubry, F. B. et al. Plankton communities in the northern Adriatic Sea: Patterns and changes over the last 30 years. Estuar. Coast. Shelf Sci. 115, 125–137 (2012).ADS 

    Google Scholar 
    Gutiérrez-Rodríguez, A. et al. Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site. Estuar. Coast. Shelf Sci. 95, 77–87 (2011).ADS 

    Google Scholar 
    Brannock, P. M., Ortmann, A. C., Moss, A. G. & Halanych, K. M. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes. Mol. Ecol. 25, 3593–3604 (2016).PubMed 

    Google Scholar 
    Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93, fiw200 (2017).PubMed 

    Google Scholar 
    Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed 

    Google Scholar 
    Hiltz, M., Bates, S. S. & Kaczmarska, I. Effect of light: Dark cycles and cell apical length on the sexual reproduction of the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyceae) in culture. Phycologia 39, 59–66 (2000).
    Google Scholar 
    Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P. & Davidovich, N. A. Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia. FEMS Microbiol. Ecol. 69, 194–201 (2009).CAS 
    PubMed 

    Google Scholar 
    Montresor, M., Vitale, L., D’Alelio, D. & Ferrante, M. I. Sex in marine planktonic diatoms: Insights and challenges. Perspect. Phycol. 3, 61–75 (2016).
    Google Scholar 
    Rost, B., Riebesell, U. & Sültemeyer, D. Carbon acquisition of marine phytoplankton: Effect of photoperiod length. Limnol. Oceanogr. 51, 12–20 (2006).ADS 
    CAS 

    Google Scholar 
    Edwards, K. F. Community trait structure in phytoplankton: Seasonal dynamics from a method for sparse trait data. Ecology 97, 3441–3451 (2016).PubMed 

    Google Scholar 
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).
    Google Scholar 
    Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).CAS 
    PubMed 

    Google Scholar 
    Ferrera, I. et al. Assessment of microbial plankton diversity as an ecological indicator in the NW Mediterranean coast. Mar. Pollut. Bull. 160, 111691 (2020).CAS 
    PubMed 

    Google Scholar 
    Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proc. Natl. Acad. Sci. USA 104, 18561–18565 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scotto di Carlo, B. et al. Uno studio integrato dell’ecosistema pelagico costiero del Golfo di Napoli. Nova Thalass 7, 99–128 (1985).
    Google Scholar 
    Carrada, G. C., Fresi, E., Marino, D., Modigh, M. & D’Alcalà, M. R. Structural analysis of winter phytoplankton in the Gulf of Naples. J. Plankton Res. 3, 291–314 (1981).CAS 

    Google Scholar 
    Marino, D., Modigh, M. & Zingone, A. General features of phytoplankton communities and primary production in the Gulf of Naples and adjacent waters. In Marine Phytoplankton and Productivity (Springer, 1984).
    Google Scholar 
    Hansen, H. P. & Grasshoff, K. Automated chemical analysis. Methods Seawater Anal. 49, 347–395 (1983).
    Google Scholar 
    Sabia, L. et al. Assessing the quality of biogeochemical coastal data: A step-wise procedure. Mediterr. Mar. Sci. 20, 56–73 (2019).
    Google Scholar 
    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).MathSciNet 
    MATH 

    Google Scholar 
    Kendall, M. G. Kendall Rank Correlation Methods (Griffin, 1975).
    Google Scholar 
    Jassby, A. D. & Cloern, J. E. wq: Exploring water quality monitoring data. R Package Version 04 5, (2015).Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).ADS 

    Google Scholar 
    Scargle, J. D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).ADS 

    Google Scholar 
    Linnell Nemec, A. F. & Nemec, J. M. A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 2317–2320 (1985).ADS 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 

    Google Scholar 
    Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).PubMed 

    Google Scholar 
    Escoufier, Y. Le traitement des variables vectorielles. Biometrics 29, 751–760 (1973).MathSciNet 

    Google Scholar 
    Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).
    Google Scholar 
    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA 103, 13104–13109 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar 
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
    Google Scholar 
    Bi, J. A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. J. Sens. Stud. 27, 87–101 (2012).
    Google Scholar  More

  • in

    Relocating croplands could drastically reduce the environmental impacts of global food production

