More stories

  • in

    Marching in the streets for climate-crisis action

    CAREER Q&A
    22 February 2022

    Marching in the streets for climate-crisis action

    Conservationist Charlie Gardner explains why he joined Scientists for Extinction Rebellion and its civil-disobedience protests.

    Christine Ro

    0

    Christine Ro

    Christine Ro is a freelance journalist based in Buenos Aires.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Charlie Gardner speaks at an Extinction Rebellion protest.Credit: Louise Jasper Photography

    Conservationist, consultant and activist Charlie Gardner is a lecturer in conservation biology at the Durrell Institute of Conservation and Ecology at the University of Kent in Canterbury, UK. He regularly participates in protests with Scientists for Extinction Rebellion, an offshoot of a broader movement that uses nonviolent civil disobedience to push for action on the climate and biodiversity crises. He has also advised on legislation such as the UK Climate and Ecological Emergency Bill, which seeks to curb UK greenhouse-gas emissions and biodiversity loss, and is currently making its way through Parliament. What drove you to activism? Teaching. Five or six years ago, I was standing in front of a lecture theatre, full of young people who are going to suffer the consequences of climate change much more than I am. I couldn’t stand that I wasn’t doing everything I could. When Extinction Rebellion (XR) was launched in the United Kingdom in October 2018, it felt like the answer. As conservationists, we silently wish that members of the general public cared more about the destruction of nature. Now they are taking to the streets and I have this moral obligation to be there in support.How have you been working with Scientists for XR?In October 2019, a group of scientists came together to create Scientists for XR, which has carried out many actions. These include pasting scientific papers to the walls of the London headquarters of News Corp in 2021 in protest against inadequate climate-change coverage in the company’s newspapers. The group has different functions. One is to provide scientific support for the wider XR movement, so that it remains founded on solid scientific ground. And a second is to advocate. Scientists vocally supporting XR sends a powerful message. Society trusts scientists. A third function is direct action. Scientists for XR groups have been involved in a number of XR events, such as marches and roadblocks. For example, at the 2021 opening of a London Science Museum exhibition sponsored by oil and gas company Shell, some scientists locked themselves to parts of the exhibition in protest against the sponsorship, while our scientist group set up a table outside to demonstrate principles of atmospheric cooling to engage with the public. Events such as this serve to highlight the issue of science museums accepting sponsorship from fossil-fuel companies.How can scientists dip their toes into this type of work?What the public sees of these direct actions is the tip of the iceberg. For every person out on the streets, there are 20 more behind the scenes involved in other tasks: organizing, producing press releases, baking cakes for marchers. Whatever you enjoy doing and have skills in, there is a role for you. Taking part does not have to involve engaging in civil disobedience yourself, or putting yourself in a risky position. One of the most important jobs at a protest is for people to stand at the edges, engaging the public in conversations. That’s a role that scientists can perform fantastically.How have your advocacy and activism benefited you?There’s this crazy notion that scientists shouldn’t speak out because it will damage their reputations. But activism has had the opposite effect on my career. My research is based on conservation in Madagascar; it’s fairly niche. I previously had no global reputation. Since becoming a vocal scientist-activist, my reputation and my visibility as a scientist have soared. Also, activism is great for my mental health. Knowing I’m doing what I can is important to me. There are simply the best people in these movements, and there’s a sense of community. Does being a vocal activist diminish your scientific credibility?Popular perception holds that scientists must be neutral purveyors of information and not speak up about what that information means. Somehow, if we do so, it could damage our credibility.But when scientists take personal risks and make personal sacrifices, that communicates the urgency of the situation in an important way. If scientists are saying that it’s time for action, but not acting themselves, that undermines their own arguments. How do you balance your academic responsibilities with advocacy?For five years, I worked half-time at the University of Kent. I did this deliberately, to allow me the freedom to engage in other activities, including conservation consultancy, activism and writing popular non-fiction. I left that post last year, partly to focus on activism and writing, and partly out of frustration with the precarity of academic life.There are things that enable me to be less single-minded in the pursuit of my career: I come from a position of relative privilege; I’m not interested in accumulating money; and I don’t have children. So I think academia has been a good fit for me, but only because it doesn’t fill my life.

    doi: https://doi.org/10.1038/d41586-022-00518-4This interview has been edited for length and clarity.

    Related Articles

    How junior scientists can land a seat at the leadership table

    An IPCC reviewer shares his thoughts on the climate debate

    A ‘no-brainer’ decision to become a COVID-19 vaccine-centre volunteer

    Subjects

    Policy

    Ethics

    Conservation biology

    Latest on:

    Policy

    Two scientists will replace disgraced US science adviser Eric Lander
    News 17 FEB 22

    NIH issues a seismic mandate: share data publicly
    News 16 FEB 22

    China: reform research-evaluation criteria
    Correspondence 15 FEB 22

    Ethics

    Global Disability Summit demands health equity
    Correspondence 17 FEB 22

    Expand diversity definitions beyond their Western perspective
    Correspondence 08 FEB 22

    Research evaluation needs to change with the times
    Editorial 11 JAN 22

    Jobs

    Research Fellow

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Post Doctoral Associate

    University of Massachusetts Medical School (UMass Medical School)
    Worcester, MA, United States

    Senior Research Scientist – Artificial Molecular Machinery Lab

    Francis Crick Institute
    London, United Kingdom

    Call for Applications: Clinical and Public Health Fellowships

    Wellcome Trust/DBT India Alliance
    India, India More

  • in

    The role of the endolithic alga Ostreobium spp. during coral bleaching recovery

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Muscatine, L., Pool, R. R. & Trench, R. K. Symbiosis of algae and invertebrates: Aspects of the symbiont surface and the host-symbiont interface. Trans. Am. Microsc. Soc. 94, 450–469 (1975).CAS 
    PubMed 

    Google Scholar 
    Muscatine, L. & Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. https://doi.org/10.1016/j.cub.2018.07.008 (2018).Article 
    PubMed 

