Wignall, P. B. The Worst of Times (Princeton Univ. Press, 2015).Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840â857 (2021).
Google ScholarÂ
Jin, Y. G. et al. Pattern of marine mass extinction near the PermianâTriassic boundary in south China. Science 289, 432â436 (2000).
Google ScholarÂ
Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the PermianâTriassic crisis. Nat. Geosci. 6, 52â56 (2013).
Google ScholarÂ
Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325âE6334 (2016).
Google ScholarÂ
Benton, M. J. & Newell, A. J. Impacts of global warming on PermoâTriassic terrestrial ecosystems. Gondwana Res. 25, 1308â1337 (2014).
Google ScholarÂ
Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693â697 (2011).
Google ScholarÂ
Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118â1121 (2009).
Google ScholarÂ
Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predatorsâ perspective. PLoS ONE 9, e88987 (2014).
Google ScholarÂ
Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between PermianâTriassic extinction and Middle Triassic recovery of peat-forming plants. Bull. Geolog. Soc. Am. 108, 195â207 (1996).
Google ScholarÂ
Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506â509 (2004).
Google ScholarÂ
Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the PermoâTriassic extinction. Sci. Adv. 4, eaat5091 (2018).
Google ScholarÂ
Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney basin, Australia. Bull. Geol. Soc. Am. 111, 52â70 (1999).
Google ScholarÂ
Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the PermianâTriassic extinction. Science 289, 1740â1743 (2000).
Google ScholarÂ
Wignall, P. B. & Twitchett, R. J. Extent, duration, and nature of the PermianâTriassic superanoxic event. Spec. Pap. Geol. Soc. Am. 356, 395â413 (2002).
Google ScholarÂ
Rampino, M. R. & Stothers, R. B. Flood basalt volcanism during the past 250 million years. Science 241, 663â668 (1988).
Google ScholarÂ
Renne, P. R. & Basu, A. R. Rapid eruption of the Siberian traps flood basalts at the PermoâTriassic boundary. Science 253, 176â179 (1991).
Google ScholarÂ
Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earthâs most severe extinction. Sci. Adv. 1, e1500470 (2015).
Google ScholarÂ
Vasiljev, Y. R., Zolotukhin, V. V., Feoktistov, G. D. & Prusskaya, S. N. Volume estimation and genesis of PermianâTriassic trap magmatism from Siberian platform. Russ. Geol. Geophys. 41, 1696â1705 (2000).
Google ScholarÂ
Dobretsov, N. L. Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Geol. Geof. 46, 870â890 (2005).
Google ScholarÂ
Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).
Google ScholarÂ
Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. & Bekker, A.) 27â82 (Wiley, 2021).Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
Google ScholarÂ
Posenato, R. Marine biotic events in the lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195â215 (2010).
Google ScholarÂ
Posenato, R. The end-Permian mass extinction (EPME) and the early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bull. Soc. Paleontol. Ital. 58, 11â34 (2019).
Google ScholarÂ
Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).
Google ScholarÂ
Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine PermianâTriassic mass extinction. Geology 48, 288â292 (2020).
Google ScholarÂ
Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1428 (2020).
Google ScholarÂ
Foote, M. Morphological and taxonomic diversity in cladeâs history: the blastoid record and stochastic simulations. Contrib. Mus. Paleontol. 28, 101â140 (1991).
Google ScholarÂ
Stanley, S. M. & Yang, X. A double mass extinction at the end of the Paleozoic era. Science 266, 1340â1344 (1994).
Google ScholarÂ
Wang, X. D. & Sugiyama, T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285â294 (2000).
Google ScholarÂ
Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, 1997).Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93â117 (2007).
Google ScholarÂ
Romano, C. et al. PermianâTriassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106â147 (2016).
Google ScholarÂ
Tu, C., Chen, Z. Q. & Harper, D. A. T. PermianâTriassic evolution of the Bivalvia: extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 53â62 (2016).
Google ScholarÂ
Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C. & Payne, J. L. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42, 127â142 (2016).