    We use the notation in Table 1.Table 1 Notation used in the description of the optimisation framework.Full size tableCurrent crop production and areas, P
    i(x), H
    i(x)We used 5-arc-minute maps of the fresh-weight production Pi(x) (Mg year−1) and cropping area Hi(x) (ha) of 25 major crops (Table 2) in the year 201037. These represent the most recent spatially explicit and crop-specific global data75. Separate maps were available for irrigated and rainfed croplands, allowing us to estimate the worldwide proportion of irrigated areas as 21% of all croplands.Table 2 Crops included in the analysis.Full size tableAgro-ecologically attainable yields ({widehat{Y}}_{i}(x))
    We used 5-arc-minute maps of the agro-ecologically attainable dry-weight yield (Mg ha −1 year−1) of the same 25 crops on worldwide potential growing areas (Supplementary Movie 3) from the GAEZ v4 model, which incorporates thermal, moisture, agro-climatic, soil, and terrain conditions42. These yield estimates were derived based on the assumption of rainfed water supply (i.e., without additional irrigation) and are available for current climatic conditions and, assuming a CO2 fertilisation effect, for four future (2071–2100 period) climate scenarios corresponding to representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.576 simulated by the HadGEM2-ES model77. Potential rainfed yield estimates for current climatic conditions were available for a low- and a high-input crop management level, representing, respectively, subsistence-based organic farming systems and advanced, fully mechanised production using high-yielding crop varieties and optimum fertiliser and pesticide application42. We additionally considered potential yields representing a medium-input management scenario, given by the mean of the relevant low- and high-input yields. Future potential yields were available only for the high-input management level. Thus, we considered a total of 175 (=25 × 3 present + 25 × 4 future) potential yield maps. Potential dry-weight yields were converted to fresh-weight yields, ({widehat{Y}}_{i}(x)), using crop-specific conversion factors42,78.Both current and future potential rainfed yields from GAEZ v4 were simulated based on daily weather data, and therefore account for short-term events such as frost days, heat waves, and wet and dry spells42. However, the estimates represent averages of annual yields across 30-year periods; thus, whilst the need for irrigation on cropping areas identified in our approach during particularly dry years may in principle be obviated by suitable storage of crop production79, in practice, ad hoc irrigation may be an economically desirable measure to maintain productivity during times of drought, which are projected to increase in different geographic regions due to climate change80,81.Carbon impact C
    i(x)Following an earlier approach8, the carbon impact of crop production, Ci(x), in a 5-arc-minute grid cell was estimated as the difference between the potential natural carbon stocks and the cropland-specific carbon stocks, each given by the sum of the relevant vegetation- and soil-specific carbon. The change in vegetation carbon stocks resulting from land conversion is given by the difference between carbon stored in the potential natural vegetation, available as a 5-arc-minute global map8 (Supplementary Fig. 1a), and carbon stored in the crops, for which we used available estimates8,78. Regarding soil, spatially explicit global estimates of soil organic carbon (SOC) changes from land cover change are not available. We therefore chose a simple approach, consistent with estimates across large spatial scales, rather than a complex spatially explicit model for which, given the limited empirical data, robust predictions across and beyond currently cultivated areas would be difficult to achieve. Following an earlier approach8, and supported by empirical meta-analyses82,83,84,85,86, we assumed that the conversion of natural habitat to cropland results in a 25% reduction of the potential natural SOC. For the latter, we used a 5-arc-minute global map of pre-agricultural SOC stocks7 (Supplementary Fig. 1b). Thus, the total local carbon impact (Mg C ha−1) of the production of crop i in the grid cell x was estimated as$${C}_{i}(x)={{C}}_{{{{{{rm{potential}}}}}},{{{{{rm{vegetation}}}}}}}(x)+0.25cdot {C}_{{{{{{rm{potential}}}}}},{{{{{rm{SOC}}}}}}}(x)-{C}_{{{{{{rm{crop}}}}}}}(i)$$
    (1)
