More stories

  • in

    Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior

    1.Andrews, K. L. Latin-American research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Florida Entomol. 71, 630–653. https://doi.org/10.2307/3495022 (1988).Article 

    Google Scholar 
    2.Brevault, T. et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Senegal. Entomologia Generalis 37, 129–142. https://doi.org/10.1127/entomologia/2018/0553 (2018).Article 

    Google Scholar 
    3.Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. https://doi.org/10.1038/s41598-017-04238-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0165632 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49. https://doi.org/10.4001/003.026.0045 (2018).Article 

    Google Scholar 
    6.Day, R. et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 28, 196–201. https://doi.org/10.1564/v28_oct_02 (2017).Article 

    Google Scholar 
    7.Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474. https://doi.org/10.1126/science.356.6337.473 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Luginbill, P. The fall armyworm. US Dept. Agric. Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    9.Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467. https://doi.org/10.1002/ece3.268 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of a pest insect. Ecosphere 10, e02919. https://doi.org/10.1002/ecs2.2919 (2019).Article 

    Google Scholar 
    11.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ge, S. S. et al. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5 (2021).Article 

    Google Scholar 
    13.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE https://doi.org/10.1371/journal.pone.0217755 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. https://doi.org/10.1038/s41598-018-21954-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of Cytochrome Oxidase Subunit I gene. Florida Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).CAS 
    Article 

    Google Scholar 
    19.Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).CAS 
    Article 

    Google Scholar 
    20.Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).Article 
    PubMed 

    Google Scholar 
    21.Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).Article 

    Google Scholar 
    22.Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).CAS 
    Article 

    Google Scholar 
    24.Nagoshi, R. N. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann. Entomol. Soc. Am. 105, 351–358. https://doi.org/10.1603/AN11138 (2012).CAS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. https://doi.org/10.1038/s41598-019-44744-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528. https://doi.org/10.1371/journal.pone.0253528 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Koffi, D. et al. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114, 1138–1144. https://doi.org/10.1093/jee/toab048 (2021).Article 
    PubMed 

    Google Scholar 
    30.Thenkabail, P. S. et al. Assessing future risks to agricultural productivity, water Resources and food security: How can remote sensing help?. Photogramm. Eng. Remote. Sens. 78, 773–782 (2012).
    Google Scholar 
    31.Teluguntla, P. et al. (eds.). Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. Chapter 7 Vol. II. Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook edited by Prasad S. Thenkabail.32.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nagoshi, R. N., Fleischer, S. J. & Meagher, R. L. Texas is the overwintering source of fall armyworm in central Pennsylvania: Implications for migration into the northeastern United States. Environ. Entomol. 38, 1546–1554. https://doi.org/10.1603/022.038.0605 (2009).Article 
    PubMed 

    Google Scholar 
    34.Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).CAS 
    Article 

    Google Scholar 
    35.Assefa, Y., Mitchell, A. & Conlong, D. E. Phylogeography of Eldana saccharine Walker (Lepidoptera : Pyralidae). Annales de la Société Entomologique de France 42, 331–337. https://doi.org/10.1080/00379271.2006.10697465 (2006).Article 

    Google Scholar 
    36.Sezonlin, M. et al. Phylogeographic pattern and regional evolutionary history of the maize stalk borer Busseola fusca (Fuller) (Lepidoptera : Noctuidae) in sub-Saharan Africa. Annales de la Société Entomologique de France 42, 339–351. https://doi.org/10.1080/00379271.2006.10697466 (2006).Article 

    Google Scholar 
    37.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—A sibling species complex. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    39.Nagoshi, R. N. & Meagher, R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12, 453–458 (2003).CAS 
    Article 

    Google Scholar 
    40.Nagoshi, R. N. & Meagher, R. L. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ. Entomol. 33, 881–889 (2004).Article 

    Google Scholar 
    41.Juárez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152, 182–199. https://doi.org/10.1111/eea.12215 (2014).CAS 
    Article 

    Google Scholar 
    42.Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).Article 

    Google Scholar 
    43.Pashley, D. P., Hardy, T. N. & Hammond, A. M. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88, 748–755 (1995).Article 

    Google Scholar 
    44.Groot, A. T., Marr, M., Heckel, D. G. & Schofl, G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol. Entomol. 35, 105–118. https://doi.org/10.1111/J.1365-2311.2009.01138.X (2010).Article 

    Google Scholar 
    45.Kost, S., Heckel, D. G., Yoshido, A., Marec, F. & Groot, A. T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70, 1418–1427. https://doi.org/10.1111/evo.12940 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Pashley, D. P., Hammond, A. M. & Hardy, T. N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85, 400–405 (1992).Article 

    Google Scholar 
    47.Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575. https://doi.org/10.1093/jee/tox229 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816. https://doi.org/10.1038/s41598-017-10461-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 179. https://doi.org/10.1186/s12864-021-07492-7 (2021).CAS 
    Article 

    Google Scholar 
    50.Sperling, F. A. H. Sex-linked genes and species-differences in lepidoptera. Can. Entomol. 126, 807–818 (1994).Article 

