More stories

  • in

    Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm

    Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).CAS 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    Google Scholar 
    Angilletta, M. J. Jr Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 

    Google Scholar 
    Gangloff, E. J. & Telemeco, R. S. High temperature, oxygen, and performance: insights from reptiles and amphibians. Integr. Comp. Biol. 58, 9–24 (2018).CAS 
    PubMed 

    Google Scholar 
    Perry, G. M., Danzmann, R. G., Ferguson, M. M. & Gibson, J. P. Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86, 333–341 (2001).CAS 
    PubMed 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). J. Comp. Physiol. B 182, 49–62 (2012).PubMed 

    Google Scholar 
    Hu, X. P. & Appel, A. G. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environ. Entomol. 33, 197–205 (2004).CAS 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).
    Google Scholar 
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Padfield, D., Castledine, M. & Buckling, A. Temperature-dependent changes to host–parasite interactions alter the thermal performance of a bacterial host. ISME J. 14, 389–398 (2020).PubMed 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed 

    Google Scholar 
    Kohl, K. D. & Carey, H. V. A place for host–microbe symbiosis in the comparative physiologist’s toolbox. J. Exp. Biol. 219, 3496–3504 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. Optimal integration between host physiology and functions of the gut microbiome. Phil. Trans. R. Soc. B 375, 20190594 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).
    Google Scholar 
    Jaramillo, A. & Castaneda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 886 (2021).
    Google Scholar 
    Moghadam, N. N. et al. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 12, 1–12 (2018).PubMed 

    Google Scholar 
    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).
    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. The gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a non‐invasive congener. Mol. Ecol. 29, 2449–2462 (2020).PubMed 

    Google Scholar 
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Google Scholar 
    Zhu, L. et al. Environmental temperatures affect the gastrointestinal microbes of the Chinese giant salamander. Front. Microbiol. 12, 493 (2021).
    Google Scholar 
    Moeller, A. H. et al. The lizard gut microbiome changes with temperature and is associated with heat tolerance. Appl. Environ. Microbiol. 86, e01181-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7, e36398 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hanage, W. P. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 512, 247–248 (2014).CAS 
    PubMed 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Mykles, D. L., Ghalambor, C. K., Stillman, J. H. & Tomanek, L. Grand challenges in comparative physiology: integration across disciplines and across levels of biological organization. Integr. Comp. Biol. 50, 6–16 (2010).PubMed 

    Google Scholar 
    Kohl, K. D. A microbial perspective on the grand challenges in comparative animal physiology. mSystems 3, e00146-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gray, K. T., Escobar, A. M., Schaeffer, P. J., Mineo, P. M. & Berner, N. J. Thermal acclimatization in overwintering tadpoles of the green frog, Lithobates clamitans (Latreille, 1801). J. Exp. Zool. A 325, 285–293 (2016).
    Google Scholar 
    Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).
    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 86 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J. Anim. Ecol. 88, 845–856 (2019).PubMed 

    Google Scholar 
    Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).CAS 
    PubMed 

    Google Scholar 
    Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).PubMed 

    Google Scholar 
    Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).
    Google Scholar 
    Fontaine, S. S., Mineo, P. M. & Kohl, K. D. Changes in the gut microbial community of the eastern newt (Notophthalmus viridescens) across its three distinct life stages. FEMS Microbiol. Ecol. 97, fiab021 (2021).CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 11, 384 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Arango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. Experimental warming reduces survival, cold tolerance, and gut prokaryotic diversity of the eastern subterranean termite, Reticulitermes flavipes (Kollar). Front. Microbiol. 12, 1116 (2021).
    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 

    Google Scholar 
    Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B 277, 2185–2191 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell. Infect. Microbiol. 10, 729 (2020).
    Google Scholar 
    Sheremet, A. et al. Ecological and genomic analyses of candidate phylum WPS‐2 bacteria in an unvegetated soil. Environ. Microbiol. 22, 3143–3157 (2020).CAS 
    PubMed 

    Google Scholar 
    Correa, D. T. et al. Multilevel community assembly of the tadpole gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.188698 (2020).Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr. Comp. Biol. 57, 786–794 (2017).PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Daloso, D. M. The ecological context of bilateral symmetry of organ and organisms. Nat. Sci. 6, 43340 (2014).
    Google Scholar 
    Goldstein, J. A., Hoff, K. v. S. & Hillyard, S. D. The effect of temperature on development and behaviour of relict leopard frog tadpoles. Conserv. Physiol. 5, cow075 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Harkey, G. A. & Semlitsch, R. D. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1998, 1001–1007 (1988).
    Google Scholar 
    Marian, M. & Pandian, T. Effect of temperature on development, growth and bioenergetics of the bullfrog tadpole Rana tigrina. J. Therm. Biol. 10, 157–161 (1985).
    Google Scholar 
    Alvarez, D. & Nicieza, A. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16, 640–648 (2002).
    Google Scholar 
    Kohl, K. D., Brun, A., Bordenstein, S. R., Caviedes‐Vidal, E. & Karasov, W. H. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr. Zool. 13, 139–151 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Potti, J. et al. Bacteria divert resources from growth for Magellanic penguin chicks. Ecol. Lett. 5, 709–714 (2002).
    Google Scholar 
    Coates, M. E., Fuller, R., Harrison, G., Lev, M. & Suffolk, S. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17, 141–150 (1963).CAS 
    PubMed 

    Google Scholar 
    Gaskins, H., Collier, C. & Anderson, D. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).CAS 
    PubMed 

    Google Scholar 
    Gitsels, A., Sanders, N. & Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 10, 2329 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Denver, R. J. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 37, 172–184 (1997).CAS 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Khakisahneh, S., Zhang, X.-Y., Nouri, Z. & Wang, D.-H. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems 5, e00514–e00520 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, B. et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 7, 1544–1555 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez‐Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).
    Google Scholar 
    Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed 

    Google Scholar 
    Semlitsch, R. D. Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can. J. Zool. 68, 1027–1030 (1990).
    Google Scholar 
    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Tejedo, M. Effects of body size and timing of reproduction on reproductive success in female natterjack toads (Bufo calamita). J. Zool. 228, 545–555 (1992).
    Google Scholar 
    Warne, R. W., Crespi, E. J. & Brunner, J. L. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct. Ecol. 25, 139–146 (2011).
    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Pearce, T. A. & Paustian, M. E. Are temperate land snails susceptible to climate change through reduced altitudinal ranges? A Pennsylvania example. Am. Malacol. 31, 213–224 (2013).
    Google Scholar 
    Wolfe, D. W. et al. Projected change in climate thresholds in the northeastern US: implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Change 13, 555–575 (2008).
    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 
    PubMed 

    Google Scholar 
    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. 259, R253–R258 (1990).CAS 
    PubMed 

    Google Scholar 
    Seebacher, F. & Walter, I. Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism. J. Exp. Biol. 215, 663–670 (2012).CAS 
    PubMed 

    Google Scholar 
    Husak, J. F., Fox, S. F., Lovern, M. B. & Bussche, R. A. V. D. Faster lizards sire more offspring: sexual selection on whole‐animal performance. Evolution 60, 2122–2130 (2006).CAS 
    PubMed 

    Google Scholar 
    Mineo, P. M., Waldrup, C., Berner, N. J. & Schaeffer, P. J. Differential plasticity of membrane fatty acids in northern and southern populations of the eastern newt (Notophthalmus viridescens). J. Comp. Physiol. B 189, 249–260 (2019).CAS 
    PubMed 

    Google Scholar 
    Chung, D. J., Sparagna, G. C., Chicco, A. J. & Schulte, P. M. Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress. J. Exp. Biol. 221, 174458 (2018).
    Google Scholar 
    Gladwell, R., Bowler, K. & Duncan, C. Heat death in crayfish Austropotamobius pallipes: ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1, 79–94 (1976).CAS 

    Google Scholar 
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).PubMed 

    Google Scholar 
    Gräns, A. et al. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J. Exp. Biol. 217, 711–717 (2014).PubMed 

    Google Scholar 
    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, 169615 (2018).
    Google Scholar 
    St-Pierre, J., Charest, P.-M. & Guderley, H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 201, 2961–2970 (1998).CAS 

    Google Scholar 
    Grim, J., Miles, D. & Crockett, E. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. J. Exp. Biol. 213, 445–452 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    LeMoine, C. M., Genge, C. E. & Moyes, C. D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 211, 1448–1455 (2008).CAS 
    PubMed 

    Google Scholar 
    McClelland, G. B., Craig, P. M., Dhekney, K. & Dipardo, S. Temperature‐ and exercise‐induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577, 739–751 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichaud, N. et al. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci. Rep. 9, 17832 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., Guderley, H., Elsey, R. M. & Trosclair, P. L. Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J. Exp. Biol. 206, 1193–1200 (2003).CAS 
    PubMed 