    Google Scholar 
    Colombo-Pallotta, M. F., Rodríguez-Román, A. & Iglesias-Prieto, R. Calcification in bleached and unbleached Montastraea faveolata: Evaluating the role of oxygen and glycerol. Coral Reefs 29, 899–907 (2010).ADS 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylphora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).
    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. 89, 10302–10305 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 1–15 (2017).CAS 

    Google Scholar 
    Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).ADS 

    Google Scholar 
    Terán, E., Méndez, E. R., Enríquez, S. & Iglesias-Prieto, R. Multiple light scattering and absorption in reef-building corals. Appl. Opt. 49, 5032 (2010).ADS 
    PubMed 

    Google Scholar 
    Swain, T. D. et al. Skeletal light-scattering accelerates bleaching response in reef-building corals. BMC Ecol. 16, 1–18 (2016).
    Google Scholar 
    Rodríguez-Román, A., Hernández-Pech, X., E Thome, P., Enríquez, S. & Iglesias-Prieto, R. Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol. Oceanogr. 51, 2702–2710 (2006).ADS 

    Google Scholar 
    Kemp, D. W., Hernandez-Pech, X., Iglesias-Prieto, R., Fitt, W. K. & Schmidt, G. W. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol. Oceanogr. 59, 788–797 (2014).ADS 
    CAS 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).
    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).
    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. https://doi.org/10.1071/MF99078 (1999).Article 

    Google Scholar 
    Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci. 4, 309 (2017).
    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl. Acad. Sci. U. S. A. 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., van Woesik, R. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).CAS 
    PubMed 

    Google Scholar 
    Bollati, E. et al. Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Curr. Biol. https://doi.org/10.1016/j.cub.2020.04.055 (2020).Article 
    PubMed 

    Google Scholar 
    Dove, S. G., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).
    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fine, M. & Loya, Y. Endolithic algae: An alternative source of photoassimilates during coral bleaching. Proc. Biol. Sci. 269, 1205–1210 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Carilli, J. E., Godfrey, J., Norris, R. D., Sandin, S. A. & Smith, J. E. Periodic endolithic algal blooms in Montastraea faveolata corals may represent periods of low-level stress. Bull. Mar. Sci. 86, 10 (2010).
    Google Scholar 
    Le Campion-Alsumard, T., Golubic, S. & Hutchings, P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar. Ecol. Prog. Ser. 117, 149–157 (1995).ADS 

    Google Scholar 
    Schlichter, D., Kampmann, H. & Conrady, S. Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar. Ecol. 18, 299–317 (1997).ADS 

    Google Scholar 
    Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yamazaki, S. S., Nakamura, T. & Yamasaki, H. Photoprotective role of endolithic algae colonized in coral skeleton for the host photosynthesis. In Photosynthesis. Energy from the Sun (eds. Allen, J. F., et al.) 1391–1395 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6709-9_300.Halldal, P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol. Bull. 134, 411–424 (1968).CAS 

    Google Scholar 
    Koehne, B., Elli, G., Jennings, R. C., Wilhelm, C. & Trissl, H.-W. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim. Biophys. Acta BBA Bioenerg. 1412, 94–107 (1999).CAS 

    Google Scholar 
    Wangpraseurt, D. et al. In vivo microscale measurements of light and photosynthesis during coral bleaching: Evidence for the optical feedback loop?. Front. Microbiol. 8, 59 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lukas, K. J. Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean reef corals. J. Phycol. 10, 331–335 (1974).
    Google Scholar 
    Fork, D. C. & Larkum, A. W. D. Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Mar. Biol. 103, 381–385 (1989).
    Google Scholar 
    Massé, A., Domart-Coulon, I., Golubic, S., Duché, D. & Tribollet, A. Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Godinot, C., Tribollet, A., Grover, R. & Ferrier-Pagès, C. Bioerosion by euendoliths decreases in phosphate-enriched skeletons of living corals. Biogeosci. Discuss. 9, 2425–2444 (2012).ADS 

    Google Scholar 
    Vásquez-Elizondo, R. M. et al. Absorptance determinations on multicellular tissues. Photosynth. Res. 132, 311–324 (2017).PubMed 

    Google Scholar 
    Tribollet, A. The boring microflora in modern coral reef ecosystems: A review of its roles. In Current Developments in Bioerosion (eds. Wisshak, M. & Tapanila, L.) 67–94 (Springer Berlin Heidelberg, 2008). https://doi.org/10.1007/978-3-540-77598-0_4.Fine, M., Meroz-Fine, E. & Hoegh-Guldberg, O. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J. Exp. Biol. 208, 75–81 (2005).PubMed 

    Google Scholar 
    Pernice, M. et al. Down to the bone: The role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).PubMed 

    Google Scholar 
    Schlichter, D., Zscharnack, B. & Krisch, H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82, 564–567 (1995).ADS 

    Google Scholar 
    Kühl, M., Cohen, Y., Dalsgaard, T., Barker Jorgersen, B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).ADS 

    Google Scholar 
    Marcelino, L. A. et al. Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8, e61492 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wangpraseurt, D. et al. Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals. J. Exp. Biol. 217, 489–498 (2014).PubMed 

    Google Scholar 
    Wangpraseurt, D., Jacques, S. L., Petrie, T. & Kühl, M. Monte Carlo modeling of photon propagation reveals highly scattering coral tissue. Front. Plant Sci. 7, 1404 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS One 7, e34418 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcelino, V. R. & Verbruggen, H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    del Campo, J., Pombert, J.-F., Šlapeta, J., Larkum, A. & Keeling, P. J. The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J. 11, 296–299 (2017).PubMed 

    Google Scholar 
    Massé, A. et al. Functional diversity of microboring Ostreobium algae isolated from corals. Environ. Microbiol. 22, 4825–4846 (2020).PubMed 

    Google Scholar 
    Iglesias-Prieto, R., Beltran, V. H., LaJeunesse, T. C., Reyes-Bonilla, H. & Thome, P. E. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. B Biol. Sci. 271, 1757–1763 (2004).CAS 

