Diversity of rice rhizosphere microorganisms under different fertilization modes of slow-release fertilizer
Xin, F. et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 711, 135–183. https://doi.org/10.1016/j.scitotenv.2019.135183 (2020).CAS
Article
Google Scholar
Du, B. et al. Deep fertilizer placement improves rice growth and yield in zero tillage. Appl. Ecol. Environ. Res. 16, 8045–8054. https://doi.org/10.15666/aeer/1606_80458054 (2018).Article
Google Scholar
Ni, B., Liu, M., Lü, S., Xie, L. & Wang, Y. Environmentally friendly slow-release nitrogen fertilizer. J. Agric. Food Chem. 59, 10169–10175. https://doi.org/10.1021/jf202131z (2011).CAS
Article
PubMed
Google Scholar
Zhu, C. et al. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in Eastern China. Sci. Rep. 9, 5653. https://doi.org/10.1038/s41598-019-42039-7 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677. https://doi.org/10.1038/nature01014 (2002).ADS
CAS
Article
PubMed
Google Scholar
Sharma, B. et al. Recycling of organic wastes in agriculture: An environmental perspective. Int. J. Environ. Res. 13, 409–429. https://doi.org/10.1007/s41742-019-00175-y (2019).CAS
Article
Google Scholar
Pan, S. et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res. 203, 139–149. https://doi.org/10.1016/j.fcr.2016.12.011 (2017).Article
Google Scholar
Shahena, S., Rajan, M., Chandran, V. & Mathew, L. Conventional methods of fertilizer release. In Controlled Release Fertilizers for Sustainable Agriculture (eds Lewu, F. B. et al.) 1–24 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-819555-0.00001-7.Chapter
Google Scholar
Wang, C. et al. Effects of different fertilization methods on ammonia volatilization from rice paddies. J. Clean. Prod. 295, 126299. https://doi.org/10.1016/j.jclepro.2021.126299 (2021).CAS
Article
Google Scholar
Wu, Q. et al. Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 20, 1503–1514. https://doi.org/10.1016/S2095-3119(20)63406-2 (2021).CAS
Article
Google Scholar
Mahajan, G., Kumar, V. & Chauhan, B. S. Rice production in India. In Rice production worldwide (eds Chauhan, B. et al.) 53–91 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-47516-5_3.Chapter
Google Scholar
Opoku-Kwanowaa, Y., Furaha, R. K., Yan, L. & Wei, D. Effects of planting field on groundwater and surface water pollution in China. Clean-Soil Air Water 48, 1900452. https://doi.org/10.1002/clen.201900452 (2020).CAS
Article
Google Scholar
Lin, W. et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 14, e0217018. https://doi.org/10.1371/journal.pone.0217018 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Sempeho, S. I., Kim, H. T., Mubofu, E. & Hilonga, A. Meticulous overview on the controlled release fertilizers. Adv. Chem. 1–16, 2014. https://doi.org/10.1155/2014/363071 (2014).Article
Google Scholar
Trenkel, M. E. Controlled-Release and Stabilized Fertilizers in Agriculture 1–156 (International Fertilizer Industry Association, 1997).
Google Scholar
Lawrencia, D. et al. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 10, 238. https://doi.org/10.3390/plants10020238 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Tang, S. et al. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza safiva L.). Agric. Sci. China 6, 586–596. https://doi.org/10.1016/S1671-2927(07)60087-X (2007).CAS
Article
Google Scholar
Zheng, Y. et al. Effects of mixed controlled release nitrogen fertilizer with rice straw biochar on rice yield and nitrogen balance in northeast china. Sci. Rep. 10, 9452. https://doi.org/10.1038/s41598-020-66300-6 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Ransom, C. J., Jolley, V. D., Blair, T. A., Sutton, L. E. & Hopkins, B. G. Nitrogen release rates from slow- and controlled-release fertilizers influenced by placement and temperature. PLoS ONE 15, e0234544. https://doi.org/10.1371/journal.pone.0234544 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Soni, R., Kumar, V., Suyal, D. C., Jain, L. & Goel, R. Metagenomics of plant rhizosphere microbiome. In Understanding host-microbiome interactions—an omics approach (eds Singh, R. et al.) 193–205 (Springer, 2017). https://doi.org/10.1007/978-981-10-5050-3_12.Chapter
Google Scholar
Kumar, A. Phosphate solubilizing bacteria in agriculture biotechnology: Diversity, mechanism and their role in plant growth and crop yield. Int. J. Adv. Res. 4, 116–124. https://doi.org/10.21474/IJAR01/111 (2016).Article
Google Scholar
Arjun, J. K. Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome. Biotechnol. Bioinf. Bioeng 1, 361–367 (2011).