    Google Scholar 
    Berner, N. J. & Bessay, E. P. Correlation of seasonal acclimatization in metabolic enzyme activity with preferred body temperature in the eastern red spotted newt (Notophthalmus viridescens viridescens). Comp. Biochem. Physiol. A 144, 429–436 (2006).
    Google Scholar 
    Vigelsø, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 84–101 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Park, J.-S., Deng, J.-H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pryor, G. S. & Bjorndal, K. A. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).PubMed 

    Google Scholar 
    Clark, A. & Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 8, 319 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Google Scholar 
    Van Dijk, P., Tesch, C., Hardewig, I. & Portner, H. Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202, 3611–3621 (1999).PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Hoppeler, H. & Weibel, E. R. Scaling functions to body size: theories and facts. J. Exp. Biol. 208, 1573–1574 (2005).PubMed 

    Google Scholar 
    Hopkins, W. A., Rowe, C. L. & Congdon, J. D. Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ. Toxicol. Chem. 18, 1258–1263 (1999).CAS 

    Google Scholar 
    Sokolova, I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J. Exp. Biol. 224, 236802 (2021).
    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).
    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).
    Google Scholar 
    Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).
    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).
    Google Scholar 
    Swaddle, J. P. Fluctuating asymmetry, animal behavior, and evolution. Adv. Study Behav. 32, 169–205 (2003).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing v.3.4.3 (R Foundation for Statistical Computing, 2019).Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3 (2017).Hulbert, A., Pamplona, R., Buffenstein, R. & Buttemer, W. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213 (2007).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2 (2013).Mary-Huard, T., Daudin, J.-J., Baccini, M., Biggeri, A. & Bar-Hen, A. Biases induced by pooling samples in microarray experiments. Bioinformatics 23, i313–i318 (2007).CAS 
    PubMed 

    Google Scholar 
    Singer, J. D. & Willett, J. B. It’s about time: using discrete-time survival analysis to study duration and the timing of events. J. Educ. Stat. 18, 155–195 (1993).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e100442 (2021).
    Google Scholar  More

  • in

    Seasonal variation in space use and territoriality in a large mammal (Sus scrofa)

    Schoener, T. W. & Schoener, A. Intraspecific variation in home-range size in some Anolis lizards. Ecology 63, 809–823 (1982).
    Google Scholar 
    Grigione, M. M. et al. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5(4), 317–324 (2002).
    Google Scholar 
    Wolf, J. B., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).
    Google Scholar 
    Gehrt, S. D. & Frttzell, E. K. Sexual differences in home ranges of raccoons. J. Mammal. 78, 921–931 (1997).
    Google Scholar 
    Clutton-Brock, T. H., Iason, G. R. & Guinness, F. E. Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). J. Zool. 211(2), 275–289 (1987).
    Google Scholar 
    Ji, W., White, P. C. & Clout, M. N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42(3), 595–604 (2005).
    Google Scholar 
    Böhm, M., Palphramand, K. L., Newton-Cross, G., Hutchings, M. R. & White, P. C. Dynamic interactions among badgers: Implications for sociality and disease transmission. J. Anim. Ecol. 77, 735–745 (2008).PubMed 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Ostfeld, R. S., Glass, G. E. & Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 20, 328–336 (2005).PubMed 

    Google Scholar 
    Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).CAS 
    PubMed 

    Google Scholar 
    Cubaynes, S. et al. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83, 1344–1356 (2014).PubMed 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    McGuire, J. M., Scribner, K. T. & Congdon, J. D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv. Genet. 14, 1029–1042 (2013).
    Google Scholar 
    Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).PubMed 

    Google Scholar 
    Loveridge, A. J. & Macdonald, D. W. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J. Zool. 253, 101–111 (2001).
    Google Scholar 
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32(8), 567–577 (2017).PubMed 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 57–63 (1943).
    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).
    Google Scholar 
    Kaufman, J. H. On the definitions and functions of dominance and territoriality. Biol. Revue 58, 1–20 (1983).
    Google Scholar 
    Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).
    Google Scholar 
    Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Anim. Ecol. Controversies Conseq. 1, 476 (2000).
    Google Scholar 
    Kerr, G. D. & Bull, C. M. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behav. Ecol. 17, 380–391 (2006).
    Google Scholar 
    DiPierro, E., Molinari, A., Tosi, G. & Wauters, L. A. Exclusive core areas and intrasexual territoriality in Eurasian red squirrels (Sciurus vulgaris) revealed by incremental cluster polygon analysis. Ecol. Res. 23, 529–542 (2008).
    Google Scholar 
    Poole, K. G. Spatial organization of a lynx population. Can. J. Zool. 73, 632–641 (1995).ADS 

    Google Scholar 
    Chamberlain, M. J. & Leopold, B. D. Spatio-temporal relationships among adult raccoons (Procyon lotor) in central Mississippi. Am. Midl. Nat. 148, 297–309 (2002).
    Google Scholar 
    Darden, S. K. & Dabelsteen, T. Acoustic territorial signaling in a small, socially monogamous canid. Anim. Behav. 75(3), 905–912 (2008).
    Google Scholar 
    Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247(3), 311–322 (1999).
    Google Scholar 
    Seiler, N., Boesch, C., Mundry, R., Stephens, C. & Robbins, M. M. Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. R. Soc. Open Sci. 4(11), 170720 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).
    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sonnichsen, L. & Jedrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9, 1–11 (2014).
    Google Scholar 
    Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
    Google Scholar 
    Saunders, G. & Kay, B. Movements of feral pigs at Sunny Corner, New South Wales. Wildl. Res. 18, 49–61 (1990).
    Google Scholar 
    Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).
    Google Scholar 
    Dexter, N. The influence of pasture distribution, temperature and sex on home-range size of feral pigs in a semi-arid environment. Wildl. Res. 26, 755–762 (1999).
    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Hayes, R., Riffell, S., Minnis, R. & Holder, B. Survival and habitat use of feral hogs in Mississippi. Southeast. Nat. 8, 411–427 (2009).
    Google Scholar 
    Fattebert, J., Baubet, E., Slotow, R. & Fischer, C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 63(2), 32 (2017).
    Google Scholar 
    Clontz, L. M., Pepin, K. M., VerCauteren, K. C., & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78(3), 914–928 (2021).PubMed 

    Google Scholar 
    Mcloughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: A comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).
    Google Scholar 
    Golabek, K. A., Ridley, A. R. & Radford, A. N. Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619 (2012).
    Google Scholar 
    Kilgo, J. C. et al. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci. Rep. 11(1), 1–11 (2021).
    Google Scholar 
    Geist, V. A comparison of social adaptations in relations to ecology in gallinaceous bird and ungulate societies. Annu. Rev. Ecol. Syst. 8, 193–207 (1977).
    Google Scholar 
    Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).
    Google Scholar 
    Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).
    Google Scholar 
    Barrett, R. The feral hog at Dye Creek ranch, California. Hilgardia 46, 283–355 (1978).
    Google Scholar 
    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1986).
    Google Scholar 
    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pepin, K. M. et al. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7(3), e01230. https://doi.org/10.1002/ecs2.1230 (2016).Article 

    Google Scholar 
    Singh, J. S. & Yadava, P. S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 44(3), 351–376 (1974).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).
    Google Scholar 
    Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L. & Hayes, W. K. Home range, spatial overlap, and burrow use of the desert tortoise in the West Mojave Desert. Copeia 2, 378–389 (2009).
    Google Scholar 
    Lewis, J. S. et al. Contact networks reveal potential for interspecific interactions of sympatric wild felids driven by space use. Ecosphere 8(3), e01707 (2017).
    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013).CAS 
    PubMed 

    Google Scholar 
    Vander Waal, K. L. et al. The “strength of weak ties” and helminth parasitism in giraffe social networks. Behav. Ecol. 27(4), 1190–1197 (2016).
    Google Scholar 
    Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).
    Google Scholar 
    D’Andrea, L., Durio, P., Perrone, A. & Pirone, S. Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. IBEX J. Mountain Ecol. 3, 117–121 (2014).
    Google Scholar 
    Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 54, 403–412 (2008).
    Google Scholar 
    Hixon, M. A. Food production and competitor density as the determinants of feeding territory size. Am. Nat. 115(4), 510–530 (1980).MathSciNet 

    Google Scholar 
    Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77(1), 85–95 (2021).CAS 
    PubMed 

    Google Scholar 
    Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143(1), 1–30 (2000).
    Google Scholar 
    Mendl, M., Randle, K. & Pope, S. Young female pigs can discriminate individual differences in odours from conspecific urine. Anim. Behav. 64, 97–101 (2002).
    Google Scholar 
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. L. Spatial and temporal heterogeneities in the contact behaviour of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Google Scholar 
    Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90(4), 820–833 (2021).PubMed 

