Using citizen science to test for acoustic niche partitioning in frogs
Schwartz, J. J. & Bee, M. A. in Animal communication and noise (ed Henrik Brumm) 91–132 (Springer, 2013).Wollerman, L. Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim. Behav. 57, 529–536. https://doi.org/10.1006/anbe.1998.1013 (1999).CAS
Article
PubMed
Google Scholar
Gerhardt, H. C. & Schwartz, J. J. Interspecific interactions in anuran courtship. Amphib. Biol. 2, 603–632 (1995).
Google Scholar
Gröning, J. & Hochkirch, A. Reproductive interference between animal species. Q. Rev. Biol. 83, 257–282 (2008).Article
Google Scholar
Popp, J. W., Ficken, R. W. & Reinartz, J. A. Short-term temporal avoidance of interspecific acoustic interference among forest birds. Auk 102, 744–748. https://doi.org/10.1093/auk/102.4.744 (1985).Article
Google Scholar
Luther, D. A. Signaller: Receiver coordination and the timing of communication in Amazonian birds. Biol. Let. 4, 651–654 (2008).Article
Google Scholar
Brumm, H. Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J. Comp. Physiol. A. 192, 1279–1285 (2006).Article
Google Scholar
Farina, A. Soundscape ecology: principles, patterns, methods and applications. (Springer, 2013).Krause, B. L. The niche hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newsl. 6, 6–10 (1993).
Google Scholar
Littlejohn, M. & Martin, A. Acoustic interaction between two species of leptodactylid frogs. Anim. Behav. 17, 785–791. https://doi.org/10.1016/S0003-3472(69)80027-8 (1969).Article
Google Scholar
Ficken, R. W., Ficken, M. S. & Hailman, J. P. Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183, 762–763. https://doi.org/10.1126/science.183.4126.762 (1974).ADS
CAS
Article
PubMed
Google Scholar
Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). Afr. Zool. 47, 60–73 (2012).Article
Google Scholar
Lima, M., Pederassi, J., Pineschi, R. & Barbosa, D. Acoustic niche partitioning in an anuran community from the municipality of Floriano, Piauí Brazil. Brazil. J. Biol. 79, 566–576 (2019).CAS
Article
Google Scholar
Gottsberger, B. & Gruber, E. Temporal partitioning of reproductive activity in a neotropical anuran community. J. Trop. Ecol. 1, 271–280 (2004).Article
Google Scholar
Villanueva-Rivera, L. J. Eleutherodactylus frogs show frequency but no temporal partitioning: Implications for the acoustic niche hypothesis. PeerJ 2, e496 (2014).Article
Google Scholar
Bignotte-Giró, I. & López-Iborra, G. M. Acoustic niche partitioning in five Cuban frogs of the genus Eleutherodactylus. Amphibia-Reptilia 40, 1–11 (2019).Article
Google Scholar
Hödl, W. Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia 28, 351–363 (1977).ADS
Article
Google Scholar
Schmidt, A. K., Römer, H. & Riede, K. Spectral niche segregation and community organization in a tropical cricket assemblage. Behav. Ecol. 24, 470–480. https://doi.org/10.1093/beheco/ars187 (2013).Article
Google Scholar
Gotelli, N. J. & Graves, G. R. Null models in ecology. (1996).Chek, A. A., Bogart, J. P. & Lougheed, S. C. Mating signal partitioning in multi-species assemblages: A null model test using frogs. Ecol. Lett. 6, 235–247 (2003).Article
Google Scholar
Tobias, J. A., Planqué, R., Cram, D. L. & Seddon, N. Species interactions and the structure of complex communication networks. Proc. Natl. Acad. Sci. 111, 1020–1025. https://doi.org/10.1073/pnas.1314337111 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Sugai, L. S., Llusia, D., Siqueira, T. & Silva, T. S. Revisiting the drivers of acoustic similarities in tropical anuran assemblages. Ecology, e03380 (2021).Hart, P. J. et al. Acoustic niche partitioning in two tropical wet forest bird communities. bioRxiv (2020).Duellman, W. E. & Trueb, L. Biology of amphibians. (McGraw-Hill Book Company, 1986).Wells, K. D. The social behaviour of anuran amphibians. Anim. Behav. 25, 666–693. https://doi.org/10.1016/0003-3472(77)90118-X (1977).Article
Google Scholar
Woinarski, J., Fisher, A. & Milne, D. Distribution patterns of vertebrates in relation to an extensive rainfall gradient and variation in soil texture in the tropical savannas of the Northern Territory, Australia. J. Trop. Ecol. 1, 381–398 (1999).Article
Google Scholar
Allen-Ankins, S. & Schwarzkopf, L. Spectral overlap and temporal avoidance in a tropical savannah frog community. Anim. Behav. 180, 1–11. https://doi.org/10.1016/j.anbehav.2021.07.024 (2021).Article
Google Scholar
Gerhardt, H. C. The evolution of vocalization in frogs and toads. Ann. Rev. Ecol. Syst. 1, 293–324 (1994).Article