    Google Scholar 
    Fisher, P. L., Malme, M. K. & Dove, S. The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31, 473–485 (2012).ADS 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. BPP 167, 191–194 (1975).CAS 

    Google Scholar 
    Marsh, J. A. Primary productivity of reef-building calcareous red algae. Ecology 51, 255–263 (1970).
    Google Scholar 
    Shibata, K. Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef1. Plant Cell Physiol. https://doi.org/10.1093/oxfordjournals.pcp.a074411 (1969).Article 

    Google Scholar 
    López-Londoño, T. et al. Physiological and ecological consequences of the water optical properties degradation on reef corals. Coral Reefs 40, 1243–1256 (2021).
    Google Scholar  More

  • in

    Thermal imaging reveals audience-dependent effects during cooperation and competition in wild chimpanzees

    Byrne, R. W. & Bates, L. A. Sociality, evolution and cognition. Curr. Biol. 17, R714–R723 (2007).CAS 
    PubMed 

    Google Scholar 
    Wittig, R. M. & Boesch, C. Food competition and linear dominance hierarchy among female chimpanzees of the Tai National Park. Int. J. Primatol. 24, 847–867 (2003).
    Google Scholar 
    Mitani, J. C. Male chimpanzees form enduring and equitable social bonds. Anim. Behav. 77, 633–640 (2009).
    Google Scholar 
    Van Hooff, J. A. & Van Schaik, C. P. Male bonds: Afilliative relationships among nonhuman primate males. Behaviour 130, 309–337 (1994).
    Google Scholar 
    Herbinger, I., Papworth, S., Boesch, C. & Zuberbühler, K. Vocal, gestural and locomotor responses of wild chimpanzees to familiar and unfamiliar intruders: A playback study. Anim. Behav. 78, 1389–1396 (2009).
    Google Scholar 
    Watts, D. P., Muller, M., Amsler, S. J., Mbabazi, G. & Mitani, J. C. Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am. J. Primatol. Off. J. Am. Soc. Primatol. 68, 161–180 (2006).
    Google Scholar 
    Watts, D. & Mitani, J. Boundary patrols and intergroup encounters in wild chimpanzees. Behaviour 138, 299–327 (2001).
    Google Scholar 
    Silk, J. B. et al. Strong and consistent social bonds enhance the longevity of female baboons. Curr. Biol. 20, 1359–1361 (2010).CAS 
    PubMed 

    Google Scholar 
    Schülke, O., Bhagavatula, J., Vigilant, L. & Ostner, J. Social bonds enhance reproductive success in male macaques. Curr. Biol. 20, 2207–2210 (2010).PubMed 

    Google Scholar 
    Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aureli, F. & Schaffner, C. Relationship assessment through emotional mediation. Behaviour 139, 393–420 (2002).
    Google Scholar 
    Aureli, F. et al. Fission-fusion dynamics: New research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 
    Zuberbühler, K. Audience effects. Curr. Biol. 18, R189–R190 (2008).PubMed 

    Google Scholar 
    Wittig, R. M., Crockford, C., Langergraber, K. E. & Zuberbühler, K. Triadic social interactions operate across time: A field experiment with wild chimpanzees. Proc. R. Soc. B Biol. Sci. 281, 20133155 (2014).
    Google Scholar 
    Slocombe, K. E. & Zuberbühler, K. Chimpanzees modify recruitment screams as a function of audience composition. Proc. Natl. Acad. Sci. 104, 17228–17233 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Wittig, R. M., Mundry, R. & Zuberbühler, K. Wild chimpanzees inform ignorant group members of danger. Curr. Biol. 22, 142–146 (2012).CAS 
    PubMed 

    Google Scholar 
    Townsend, S. W. & Zuberbuhler, K. Audience effects in chimpanzee copulation calls. Commun. Integr. Biol. 2, 282–284 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Laporte, M. N. & Zuberbühler, K. Vocal greeting behaviour in wild chimpanzee females. Anim. Behav. 80, 467–473 (2010).
    Google Scholar 
    Kreibig, S. D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 84, 394–421 (2010).PubMed 

    Google Scholar 
    Crockford, C. et al. Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proc. R. Soc. B Biol. Sci. 280, 20122765 (2013).CAS 

    Google Scholar 
    Samuni, L. et al. Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proc. Natl. Acad. Sci. 114, 268–273 (2017).CAS 
    PubMed 

    Google Scholar 
    Crockford, C., Deschner, T., Ziegler, T. E. & Wittig, R. M. Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: A review. Front. Behav. Neurosci. 8, 68 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Harrap, M. J., Hempel de Ibarra, N., Whitney, H. M. & Rands, S. A. Reporting of thermography parameters in biology: A systematic review of thermal imaging literature. R. Soc. Open Sci. 5, 181281 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ioannou, S., Gallese, V. & Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 51, 951–963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Vianna, D. M. & Carrive, P. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat. Eur. J. Neurosci. 21, 2505–2512 (2005).PubMed 

    Google Scholar 
    Dezecache, G., Zuberbühler, K., Davila-Ross, M. & Dahl, C. D. Skin temperature changes in wild chimpanzees upon hearing vocalizations of conspecifics. R. Soc. Open Sci. 4, 160816 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dezecache, G., Wilke, C., Richi, N., Neumann, C. & Zuberbühler, K. Skin temperature and reproductive condition in wild female chimpanzees. PeerJ 5, e4116 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Dunbar, R. I. Functional significance of social grooming in primates. Folia Primatol. (Basel) 57, 121–131 (1991).
    Google Scholar 
    Bekoff, M. & Allen, C. The evolution of social play: Interdisciplinary analyses of cognitive processes. In The cognitive animal: empirical and theoretical perspectives on animal cognition (eds Bekoff, M. et al.) 429–435 (The MIT Press, 2002).
    Google Scholar 
    Muller, M. N. & Mitani, J. C. Conflict and cooperation in wild chimpanzees. Adv. Study Behav. 35, 275–331 (2005).
    Google Scholar 
    Slocombe, K. E. & Zuberbühler, K. Agonistic screams in wild chimpanzees (Pan troglodytes schweinfurthii) vary as a function of social role. J. Comp. Psychol. 119, 67 (2005).PubMed 