    Google Scholar 
    Lavelle, M. J. et al. Assessing risk of disease transmission: Direct implications for an indirect science. Bioscience 64, 524–530 (2014).
    Google Scholar 
    Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).
    Google Scholar 
    Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahamson, W. G., Johnson, A. F., Layne, J. N. & Peroni, P. A. Vegetation of the Archbold Biological Station, Florida: An example of the southern Lake Wales ridge. Florida Sci. 47, 209–250 (1984).
    Google Scholar 
    Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invasions 16(10), 2105–2114 (2014).
    Google Scholar 
    Ko, J., Williams, B., Smith, V., McGrath, C. & Jacobson, J. Comparison of Telazol, Telazol–ketamine, Telazol–xylazine, and Telazol–ketamine–xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim. Sci. 43(5), 476–480 (1993).CAS 
    PubMed 

    Google Scholar 
    Gabor, T. M., Hellgren, E. C. & Silvy, N. J. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol® and xylazine. J. Wildl. Dis. 33(1), 161–164 (1997).CAS 
    PubMed 

    Google Scholar 
    Sweitzer, R. A. et al. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol® and xylazine hydrochloride. J. Wildl. Dis. 33(2), 198–205 (1997).CAS 
    PubMed 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).PubMed 

    Google Scholar 
    Tracey, J. A. mkde. R Core Development Team. (2014). https://cran.r-project.org/web/packages/mkde/index.Html. Accessed 27 Mar 2021R Development Core Team. R: a language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. (2018). https://www.r-project.org/. Accessed 27 Mar 2021Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 

    Google Scholar 
    Vander Wal, E., Laforge, M. P. & McLoughlin, P. D. Density dependence in social behaviour: Home range overlap and density interacts to affect conspecific encounter rates in a gregarious ungulate. Behav. Ecol. Sociobiol. 68(3), 383–390 (2014).
    Google Scholar 
    Schauber, E. M., Nielsen, C. K., Kjær, L. J., Anderson, C. W. & Storm, D. J. Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal. 96(1), 16–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Robert, K., Garant, D. & Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).
    Google Scholar 
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Google Scholar 
    Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B., & Walker, S. lme4: linear mixed effects models using Eigen and S4. R package version 1.1-9. (2014) https://cran.rproject.org/package/lme4. (accessed 30 Jan 2019).Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multi-model Inference 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory. (eds. Petrov, B. N. & Csaki, F.) 267–281 (Academiai Kiado, 1973). More

  • in

    The biology of beauty sleep

    Wang, L. C. H. & Lee, T.-F. in Life in the Cold (eds Heldmaier, G. & Klingenspor, M.) 149–158 (Springer, 2000).van Breukelen, F. & Martin, S. L. J. Appl. Physiol. 92, 2640–2647 (2002).Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
    Google Scholar 
    Pinho, G. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01679-1 (2022).Article 

    Google Scholar 
    Oli, M. K. & Armitage, K. B. Oecologia 136, 543–550 (2003).Article 

    Google Scholar 
    Horvath, S. Genome Biol. 14, 3156 (2013).Article 

    Google Scholar 
    Anderson, J. A. et al. eLife 10, e66128 (2021).CAS 
    Article 

    Google Scholar 
    Larison, B. et al. Commun. Biol. 4, 1412 (2021).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. Nature 429, 825–826 (2004).CAS 
    Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. et al. Biol. Lett. 15, 20180860 (2019).Article 

    Google Scholar 
    Jansen, H. T. et al. Commun. Biol. 2, 336 (2019).Article 

    Google Scholar 
    Medawar, P. B. An Unsolved Problem Of Biology (H. K. Lewis & Co., 1952). More

  • in

    Pronounced loss of Amazon rainforest resilience since the early 2000s

    DatasetsWe use the Amazon basin (http://worldmap.harvard.edu/data/geonode:amapoly_ivb, accessed 28 January 2021) as our region of study. To determine the grid cells that are contained within Brazil for a subset of analysis, we use the ‘maps’ package in R (v.3.3.0; https://CRAN.R-project.org/package=maps). This is also used in the plotting of country outlines. The main dataset used to determine forest health is from VODCA33, of which we use the Ku-band product. These data are available at 0.25° × 0.25° at a monthly resolution from January 1988 to December 2016. We also use NOAA AVHRR NDVI34. For precipitation data, we use the CHIRPS dataset40 downloaded from Google Earth Engine at a monthly resolution. Finally, to determine land cover types, we used the IGBP MODIS land cover dataset MCD12C1 (ref. 37). All these datasets are at a higher spatial resolution than the VODCA dataset and thus we downscale them to match the lower resolution. Our SST data comes from HadISST49, where we define a North Atlantic region (15–70° W, 5–25° N), for which we take the spatial mean. The mean monthly cycle is then removed to produce anomalies.For the vegetation datasets that we measure the resilience indicators on (below), we use STL decomposition (seasonal and trend decomposition using Loess)51 using the stl() function in R. This splits time series in each grid cell into an overall trend, a repeating annual cycle (by using the ‘periodic’ option for the seasonal window) and a residual component. We use the residual component in our resilience analysis. The first 3 yr of data had large jumps in VOD which were seen when testing other regions of the world as well as in the Amazon region. Hence, we restrict our analysis to the period January 1991 to December 2016.To test the robustness of the detrending, we also vary the size of the trend window in the stl() function. The results from these alternatively detrended time series are shown in Supplementary Fig. 4. The results are also robust to varying the window used to calculate the seasonal component rather than using ‘periodic’; at the strictest plausible value of 13, we still see the same increases in AR(1) (Supplementary Fig. 5).For the AMO index shown in Supplementary Fig. 13, data come from the Kaplan SST dataset and can be downloaded from https://psl.noaa.gov/data/timeseries/AMO/.Grid cell selectionWe use the IGBP MODIS land cover dataset at the resolution described above to determine which grid cells to use in our analysis. The dataset is available at an annual resolution from 2001 to 2018 (but we only use the time series up to 2016 to match the time span of our VOD and NDVI datasets). To focus on changes in forest resilience, we use grid cells where the evergreen BL fraction is ≥80% in 2001. Grid cells are treated as human land-use area if the built-up, croplands or vegetation mosaics fraction is >0%. We remove grid cells that have human land use in them from our forest analysis, regardless of if there is ≥80% BL fraction in the grid cell.We measure the minimum distance between forested Amazon basin grid cells and human land-use grid cells in 2016 (believing this to be the most cautious and least biased way to measure distance) using the latitude and longitude of each grid point and computing the great-circle distance. We use human land-use grid cells over a larger area than the basin, so that we can determine the closest distance to human land use, regardless of whether this human land use lies within the basin. We also measure the minimum distance from human land use or roads in Brazil, where we have reliable data on state and federal roads (https://datacatalog.worldbank.org/dataset/brazil-road-network-federal-and-state-highways). As in the main text, we reiterate that these minimum distances can be viewed as the maximum distance from human land use as our data will not include roads for the full Amazon basin, or non-federal or non-state roads in Brazil that will have human activity associated with them.To ensure that the pattern of changes in resilience is not a consequence of more settlements being in the southeast of the region, combined with the gradient of rainfall from northwest to southeast typical of the rainforest, we measure the correlation between MAP and the distances from the urban grid cells, which is very weak (Spearman’s ρ = 0.109, P  More

  • in

    Novel wheat varieties facilitate deep sowing to beat the heat of changing climates

    World Food and Agriculture—Statistical Yearbook 2020 (FAO, 2020).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 

    Google Scholar 
    Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).CAS 

    Google Scholar 
    Hochman, Z., Gobbett, D. L. & Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Change Biol. 23, 2071–2081 (2017).
    Google Scholar 
    Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2018).
    Google Scholar 
    Rebetzke, G. J. et al. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res. 100, 10–23 (2007).
    Google Scholar 
    Gan, Y., Stobbe, E. H. & Moes, J. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 32, 1275–1281 (1992).
    Google Scholar 
    Rebetzke, G., Ingvordsen, C., Bovill, W., Trethowan, R. & Fletcher, A. in Australian Agriculture in 2020: From Conservation to Automation (eds Pratley, J. & Kirkegaard, J.) 273–288 (Agronomy Australia and Charles Sturt Univ., 2019).Schillinger, W. F., Donaldson, E., Allan, R. E. & Jones, S. S. Winter wheat seedling emergence from deep sowing depths. Agron. J. 90, 582–586 (1998).
    Google Scholar 
    Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).
    Google Scholar 
    Richards, R. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust. J. Agric. Res. 43, 517–527 (1992).
    Google Scholar 
    Rebetzke, G. et al. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 52, 1221–1234 (2001).CAS 