    where ({{C}}_{{{{{{rm{potential}}}}}},{{{{{rm{vegetation}}}}}}}(x)) and ({C}_{{{{{{rm{potential}}}}}},{{{{{rm{SOC}}}}}}}(x)) denote the potential natural carbon stocks in the vegetation and the soil in x, respectively, and ({C}_{{{{{{rm{crop}}}}}}}(i)) denotes the carbon stocks of crop i (all in Mg C ha−1). By design, the approach allows us to estimate the carbon impact of the conversion of natural habitat to cropland regardless of whether an area is currently cultivated or not.In our analysis, we did not consider greenhouse gas emissions from sources other than from land use change, including nitrous emissions from fertilised soils and methane emissions from rice paddies87. In contrast to the one-off land use change emissions considered here, those are ongoing emissions that incur continually in the production process. We would assume that the magnitude of these emissions in a scenario of redistribution of agricultural areas, in which the total production of each crop remains constant, is roughly similar to that associated with the current distribution of areas. We also did not consider emissions associated with transport; however, these have been shown to be small compared to other food chain emissions88 and poorly correlated with the distance travelled by agricultural products89.Biodiversity impact B
    i(x)Analogous to our approach for carbon, we estimated the biodiversity impact of crop production, Bi(x), in a 5-arc-minute grid cell as the difference between the local biodiversity associated with the natural habitat and that associated with cropland. For our main analysis, we quantified local biodiversity in terms of range rarity (given by the sum of inverse species range sizes; see below) of mammals, birds, and amphibians. Range rarity has been advocated as a biodiversity measure particularly relevant to conservation planning in general39,90,91,92,93 and the protection of endemic species in particular39. In a supplementary analysis, we additionally considered biodiversity in terms of species richness.We used 5-arc-minute global maps of the range rarity and species richness of mammals, birds, and amphibians under potential natural vegetation (Supplementary Fig. 1c, d) and under cropland land cover94. The methodology used to generate these data38 combines species-specific extents of occurrence (spatial envelopes of species’ outermost geographic limits40) and habitat preferences (lists of land cover categories in which species can live95), both available for all mammals, birds, and amphibians96,97, with a global map of potential natural biomes44 in order to estimate which species would be present in a grid cell for natural habitat conditions. Incorporating information on species’ ability to live in croplands, included in the habitat preferences, allows for determining the species that would, and those that would not, tolerate a local conversion of natural habitat to cropland. The species richness impact of crop production in a grid cell is then obtained as the number of species estimated to be locally lost when natural habitat is converted to cropland. Instead of weighing all species equally, the range rarity impact in a grid cell is calculated as the sum of the inverse potential natural range sizes of the species locally lost when natural habitat is converted; thus, increased weight is attributed to range-restricted species, which tend to be at higher extinction risk40,41.As in the case of carbon, the approach allows us to estimate the biodiversity impact of crop production in both currently cultivated and uncultivated areas.Land potentially available for agriculture, V(x)We defined the area V(x) (ha) potentially available for crop production in a given grid cell x, as the area not currently covered by water bodies42, land unsuitable due to soil and terrain constraints42, built-up land (urban areas, infrastructure, roads)1, pasture lands1, crops not considered in our analysis37, or protected areas42 (Supplementary Fig. 1e). In the scenario of a partial relocation of crop production, in which a proportion of existing croplands is not moved, the relevant retained areas are additionally subtracted from the potentially available area, as described further below.Optimal transnational relocationWe first consider the scenario in which all current croplands are relocated across national borders based on current climate (Fig. 3a, dark blue line). For each crop i and each grid cell x, we determined the local (i.e., grid-cell-specific) area ({widehat{H}}_{i}(x)) (ha) on which crop i is grown in cell x so that the total production of each crop i equals the current production and the environmental impact is minimal. Denoting by$${bar{P}}_{i}={sum }_{x}{P}_{i}(x)$$