    Google Scholar 
    Hosaka, K. Intimidation display. In Mahale Chimpanzees: 50 Years of Research (eds Hosaka, K. et al.) 435–447 (Cambridge University Press, 2015).
    Google Scholar 
    Muller, M. N. & Wrangham, R. W. Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis’. Anim. Behav. 67, 113–123 (2004).
    Google Scholar 
    Wrangham, R. W. The cost of sexual attraction in female Pan. In Behavioural Diversity in Chimpanzees and Bonobos (eds Boesch, C. et al.) 204-215 (Cambridge University Press, 2002).
    Google Scholar 
    Townsend, S. W., Slocombe, K. E., Thompson, M. E. & Zuberbühler, K. Female-led infanticide in wild chimpanzees. Curr. Biol. 17, R355–R356 (2007).CAS 
    PubMed 

    Google Scholar 
    Herborn, K. A. et al. Skin temperature reveals the intensity of acute stress. Physiol. Behav. 152, 225–230 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuraoka, K. & Nakamura, K. The use of nasal skin temperature measurements in studying emotion in macaque monkeys. Physiol. Behav. 102, 347–355 (2011).CAS 
    PubMed 

    Google Scholar 
    Ermatinger, F. A., Brügger, R. K. & Burkart, J. M. The use of infrared thermography to investigate emotions in common marmosets. Physiol. Behav. 211, 112672 (2019).CAS 
    PubMed 

    Google Scholar 
    Manson, J. H. et al. Intergroup aggression in chimpanzees and humans [and comments and replies]. Curr. Anthropol. 32, 369–390 (1991).
    Google Scholar 
    Tamioso, P. R., Rucinque, D. S., Taconeli, C. A., da Silva, G. P. & Molento, C. F. M. Behavior and body surface temperature as welfare indicators in selected sheep regularly brushed by a familiar observer. J. Vet. Behav. 19, 27–34 (2017).
    Google Scholar 
    Grandi, L. C. & Heinzl, E. Data on thermal infrared imaging in laboratory non-human primates: Pleasant touch determines an increase in nasal skin temperature without affecting that of the eye lachrymal sites. Data Brief 9, 536–539 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Brügger, R. K., Willems, E. P. & Burkart, J. M. Do marmosets understand others’ conversations? A thermography approach. Sci. Adv. 7, e8790 (2021).ADS 

    Google Scholar 
    Salazar-López, E. et al. The mental and subjective skin: Emotion, empathy, feelings and thermography. Conscious. Cogn. 34, 149–162 (2015).PubMed 

    Google Scholar 
    Muller, M. N., Thompson, M. E. & Wrangham, R. W. Male chimpanzees prefer mating with old females. Curr. Biol. 16, 2234–2238 (2006).CAS 
    PubMed 

    Google Scholar 
    Watts, D. P. Coalitionary mate guarding by male chimpanzees at Ngogo, Kibale National Park, Uganda. Behav. Ecol. Sociobiol. 44, 43–55 (1998).
    Google Scholar 
    Heinrichs, M. & Domes, G. Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. Prog. Brain Res. 170, 337–350 (2008).CAS 
    PubMed 

    Google Scholar 
    Surbeck, M., Mundry, R. & Hohmann, G. Mothers matter! Maternal support, dominance status and mating success in male bonobos (Pan paniscus). Proc. R. Soc. B Biol. Sci. 278, 590–598 (2011).
    Google Scholar 
    Reddy, R. B. & Sandel, A. A. Social relationships between chimpanzee sons and mothers endure but change during adolescence and adulthood. Behav. Ecol. Sociobiol. 74, 1–14 (2020).
    Google Scholar 
    Kosonogov, V. et al. Facial thermal variations: A new marker of emotional arousal. PLoS One 12, e0183592 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, R. O. & Burrows, G. D. Varieties and functions of human emotion. Emot. Work Theory Res. Appl. Manag. 3–19 (2001).Fredrickson, B. L. The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 56, 218 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Or, C. K. & Duffy, V. G. Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occup. Ergon. 7, 83–94 (2007).
    Google Scholar 
    Reynolds, V. The Chimpanzees of the Budongo Forest: Ecology, Behaviour and Conservation (OUP, 2005).
    Google Scholar 
    Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 18, 686 (1973).CAS 
    PubMed 

    Google Scholar 
    Chotard, H., Ioannou, S. & Davila-Ross, M. Infrared thermal imaging: Positive and negative emotions modify the skin temperatures of monkey and ape faces. Am. J. Primatol. 80, e22863 (2018).PubMed 

    Google Scholar 
    Newton-Fisher, N. Association by male chimpanzees: A social tactic?. Behaviour 136, 705–730 (1999).
    Google Scholar 
    Kano, F., Hirata, S., Deschner, T., Behringer, V. & Call, J. Nasal temperature drop in response to a playback of conspecific fights in chimpanzees: A thermo-imaging study. Physiol. Behav. 155, 83–94 (2016).CAS 
    PubMed 

    Google Scholar 
    Hobaiter, C. & Byrne, R. W. The gestural repertoire of the wild chimpanzee. Anim. Cogn. 14, 745–767 (2011).PubMed 

    Google Scholar 
    Nishida, T., Kano, T., Goodall, J., McGrew, W. C. & Nakamura, M. Ethogram and ethnography of Mahale chimpanzees. Anthropol. Sci. 107, 141–188 (1999).
    Google Scholar 
    Muller, M.N. Agonistic relations among Kanyawara chimpanzees. In Behavioural Diversity in Chimpanzees and Bonobos (eds Boesch, C. et al.) 212–220 (Cambridge University Press, 2002).
    Google Scholar 
    Goodall, J. The Chimpanzees of Gombe: Patterns of Behavior (Harvard University Press, 1986).
    Google Scholar 
    Wallis, J. Chimpanzee genital swelling and its role in the pattern of sociosexual behavior. Am. J. Primatol. 28, 101–113 (1992).PubMed 