Google ScholarÂ
Chen, J. et al. Size variation of brachiopods from the late Permian through the middle Triassic in south China: evidence for the Lilliput effect following the PermianâTriassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 248â257 (2019).
Google ScholarÂ
Feng, Y., Song, H. & Bond, D. P. G. Size variations in foraminifers from the early Permian to the Late Triassic: implications for the GuadalupianâLopingian and the PermianâTriassic mass extinctions. Paleobiology 46, 511â532 (2020).
Google ScholarÂ
Luo, G., Lai, X., Jiang, H. & Zhang, K. Size variation of the end-Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337â347 (2006).
Google ScholarÂ
Brayard, A. et al. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146, 31â64 (2015).
Google ScholarÂ
Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452â457 (1996).
Google ScholarÂ
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295â313 (2007).
Google ScholarÂ
Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059â1062 (2011).
Google ScholarÂ
VĂĄzquez, P. & Clapham, M. E. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45, 395â398 (2017).
Google ScholarÂ
Payne, J. L. & Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506â10511 (2007).
Google ScholarÂ
Dai, X. & Song, H. Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology 46, 533â549 (2020).
Google ScholarÂ
Kiessling, W. et al. Pre-mass extinction decline of latest Permian ammonoids. Geology 46, 283â286 (2018).
Google ScholarÂ
Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the SignorâLipps effect. Geology 26, 415â418 (1998).
Google ScholarÂ
Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, south China. J. Paleontol. 83, 718â738 (2009).
Google ScholarÂ
Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21â46 (1992).
Google ScholarÂ
Shen, S. Z. et al. A sudden end-Permian mass extinction in south China. Bull. Geol. Soc. Am. 131, 205â223 (2019).
Google ScholarÂ
Angiolini, L., Checconi, A., Gaetani, M. & Rettori, R. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geol. J. 45, 216â229 (2010).
Google ScholarÂ
Yin, H., Feng, Q., Lai, X., Baud, A. & Tong, J. The protracted Permo-Triassic crisis and multi-episode extinction around the PermianâTriassic boundary. Glob. Planet. Change 55, 1â20 (2007).
Google ScholarÂ
Wignall, P. B. & Newton, R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18, 153â167 (2003).
Google ScholarÂ
Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113â129 (2014).
Google ScholarÂ
Liu, X., Song, H., Bond, D. P. G., Tong, J. & Benton, M. J. Migration controls extinction and survival patterns of foraminifers during the PermianâTriassic crisis in south China. Earth Sci. Rev. 209, 103329 (2020).
Google ScholarÂ
Chen, Z. Q. et al. Environmental and biotic turnover across the PermianâTriassic boundary on a shallow carbonate platform in western Zhejiang, south China. Aust. J. Earth Sci. 56, 775â797 (2009).
Google ScholarÂ
He, W. H. et al. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13, 123â138 (2015).
Google ScholarÂ
Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earthâs most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316â3321 (2014).
Google ScholarÂ
Yang, H. et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111â128 (2011).
Google ScholarÂ
Tian, L. et al. Distribution and size variation of ooids in the aftermath of the PermianâTriassic mass extinction. Palaios 30, 714â727 (2015).
Google ScholarÂ
Retallack, G. J. PermianâTriassic life crisis on land. Science 267, 77â80 (1995).
Google ScholarÂ
Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the PermianâTriassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857â13862 (1999).
Google ScholarÂ
Hermann, E. et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20, 630â637 (2011).
Google ScholarÂ
Cascales-MiĂąana, B., Diez, J. B., Gerrienne, P. & Cleal, C. J. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066â1074 (2016).
Google ScholarÂ
Yu, J. et al. Vegetation changeover across the PermianâTriassic boundary in southwest China. Extinction, survival, recovery and palaeoclimate: a critical review. Earth Sci.Rev. 149, 203â224 (2015).
Google ScholarÂ
Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and floodingâan ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
Google ScholarÂ
Schneebeli-Hermann, E., Hochuli, P. A. & Bucher, H. Palynofloral associations before and after the PermianâTriassic mass extinction, Kap Stosch, East Greenland. Glob. Planet. Change 155, 178â195 (2017).