Google Scholar
Rowley, J. J. & Callaghan, C. T. The FrogID dataset: expert-validated occurrence records of Australia’s frogs collected by citizen scientists. ZooKeys 912, 139 (2020).Article
Google Scholar
Zelick, R. & Narins, P. M. Characterization of the advertisement call oscillator in the frogEleutherodactylus coqui. J. Comp. Physiol. A. 156, 223–229 (1985).Article
Google Scholar
Schwartz, J. J. & Wells, K. D. An experimental study of acoustic interference between two species of neotropical treefrogs. Anim. Behav. 31, 181–190. https://doi.org/10.1016/S0003-3472(83)80187-0 (1983).Article
Google Scholar
Smith, M. J. & Hunter, D. Temporal and geographic variation in the advertisement call of the booroolong frog (Litoria booroolongensis: Anura: Hylidae). Ethology 111, 1103–1115 (2005).Article
Google Scholar
Baraquet, M., Grenat, P. R., Salas, N. E. & Martino, A. L. Geographic variation in the advertisement call of Hypsiboas cordobae (Anura, Hylidae). Acta ethologica 18, 79–86 (2015).Ziegler, L., Arim, M. & Bozinovic, F. Intraspecific scaling in frog calls: The interplay of temperature, body size and metabolic condition. Oecologia 181, 673–681 (2016).ADS
Article
Google Scholar
Navas, C. A. & Bevier, C. R. Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus. Herpetologica, 384–395 (2001).Lougheed, S. C., Austin, J. D., Bogart, J. P., Boag, P. T. & Chek, A. A. Multi-character perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. BMC Evol. Biol. 6, 1–16 (2006).Article
Google Scholar
Littlejohn, M. Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution, 234–243 (1965).Lemmon, E. M. Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution: International Journal of Organic Evolution 63, 1155–1170 (2009).Jansen, M., Plath, M., Brusquetti, F. & Ryan, M. J. Asymmetric frequency shift in advertisement calls of sympatric frogs. Amphibia-Reptilia 37, 137–152 (2016).Article
Google Scholar
Jang, Y. & Gerhardt, H. Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae). J. Evol. Biol. 19, 459–472 (2006).CAS
Article
Google Scholar
Both, C. & Grant, T. Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8, 714–716 (2012).Article
Google Scholar
Hopkins, J. M., Edwards, W., Laguna, J. M. & Schwarzkopf, L. An endangered bird calls less when invasive birds are calling. J. Avian Biol. 52, 1 (2021).Article
Google Scholar
Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19, 675–690 (2017).Article
Google Scholar
Wilczynski, W. & Ryan, M. J. in Geographic Variation in Behavior (eds S. A. Foster & J. A. Endler) 234–261 (Oxford University Press, 1999).Schwartz, J. J. & Gerhardt, H. C. Spatially mediated release from auditory masking in an anuran amphibian. J. Comp. Physiol. A. 166, 37–41 (1989).Article
Google Scholar
da Silveira Vasconcelos, T. & de Cerqueira Rossa-Feres, D. Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. Phyllomedusa J. Herpetol. 7, 127–142 (2008).Herrick, S. Z., Wells, K. D., Farkas, T. E. & Schultz, E. T. Noisy neighbors: Acoustic interference and vocal interactions between two syntopic species of Ranid frogs, Rana clamitans and Rana catesbeiana. J. Herpetol. 52, 176–184. https://doi.org/10.1670/17-049 (2018).Article
Google Scholar
Rowley, J. J. et al. FrogID: citizen scientists provide validated biodiversity data on frogs of Australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
Google Scholar
Koehler, J. et al. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251, 1–124 (2017).Article
Google Scholar
Tonini, J. F. R. et al. Allometric escape from acoustic constraints is rare for frog calls. Ecol. Evol. 10, 3686–3695. https://doi.org/10.1002/ece3.6155 (2020).Article
PubMed
PubMed Central
Google Scholar
Anstis, M. et al. Revision of the water-holding frogs, Cyclorana platycephala (Anura: Hylidae), from arid Australia, including a description of a new species. Zootaxa 4126, 451–479 (2016).Article
Google Scholar
Cardoso, G. C. Using frequency ratios to study vocal communication. Anim. Behav. 85, 1529–1532 (2013).Article
Google Scholar
Narins, P. & Zelick, R. in The evolution of the amphibian auditory system (eds B Fritzsch et al.) 511–536 (John Wiley and Sons, 1988).Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H. & Hödl, W. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proc. Natl. Acad. Sci. 108, 17058–17063 (2011).ADS
Article
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article
Google Scholar
Kassambara, A. & Mundt, F. factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020). More