    Google Scholar 
    Davila-Ross, M., Allcock, B., Thomas, C. & Bard, K. A. Aping expressions? Chimpanzees produce distinct laugh types when responding to laughter of others. Emotion 11, 1013 (2011).PubMed 

    Google Scholar 
    Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K. & Slocombe, K. E. Chimpanzee alarm call production meets key criteria for intentionality. PLoS One 8, e76674 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vardasca, R. The influence of angles and distance on assessing inner-canthi of the eye skin temperature. Thermol. Int. 27, 130–135 (2017).
    Google Scholar 
    Josse, J. & Husson, F. missMDA: A package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).
    Google Scholar 
    Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
    Google Scholar 
    Noë, R., de Waal, F. B. & van Hooff, J. A. Types of dominance in a chimpanzee colony. Folia Primatol. (Basel) 34, 90–110 (1980).
    Google Scholar 
    Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2019). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0.Barton, K. MuMIn: Multi-model inference, R package version 0.12. 0. Httpr-Forge R-Proj. Orgprojectsmumin (2020).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.4. (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2017). More

  • in

    Apply Singapore Index on Cities’ Biodiversity at scale

    CORRESPONDENCE
    22 February 2022

    Apply Singapore Index on Cities’ Biodiversity at scale

    Lena Chan

     ORCID: http://orcid.org/0000-0001-7930-7678

    0
    ,

    Kenneth Er

     ORCID: http://orcid.org/0000-0003-4485-7260

    1
    &

    Elizabeth Maruma Mrema

    2

    Lena Chan

    National Parks Board, Singapore Botanic Gardens, Singapore.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Kenneth Er

    National Parks Board, Singapore Botanic Gardens, Singapore.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Elizabeth Maruma Mrema

    Secretariat of the Convention on Biological Diversity, Montreal, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    In the run-up to the 15th meeting of the Conference of the Parties to the Convention on Biological Diversity, the Singapore Index on Cities’ Biodiversity has been updated to align with the post-2020 global biodiversity framework to halt biodiversity loss (see Nature 601, 298; 2022) and for application at scale (see go.nature.com/3cqrknw).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 602, 578 (2022)
    doi: https://doi.org/10.1038/d41586-022-00476-x

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Conferences and meetings

    Latest on:

    Biodiversity

    Do not downplay biodiversity loss
    Matters Arising 26 JAN 22

    Shifting baselines and biodiversity success stories
    Matters Arising 26 JAN 22

    The Living Planet Index does not measure abundance
    Matters Arising 26 JAN 22

    Conferences and meetings

    Global Disability Summit demands health equity
    Correspondence 17 FEB 22

    Collect feedback to improve your event experience
    Career Guide 20 DEC 21

    Reconsidering the role of alcohol in the scientific workplace
    Career Guide 20 DEC 21

    Jobs

    Research Fellow

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Post Doctoral Associate

    University of Massachusetts Medical School (UMass Medical School)
    Worcester, MA, United States

    Senior Research Scientist – Artificial Molecular Machinery Lab

    Francis Crick Institute
    London, United Kingdom

    Call for Applications: Clinical and Public Health Fellowships

    Wellcome Trust/DBT India Alliance
    India, India More

  • in

    Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

    Arora, P. K. & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 13, 31–36 (2014).Article 

    Google Scholar 
    Solyanikova, I. P. & Golovleva, L. A. Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environ. Sci. Health B 39, 333–351 (2004).Article 

    Google Scholar 
    Olaniran, A. O. & Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. Reac. Kinet. Mech. Cat. 119, 19–34 (2016).CAS 
    Article 

    Google Scholar 
    Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 11 (2013).
    Google Scholar 
    Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environ. Chem. Ecotoxicol 5, 81–89 (2013).
    Google Scholar 
    Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98, 579–587 (2016).Article 

    Google Scholar 
    Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environ. Qual. 24(36), 1749–1759 (2004).
    Google Scholar 
    Cameron, M. D., Timofeevski, S. & Aust, S. D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 751–758 (2000).CAS 
    Article 

    Google Scholar 
    Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74 (1999).CAS 
    Article 

    Google Scholar 
    Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol 7, 211–241 (2008).CAS 
    Article 

    Google Scholar 
    Bosso, L. & Cristinzio, G. A. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol 13, 387–427 (2014).CAS 
    Article 

    Google Scholar 
    Field, J. A. & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut 155, 1–12 (2008).CAS 
    Article 

    Google Scholar 
    Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. Sci 21, 3317. https://doi.org/10.3390/ijms21093317 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Cser-jesi, A. J. & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18, 45–49 (1972).CAS 
    Article 

    Google Scholar 
    van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol. Water Qual. 12, 335–342 (1997).ADS 
    Article 

    Google Scholar 
    Carvalho, M. B. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 36, 1249–1256 (2009).CAS 
    Article 

    Google Scholar 
    Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds ‬. Process Biochem. 45, 507–513 (2010).CAS 
    Article 

    Google Scholar 
    Abdel-Fatah, O. M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz. J. Microbiol. 43(1), 01–11 (2012).CAS 
    Article 

    Google Scholar 
    Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 6, 2 (2015).
    Google Scholar 
    Al-Hawash, B. A. et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).Article 

    Google Scholar 
    Zafra, G., Absalón, A. E. & Cortes-Espinosa, D. V. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D. & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65(6), 2614–2621 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    White, T. J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).Ryu, W. R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. E 5, 211–214 (2000).CAS 
    Article 

    Google Scholar 
    Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, S. N., Subbaiah, V. M., Reddy, S. A. & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).CAS 
    Article 

    Google Scholar 
    Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S. & Huang, C. Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 28, 61–69 (2010).CAS 
    Article 

    Google Scholar 
    Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. Eng 9, 26–34 (2012).Article 

    Google Scholar 
    Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17, 564. https://doi.org/10.3390/md17100564 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J. 7, 1167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).Brotman, Y., Kapuganti, J. G. & Viterbo, A. Trichoderma. Curr. Biol. 20, R390–R439 (2010).CAS 
    Article 