    Google Scholar 
    Rebetzke, G., Richards, R., Sirault, X. & Morrison, A. Genetic analysis of coleoptile length and diameter in wheat. Aust. J. Agric. Res. 55, 733–743 (2004).
    Google Scholar 
    Rebetzke, G. J., Zheng, B. & Chapman, S. C. Do wheat breeders have suitable genetic variation to overcome short coleoptiles and poor establishment in the warmer soils of future climates? Funct. Plant Biol. 43, 961–972 (2016).
    Google Scholar 
    Rebetzke, G. J. et al. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res. 126, 87–96 (2012).
    Google Scholar 
    Zhao, Z., Rebetzke, G. J., Zheng, B., Chapman, S. C. & Wang, E. Modelling impact of early vigour on wheat yield in dryland regions. J. Exp. Bot. 70, 2535–2548 (2019).CAS 

    Google Scholar 
    Brown, H. E. et al. Plant Modelling Framework: software for building and running crop models on the APSIM platform. Environ. Model. Softw. 62, 385–398 (2014).
    Google Scholar 
    Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).
    Google Scholar 
    Smith, C. J. et al. Using fertiliser to maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental cost. Agric. Ecosyst. Environ. 286, 106644 (2019).CAS 

    Google Scholar 
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    Google Scholar 
    Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).
    Google Scholar 
    Anderson, W. K., Stephens, D. & Siddique, K. H. M. in Innovations in Dryland Agriculture (eds Farooq, M. & Siddique, K. H. M.) 299–319 (Springer International, 2016).Flohr, B. M., Hunt, J. R., Kirkegaard, J. A., Evans, J. R. & Lilley, J. M. Genotype × management strategies to stabilise the flowering time of wheat in the south-eastern Australian wheatbelt. Crop Pasture Sci. 69, 547–560 (2018).
    Google Scholar 
    Rebetzke, G., Botwright, T., Moore, C., Richards, R. & Condon, A. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res. 88, 179–189 (2004).
    Google Scholar 
    Richards, R. A. & Lukacs, Z. Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust. J. Agric. Res. 53, 41–50 (2002).CAS 

    Google Scholar 
    López-Castañeda, C. & Richards, R. A. Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crops Res. 39, 85–98 (1994).
    Google Scholar 
    Zerner, M. C., Rebetzke, G. J. & Gill, G. S. Genotypic stability of weed competitive ability for bread wheat (Triticum aestivum) genotypes in multiple environments. Crop Pasture Sci. 67, 695–702 (2016).
    Google Scholar 
    Allan, R. E., Vogel, O. A. & Peterson, C. J. Jr Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. Agron. J. 54, 347–350 (1962).
    Google Scholar 
    Towards a Global Programme on Sustainable Dryland Agriculture (FAO, 2020); https://www.fao.org/3/nd366en/nd366en.pdfAntle, J. M., Cho, S., Tabatabaie, S. H. & Valdivia, R. O. Economic and environmental performance of dryland wheat-based farming systems in a 1.5 C world. Mitig. Adapt. Strateg. Glob. Change 24, 165–180 (2019).
    Google Scholar 
    Kirkegaard, J. & Hunt, J. Increasing productivity by matching farming system management and genotype in water-limited environments. J. Exp. Bot. 61, 4129–4143 (2010).CAS 

    Google Scholar 
    Rebetzke, G. J. et al. Agronomic assessment of the durum Rht18 dwarfing gene in bread wheat. Crop Pasture Sci. https://doi.org/10.1071/CP21645 (2022).Bathgate, J. The Influence of Wheat (Triticum aestivum L.) Semi-dwarfing Genes and the Lcol-A1 QTL on the Coleoptile, Seedling Vigour, and Establishment from Deep Sowing. Honours thesis, Charles Sturt Univ. (2021).Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: using wheat as a case study. Eur. J. Agron. 100, 141–150 (2018).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, T. & Richards, R. The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Funct. Plant Biol. 28, 417–423 (2001).
    Google Scholar 
    Ellis, M. H. et al. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31, 583–589 (2004).CAS 

    Google Scholar 
    Whan, B. The association between coleoptile length and culm length in semidwarf and standard wheats. J. Aust. Inst. Agric. Sci. 42, 194–196 (1976).
    Google Scholar 
    Whan, B. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust. J. Exp. Agric. 16, 411–416 (1976).
    Google Scholar 
    Bush, M. & Evans, L. Growth and development in tall and dwarf isogenic lines of spring wheat. Field Crops Res. 18, 243–270 (1988).
    Google Scholar 
    Rebetzke, G. J., Bonnett, D. G. & Ellis, M. H. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 127, 17–25 (2012).
    Google Scholar 
    Miralles, D., Calderini, D., Pomar, K. & D’Ambrogio, A. Dwarfing genes and cell dimensions in different organs of wheat. J. Exp. Bot. 49, 1119–1127 (1998).CAS 

    Google Scholar 
    Radford, B. Effect of constant and fluctuating temperature regimes and seed source on the coleoptile length of tall and semidwarf wheats. Aust. J. Exp. Agric. 27, 113–117 (1987).
    Google Scholar 
    Botwright, T., Rebetzke, G., Condon, A. & Richards, R. Influence of variety, seed position and seed source on screening for coleoptile length in bread wheat (Triticum aestivum L.). Euphytica 119, 349–356 (2001).
    Google Scholar 
    Cornish, P. & Hindmarsh, S. Seed size influences the coleoptile length of wheat. Aust. J. Exp. Agric. 28, 521–523 (1988).
    Google Scholar 
    Zheng, B., Chenu, K. & Doherty, A. The APSIM-Wheat Module (7.5 R3008) (APSIM Initiative, 2015); https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdfZadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421 (1974).
    Google Scholar 
    Bell, L. W., Lilley, J. M., Hunt, J. R. & Kirkegaard, J. A. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat. Crop Pasture Sci. 66, 332–348 (2015).
    Google Scholar 
    Flohr, B. M., Hunt, J. R., Kirkegaard, J. A. & Evans, J. R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 209, 108–119 (2017).
    Google Scholar 
    Chen, C. et al. Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Res. 247, 107710 (2020).
    Google Scholar 
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Google Scholar 
    Liu, B. et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Change Biol. 25, 1428–1444 (2019).
    Google Scholar 
    Zhao, Z., Wang, E., Rebetzke, G. J. & Kirkegaard, J. A. Supporting data for ‘Sowing deep to beat the heat using novel genetics adapts wheat to a changing climate’. CSIRO Data Access Portal https://data.csiro.au/collection/csiro:53658 (2022).Holzworth, D. et al. APSIM Next Generation: overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 103, 43–51 (2018).
    Google Scholar 
    APSIM Initiative. Source code of APSIM Next Generation. GitHub https://github.com/APSIMInitiative/ApsimX (2021). More

  • in

    Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China

    Froehner, S., Rizzi, J., Vieira, L. M. & Sanez, J. PAHs in water, sediment and biota in an area with port activities. Arch. Environ. Contam. Toxicol. 75, 236–246. https://doi.org/10.1007/s00244-018-0538-6 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anyanwu, I. N., Sikoki, F. D. & Semple, K. T. Risk assessment of PAHs and N-PAH analogues in sediment cores from the Niger Delta. Mar. Pollut. Bull. 161, 111684. https://doi.org/10.1016/j.marpolbul.2020.111684 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, B., Cui, D. Y., Liu, A., Li, Q. & Zheng, L. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Daya Bay, South China. Environ. Sci. Pollut. Res. 28, 25858–25865. https://doi.org/10.1007/s11356-020-11956-w (2021).CAS 
    Article 

    Google Scholar 
    Li, J. W. et al. Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J. Hazardous Mater. 173, 75–81. https://doi.org/10.1016/j.jhazmat.2009.08.050 (2010).CAS 
    Article 

    Google Scholar 
    Honda, M. & Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17, 1363. https://doi.org/10.3390/ijerph17041363 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Lu, G. N., Tao, X. Q., Dang, Z., Yi, X. Y. & Yang, C. Estimation of n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons by quantum chemical descriptors. Cent. Eur. J. Chem. 6, 310–318. https://doi.org/10.2478/s11532-008-0010-y (2008).CAS 
    Article 

    Google Scholar 
    Yuan, H. Z., Zhang, E. L., Lin, Q., Wang, R. & Liu, E. F. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China. Environ. Sci. Pollut. Res. 23, 4430–4441. https://doi.org/10.1007/s11356-015-5626-9 (2016).CAS 
    Article 