Google ScholarÂ
Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the PermianâTriassic transition. Nat. Commun. 10, 384 (2019).
Google ScholarÂ
Chu, D. et al. Biostratigraphic correlation and mass extinction during the PermianâTriassic transition in terrestrial-marine siliciclastic settings of south China. Glob. Planet. Change 146, 67â88 (2016).
Google ScholarÂ
Zhang, H. et al. The terrestrial end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108â124 (2016).
Google ScholarÂ
Krassilov, V. & Karasev, E. Paleofloristic evidence of climate change near and beyond the PermianâTriassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 326â336 (2009).
Google ScholarÂ
Mcloughlin, S., LindstrĂśm, S. & Drinnan, A. N. Gondwanan floristic and sedimentological trends during the PermianâTriassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, east Antarctica. Antarctic Sci. 9, 281â298 (1997).
Google ScholarÂ
Kerp, H., Hamad, A. A., VĂśrding, B. & Bandel, K. Typical Triassic Gondwanan floral elements in the Upper Permian of the paleotropics. Geology 34, 265â268 (2006).
Google ScholarÂ
Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the PermianâTriassic boundary. Geology 23, 967â970 (1995).
Google ScholarÂ
Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952â12956 (2004).
Google ScholarÂ
Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. The ultrastructure and botanical affinity of end-Permian spore tetrads. Int. J. Plant Sci. 166, 875â887 (2005).
Google ScholarÂ
Foster, C. B. & Afonin, S. A. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the PermianâTriassic boundary. J. Geol. Soc. 162, 653â659 (2005).
Google ScholarÂ
Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the PermianâTriassic transition. Geology 45, 1123â1126 (2017).
Google ScholarÂ
Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147â154 (2018).
Google ScholarÂ
Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-Bâinduced forest sterility: implications of ozone shield failure in Earthâs largest extinction. Sci. Adv. 4, e1700618 (2018).
Google ScholarÂ
Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657â661 (2021).
Google ScholarÂ
Schneebeli-Hermann, E. et al. Vegetation history across the PermianâTriassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911â924 (2015).
Google ScholarÂ
Visscher, H. et al. The terminal paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl Acad. Sci. USA 93, 2155â2158 (1996).
Google ScholarÂ
Visscher, H., Sephton, M. A. & Looy, C. V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883â886 (2011).
Google ScholarÂ
Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. Life in the end-Permian dead zone. Proc. Natl Acad. Sci. USA 98, 7879â7883 (2001).
Google ScholarÂ
Bercovici, A. & Vajda, V. Terrestrial PermianâTriassic boundary sections in south China. Glob. Planet. Change 143, 31â33 (2016).
Google ScholarÂ
Hochuli, P. A. Interpretation of âfungal spikesâ in PermianâTriassic boundary sections. Glob. Planet. Change 144, 48â50 (2016).
Google ScholarÂ
Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo basin, South Africa. New Mex. Mus. Nat. Hist. Sci. Bull. 30, 16â23 (2005).
Google ScholarÂ
Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310â315 (1993).
Google ScholarÂ
Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15â31 (2008).
Google ScholarÂ
Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).
Google ScholarÂ
Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the PermianâTriassic boundary in the Karoo basin of South Africa. Geology 29, 1147 (2001).
Google ScholarÂ
Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the PermianâTriassic boundary in Russia. Nature 432, 97â100 (2004).
Google ScholarÂ
Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).
Google ScholarÂ
Sennikov, A. G. & Golubev, V. K. Vyazniki biotic assemblage of the terminal Permian. Paleontol. J. 40, S475âS481 (2006).
Google ScholarÂ
Sennikov, A. G. & Golubev, V. K. On the faunal verification of the PermoâTriassic boundary in continental deposits of eastern Europe: 1. GorokhovetsâZhukov ravine. Paleontol. J. 46, 313â323 (2012).