    Google Scholar 
    Boroujeni, N. A., Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR 2, 408–416 (2014).CAS 

    Google Scholar 
    Roostaei, N. & Tezel, F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).Article 
    PubMed 

    Google Scholar 
    Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8, 205–211 (2005).CAS 
    PubMed 

    Google Scholar 
    Reddy, G. V. B. & Gold, M. H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146, 405–413 (2000).CAS 
    Article 

    Google Scholar 
    Cortés, D. V., Bernal, R. & Tomasini, A. Efecto de las condiciones de cultivo sumergido en la degradación de pentaclorofenol. Información Tecnológica 12, 75–80 (2001).
    Google Scholar 
    Crawford, R. L., Jung, C. M. & Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007).CAS 
    Article 

    Google Scholar 
    Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Hemosphere 59, 909–918 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 576, 310–318 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Aversive view memories and risk perception in navigating ants

    Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).CAS 
    PubMed 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 

    Google Scholar 
    Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).
    Google Scholar 
    Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).
    Google Scholar 
    Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).ADS 
    CAS 

    Google Scholar 
    Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).
    Google Scholar 
    Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).
    Google Scholar 
    Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).PubMed 

    Google Scholar 
    Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).PubMed 

    Google Scholar 
    Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).
    Google Scholar 
    Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).
    Google Scholar 
    Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).
    Google Scholar 
    Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).
    Google Scholar 
    Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).
    Google Scholar 
    Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).
    Google Scholar 
    Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).
    Google Scholar 
    Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).
    Google Scholar 
    Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).
    Google Scholar 
    Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).CAS 
    PubMed 

    Google Scholar 
    Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).ADS 

    Google Scholar 
    Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).
    Google Scholar 
    Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).ADS 
    CAS 

    Google Scholar 
    Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).
    Google Scholar 
    Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).
    Google Scholar 
    Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).
    Google Scholar 
    Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).
    Google Scholar 
    Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).
    Google Scholar 
    Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).
    Google Scholar 
    Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).
    Google Scholar 
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).
    Google Scholar 
    Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
    Google Scholar 
    Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).
    Google Scholar 
    Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).
    Google Scholar 
    Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).
    Google Scholar 
    Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).
    Google Scholar 
    Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).
    Google Scholar 
    Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).
    Google Scholar 
    De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).
    Google Scholar 
    Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).
    Google Scholar 
    Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).
    Google Scholar 
    Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).
    Google Scholar 
    Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).PubMed 

    Google Scholar 
    Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).
    Google Scholar 
    Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).
    Google Scholar 
    Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).
    Google Scholar 
    Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).CAS 
    PubMed 

    Google Scholar 
    Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).ADS 

    Google Scholar 
    Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).CAS 
    PubMed 

    Google Scholar 
    Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).CAS 
    PubMed 

    Google Scholar 
    Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).CAS 
    PubMed 

    Google Scholar 
    Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).
    Google Scholar 
    Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).PubMed 

    Google Scholar 
    Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).
    Google Scholar 
    Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).CAS 
    PubMed 

    Google Scholar 
    Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).
    Google Scholar 
    Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).
    Google Scholar  More

  • in

    Drivers of migrant passerine composition at stopover islands in the western Mediterranean