    Google Scholar 
    Souza, M. R. R. et al. Concentration, distribution and source apportionment of polycyclic aromatic hydrocarbons (PAH) in Poxim River sediments, Brazil. Mar. Pollut. Bull. 127, 478–483. https://doi.org/10.1016/j.marpolbul.2017.12.045 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis, E. et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci. Total Environ. 691, 528–537. https://doi.org/10.1016/j.scitotenv.2019.07.114 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Dreyer, A., Radke, M., Turunen, J. & Blodau, C. Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of eastern Canada. Environ. Sci. Technol. 39, 3918–3924. https://doi.org/10.1021/es0481880 (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ma, W. L. et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China. Environ. Monitoring Assessment 185, 8399–8409. https://doi.org/10.1007/s10661-013-3182-7 (2013).CAS 
    Article 

    Google Scholar 
    Yang, Y. Y. et al. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. Mar. Pollut. Bull. 152, 10923. https://doi.org/10.1016/j.marpolbul.2020.110923 (2020).CAS 
    Article 

    Google Scholar 
    Rahmanpoor, S., Ghafourian, H., Hashtroudi, S. M. & Bastami, K. D. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait, Persian Gulf. Mar. Pollut. Bull. 78, 224–229. https://doi.org/10.1016/j.marpolbul.2013.10.032 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aghadadashi, V., Mehdinia, A., Bakhtiari, A. R., Mohammadi, J. & Moradi, M. Source, spatial distribution, and toxicity potential of Polycyclic Aromatic Hydrocarbons in sediments from Iran’s environmentally hot zones, the Persian Gulf. Ecotoxicol. Environ. Saf. 173, 514–525. https://doi.org/10.1016/j.ecoenv.2019.02.029 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, L., Zhu, B., Gao, J. H. & Kang, H. Q. Impact of Taihu Lake on city ozone in the Yangtze River Delta. Adv. Atmos. Sci. 34, 226–234. https://doi.org/10.1007/s00376-016-6099-6 (2017).CAS 
    Article 

    Google Scholar 
    Huang, S. B., Qiao, M., Wang, H. & Wang, Z. J. Organchlorinated pesticides in surface sediments of meiliang bay in Taihu Lake, China. J. Environ. Sci. Health Part a-Toxic/Hazardous Substances Environ. Eng. 41, 223–234. https://doi.org/10.1080/10934520500354664 (2006).CAS 
    Article 

    Google Scholar 
    Su, H. L. et al. Distribution characteristics and risk assessments of PAHs in fish from Lake Taihu, China. Hum. Ecol. Risk Assessment 21, 1753–1765. https://doi.org/10.1080/10807039.2014.975003 (2015).CAS 
    Article 

    Google Scholar 
    Wang, W. W., Qu, X. L., Lin, D. H. & Yang, K. Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China. Environ. Pollut. 288, 117709. https://doi.org/10.1016/j.envpol.2021.117709 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peng, X. Z., Zhang, G., Zheng, L. P., Mai, B. X. & Zeng, S. W. The vertical variations of hydrocarbon pollutants and organochlorine pesticide residues in a sediment core in Lake Taihu, East China. Geochem.-Exploration Environ. Anal. 5, 99–104. https://doi.org/10.1144/1467-7873/03-038 (2005).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Lu, Y. & Zhao, W. Y. Spatial distribution of polycyclic aromatic hydrocarbons from Lake Taihu, China. Bull. Environ. Contam. Toxicol. 87, 80–85. https://doi.org/10.1007/s00128-011-0292-1 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dong, Y. B. et al. Polycyclic aromatic hydrocarbons in sediments from typical Algae, Macrophyte Lake Bay and adjoining river of Taihu Lake, China: Distribution, sources, and risk assessment. Water 13, 470. https://doi.org/10.3390/w13040470 (2021).CAS 
    Article 

    Google Scholar 
    Chen, P. & Liang, J. Polycyclic aromatic hydrocarbons in green space soils in Shanghai: Source, distribution, and risk assessment. J. Soils Sediments 21, 967–977. https://doi.org/10.1007/s11368-020-02838-2 (2021).CAS 
    Article 

    Google Scholar 
    Xia, Z. et al. New approaches to reduce sample processing times for the determination of polycyclic aromatic compounds in environmental samples. Chemosphere 274, 129738. https://doi.org/10.1016/j.chemosphere.2021.129738 (2021).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Sun, T., Wang, Y. H., Tian, J. M. & Kong, X. G. Characteristics of PAHs in soils under different land-use types and their associated health risks in the northern Taihu Basin, China. J. Soils Sediments 22, 134–145. https://doi.org/10.1007/s11368-021-03050-6 (2022).CAS 
    Article 

    Google Scholar 
    Abdollahi, S. et al. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar. Pollut. Bull. 72, 336–345. https://doi.org/10.1016/j.marpolbul.2013.01.025 (2013).CAS 
    Article 

    Google Scholar 
    Santos, E. et al. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment. Mar. Pollut. Bull. 127, 352–358. https://doi.org/10.1016/j.marpolbul.2017.12.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Long, E. R., Field, L. J. & Macdonald, D. D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 17, 714–727. https://doi.org/10.1002/etc.5620170428 (1998).CAS 
    Article 

    Google Scholar 
    Han, B., Liu, A., He, S., Li, Q. & Zheng, L. Composition, content, source, and risk assessment of PAHs in intertidal sediment in Shilaoren Bay, Qingdao, China. Mar. Pollut. Bull. 159, 111499. https://doi.org/10.1016/j.marpolbul.2020.111499 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abba, E. J., Unnikrishnan, S., Kumar, R., Yeole, B. & Chowdhury, Z. Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int. J. Environ. Health Res. 22, 134–149. https://doi.org/10.1080/09603123.2011.613112 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ji, H., Zhang, D. & Shinohara, R. Size distribution and estimated carcinogenic potential of particulate polycyclic aromatic hydrocarbons collected at a downtown site in Kumamoto, Japan, in Spring. J. Health Sci. 53, 700–707. https://doi.org/10.1248/jhs.53.700 (2007).CAS 
    Article 

    Google Scholar 
    Lei, P., Zhang, H. & Shan, B. Q. Vertical records of sedimentary PAHs and their freely dissolved fractions in porewater profiles from the northern bays of Taihu Lake, Eastern China. RSC Adv. 6, 98835–98844. https://doi.org/10.1039/c6ra11180g (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Li, A. L. et al. Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China. Environ. Pollut. 246, 198–206. https://doi.org/10.1016/j.envpol.2018.11.112 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y. et al. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 46, 3065–3073. https://doi.org/10.1016/j.watres.2012.03.006 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H. & Wang, Z. J. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ. Int. 32, 28–33. https://doi.org/10.1016/j.envint.2005.04.005 (2016).CAS 
    Article 

    Google Scholar 
    Sun, L., Zang, S. Y. & Sun, H. J. Sources and history of PAHs in lake sediments from oil-producing and industrial areas, northeast China. Int. J. Environ. Sci. Technol. 11, 2051–2060. https://doi.org/10.1007/s13762-013-0396-8 (2014).CAS 
    Article 

    Google Scholar 
    Guo, J. Y. et al. Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Arch. Environ. Contam. Toxicol. 60, 590–596. https://doi.org/10.1007/s00244-010-9568-4 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Z. D. et al. A study on PAHs in the surface soil of the region around Qinghai Lake in the Tibet plateau: Evaluation of distribution characteristics, sources and ecological risks. Environ. Res. Commun. 3, 041005. https://doi.org/10.1088/2515-7620/abf3d9 (2021).Article 

    Google Scholar 
    Li, C. C. et al. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China. Environ. Sci. Pollut. Res. 21, 12028–12039. https://doi.org/10.1007/s11356-014-3137-8 (2014).CAS 
    Article 

    Google Scholar 
    Romo-Gomez, C., Monks, S., Pulido-Flores, G. & Gordillo-Martinez, A. J. Determination of polycyclic aromatic hydrocarbons (PAHs) in superficial water and sediment of Lake Tecocomulco, Mexico. Interciencia 35, 905–911 (2010).
    Google Scholar 
    Yuan, Z. J. et al. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk. Ecotoxicol. Environ. Saf. 214, 112095. https://doi.org/10.1016/10.1016/j.ecoenv.2021.112095 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen, B. B., Wu, J. L. & Zhao, Z. H. Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface waters, soils and sediments of the Kaidu River catchment, northwest China. Int. J. Environ. Pollut. 63, 104–116. https://doi.org/10.1504/IJEP.2018.10014155 (2018).CAS 
    Article 

    Google Scholar 
    Yan, W., Chi, J. S., Wang, Z. Y., Huang, W. X. & Zhang, G. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ. Pollut. 157, 1823–1830. https://doi.org/10.1016/j.envpol.2009.01.023 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias, A. H. et al. Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahia Blanca estuary, Argentina. Environ. Monitor. Assess. 160, 301–314. https://doi.org/10.1007/s10661-008-0696-5 (2010).CAS 
    Article 