Google ScholarÂ
Zhu, Z. et al. Altered fluvial patterns in north China indicate rapid climate change linked to the PermianâTriassic mass extinction. Sci. Rep. 9, 16818 (2019).
Google ScholarÂ
Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367â1372 (2011).
Google ScholarÂ
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351â354 (2001).
Google ScholarÂ
Biswas, R. K., Kaiho, K., Saito, R., Tian, L. & Shi, Z. Terrestrial ecosystem collapse and soil erosion before the end-Permian marine extinction: organic geochemical evidence from marine and non-marine records. Glob. Planet. Change 195, 103327 (2020).
Google ScholarÂ
Aftabuzzaman, M. D. et al. End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Glob. Planet. Change 205, 103621 (2021).
Google ScholarÂ
Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: what physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. https://doi.org/10.1130/b35830.1 (2021).Yan, Z. et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the end-Permian mass extinction event. Int. J.Coal Geol. 207, 75â83 (2019).
Google ScholarÂ
DiMichele, W. A., Bashforth, A. R., Falcon-Lang, H. J. & Lucas, S. G. Uplands, lowlands, and climate: taphonomic megabiases and the apparent rise of a xeromorphic, drought-tolerant flora during the PennsylvanianâPermian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109965 (2020).
Google ScholarÂ
Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99â118 (2014).
Google ScholarÂ
Xiong, C. & Wang, Q. PermianâTriassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37, 157â167 (2011).
Google ScholarÂ
Yu, J. et al. Terrestrial events across the PermianâTriassic boundary along the YunnanâGuizhou border, SW China. Glob. Planet. Change 55, 193â208 (2007).
Google ScholarÂ
Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. Impact event at the PermianâTriassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530â1533 (2001).
Google ScholarÂ
Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the PermianâTriassic boundary in Antarctica. Science 302, 1388â1392 (2003).
Google ScholarÂ
Isozaki, Y. PermoâTriassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235â238 (1997).
Google ScholarÂ
French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesnât, and why. Earth Sci. Rev. 98, 123â170 (2010).
Google ScholarÂ
Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. A mantle plume origin for the Siberian traps: uplift and extension in the west Siberian basin, Russia. Lithos 79, 407â424 (2005).
Google ScholarÂ
Reichow, M. K. et al. Petrogenesis and timing of mafic magmatism, south Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps? Lithos 248â251, 382â401 (2016).
Google ScholarÂ
Naldrett, A. J., Lightfoot, P. C., Fedorenko, V., Doherty, W. & Gorbachev, N. S. Geology and geochemistry of intrusions and flood basalts of the Norilâsk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87, 975â1004 (1992).
Google ScholarÂ
Hawkesworth, C. J. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 61â88 (1995).
Google ScholarÂ
Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Norilâsk, north central Siberia. Int. Geol. Rev. 38, 99â135 (1996).
Google ScholarÂ
Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contribut. Mineral. Petrol. 133, 297â313 (1998).
Google ScholarÂ
Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312â316 (2011).
Google ScholarÂ
Sobolev, A. V., Arndt, N. T., Krivolutskaya, N. A., Kuzmin, D. V. & Sobolev, S. V. in Volcanism and Global Environmental Change (eds Schmidt, A. Fristad, K. & Elkins-Tanton, L.) 147â163 (Cambridge Univ. Press, 2015).Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317â318, 363â373 (2012).
Google ScholarÂ
Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682â687 (2018).
Google ScholarÂ
Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252âMa Siberian Traps with global carbon disruption. Geology 48, 986â991 (2020).
Google ScholarÂ
Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup basin, Arctic Canada. Chem. Geol. 264, 232â246 (2009).
Google ScholarÂ
Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104â107 (2011).
Google ScholarÂ
Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63â66 (2012).
Google ScholarÂ
Reichow, M. K., Saunders, A. D., White, R. V., AlâMukhamedov, A. I. & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the west Siberian basin: an extension of the PermoâTriassic Siberian Traps, Russia. Lithos 79, 425â452 (2005).