    (2)
    the current global production of crop i, any solution ({widehat{H}}_{i}(x)) must satisfy the equality constraints$${sum }_{x}{widehat{H}}_{i}(x)cdot {widehat{Y}}_{i}(x)={bar{P}}_{{{{{{rm{i}}}}}}},{{{{{rm{for}}}}}}quad{{{{{rm{each}}}}}},{{{{{rm{crop}}}}}},i$$
    (3)
    requiring the total production of each individual crop after relocation to be equal to the current one. A solution must also satisfy the inequality constraints$${sum }_{i}{widehat{H}}_{i}(x)le V(x),{{{{{rm{for}}}}}}quad{{{{{rm{each}}}}}},{{{{{rm{grid}}}}}},{{{{{rm{cell}}}}}},x,,$$
    (4)
    ensuring that the local sum of cropping areas is not larger than the locally available area V(x) (see above). Given these constraints, we can identify the global configuration of croplands that minimises the associated total carbon or biodiversity impact by minimising the objective function$${sum }_{x}{widehat{H}}_{i}(x)cdot {C}_{i}(x)to ,{{min }}quad{{{{{rm{or}}}}}}quad{sum }_{x}{widehat{H}}_{i}(x)cdot {B}_{i}(x)to ,{{min }}$$
    (5)
    respectively. More generally, we can minimise a combined carbon and biodiversity impact measure, and examine potential trade-offs between minimising each of the two impacts, by considering the weighted objective function$${sum }_{x}{widehat{H}}_{i}(x)cdot (alpha cdot {C}_{i}(x)+(1-alpha )cdot {B}_{i}(x))to ,{{min }}$$
    (6)
    where the weighting parameter α ranges between 0 and 1.Considering all crops across all grid cells, we denote by$$bar{C}={sum }_{i}{sum }_{x}{H}_{i}(x)cdot {C}_{i}(x)$$
    (7)
    the global carbon impact associated with the current distribution of croplands, and by$$hat{C}(alpha )={sum }_{i}{sum }_{x}{hat{H}}_{i}(x)cdot {C}_{i}(x)$$
    (8)
    the global carbon impact associated with the optimal distribution ({{{widehat{H}}_{i}(x)}}_{i,x}(={{{widehat{H}}_{i}^{alpha }(x)}}_{i,x})) of croplands for some carbon-biodiversity weighting (alpha in [0,1]). The relative change between the current and the optimal carbon impact is then given by$$hat{c}(alpha )=100 % cdot frac{hat{C}(alpha )-bar{C}}{bar{C}}$$
    (9)
    Using analogous notation, the relative change between the current and the optimal global biodiversity impact across all crops and grid cells is given by$$widehat{b}(alpha )=100 % cdot frac{widehat{B}(alpha )-bar{B}}{bar{B}}$$
    (10)
    The dark blue line in Fig. 3a visualises (widehat{c}(alpha )) and (widehat{b}(alpha )) for the full range of carbon-biodiversity weightings (alpha in [0,1]), each of which corresponds to a specific optimal distribution ({{{widehat{H}}_{i}(x)}}_{i,x}) of croplands. We defined an optimal weighting ({alpha }_{{{{{{rm{opt}}}}}}}), meant to represent a scenario in which the trade-off between minimising the total carbon impact and minimising the total biodiversity impact is as small as possible. Such a weighting is necessarily subjective; here, we defined it as$${alpha }_{{{{{{rm{opt}}}}}}}={{arg }},{{{min }}}_{alpha in [0,1]}left|begin{array}{ll}frac{frac{partial {hat{c}}(alpha)} {partial {hat{b}}(alpha)}}{hat{c}(alpha)} cdot frac{frac{partial {hat{b}}(alpha)} {partial {hat{c}}(alpha)}}{hat{b}(alpha)}end{array}right|$$
    (11)
    Each of the two factors on the right-hand side represents the relative rate of change in the reduction of one impact type with respect to the change in the reduction of the other one as α varies. Thus, αopt represents the weighting at which neither impact type can be further reduced by varying α without increasing the relative impact of the other by at least the same amount. Scenarios based on this optimal weighting are shown in Figs. 1,  2, and Supplementary Figs. 3–6, and are represented by the black markers in Fig. 3.Our approach does not account for multiple cropping; i.e., part of a grid cell is not allocated to more than one crop, and the assumed annual yield is based on a single harvest. Allowing for multiple crops to be successively planted in the same location during a growing period would increase the dimensionality of the optimisation problem substantially. However, given that only 5% of current global rainfed areas are under multiple cropping98, this is likely not a strong limitation of our rainfed-based analysis. As a result of this approach, our results may even slightly underestimate local crop production potential and therefore global impact reduction potentials.Optimal national relocationIn the case of areas being relocated within national