    Study islands and bird dataSystematic ringing in spring on Mediterranean islands has been promoted by the Piccole Isole project since 198826. Standard methods of the project involve ringing between 16th April and 15th May attempting to include the peak of the spring passage of long-distance migrants. Ringing is performed from dawn to nightfall using a constant number of nets within ringing stations placed at stable sites located at representative habitats in each island (Supplementary Table S1). The use of tape-lures is not allowed. We have compiled ringing data for all the Spanish Mediterranean islands that have been applying this methodology, with the exception of Mallorca and Menorca where the ringing stations were located in wetlands and captured a large percentage of local birds (Fig. 2, Table 1). The nine study islands are spread along a south-west to north-east gradient and, with the exception of Columbrets, they are distributed in pairs of similar longitude but different latitudes (Fig. 2). Ringing stations have been operating over a variable number of years (5–27 years), with the maximum number of ringing stations operating at the same time occurring between 2003 and 2010. To include between-year variation on islands that started ringing campaigns more recently we used data from the years 2003–2018.Figure 2Image source: Google Earth. Data SIO, NOAA, US Navy, NGA, GEBCO. Image Landsat/Copernicus.Geographical location of studied islands in the western Mediterranean.Full size imageTable 1 Period of activity of the ringing stations located on each island between the years 1992 and 2018.Full size tableThe ringing period within each spring also varied in most islands, owing to funding or logistic limitations; thus, to reduce the possible effects on migrant composition we only used data from the standard period of the Piccole Isole project and from years that included at least one week of ringing in the fortnight of each month within this interval. This procedure excluded the use of some years for several islands, and the final number of data years for islands ranged between 5 and 16 (Table 1).We used only data for trans-Saharan nocturnal migrant passerines, which form the bulk of species ringed on Mediterranean islands during the standard period. The standard ringing period only covers the tail end of the short-distance migrants’ passage; thus, these species were excluded as their contribution to composition of migrants could vary mainly due to between-year variation in migration phenology. Diurnal migrants, like hirundinids and fringillids, also represent a small fraction of birds ringed and may use different cues to select stopover islands. In addition, some of these species nest in some of the islands studied and birds ringed could include breeding birds. To avoid the distorting effect of species that are captured accidentally in very small numbers, we considered only the species that were ringed in at least five separate years, or on five different islands, which limited the species considered to 35 (Supplementary Table S2). This led to the exclusion of just two species (Ficedula semitorquata with three individuals ringed in two islands and Locustella luscinioides with one individual ringed in Aire island). In addition, we only considered the number of ringed birds, since the proportion of recaptures varies among islands, likely reflecting variation in the duration of stopovers21, which could bias the comparison of the patterns of migrant species composition.Island descriptorsWe obtained two groups of variables describing the characteristics of the study islands (Tables 2, 3): (1) Variables related to geographical location: latitude, longitude, straight distance and minimum distance to the North African coast, minimum distance to the closest large body of land (continent or large island) in any direction and to the closest large body of land situated in a southerly angle between SW and SE. (2) Variables related to the habitat characteristics of the islands: area, maximum altitude and Normalized Difference Vegetation Index (NDVI). We estimated NDVI from Landsat 8 Images taken during the standard ringing period in the years 2015 and 2016. Pixels containing shoreline were excluded and the average NDVI was calculated for the rest of the pixels.Table 2 Variables describing the characteristics of the islands that included the ringing stations studied.Full size tableTable 3 Values of the island descriptors (see Table 2) and two measures of temporal variability of migrant composition in each island: average local contribution of each island to beta diversity (LCBD) and beta diversity for each island (BDTi).Full size tableContinental abundance dataAbundance estimates for western Europe were obtained from the European Red List of Birds27. We used the mean of the minimum and maximum number of pairs estimated for the 27 EU Member States as a measure of continental abundance (Supplementary Table S2).Data analysisAll analyses were done using R 3.6.128. We built a matrix of island-year x species containing the number of individuals of each selected species ringed in the study period in each island and year. Average number of individuals of each species ringed at each island was calculated and was used (log-transformed) as a dependent variable in a linear model with continental abundance (log-transformed), island and their interaction as predictors. This model was simplified using AICc as criteria to identify the best model.To analyze variation of species composition, the matrix of island-year x species was transformed using the chord transformation29 with the function decostand in the vegan package30.Using the function beta.div of the adespatial package31 we calculated beta diversity, including temporal and between-island variability (BDI,T), as the total variance of the aforementioned transformed matrix (BDTotal in29), which varies between 0 and 1 when chord distance is used. Considering that yijk is the chord transformed abundance of the species j in the island i and year k and (overline{{y }_{j}}) is the mean for species j in all islands and years altogether, then:$${SS}_{Total}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{j})}^{2}}$$$$BD_{I,T} = , SS_{Total} /left( {N – 1} right)$$where N is the total number of samples. The function beta.div also provides an estimation of contribution of localities (LCBD) and species (SCBD) to beta diversity (Table 3). Yearly LCBD (log transformed because of skewed distribution) of each island were averaged and compared between islands using ANOVA and a post-hoc Tukey test.We partitioned the above sum of squares in several ways. First, we calculated a beta diversity that considered only between-island variability, excluding temporal variability (BDI), by averaging the chord transformed abundances of each species j in each island along study years (({overline{y} }_{ij})) and applying the same procedure, but using the number of studied islands (n):$${SS}_{I}=sum_{i=1}^{n}sum_{j=1}^{p}{{({overline{y} }_{ij}-{overline{y} }_{j})}^{2}}$$$$BD_{I} = SS_{I} /left( {n – 1} right)$$Second, we calculated a beta diversity due to inter-annual variation of migrant composition within islands (BDT) as:$${SS}_{Temp}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}}$$$$BD_{T} = SS_{Temp} /left( {Y – n} right)$$where Y is the total number of study years and n is the number of studied islands (9). We also calculated a temporal beta diversity for each island i (BDTi) as the sum of squares due to variation within the island divided by the number of the island study years (Yi) minus 1:$${SS}_{Temp,i}=sum_{j=1}^{p}sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}$$$$BD_{Ti} = SS_{Temp,i} /left( {Y_{i} – 1} right)$$Differences in temporal variability between islands could be due to different predominance of species that are more or less variable between years. To check this, we calculated Spearman’s rank correlation between the percentage of captures of each species in the total ringed on each island and BDTi and LCDB indices, for species present on all islands.We tested for the existence of differences between islands in migrant species composition using Permutational Multivariate Analysis of Variance (PERMANOVA) using the function adonis2 in the vegan package. We performed a multivariate test of homogeneity of variances using the betadisper function (vegan package) with the adjustment for small sample bias, to test if temporal variability in species composition differed between islands. We made post-hoc comparisons between islands with False Discovery Rate (FDR) correction using the function pairwise.perm.manova of the package RVAideMemoire32.To identify gradients in migrant species composition and the island characteristics that were associated with them, we employed Redundancy Analysis using the rda function (vegan package). We used the chord transformed matrix of species x island-year as a response matrix. We used two explanatory matrices, one including variables of geographical location and the other the variables related to habitat characteristics of the islands. We evaluated the relative importance of each group of variables to explain migrant species composition by performing a variation partitioning analysis, using the varpart function (vegan package). For that analysis, we followed the steps and R scripts recommended in33.Variables describing island characteristics were transformed using natural logarithms and collinearity within each group was evaluated with variance inflation factor (VIF)34. All the habitat variables presented VIF  More

  • in

    Atmospheric dryness reduces photosynthesis along a large range of soil water deficits