Google ScholarÂ
Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G. & Torsvik, T. H. The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 38â50 (2016).
Google ScholarÂ
Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci.Lett. 277, 490â500 (2009).
Google ScholarÂ
Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Phil. Trans. R. Soc. A 376, 20170080 (2018).
Google ScholarÂ
Davydov, V. I. Tunguska Ńoals, Siberian sills and the PermianâTriassic extinction. Earth Sci. Rev. 212, 103438 (2021).
Google ScholarÂ
Callegaro, S. et al. Geochemistry of deep Tunguska basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contribut. Mineral. Petrol. 176, 49 (2021).
Google ScholarÂ
Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Norilâsk area, Siberia. Geochim. Cosmochim. Acta 57, 3677â3704 (1993).
Google ScholarÂ
Arndt, N. T., Czmanske, G. K., Walker, R. J., Chauvel, C. & Fedorenko, V. A. Geochemistry and origin of the intrusive hosts of the Norilâsk-Talnakh Cu-Ni-PGE sulfide deposits. Eco. Geol. 98, 495â515 (2003).
Google ScholarÂ
Pang, K. N. et al. A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 165, 683â704 (2013).
Google ScholarÂ
Yao, Z. S. & Mungall, J. E. Linking the Siberian flood basalts and giant Ni-Cu-PGE sulfide deposits at Norilsk. J. Geophys. Res. Solid Earth 126, e2020JB020823 (2021).
Google ScholarÂ
Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089â2116 (2015).
Google ScholarÂ
Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1â20 (2008).
Google ScholarÂ
Iacono-Marziano, G. et al. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet. Sci. Lett. 357â358, 308â318 (2012).
Google ScholarÂ
Fristad, K. E., Svensen, H. H., Polozov, A. & Planke, S. Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska basin, eastern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 76â87 (2017).
Google ScholarÂ
Polozov, A. G. et al. The basalt pipes of the Tunguska basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 51â64 (2016).
Google ScholarÂ
Elkins-Tanton, L. T. et al. The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contribut. Mineral. Petrol. 153, 191â209 (2007).
Google ScholarÂ
Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77â82 (2016).
Google ScholarÂ
Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949â954 (2018).
Google ScholarÂ
Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675â683 (2014).
Google ScholarÂ
Chen, J. et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 560, 109973 (2020).
Google ScholarÂ
Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the PermianâTriassic mass extinction: new insights from Armenian PermianâTriassic sections. Bull. Geol. Soc. Am. 132, 427â443 (2020).
Google ScholarÂ
Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366â370 (2012).
Google ScholarÂ
Joachimski, M. M. et al. Climate warming in the latest Permian and the PermianâTriassic mass extinction. Geology 40, 195â198 (2012).
Google ScholarÂ
Jiang, H., Joachimski, M. M., Wignall, P. B., Zhang, M. & Lai, X. A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou province, south China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 690â695 (2015).
Google ScholarÂ
Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from south China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26â38 (2016).
Google ScholarÂ
Shen, S. et al. Permian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 154â188 (2019).
Google ScholarÂ
PĂśrtner, H. O. Oxygen- And capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881â893 (2010).
Google ScholarÂ
PĂśrtner, H. O. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Progr. Ser. 470, 273â290 (2012).
Google ScholarÂ
Bijma, J., PĂśrtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans â what does the future hold? Mar. Pollut. Bull. 74, 495â505 (2013).
Google ScholarÂ
Song, H. et al. Flat latitudinal diversity gradient caused by the PermianâTriassic mass extinction. Proc. Natl Acad. Sci. USA 117, 17578â17583 (2020).
Google ScholarÂ
Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
Google ScholarÂ
Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the PermianâTriassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076 (2018).
Google ScholarÂ
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Envir. 38, 1699â1712 (2015).
Google ScholarÂ
Cai, Y. F., Zhang, H., Feng, Z. & Shen, S. Z. Intensive wildfire associated with volcanism promoted the vegetation changeover in southwest china during the PermianâTriassic transition. Front. Earth Sci. 9, 615841 (2021).
