Aversive view memories and risk perception in navigating ants
Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).CAS
PubMed
Google Scholar
Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS
PubMed
Google Scholar
Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).
Google Scholar
Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).
Google Scholar
Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).ADS
CAS
Google Scholar
Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).
Google Scholar
Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).
Google Scholar
Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).PubMed
Google Scholar
Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).PubMed
Google Scholar
Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).
Google Scholar
Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).
Google Scholar
Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).CAS
PubMed
Google Scholar
Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).PubMed
PubMed Central
Google Scholar
Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).
Google Scholar
Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).
Google Scholar
Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).
Google Scholar
Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).
Google Scholar
Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).
Google Scholar
Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).
Google Scholar
Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).
Google Scholar
Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).CAS
PubMed
Google Scholar
Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).ADS
Google Scholar
Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).
Google Scholar
Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).ADS
CAS
Google Scholar
Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).
Google Scholar
Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).ADS
MathSciNet
MATH
Google Scholar
Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).
Google Scholar
Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).
Google Scholar
Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).
Google Scholar
Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).
Google Scholar
Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).CAS
PubMed
Google Scholar
Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).
Google Scholar
Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).
Google Scholar
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).
Google Scholar
Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
Google Scholar
Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).
Google Scholar
Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).ADS
CAS
PubMed
Google Scholar
Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).
Google Scholar
Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).
Google Scholar
Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).
Google Scholar
Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).
Google Scholar
Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).
Google Scholar
De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).
Google Scholar
Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).
Google Scholar
Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).
Google Scholar
Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).
Google Scholar
Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).PubMed
Google Scholar
Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).
Google Scholar
Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).
Google Scholar
Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).PubMed
PubMed Central
Google Scholar
Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).
Google Scholar
Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).
Google Scholar
Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).CAS
PubMed
Google Scholar
Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).ADS
Google Scholar
Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).CAS
PubMed
Google Scholar
Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).CAS
PubMed
Google Scholar
Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).CAS
PubMed
Google Scholar
Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).
Google Scholar
Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).PubMed
Google Scholar
Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).CAS
PubMed
PubMed Central
Google Scholar
Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).
Google Scholar
Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).CAS
PubMed
PubMed Central
Google Scholar
Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).CAS
PubMed
Google Scholar
Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).
Google Scholar
Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).
Google Scholar More