borders, the mathematical framework is identical with the exception that the sum over relevant grid cells x in Eqs. (2) and (4) is taken over the cells that define the given country of interest, instead of the whole world. In this way, the total production of each crop within each country for optimally distributed croplands is the same as for current areas. The optimisation problem is then solved independently for each country.Optimal partial relocationWhen (either for national or transnational relocation) only a certain proportion (lambda in [0,1]) of the production of each crop (of a country or the world) is being relocated rather than the total production, Eq. (3) changes to$$mathop{sum}limits_{x}{widehat{H}}_{i}(x)cdot {widehat{Y}}_{i}(x)=lambda cdot {bar{P}}_{i},{{{{{rm{for}}}}}},{{{{{rm{each}}}}}},{{{{{rm{crop}}}}}},i,.$$
    (12)
    In addition, the area potentially available for new croplands, V(x), (see above) is reduced by the area that remains occupied by current croplands accounting for the proportion ((1-lambda )) of production that is not being relocated. We denote by ({H}_{i}^{lambda }(x)) the area that continues to be used for the production of crop i in grid cell x in the scenario where the proportion λ of the production is being optimally redistributed. In particular, ({H}_{i}^{0}(x)={H}_{i}(x)) and ({H}_{i}^{1}(x)=0) for all i and x. For a given carbon-biodiversity weighting (alpha in [0,1]) in Eq. (6), ({H}_{i}^{lambda }(x)) is calculated as follows. First, all grid cells in which crop i is currently grown are ordered according to their agro-environmental efficiency, i.e., the grid-cell-specific ratio between the environmental impact attributed to the production of the crop and the local production,$${E}_{i}^{alpha }(x)=frac{{H}_{i}(x)cdot (alpha cdot {C}_{i}(x)+(1-alpha )cdot {B}_{i}(x))}{{P}_{i}(x)}.$$
    (13)
    Let ({x}_{1}(={x}_{1}(i,alpha ))) denote the index of the grid cell in which crop i is currently grow for which ({E}_{i}^{alpha }) is smallest among all grid cells in which the crop is grown. Then let x2 be the index for which ({E}_{i}^{alpha }) is second smallest (or equal to the smallest), and so on. Thus, the vector (({x}_{1},{x}_{2},{x}_{3},ldots )) contains all indices of grid cells where crop i is currently grown in descending order of agro-environmental efficiency. The area ({H}_{i}^{lambda }({x}_{n})) retained in some grid cell ({x}_{n}) is then given by$${H}_{i}^{lambda }({x}_{n})=left{begin{array}{ll}{H}_{i}({x}_{n}) & {{{{{rm{if}}}}}};mathop{sum }limits_{m=1}^{n}{P}_{i}({x}_{m})le (1-lambda )cdot {bar{P}}_{i}\ 0, & hskip-7.5pc{{{{{rm{else}}}}}}end{array}right.$$
    (14)
    Thus, cropping areas in a grid cell ({x}_{n}) are retained if they are amongst the most agro-environmentally efficient ones of crop i on which the combined production does not exceed ((1-lambda )cdot {bar{P}}_{i}) (which is not being relocated). Growing areas in the remaining, less agro-environmental efficient grid cells are abandoned and become potentially available for other relocated crops. Note that ({H}_{i}^{lambda }) depends on the weighting α of carbon against biodiversity impacts. Finally, instead of Eq. (4), we have, in the case of the partial relocation of the proportion λ of the total production,$$mathop{sum}limits_{i}{widehat{H}}_{i}(x)le V(x)-{H}_{i}^{lambda }(x)quad{{{{{rm{for}}}}}},{{{{{rm{each}}}}}},{{{{{rm{grid}}}}}},{{{{{rm{cell}}}}}},x,.$$
    (15)
    Solving the optimisation problemAll datasets needed in the optimisation (i.e., (A(x)), ({P}_{i}(x)), ({H}_{i}(x)), ({C}_{i}(x)), ({B}_{i}(x)), ({widehat{Y}}_{i}(x)), (V(x))) are available at a 5 arc-minute (0.083°) resolution; however, computational constraints required us to upscale these to a 20-arc-minute grid (0.33°) spatial grid. At this resolution, Eq. (6) defines a 1.12 × 106-dimensional linear optimisation problem in the scenario of across-border relocation. The high dimensionality of the problem is in part due to the requirement in Eq. (3) that the individual production level of each crop is maintained. Requiring instead that, for example, only the total caloric production is maintained31,99 reduces Eq. (6) to a 1-dimensional problem. However, in such a scenario, the production of individual crops, and therefore of macro- and micronutrients, would generally be very different from current levels, implicitly assuming potentially drastic dietary shifts that may not be nutritionally or culturally realistic.The optimisation problem in Eq. (6) was solved using the dual-simplex