Quantifying fish otolith mineralogy for trace-element chemistry studies
Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Change 2, 849 (2012).ADS
Article
Google Scholar
Pracheil, B. M., Hogan, J. D., Lyons, J. & McIntyre, P. B. Using hard-part microchemistry to advance conservation and management of North American freshwater fishes. Fisheries 39, 451–465 (2014).Article
Google Scholar
Starrs, D., Ebner, B. C. & Fulton, C. J. All in the ears: Unlocking the early life history biology and spatial ecology of fishes. Biol. Rev. 91, 86–105 (2016).Article
Google Scholar
Limburg, K. E. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Progr. Ser. 119, 25–35 (1995).ADS
Article
Google Scholar
Kennedy, B. P., Klaue, A., Blum, J. D., Folt, C. L. & Nislow, K. H. Reconstructing the lives of fish using Sr isotopes in otoliths. Can. J. Fish. Aquat. Sci. 59, 925–929 (2002).Article
Google Scholar
Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N. & McIntyre, P. B. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95, 2397–2408 (2014).Article
Google Scholar
Carlson, A. K., Phelps, Q. E. & Graeb, B. D. S. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90, 505–527 (2017).CAS
Article
Google Scholar
Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS
CAS
Article
Google Scholar
Pracheil, B. M. et al. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite. J. Fish Biol. 90, 549–558 (2017).CAS
Article
Google Scholar
Pracheil, B. M., George, R. & Chakoumakos, B. C. Significance of otolith calcium carbonate crystal structure diversity to microchemistry studies. Rev. Fish Biol. Fish. 29, 569–588 (2019).Article
Google Scholar
Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T. & Abele, D. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosyst. 13(5), 15. https://doi.org/10.1029/2011GC003996 (2012).CAS
Article
Google Scholar
Wassenburg, J. A. et al. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 190, 347–367 (2016).ADS
CAS
Article
Google Scholar
Tzeng, W. N. et al. Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar. Ecol. Prog. Ser. 348, 285–295 (2007).ADS
CAS
Article
Google Scholar
Gauldie, R. W. Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Can. J. Fish. Aquat. Sci. 53, 2015–2026 (1996).CAS
Article
Google Scholar
Reimer, T. et al. Rapid growth causes abnormal vaterite formation in farmed fish otoliths. J. Exp. Biol. 220, 2965–2969 (2017).PubMed
Google Scholar
Coll-Lladó, C., Giebichenstein, J., Webb, P. B. & Bridges, C. R. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 8, 8384 (2018).ADS
Article
Google Scholar
Loeppky, A. R. et al. Influence of ontogenetic development, temperature, and pCO2 on otolith calcium carbonate polymorph composition in sturgeons. Sci. Rep. 11(1), 1–10 (2021).Article
Google Scholar
Melancon, S., Fryer, B. J., Ludsin, S. A., Gagnon, J. E. & Yang, Z. Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can. J. Fish. Aquat. Sci. 62, 2609–2619 (2005).CAS
Article
Google Scholar
Veinott, G. I., Porter, T. R. & Nasdala, L. Using Mg as a proxy for crystal structure and Sr as an indicator of marine growth in vaterite and aragonite otoliths of aquaculture rainbow trout. Trans. Am. Fish. Soc. 138, 1157–1165 (2009).CAS
Article
Google Scholar
Loeppky, A. R., Chakoumakos, B. C., Pracheil, B. M. & Anderson, W. G. Otoliths of sub-adult Lake Sturgeon Acipenser fulvescens contain aragonite and vaterite calcium carbonate polymorphs. J. Fish Biol. 94, 810–814 (2019).CAS
Article
Google Scholar
Vignon, M. When the presence of a vateritic otolith has morphological effect on its aragonitic partner: Trans-lateral compensation induces bias in microecological patterns in one-side-only vateritic otolith. Can. J. Fish. Aquat. Sci. 77, 285–294 (2020).Article
Google Scholar
Clarke, A. D., Telmer, K. H. & Mark Shrimpton, J. Elemental analysis of otoliths, fin rays and scales: A comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol. Freshw. Fish 16, 354–361 (2007).Article
Google Scholar
Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A. & Brattey, J. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343–357 (2000).Article
Google Scholar
Gauldie, R. W. Continuous and discontinuous growth in the otolith of Macruronus novaezelandiae (Merlucciidae: Teleostei). J. Morphol. 216(3), 271–294 (1993).CAS
Article
Google Scholar
Long, J. M., Snow, R. A., Pracheil, B. M. & Chakoumakos, B. C. Morphology and composition of Goldeye (Hiodontidae; Hiodon alosoides) otoliths. J. Morphol. 282(4), 511–519 (2021).CAS
Article
Google Scholar
Chakoumakos, B. C., Pracheil, B. M., Koenigs, R. P., Bruch, R. M. & Feygenson, M. Empirically testing vaterite structural models using neutron diffraction and thermal analysis. Sci. Rep. 6, 36799 (2016).ADS
CAS
Article
Google Scholar
David, A. W., Grimes, C. B. & Isely, J. J. Vaterite sagittal otoliths in hatchery-reared juvenile red drums. Progres. Fish-Cult. 56(4), 301–303 (1994).Article
Google Scholar
Tomás, J. & Geffen, A. J. Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J. Fish Biol. 63(6), 1383–1401 (2003).Article
Google Scholar
Kamhi, S. R. On the structure of vaterite CaCO3. Acta Crystallogr. A 16(8), 770–772 (1963).CAS
Article
Google Scholar
Kartnaller, V., Ribeiro, E. M., Venancio, F., Rosariob, F. & Cajaiba, J. Preferential incorporation of sulfate into calcite polymorphs during calcium carbonate precipitation: an experimental approach. CrystEngComm 20, 2241–2244 (2018).CAS
Article
Google Scholar
Paquette, J. & Reeder, R. J. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59(4), 735–749 (1995).ADS
CAS
Article
Google Scholar
Hüssy, K. & Mosegaard, H. Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context. Can. J. Fish. Aquat. Sci. 61(6), 1021–1031 (2004).Article
Google Scholar
Fablet, R. et al. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE 6(11), e27055 (2011).ADS
CAS
Article
Google Scholar
Naslund, A. W., Davis, B. E., Hobbs, J. A., Fangue, N. A. & Todgham, A. E. Warming, not CO2-acidified seawater, alters otolith development of juvenile Antarctic emerald rockcod (Trematomus bernacchii). Polar Biol. 44(9), 1917–1923 (2021).Article
Google Scholar
Coll-Lladó, C. et al. Pilot study to investigate the effect of long-term exposure to high pCO2 on adult cod (Gadus morhua) otolith morphology and calcium carbonate deposition. Fish Physiol. Biochem. 48, 1879–1891 (2021).Article
Google Scholar
Söllner, C. et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302(5643), 282–286 (2003).ADS
Article
Google Scholar
Rodriguez-Carvajal, J. FULLPROF: A program for Rietveld refinement and pattern matching analysis. In Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Vol. 127) (1990).Roisnel, T. & Rodríquez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. 378(1), 118–123 (2001).
Google Scholar
Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008).CAS
Article
Google Scholar
Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 41(10), 3199–3205 (1964).ADS
CAS
Article
Google Scholar More