    Google Scholar 
    Yunker, M. B. et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5 (2002).CAS 
    Article 

    Google Scholar 
    Tobiszewski, M. & Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, M. H., Li, C. H., Ye, C. & Xu, S. H. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbon in sediments from Zhushan Bay littoral zone, Lake Taihu. J. Environ. Eng. Technol. 4, 199–205 (2014) (in Chinese).
    Google Scholar 
    Zhao, Q., Yu, Q. & Chen, L. M. Particulate matter and particle-bound polycyclic aromatic hydrocarbons in the Dapu road tunnel in Shanghai. Int. J. Environ. Pollut. 41, 21–37. https://doi.org/10.1504/IJEP.2010.032243 (2010).CAS 
    Article 

    Google Scholar 
    Tian, Y. Z. et al. Source contributions and spatiotemporal characteristics of PAHs in sediments: Using three-way source apportionment approach. Environ. Toxicol. Chem. 33, 1747–1753. https://doi.org/10.1002/etc.2628 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, F. et al. Polycyclic aromatic hydrocarbons (PAHs) and Pb isotopic ratios in a sediment core from Shilianghe Reservoir, eastern China: Implying pollution sources. Appl. Geochem. 66, 140–148. https://doi.org/10.1016/j.apgeochem.2015.12.010 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Harrison, R. M., Smith, D. J. T. & Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825–832. https://doi.org/10.1021/es950252d (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Simcik, M. F., Eisenreich, S. J. & Lioy, P. J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 33, 5071–5079. https://doi.org/10.1016/S1352-2310(99)00233-2 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    Yang, J., Xu, W. L. & Cheng, H. Y. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere 9, 63. https://doi.org/10.3390/atmos9020063 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    Cetin, B. Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Sci. Total Environ. 560, 160–169. https://doi.org/10.1016/j.scitotenv.2016.04.037 (2016).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Ali-Taleshi, M. S., Squizzato, S., Riyahi Bakhtiari, A., Moeinaddini, M. & Masiol, M. Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM25-bound PAHs during heating and non-heating periods in a megacity in the Middle East. Environ. Res. 201, 111617. https://doi.org/10.1016/j.envres.2021.111617 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xu, J. et al. Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China. Sci. Total Environ. 470, 519–526. https://doi.org/10.1016/j.scitotenv.2013.10.022 (2014).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Wei, H., Liu, G. B., Yong, T. & Qin, Z. Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environ. Earth Sci. 74, 5557–5564. https://doi.org/10.1007/s12665-015-4570-9 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats

    Ballard JWO, Melvin RG, Katewa SD, Maas K (2007) Mitochondrial DNA variation is associated with measurable differences in life‐history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747. https://doi.org/10.1111/j.1558-5646.2007.00133.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Balloux F, Handley LJL, Jombart T, Liu H, Manica A (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. P R Soc B-Biol Sci 276:3447–3455. https://doi.org/10.1098/rspb.2009.0752CAS 
    Article 

    Google Scholar 
    Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. https://doi.org/10.1093/nar/27.8.1767CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brijs J, Sandblom E, Sundh H, Grans A, Hinchcliffe J, Ekstrom A, Sundell K, Olsson C, Axelsson M, Pichaud N (2017) Increased mitochondrial coupling and anaerobic capacity minimizes aerobic costs of trout in the sea. Sci Rep. 7:45778. https://doi.org/10.1038/srep45778CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caballero S, Duchene S, Garavito MF, Slikas B, Baker CS (2015) Initial evidence for adaptive selection on the NADH subunit two of freshwater dolphins by analyses of mitochondrial genomes. Plos One 10:e0123543. https://doi.org/10.1371/journal.pone.0123543CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camus MF, Wolff JN, Sgro CM, Dowling DK (2017) Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 34:2600–2612CAS 
    Article 

    Google Scholar 
    Carapelli A, Fanciulli PP, Frati F, Leo C (2019) Mitogenomic data to study the taxonomy of Antarctic springtail species (Hexapoda: Collembola) and their adaptation to extreme environments. Polar Biolo 1:1–8. https://doi.org/10.1007/s00300-019-02466-8Article 

    Google Scholar 
    Chang DD, Clayton DA (1986) Identification of primary transcriptional start sites of mouse mitochondrial DNA: accurate in vitro initiation of both heavy and light strand transcripts. Mol Cell Biol 6:1446–1453. https://doi.org/10.1128/MCB.6.5.1446CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen H, Sun S, Norenburg JL, Sundberg P (2014) Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea). Plos One 9:e85631. https://doi.org/10.1371/journal.pone.0085631CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478. https://doi.org/10.1146/annurev.cb.07.110191.002321CAS 
    Article 
    PubMed 

    Google Scholar 
    Consuegra S, John E, Verspoor E, De Leaniz CG (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 47:1–10. https://doi.org/10.1186/s12711-015-0138-0CAS 
    Article 

    Google Scholar 
    Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733. https://doi.org/10.1146/annurev.physiol.66.032102.150251CAS 
    Article 
    PubMed 

    Google Scholar 
    Da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119Article 

    Google Scholar 
    de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CR, Wolf JB (2021) Inferring adaptive codon preference to understand sources of selection shaping codon usage bias. Mol Biol Evol 38:3247–3266. https://doi.org/10.1093/molbev/msab099CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554. https://doi.org/10.1016/j.tree.2008.05.011Article 
    PubMed 

    Google Scholar 
    Egan JP, Bloom DD, Kuo CH, Hammer MP, Tongnunui P, Iglesias SP, Sheaves M, Grudpan C, Simons AM (2018) Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies). Mol Phylogenet Evol 124:151–161. https://doi.org/10.1016/j.ympev.2018.03.011Article 
    PubMed 

    Google Scholar 
    Elbassiouny AA, Lovejoy NR, Chang BS (2020) Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos T R Soc B 375:20190179. https://doi.org/10.1098/rstb.2019.0179CAS 
    Article 

    Google Scholar 
    Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177CAS 
    Article 

    Google Scholar 
    Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, Gilbert MT, Da Fonseca RR (2011) Positive selection on the killer whale mitogenome. Biol Lett 7:116–118. https://doi.org/10.1098/rsbl.2010.0638CAS 
    Article 
    PubMed 

    Google Scholar 
    Ganias K (2014) Biology and ecology of sardines and anchovies. CRC Press, Boca RatonBook 

    Google Scholar 
    Garvin MR, Bielawski JP, Gharrett AJ (2011) Positive Darwinian selection in the piston that powers protonpumps in complex I of the mitochondria of Pacific salmon. Plos One 6:e24127CAS 
    Article 

    Google Scholar 
    Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ (2015a) Review and meta‐analysis of natural selection in mitochondrial complex I in metazoans. J Zool Syst Evol Res 53:1–17. https://doi.org/10.1111/jzs.12079Article 

    Google Scholar 
    Garvin MR, Thorgaard GH, Narum SR (2015b) Differential expression of genes that control respiration contribute to thermal adaptation in redband trout (Oncorhynchus mykiss gairdneri). Genome Biol Evol 7:1404–1414. https://doi.org/10.1093/gbe/evv078CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J, Tsur A (2014) Disrupting mitochondrial–nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 6:2665–2680. https://doi.org/10.1093/gbe/evu208CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299. https://doi.org/10.1146/annurev.genet.42.110807.091442CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes LC, Somoza GM, Nguyen BN, Bernot JP, Gonzalez-Castro M, Díaz de Astarloa JM, Ortí G (2017) Transcriptomic differentiation underlying marine to freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes). Ecol Evol 7:5258–5268. https://doi.org/10.1002/ece3.3133Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Phys A 148:479–497. https://doi.org/10.1016/j.cbpa.2007.06.416CAS 
    Article 

    Google Scholar 
    Jacobsen MW, Da Fonseca RR, Bernatchez L, Hansen MM (2016) Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phyl Evol 95:161–170. https://doi.org/10.1016/j.ympev.2015.11.008CAS 
    Article 

    Google Scholar 
    Jia W, Higgs PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25:339–351. https://doi.org/10.1093/molbev/msm259CAS 
    Article 
    PubMed 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zídek A, Potapenko A, Bridgland A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. BBA-Bioenerg 1604:77–94. https://doi.org/10.1016/S0005-2728(03)00027-6CAS 
    Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai KP, Li JW, Gu J, Chan TF, Tse WK, Wong CK (2015) Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 16:1072. https://doi.org/10.1186/s12864-015-2271-0CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lajbner Z, Pnini R, Camus MF, Miller J, Dowling DK (2018) Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep.-UK 8:9500. https://doi.org/10.1038/s41598-018-27805-3CAS 
    Article 