Google ScholarÂ
Grasby, S. E. et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bull. Geol. Soc. Am. 127, 1331â1347 (2015).
Google ScholarÂ
Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350â352, 73â90 (2012).
Google ScholarÂ
Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155â1158 (1996).
Google ScholarÂ
Wignall, P. B. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316â331 (2016).
Google ScholarÂ
Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. & Beauchamp, B. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41, 967â970 (2013).
Google ScholarÂ
Grasby, S. E. et al. Transient PermianâTriassic euxinia in the southern Panthalassa deep ocean. Geology 49, 889â893 (2021).
Google ScholarÂ
Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob. Planet. Change 71, 109â123 (2010).
Google ScholarÂ
Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during PermianâTriassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353â354, 12â21 (2012).
Google ScholarÂ
Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175â178 (2013).
Google ScholarÂ
Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K. & Tsuchiya, N. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr. Palaeoclimato. Palaeoecol. 432, 15â28 (2015).
Google ScholarÂ
Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631â17634 (2011).
Google ScholarÂ
Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett 393, 94â104 (2014).
Google ScholarÂ
Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the PermoâTriassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331â345 (2004).
Google ScholarÂ
Grice, K. et al. Photic zone euxinia during the PermianâTriassic superanoxic event. Science 307, 706â709 (2005).
Google ScholarÂ
Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571â2575 (1994).
Google ScholarÂ
Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211â222 (2019).
Google ScholarÂ
Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from worldâs worst mass extinction. Geology 44, 779â782 (2016).
Google ScholarÂ
Schoepfer, S. D., Henderson, C. M., Garrison, G. H. & Ward, P. D. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the PermianâTriassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313â314, 181â188 (2012).
Google ScholarÂ
Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298â10303 (2015).
Google ScholarÂ
Grasby, S. E. et al. Global warming leads to Early Triassic nutrient stress across northern Pangea. Bull. Geol. Soc. Am. 132, 943â954 (2020).
Google ScholarÂ
Song, H. et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chem. Geol. 562, 120038 (2021).
Google ScholarÂ
Jurikova, H. et al. PermianâTriassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745â750 (2020).
Google ScholarÂ
Garbelli, C., Angiolini, L. & Shen, S. Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19â22 (2017).
Google ScholarÂ
Clarkson, M. O. et al. Ocean acidification and the PermoâTriassic mass extinction. Science 348, 229â232 (2015).
Google ScholarÂ
Zhang, S. et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458, 380â393 (2017).
Google ScholarÂ
Hinojosa, J. L. et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743â746 (2012).
Google ScholarÂ
Komar, N. & Zeebe, R. E. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115â130 (2016).
Google ScholarÂ
Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the PermianâTriassic transition. Bull. Geol. Soc. Am. 130, 1323â1338 (2018).
Google ScholarÂ
Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543â8548 (2010).
Google ScholarÂ
Lau, K. V. et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in LowerâMiddle Triassic carbonate rocks. Chem. Geol. 471, 13â37 (2017).
Google ScholarÂ
Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143â165 (2019).
Google ScholarÂ
Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56â67 (2011).
Google ScholarÂ
Chen, Z. Q., Kaiho, K. & George, A. D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270â290 (2005).
Google ScholarÂ
Dai, X., Korn, D. & Song, H. Morphological selectivity of the PermianâTriassic ammonoid mass extinction. Geology 49, 1112â1116 (2021).
Google ScholarÂ
FijaĹkowska-Mader, A. in Morphogenesis, Environmental Stress and Reverse Evolution (eds Guex, J., Torday, J. S. & Miller, W. B. Jr) 23â35 (Springer, 2020).Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843â1866 (2007).
Google ScholarÂ
Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. Contact metamorphism, halocarbons, and environmental crises of the past. Environ. Chem. 6, 466â471 (2009).
Google ScholarÂ
Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed siberian traps magmatism. Geology 42, 67â70 (2014).