algorithm in the function linprog of the Matlab R2021b Optimization Toolbox100 for a termination tolerance on the dual feasibility of 10−7 and a feasibility tolerance for constraints of 10−4.In the case of a transnational relocation of crop production, the algorithm always converged to the optimal solution, i.e., for all crop management levels, climate scenarios, and proportions of production that were being relocated. For the relocation within national borders, this was not always the case. This is because some countries produce small quantities of crops which, according to the GAEZ v4 potential yield estimates, could not be grown in the relevant quantities anywhere in the country under natural climatic conditions and for rainfed water supply; these crops likely require greenhouse cultivation or irrigation can therefore not be successfully relocated within our framework. Across all countries, this was the case for production occurring on 0.6% of all croplands. When this was the case for a certain country and crop, we excluded the crop from the optimisation routine, and a country’s total carbon and biodiversity impacts were calculated as the sum of the impacts of optimally relocated crops plus the current impacts of non-relocatable crops.This issue is linked to why determining the optimal distribution of croplands within national borders is not a well-defined problem for future climatic conditions. Under current climatic conditions, if a crop cannot be relocated within our framework, then its current distribution offers a fall-back solution that provides the current production level and allows us to quantify environmental impacts. Different climatic conditions in the future mean that the production of a crop across current growing locations will not be the same as it is today, and therefore the fall-back solution available for the present is no longer available, so that a consistent quantification of the environmental impacts of a non-relocatable crop is not possible.Carbon and biodiversity recovery trajectoriesOur analysis in Supplementary Fig. 6 requires spatially explicit estimates of the carbon recovery trajectory on abandoned croplands. Whilst carbon and biodiversity regeneration have been shown to follow certain general patterns, recovery is context-specific (Supplementary Note 1) in that, depending on local conditions, the regeneration in a specific location can take place at slower or faster speeds than would typically be the case in the broader ecoregion. Here, we assumed that these caveats can be accommodated by using conservative estimates of recovery times and by assuming that local factors will average out at the spatial resolution of our analysis. The carbon recovery times assumed here are based on ecosystem-specific estimates of the time required for abandoned agricultural areas to retain pre-disturbance carbon stocks82. Aiming for a conservative approach, we assumed carbon recovery times equal to at least three times these estimates, rounded up to the nearest quarter century (Table 3). Independent empirical estimates from specific sites and from meta-analyses are well within these time scales (Supplementary Note 1).Table 3 Assumed times required for carbon stocks on abandoned cropland to reach pre-disturbance levels.Full size tableApplying the values in Table 3 to a global map of potential natural biomes44 provides a map of carbon recovery times. We assumed a square root-shaped carbon recovery trajectory across these regeneration periods101; similar trajectories, sometimes modelled by faster-converging exponential functions, have been identified in other studies25,27,30,102,103,104,105. Thus, the carbon stocks in an area of a grid cell x previously used to grow crop i were assumed to regenerate according to the function$$left{begin{array}{ll}{{C}}_{{{{{{rm{agricultural}}}}}}}(x)+sqrt{frac{t}{{{T}}_{{{{{{rm{carbon}}}}}}}(x)}}cdot ({{C}}_{{{{{{rm{potential}}}}}}}(x)-{{C}}_{{{{{{rm{agricultural}}}}}}}(x)) & {{{{{rm{if}}}}}},t ; < ; {{T}}_{{{{{{rm{carbon}}}}}}}\ hskip14.7pc{{C}}_{{{{{{rm{potential}}}}}}}(x) & {{{{{rm{if}}}}}},tge {{T}}_{{{{{{rm{carbon}}}}}}}end{array}right.$$ (16) where, using the same notation as further above$${{C}}_{{{{{{rm{potential}}}}}}}(x) ={{C}}_{{{{{{rm{potential}}}}}},{{{{{rm{vegetation}}}}}}}(x)+{{C}}_{{{{{{rm{potential}}}}}},{{{{{rm{SOC}}}}}}}(x)\ {{C}}_{{{{{{rm{agricultural}}}}}}}(x) ={{C}}_{i}(x)+0.75cdot {{C}}_{{{{{{rm{potential}}}}}},{{{{{rm{SOC}}}}}}}(x)$$ (17) Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More