    Google Scholar 
    Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S, Lam TJ, Ip YK (2014) Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15:921. https://doi.org/10.1186/1471-2164-15-921CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lavoue S, Konstantinidis P, Chen WJ (2014) Progress in clupeiform systematics. In: Ganias K (eds) Biology and ecology of sardines and anchovies. CRC Press, Boca Raton
    Google Scholar 
    Lavoue S, Miya M, Musikasinthorn P, Chen WJ, Nishida M (2013) Mitogenomic evidence for an Indo-west pacific origin of the Clupeoidei (Teleostei: Clupeiformes). Plos One 8:e56485. https://doi.org/10.1371/journal.pone.0056485CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li Y, Park JS, Deng JH, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38:283–291. https://doi.org/10.1007/s10863-006-9052-zCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu Y, Yang Q, Zhao F (2021) Synonymous but not silent: the codon usage code for gene expression and protein folding. Annu Rev Biochem 20:375–401. https://doi.org/10.1146/annurev-biochem-071320-112701CAS 
    Article 

    Google Scholar 
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404.6778:652–660. https://doi.org/10.1038/35007527Article 

    Google Scholar 
    McLean MJ, Wolfe KH, Devine KM (1998) Base composition skews, replication orientation and gene orientation in 12 prokaryote genomes. J Mol Evol 47:691–696. https://doi.org/10.1007/PL00006428CAS 
    Article 
    PubMed 

    Google Scholar 
    Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S et al. (2003) Natural selection shaped regional mtDNA variation in humans. P Natl Acad Sci USA 100:171–176CAS 
    Article 

    Google Scholar 
    Morales HE, Pavlova A, Joseph L, Sunnucks P (2015) Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 24:2820–2837CAS 
    Article 

    Google Scholar 
    Morales HE, Pavlova A, Amos N, Major R, Bragg J, Kilian A, Greening C, Sunnucks P (2016) Mitochondrial nuclear interactions maintain a deep mitochondrial split in the face of nuclear gene flow. Bio Rxiv 1:095596
    Google Scholar 
    Mossman JA, Jennifer YG, Navarro F, Rand DM (2019) Mitochondrial DNA fitness depends on nuclear genetic background in Drosophila. G3-Genes Genom Genet 9:1175–1188. https://doi.org/10.1534/g3.119.400067CAS 
    Article 

    Google Scholar 
    Murrell B, Joel OW, Sasha M, Thomas W, Konrad S, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. Plos Genet 8:e1002764CAS 
    Article 

    Google Scholar 
    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Bio Evol 30:1196–1205CAS 
    Article 

    Google Scholar 
    Perna NT, Kocher TD (1995) Patterns of nucleotide composition at four fold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358. https://doi.org/10.1007/BF00186547CAS 
    Article 
    PubMed 

    Google Scholar 
    Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. Plos Biol 9:e1000602CAS 
    Article 

    Google Scholar 
    Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. https://doi.org/10.1038/nrg2899CAS 
    Article 
    PubMed 

    Google Scholar 
    Pond SLK, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. https://doi.org/10.1093/bioinformatics/bti320CAS 
    Article 
    PubMed 

    Google Scholar 
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 7:1253–1256. https://doi.org/10.1093/molbev/msn083CAS 
    Article 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/Rand DM, Kann LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102/103:393–407. https://doi.org/10.1023/A:1017006118852CAS 
    Article 

    Google Scholar 
    Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226CAS 
    Article 

    Google Scholar 
    Satoh TP, Sato Y, Masuyama N, Miya M, Nishida M (2010) Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics 11:479. https://doi.org/10.1186/1471-2164-11-479CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schreiber AM, Specker JL (2000) Metamorphosis in the summer flounder, Paralichthysdentatus: thyroidal status influences gill mitochondria-rich cells. Gen Comp Endocr 117:238–250. https://doi.org/10.1006/gcen.1999.7407CAS 
    Article 
    PubMed 

    Google Scholar 
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modelling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastian W, Sukumaran S, Zacharia PU, Muraleedharan KR, Dinesh Kumar PK, Gopalakrishnan A (2020) Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep.-UK 10:1–4. https://doi.org/10.1038/s41598-020-65905-1CAS 
    Article 

    Google Scholar 
    Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435. https://doi.org/10.1146/annurev.biochem.66.1.409CAS 
    Article 
    PubMed 

    Google Scholar 
    Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP (2010) Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA 107:8666–8671. https://doi.org/10.1073/pnas.0912613107Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F (2014) Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. J Exp Biol 217:624–630CAS 
    PubMed 

    Google Scholar 
    Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci 85:2653–2657. https://doi.org/10.1073/pnas.85.8.2653CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, Beheregaray LB (2019) Thermal selection as a driver of marine ecological speciation. Proc R Soc B 286:20182023. https://doi.org/10.1098/rspb.2018.2023CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144. https://doi.org/10.1126/science.272.5265.1136CAS 
    Article 
    PubMed 

    Google Scholar 
    Whitehead A, Roach JL, Zhang S, Galvez F (2012) Salinity-and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J Exp Biol 215:1293–1305. https://doi.org/10.1242/jeb.062075Article 
    PubMed 

    Google Scholar 
    Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672. https://doi.org/10.1093/bioinformatics/btg043CAS 
    Article 
    PubMed 

    Google Scholar 
    Wright F (1990) The ‘effective number of codons’ used in a. Gene Gene 87:23–29. https://doi.org/10.1016/0378-1119(90)90491-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345:13–20. https://doi.org/10.1016/j.gene.2004.11.019CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728. https://doi.org/10.1093/molbev/mst064CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia X (2019) Is there a mutation gradient along vertebrate mitochondrial genome mediated by genome replication? Mitochondrion 46:30–40. https://doi.org/10.1016/j.mito.2018.06.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y (2017) RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). Plos One 12:e0173238. https://doi.org/10.1371/journal.pone.0173238CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao F, Zhou Z, Dang Y, Na H, Adam C, Lipzen A, Ng V, Grigoriev IV, Liu Y (2021) Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci USA 9:118. https://doi.org/10.1073/pnas.2022590118CAS 
    Article 

    Google Scholar  More

  • in

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    ACIA (2004) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK
    Google Scholar 
    Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schonswetter P et al. (2012) Genetic consequences of climate change for northern plants. Proc R Soc B-Biol Sci 279:2042–2051
    Google Scholar 
    Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archer FI, Adams PE, Schneiders BB (2017) strataG: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour 17:5–11CAS 
    PubMed 

    Google Scholar 
    Arenas M, Ray N, Currat M, Excoffier L (2011) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29:207–218PubMed 

    Google Scholar 
    Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Series B 57:289–300BirdLife International (2018). Pagophila eburnea. The IUCN Red List of Threatened Species 2018: e.T22694473A132555020. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694473A132555020.en. Downloaded on11 June 2020Boertmann D, Petersen IK, Nielsen HH (2020) Ivory Gull population status in Greenland 2019. Dan Orn Foren Tidsskr 114:141–150
    Google Scholar 
    Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F (2016) Inferring population size history from large samples of genome-wide molecular data – an approximate Bayesian computation approach. PLOS Genet 12:1–36
    Google Scholar 
    Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier F-JW et al. (2019) Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 14:045010CAS 

    Google Scholar 
    Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Mar Pollut Bull 52:978–982CAS 
    PubMed 

    Google Scholar 
    Broquet T, Angelone S, Jaquiéry J, Joly P, Léna JP, Lengagne T et al. (2010) Genetic bottlenecks driven by population disconnection. Conserv Biol 24:1596–1605PubMed 

    Google Scholar 
    Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CAS 
    PubMed 

    Google Scholar 
    Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995PubMed 
    PubMed Central 

    Google Scholar 
    Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genet Genomes 7:1237–1247
    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cotto O, Schmid M, Guillaume F (2020) Nemo-age: spatially explicit simulations of eco-evolutionary dynamics in stage-structured populations under changing environments. Methods Ecol Evol 11:1227–1236
    Google Scholar 
    Cubaynes S, Doherty PF, Schreiber EA, Gimenez O (2011) To breed or not to breed: a seabird’s response to extreme climatic events. Biol Lett 7:303–306PubMed 

    Google Scholar 
    Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994). Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91: 3166–3170Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 

    Google Scholar 
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CAS 
    PubMed 

    Google Scholar 
    England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe biasin small samples. Conserv Genet 7:303
    Google Scholar 
    Engler JO, Secondi J, Dawson DA, Elle O, Hochkirch A (2016) Range expansion and retraction along a moving contact zone has no effect on the genetic diversity of two passerine birds. Ecography 39:884–893
    Google Scholar 
    Environment Canada (2014) Recovery Strategy for the Ivory Gull (Pagophila eburnea) in Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. iv+ 21 ppEstoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In Carvalho GR (ed) Advances in molecular ecology, 55–85. IOS Press, Burke, Virginia, USAEwens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112CAS 
    PubMed 