Google ScholarÂ
Likens, G. E. & Butler, T. J. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 23â31 (Elsevier, 2018).Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43, 159â162 (2015).
Google ScholarÂ
Sheldon, N. D. Abrupt chemical weathering increase across the PermianâTriassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315â321 (2006).
Google ScholarÂ
Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry across a terrestrial PermianâTriassic boundary section in the Karoo basin, South Africa. Earth Planet. Sci. Lett. 206, 101â117 (2003).
Google ScholarÂ
Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).
Google ScholarÂ
Dal Corso, J. et al. PermoâTriassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).
Google ScholarÂ
Rugenstein, M. A. A., SedlĂĄÄek, J. & Knutti, R. Nonlinearities in patterns of long-term ocean warming. Geophys. Res. Lett. 43, 3380â3388 (2016).
Google ScholarÂ
Yang, H. & Zhu, J. Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett. 38, L14711 (2011).
Google ScholarÂ
Song, H. et al. Anoxia/high temperature double whammy during the PermianâTriassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).
Google ScholarÂ
Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374â397 (2014).
Google ScholarÂ
Scotese, C. R. Atlas of Permo-Triassic paleogeographic maps (Mollweide projection), maps 43â52, vol. 3/4 of the PALEOMAP Atlas. ResearchGate https://doi.org/10.13140/2.1.2609.9209 (2014).Zhang, F. et al. Two distinct episodes of marine anoxia during the PermianâTriassic crisis evidenced by uranium isotopes in marine dolostones. Geochim. Cosmochim. Acta 287, 165â179 (2020).
Google ScholarÂ
Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the PermianâTriassic mass extinction. Nat. Commun. 12, 2137 (2021).
Google ScholarÂ
Grossman, E. L. & Joachimski, M. M. Oxygen isotope stratigraphy. Geol. Time Scale 1, 279â307 (2020).
Google ScholarÂ
Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34â48 (2016).
Google ScholarÂ
Kaiho, K. et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29, 815â818 (2001).
Google ScholarÂ
Chu, D. et al. Lilliput effect in freshwater ostracods during the PermianâTriassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38â52 (2015).
Google ScholarÂ
Shen, J. et al. Mercury evidence of intense volcanic effects on land during the PermianâTriassic transition. Geology 47, 1117â1121 (2019).
Google ScholarÂ
Cao, C., Wang, W., Liu, L., Shen, S. & Summons, R. E. Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet. Sci. Lett. 270, 251â257 (2008).
Google ScholarÂ
Shen, J. et al. Evidence for a prolonged PermianâTriassic extinction interval from global marine mercury records. Nat. Commun. 10, 1563 (2019).
Google ScholarÂ
Wang, X. et al. Mercury anomalies across the end Permian mass extinction in south China from shallow and deep water depositional environments. Earth Planet Sci.Lett. 496, 159â167 (2018).
Google ScholarÂ
Holser, W. T. et al. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39â44 (1989).
Google ScholarÂ
Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the PermianâTriassic boundary: a review. J. Asian Earth Sci. 39, 215â235 (2010).
Google ScholarÂ
Luo, G. et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the PermianâTriassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 70â82 (2011).
Google ScholarÂ
Shen, S. Z. et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in south China and Iran. Earth Planet. Sci. Lett. 375, 156â165 (2013).
Google ScholarÂ
Hermann, E. et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Glob. Planet. Change 74, 156â167 (2010).
Google ScholarÂ
Luo, G. et al. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119â131 (2014).
Google ScholarÂ
Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579â582 (2013).
Google ScholarÂ
Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney basin, Australia. Gondwana Res. 51, 149â169 (2017).
Google ScholarÂ
Wu, Y. et al. Organic carbon isotopes in terrestrial PermianâTriassic boundary sections of North China: implications for global carbon cycle perturbations. Bull. Geol. Soc. Am. 132, 1106â1118 (2020).
Google ScholarÂ
Grasby, S. E., Liu, X., Yin, R., Ernst, R. E. & Chen, Z. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology 48, 830â833 (2020).
Google Scholar More