    Eddy-covariance observationsWe used half-hourly or hourly GPP, air temperature, VPD, SWC and incoming shortwave radiation from the recently released ICOS (Integrated Carbon Observation System)44 and the FLUXNET2015 dataset of energy, water, and carbon fluxes and meteorological data, both of which have undergone a standardized set of quality control and gap filling19. Data were already processed following a consistent and uniform processing pipeline19. This data processing pipeline mainly included: (1) thorough data quality control checks; (2) calculation of a range of friction velocity thresholds; (3) gap-filling of meteorological and flux measurements; (4) partitioning of CO2 fluxes into respiration and photosynthesis components; and (5) calculation of a correction factor for energy fluxes19. All the corrections listed were already applied to the available product19. We used incoming shortwave radiation, temperature, VPD, and SWC that were gap-filled using the marginal distribution method21. The GPP estimates from the night-time partitioning method were used for the analysis (GPP_NT_VUT_REF). SWC was measured as volumetric SWC (percentage) at different depths, varying across sites. We mainly used the surface SWC observations but deeper SWC measurements were also used when available. Data were quality controlled so that only measured and good-quality gap filled data (QC = 0 or 1) were used.Analysis of the extreme summer drought in 2018 in Europe to prove nonlinearityTo analyze the effect of summer drought in 2018 on GPP in Europe, we selected 15 sites with measurements during 2014–2018 from the ICOS dataset, representing the major ecosystems across Europe (Supplementary Table 1). Croplands were excluded due to the effect of management on the seasonal timing of ecosystem fluxes, both from crop rotation that change from year to year and from the variable timing of planting and harvesting. In croplands, the changes of GPP anomalies across different growing season could be mainly depend on crop varieties and management activities. Information of crop varieties, growing times yearly and other management data for each cropland site should be collected in future in order to fully consider and disentangle the impacts of SWC and VPD on its photosynthesis. Wetland sites were also removed because they are influenced by upstream organic matter and nutrient input, as well as fluctuating water tables. Daytime half-hourly data (7 am to 19 pm) were aggregated to daily values. At each site, the relative changes ((triangle {{{{{rm{X}}}}}})) of summer (June–July–August) GPP, SWC and VPD during 2014–2018 refer to the summer average of 2014–2018 were calculated for each year. For example, the calculation of the relative change in 2018 is shown in Eq. (1):$$triangle {{{{{rm{X}}}}}}=frac{{X}_{2018}-,{X}_{{average};{of};2014-2018}}{{X}_{{average};{of};2014-2018}}times 100 %$$
    (1)
    where X2018 is the mean of the daily values of (X) (GPP, SWC, or VPD) during the summer of 2018, and Xaverage of 2014–2018 is the mean of the daily values of (X) over all the summers of the 2014–2018 period. The average (triangle {{{{{rm{X}}}}}}) across a certain number of sites at each bin were used for the results in Fig. 1a.Daily time series of GPP, SWC and VPD during summer for each site were normalized (z-scores) to derive the standardized sensitivity of GPP to SWC and VPD. For each variable, the mean value across the summer of 2014–2018 was subtracted for each day at each site and then normalized by its standard deviation. At each site, we used a multiple linear regression (Eq. 2) to estimate daily GPP anomalies sensitivities to SWC and VPD anomalies across 2014–2018 and 2014–2017, respectively:$${GPP}={beta }_{1},{SWC}+{beta }_{2},{VPD}+{beta }_{3},{SWC},times {VPD}+{beta }_{4},{T}_{a}+{beta }_{5}{RAD}+b+varepsilon$$
    (2)
    where ({beta }_{i}) is the standardized sensitivity of GPP to each variable; ({T}_{a}) represents the air temperature; ({RAD}) represents the incoming shortwave radiation;(,b) represents the intercept; and (varepsilon) is the random error term. We compared estimated sensitivities with and without 2018 data to quantify the impacts of extreme drought in 2018 on GPP sensitivity to SWC (Fig. 1d) and VPD (Fig. 1e). The slope was calculated at each site and then the distribution of slopes across sites were plotted in Fig. 1d, e.Global analysis of the sensitivities of GPP to SWC and VPDFor the global analysis, instead of summer, we focused on the growing season and days when the SWC and VPD effects were most likely to control ecosystem fluxes and screen out days when other meteorological drivers were likely to have a larger influence on fluxes. Following previous studies5,8,45, for each site, we restrict our analyses to the days in which: (i) the daily average temperature >15 °C; (ii) sufficient evaporative demand existed to drive water fluxes, constrained as daily average VPD  > 0.5 kPa; (iii) high solar radiation, constrained as daily average incoming shortwave radiation >250 Wm−2.By combining ICOS and FLUXNET2015 data, at the global scale, we evaluated 67 sites with at least 300 days observations over the growing seasons for the years available (Supplementary Table 2). We excluded cropland and wetland sites for the above-mentioned reasons. These 67 sites were used to calculate the relative effects of low SWC and high VPD on GPP following the approach of ref. 5 (see below sections). For 8 sites, the ANN results failed performance criteria (the correlation between predicted GPP and observed GPP is {{VPD}}_{0}\ {beta }_{0},,{VPD}le {{VPD}}_{0}end{array}right.$$
    (7)
    where β0 and k are fitted parameters and VPD0 is 1 kPa48. Following Luo and Keenan48, we applied this method to a short time window (2–14 days) of Fc depending on the availability of flux measurements and assumed that every day in the same time window has the same daily Amax. We retrieved the daily Amax by implementing Eqs. (6) and (7) using the REddyProc R package (https://github.com/bgctw/REddyProc)20.Vcmax represents the activity of the primary carboxylating enzyme ribulose 1,5-bisphosphate carboxylase–oxygenase (Rubisco) as measured under light-saturated conditions. To evaluate the responses of Vcmax to SWC and VPD, we first calculated the daily internal leaf CO2 partial pressure (ci) in the middle of the day (11:00–14:00) via Fick’s Law (Eq. 8), excluding periods with low incoming shortwave radiation (0.7 at most sites. During the training process, weight and bias values were optimized using the Levenberg–Marquardt optimization58,59. The maximum number of epochs to train is 1000. An example to demonstrate the ANN training at one site was shown in Supplementary Fig. 3.At each site, ANN was run and sensitivities were calculated for all data within each SWC and VPD bin and the median value was used. For each of the five trained ANNs, one of the predictor variables was perturbed by one standard deviation (a value of 1 due to the initial input data normalization), and GPP was predicted again using the existing ANN with the predictors including the perturbed variable; this process was repeated for each predictor variable. The predicted values of GPP obtained with and without perturbation were then compared to determine the sensitivity values. The sample equation showing the calculation of the GPP sensitivity to VPD is shown in Eq. (10).$${{{{{{rm{Sensitivity}}}}}}}_{{VPD}}={median}left(,frac{{{GPP}}_{left({ANN};{VPD}+{stdev}left({VPD}right)right)}-{{GPP}}_{left({ANN};{all};{VAR}right)}}{{stdev}left({VPD}right)}right)$$
    (10)
    We repeated the ANN and sensitivity analyses five times and the median of these were used at each site. Across all sites, significances of the sensitivities for each bin were tested using t-tests (p  More