    Google Scholar 
    Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 168:581–597
    Google Scholar 
    Fort J, Moe B, Strøm H, Grémillet D, Welcker J, Schultner J et al. (2013) Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Diversity Distrib 19:1322–1332
    Google Scholar 
    Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J et al. (2021). DILS: Demographic inferences with linked selection by using ABC. Mol Ecol Resourc 21:2629–2644Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Res 66:95–107
    Google Scholar 
    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Google Scholar 
    Garnier J, Lewis MA (2016) Expansion under climate change: the genetic consequences. Bull Math Biol 78:2165–2185PubMed 

    Google Scholar 
    Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CAS 
    PubMed 

    Google Scholar 
    Gavrilo M, Martynova D (2017) Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List. Nat Conserv Res 2:10–42
    Google Scholar 
    Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178CAS 
    PubMed 

    Google Scholar 
    Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121:303–309
    Google Scholar 
    Gilchrist HG, Strøm H, Gavrilo MV, Mosbech A (2008). International ivory gull conservation strategy and action plan. CAFF International Secretariat,Circumpolar Seabird Group (CBird), CAFF Technical Report No. 18Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32:1275–1286
    Google Scholar 
    Gilg O, Istomina L, Heygster G, Strøm H, Gavrilo M, Mallory ML et al. (2016) Living on the edge of a shrinking habitat: the ivory gull, Pagophila eburnea, an endangered sea-ice specialist. Biol Lett 12:20160277PubMed 
    PubMed Central 

    Google Scholar 
    Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Gremillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 1249:166–190PubMed 

    Google Scholar 
    Goutte A, Kriloff M, Weimerskirch H, Chastel O (2011) Why do some adult birds skip breeding? A hormonal investigation in a long-lived bird. Biol Lett 7:790–792PubMed 
    PubMed Central 

    Google Scholar 
    Guillaume F, Rougemont J (2006) Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22:2556–2557CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill WG (1972) Effective size of populations with overlapping generations. Theor Popul Biol 3:278–289CAS 
    PubMed 

    Google Scholar 
    Hoban SM, Mezzavilla M, Gaggiotti OE, Benazzo A, van Oosterhout C, Bertorelle G (2013) High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study. BMC Bioinforma 14:309
    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 

    Google Scholar 
    Hohenlohe PA, Funk WC, Rajora OP (2021) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82PubMed 

    Google Scholar 
    Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584PubMed 

    Google Scholar 
    Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leblois R, Pudlo P, Néron J, Bertaux F, Reddy Beeravolu C, Vitalis R et al. (2014) Maximum-Likelihood Inference of Population Size Contractions from Microsatellite Data. Mol Biol Evol 31:2805–2823CAS 
    PubMed 

    Google Scholar 
    Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, Fu Y-X (2015) Exploring population size changes using SNP frequency spectra. Nat Genet 47:555–559CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucia M, Verboven N, Strom H, Miljeteig C, Gavrilo MV, Braune BM et al. (2015) Circumpolar contamination in eggs of the high-arctic ivory gull Pagophila eburnea. Environ Toxicol Chem 34:1552–1561CAS 
    PubMed 

    Google Scholar 
    Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237
    Google Scholar 
    Mallory ML, Allard KA, Braune BM, Gilchrist HG, Thomas VG (2012) New longevity record for ivory gulls (Pagophila eburnea) and evidence of natal philopatry. Arctic 65:98–101
    Google Scholar 
    Marandel F, Charrier G, Lamy J-B, Le Cam S, Lorance P, Trenkel VM (2020) Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol Evol 10:1929–1937PubMed 
    PubMed Central 

    Google Scholar 
    McInerny GJ, Turner JRG, Wong HY, Travis JMJ, Benton TG (2009) How range shifts induced by climate change affect neutral evolution. Proc R Soc B: Biol Sci 276:1527–1534CAS 

    Google Scholar 
    McRae L, Deinet S, Gill M, Collen B (2012) Arctic species trend index: tracking trends in Arctic marine populations. CAFF Assessment Series No. 7. Conservation of Arctic Flora and Fauna, Iceland
    Google Scholar 
    Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A et al. (2020) Polar Regions. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change (IPCC)) Geneva, pp 203–320Miljeteig C, Strom H, Gavrilo MV, Volkov A, Jenssen BM, Gabrielsen GW (2009) High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environ Sci Technol 43:5521–5528CAS 
    PubMed 

    Google Scholar 
    Miller MP, Haig SM, Mullins TD, Popper KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114:100–112
    Google Scholar 
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341PubMed 

    Google Scholar 
    Nunney L, Elam DR (1994) Estimating the Effective Population Size of Conserved Populations. Conserv Biol 8:175–184
    Google Scholar 
    Nunziata SO, Weisrock DW (2018) Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120:196–207CAS 
    PubMed 

    Google Scholar 
    Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94
    Google Scholar 
    Orive ME (1993) Effective population size in organisms with complex life-histories. Theor Popul Biol 44:316–340CAS 
    PubMed 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669
    Google Scholar 
    Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proc Natl Acad Sci USA 112:E3318CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parreira B, Quéméré E, Vanpé C, Carvalho I, Chikhi L (2020) Genetic consequences of social structure in the golden-crowned sifaka. Heredity 125:328–339PubMed 
    PubMed Central 

    Google Scholar 
    Peart CR, Tusso S, Pophaly SD, Botero-Castro F, Wu C-C, Aurioles-Gamboa D et al. (2020) Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat Ecol Evol 4:1095–1104PubMed 

    Google Scholar 
    Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S et al. (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418PubMed 

    Google Scholar 
    Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Heredity 90:502–503
    Google Scholar 
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249
    Google Scholar 
    Rousset F (1999) Genetic Differentiation in Populations with Different Classes of Individuals. Theor Popul Biol 55:297–308CAS 
    PubMed 

    Google Scholar 
    Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for windows and linux. Mol Ecol Notes 8:103–1006
    Google Scholar 
    Rousset F, Beeravolu CR, Leblois R (2018) Likelihood computation and inference of demographic and mutational parameters from population genetic data under coalescent approximations. J de la Société Française de Statistique 159:142–166
    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288
    Google Scholar 
    Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW (2015) Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol Ecol 24:328–345PubMed 

    Google Scholar 
    Spencer NC, Gilchrist HG, Mallory ML (2014) Annual movement patterns of endangered ivory gulls: the importance of sea ice. Plos ONE 9:e115231PubMed 
    PubMed Central 

    Google Scholar 
    Stenhouse IJ, Robertson GJ, Gilchrist HG (2004) Recoveries and survival rates of ivory gulls (Pagophila eburnea) banded in Nunavut, Canada 1971–1999. Waterbirds 27:486–492
    Google Scholar 
    Storz J, Ramakrishnan U, Alberts S (2002) Genetic effective size of a wild primate population: influence of current and historical demography. Evolution 56:817–29PubMed 

    Google Scholar 
    Strøm H, Bakken V, Skoglund, Descamps S, Fjeldheim VB, Steen H (2020) Population status and trend of the threatened ivory gull Pagophila eburnea in Svalbard. Endanger Species Res 43:435–445
    Google Scholar 
    Volkov AE, de Korte J (2000) Breeding ecology of the Ivory Gull (Pagophila eburnea) in Sedov Archipelago, Severnaya Zemlya. Heritage of the Russian Arctic. Research, conservation and international cooperation. Ecopros Publishers, Moscow, p 483–500
    Google Scholar 
    Waples RS (2016) Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity 117:241–250CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780PubMed 
    PubMed Central 

    Google Scholar 
    Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3:244–262
    Google Scholar 
    Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc B: Biol Sci 280:20131339
    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562
    Google Scholar 
    Wogan GOU, Voelker G, Oatley G, Bowie RCK (2020) Biome stability predicts population structure of a southern African aridland bird species. Ecol Evol 10:4066–4081PubMed 
    PubMed Central 

    Google Scholar 
    Xenikoudakis G, Ersmark E, Tison J-L, Waits L, Kindberg J, Swenson JE et al. (2015) Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol Ecol 24:3441–3454CAS 
    PubMed 

    Google Scholar 
    Yannic G, Broquet T, Strøm H, Aebischer A, Dufresnes C, Gavrilo MV et al. (2016) Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory Gull Pagophila eburnea. J Ornithol 157:861–873
    Google Scholar 
    Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C et al. (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889PubMed 

    Google Scholar 
    Yannic G, Yearsley J, Sermier R, Dufresnes C, Gilg O, Aebischer A et al. (2016) High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol 39:221–236
    Google Scholar 
    Yurkowski DJ, Auger-Méthé M, Mallory ML, Wong SNP, Gilchrist G, Derocher AE et al. (2019) Abundance and species diversity hotspots of tracked marine predators across the North American Arctic. Diversity Distrib 25:328–345
    Google Scholar  More