Google Scholar
Zhao, J. et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 9, e85301. https://doi.org/10.1371/journal.pone.0085301 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang, M. et al. Soil bacterial communities in three rice-based cropping systems differing in productivity. Sci. Rep. 10, 9867. https://doi.org/10.1038/s41598-020-66924-8 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hayatsu, M. A novel function of controlled-release nitrogen fertilizers. Microbes Environ. 29, 121–122. https://doi.org/10.1264/jsme2.ME2902rh (2014).Article
PubMed
PubMed Central
Google Scholar
Aslam, Z., Yasir, M., Yoon, H. S., Jeon, C. O. & Chung, Y. R. Diversity of the bacterial community in the rice rhizosphere managed under conventional and no-tillage practices. J. Microbiol. 51, 747–756. https://doi.org/10.1007/s12275-013-2528-8 (2013).Article
PubMed
Google Scholar
Min, J. et al. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J. Clean. Prod. 316, 128370. https://doi.org/10.1016/j.jclepro.2021.128370 (2021).CAS
Article
Google Scholar
Ke, J. et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agr. Ecosyst. Environ. 265, 402–412. https://doi.org/10.1016/j.agee.2018.06.023 (2018).CAS
Article
Google Scholar
Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992. https://doi.org/10.1038/nature05202 (2006).ADS
CAS
Article
PubMed
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
Li, P. et al. Different regulation of soil structure and resource chemistry under animal- and plant-derived organic fertilizers changed soil bacterial communities. Appl. Soil. Ecol. 165, 104020. https://doi.org/10.1016/j.apsoil.2021.104020 (2021).Article
Google Scholar
Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01207 (2016).Article
PubMed
PubMed Central
Google Scholar
Gu, Y., Zhang, X., Tu, S. & Lindström, K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. Eur. J. Soil Biol. 45, 239–246. https://doi.org/10.1016/j.ejsobi.2009.02.005 (2009).CAS
Article
Google Scholar
Niu, J. et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate: Effects of different copping systems. J. Basic Microbiol. 57, 3–11. https://doi.org/10.1002/jobm.201600222 (2017).CAS
Article
PubMed
Google Scholar
Wu, T., Qin, Y. & Li, M. Intercropping of tea (Camellia sinensis L.) and Chinese chestnut: Variation in the structure of rhizosphere bacterial communities. J. Soil Sci. Plant Nutr. 21, 2178–2190. https://doi.org/10.1007/s42729-021-00513-0 (2021).CAS
Article
Google Scholar
Li, Y. C. et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J. Appl. Microbiol. 121, 787–799. https://doi.org/10.1111/jam.13225 (2016).CAS
Article
PubMed
Google Scholar
Bei, Q., Moser, G., Müller, C. & Liesack, W. Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. Sci. Total Environ. 784, 147036. https://doi.org/10.1016/j.scitotenv.2021.147036 (2021).ADS
CAS
Article
PubMed
Google Scholar
You, J., Das, A., Dolan, E. M. & Hu, Z. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 43, 1801–1809. https://doi.org/10.1016/j.watres.2009.01.016 (2009).CAS
Article
PubMed
Google Scholar
Chuang, S. et al. Potential effects of Rhodococcus qingshengii strain djl-6 on the bioremediation of carbendazim-contaminated soil and the assembly of its microbiome. J. Hazard. Mater. 414, 125496. https://doi.org/10.1016/j.jhazmat.2021.125496 (2021).CAS
Article
PubMed
Google Scholar
Luo, D. et al. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Sci. Total Environ. 788, 147773. https://doi.org/10.1016/j.scitotenv.2021.147773 (2021).ADS
CAS
Article
PubMed
Google Scholar
Premnath, N. et al. A crucial review on polycyclic aromatic hydrocarbons—Environmental occurrence and strategies for microbial degradation. Chemosphere 280, 130608. https://doi.org/10.1016/j.chemosphere.2021.130608 (2021).ADS
CAS
Article
PubMed
Google Scholar
Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155, 125–129. https://doi.org/10.1104/pp.110.165076 (2011).CAS
Article
PubMed
Google Scholar
Sun, L., Lu, Y., Yu, F., Kronzucker, H. J. & Shi, W. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 212, 646–656. https://doi.org/10.1111/nph.14057 (2016).CAS
Article
PubMed
Google Scholar
Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22, 661–673. https://doi.org/10.1016/j.tplants.2017.05.004 (2017).CAS
Article
PubMed
Google Scholar
Qiang, S. et al. Deep placement of mixed controlled-release and conventional urea improves grain yield, nitrogen use efficiency of rainfed spring maize. Arch. Agronomy Soil Sci. 67, 1848–1858. https://doi.org/10.1080/03650340.2020.1817396 (2021).CAS
Article
Google Scholar
Hou, P. et al. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy J. https://doi.org/10.1002/agj2.20772 (2021).Article
Google Scholar
Zhu, S., Vivanco, J. M. & Manter, D. K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil. Ecol. 107, 324–333. https://doi.org/10.1016/j.apsoil.2016.07.009 (2016).Article
Google Scholar More