    Google Scholar 
    51.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).Article 
    PubMed 

    Google Scholar 
    52.Jeger, M. et al. Pest risk assessment of Spodoptera frugiperda for the European Union. Efsa J. https://doi.org/10.2903/j.efsa.2018.5351 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rwomushana, I. et al. Fall armyworm: Impacts and implications for Africa. In CABI Evidnece Notes (CABI, Oxfordshire, 2018) http://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf54.Stanaway, M. A., Zalucki, M. P., Gillespie, P. S., Rodriguez, C. M. & Maynard, G. V. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40, 180–192. https://doi.org/10.1046/j.1440-6055.2001.00215.x (2001).Article 

    Google Scholar  More

  • in

    New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction

    Biological damage from water deficit in foragesReports on the tolerance to water deficit damage in the forage cultivars under study are scarce, especially in relation to N and C accumulation, Si effects, and physiological attributes.Pastures grown under water restriction with and without silicon showed a decreased cumulative amount of the beneficial element. However, pastures grown with or without water restriction that had received silicon had an increase in the cumulative amount of silicon (Fig. 2a,d). Carbon content decreased in pastures that had received silicon, regardless of water availability (Fig. 2b,e). Water restriction increased N content in both treatments with and without Si for both forages. Silicon fertigation only in plants with water restriction increased N content in cultivar Massai but decreased it in cultivar BRS Zuri (Fig. 2c,f).Figure 2Silicon (Si) content (a, d), carbon (C) content (b, e) and nitrogen (N) content (c, f) in the aerial part of forage plants cultivated in soil with different soil water retention capacity (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant to 5% probability by the F test. Lowercase letters show differences in relation to Si and uppercase in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThe present study evidenced, especially with Si addition to the crop, that water deficit in the P. maximum pasture, regardless of cultivar, significantly impairs plant growth by changing homeostasis, i.e., decreasing the C:N ratio by reducing plant C content. This induces instability in the metabolism of the crop, especially in terms of physiological processes31,53. Thus, it was clear that water deficit aggravated physiological stress in the pastures due to an increase in electrolyte leakage, followed by a decrease in Fv/Fm. In other words, photosynthetic efficiency decreased in association with lower relative water content in the plant, which reduced the growth of both P. maximum cultivars.Water deficit in both pastures with and without silicon supply decreased the C:N ratio, except in cultivar Massai, in which the omission of silicon increased this ratio. In an adequate condition of water availability, there was no difference between the absence and presence of Si in the pastures (Fig. 3a,d). Other authors report the same results for different forages, such as sugarcane53. Water deficit in the pastures did not change the C:Si ratio, regardless of Si. In pastures with or without water deficit, silicon fertigation decreased the C:Si ratio (Fig. 3b,e).Figure 3Ratio C:N (a, d), ratio C:Si (b, e) and carbon use efficiency (c, f) in the aerial part of forage plants cultivated in soil with different soil water retention capacities (WRC) (70 and 40%) %) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageAlthough this species has a high capacity for dry matter accumulation because it has a high protein content54, it is sensitive to drought55. Drought damage to plant growth, is due to the loss of stoichiometric stability of nutrients56, which balances the mass of various elements between plants and their environments57.A promising alternative to mitigate water deficit damage in the pasture is the use of Si. This element plays a vital role in the physiological, metabolic, and/or functional processes of plants58 when properly absorbed by the crop. The present study evidences the high capacity of the pastures under study to absorb Si when under water restriction. This is because P. maximum is a Si-accumulating species (leaf Si content > 10 g kg−1), which means that these plants might have specific efficient carriers in the process of Si absorption (monosilicic acid)37,59.Biological benefits of silicon in mitigating water deficit in forageThe high Si absorption by the pastures was important because it was enough to change C and N contents in the pastures under water deficit, and consequently the C:N ratio. However, Si absorption varied depending on the cultivar. In cultivar Massai, the absorption of this element decreased due to an increase in N content, while the opposite occurred in cultivar BRS Zuri. This may have occurred because cultivar Massai has higher N absorption efficiency than BRS Zuri. One cultivar or species may have greater absorption efficiency than another because it has a more efficient nitrogen transporter. In other words, it has better kinetic indexes, such as low KM and minimum concentration, which is governed by genetics31.The decrease in the C:Si ratio in plants grown under water restriction is a result of Si supply, which increased the absorption of this element and decreased C content in both pastures. Long et al.28 also reported the importance of silicon in elementary stoichiometry in a study with banana trees under water deficit.The benefit of stoichiometric homeostasis reflected the high metabolic efficiency of C, that is, Si significantly increased C use efficiency in P. maximum pastures under water restriction (Fig. 3b,e). Other authors report this effect in Brachiaria spp. pastures under drought25 and in sugarcane plants without water stress60.Carbon use efficiency (CUE) decreased in pastures with water restriction without silicon application. However, this variable increased in pastures where this element had been applied. In pastures under adequate water availability, silicon fertigation also increased CUE (Fig. 3c,f). Sugarcane plants under water deficit also showed decreased carbon use efficiency53. This increase in C use efficiency (Fig. 3c,f) by Si may have occurred in both pastures because there was a clear decrease in C content in plants grown under water restriction (Fig. 2b,e).Hao et al.29 reported similar results in native grass species, in which high Si content correlated with low levels of C. This decrease in C content may have occurred because when absorbing the beneficial element, the plant applies an “exchange strategy” to C, particularly in cell wall components such as cellulose. This is because the energy cost of including Si in the carbon chain is lower than that of including C itself61. This strategy thus improves the homeostasis of resistance to water deficiency in pastures. Reports indicate that the increase in Si in plant tissues may decrease lignin synthesis in the cell wall, which has a high energy cost62; The plant uses a “low cost strategy” when occupying binding sites between cell wall components, providing similar structural resistance to that of lignin63.These findings may support the promising role of Si in pasture management. This was evidenced from the effect of Si on elemental stoichiometry homeostasis in both forages grown under water restriction, which favored vital physiological processes by increasing the relative water content of the plant by approximately 14% (Fig. 4a,d). However, the effect of Si on the stoichiometric homeostasis of C might have induced energy savings in the plant, which is critical under water deficit conditions. Plants under water deficit have a limitation in the CO2 assimilation rate accompanied by an increase in the activity of another sink of absorbed energy, for example, photorespiration30. Studies on other crops confirm this finding, indicating a benefit of Si on stoichiometric homeostasis in plants under water deficit. Some examples are the studies of Rocha et al.25 on pasture, and Oliveira Filho et al.26 and Teixeira et al.64 on sugarcane.Figure 4Relative water content (a, d), electrolyte leakage index (b, e) and Total phenolic content (c, f) of forage plants cultivated in soil with different soil water retention capacities (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences with respect to Si and uppercase in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imagePastures under water deficit without silicon fertigation showed decreased relative water content in the plants. On the other hand, silicon fertigation increased the relative water content of forages under water deficit (Fig. 4a,d). Wang et al.65 performed a review to elucidate the effect of silicon on plant water transport processes. The authors indicated that silica deposition on leaf cuticle and stomata decreases water loss from transpiration under water deficit stress. However, accumulating evidence suggest that silicon maintains leaf water content not by reducing water loss, but rather through osmotic adjustments, enhancing water transport and uptake. According to the same authors, enhancement of stem water transport efficiency by silicon is due to silica depositing in the cell wall of vessel tubes, avoiding collapse and embolism.The physiological improvement promoted by Si in attenuating water deficit in pastures probably correlates with the reduction of oxidative stress. In this sense, cell electrolyte leakage decreased (Fig. 4b,e), from the increase of the non-enzymatic antioxidant compound in both forages (Fig. 4c,f) or from the activity of antioxidant enzymes66. This reduces reactive oxygen species, which are common in plants under water deficit67.Water deficiency affected the production of phenolic compounds depending on the cultivar. In Massai, this variable only increased with Si supply; in BRS Zuri, however, it decreased regardless of Si. Plants with silicon fertigation had increased phenolic compound content in pastures under both water availability conditions (Fig. 4c,f). Other authors have reported this effect of Si in increasing phenolic compounds in crops such as faba bean68 and sugar beet69. This supports the hypothesis that Si can attenuate the oxidative stress caused by water deficit by increasing the non-enzymatic antioxidant compound.Exogenous application of Si protects the photosynthetic pigments from oxidative damage by reducing membrane lipid peroxidation. In peanut, this type of application either maintained or reduced H2O268. Another effect of Si that demonstrates the attenuation of oxidative stress in pastures under water deficit was the increase in Fv/Fm; in other words, it favored photosynthetic efficiency. In both pastures, the condition of water restriction without silicon supply decreased the quantum efficiency of PSII (Fv/Fm). However, the supply of silicon in pastures, regardless of water condition, increased the photochemical efficiency of PSII (Fig. 5a,c).Figure 5Quantum efficiency of photosystem II (Fv/Fm) (a, c) and total chlorophyll index (Chl a + b) (b, d) of forage plants grown in soil with different soil water retention capacities (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). *Significant at 5% probability. ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThe protection of photosynthetic pigments by Si is also indicative of decreased oxidative stress58. The present study evidenced this situation, as the beneficial element increased the total chlorophyll index in both forages under water deficit (Fig. 5b,d). Wang et al.69 reported that Si delays the degradation of chlorophyll–protein complexes, as the element alters the protein components of the thylakoid, thus optimizing the light collection and stability of PSI. Another benefit of Si would be an increase in osmoprotection as a result of the greater accumulation of metabolites, mainly sugars and sugar alcohols (talose, mannose, fructose, sucrose, cellobiose, trehalose, pinitol, and myo-inositol) and amino acids (glutamic acid, serine, histidine, threonine, tyrosine, valine, isoleucine, and leucine), as seen in peanut plants68.Si benefit on forage productivity under water deficitWater restriction with or without silicon supply decreased the height of both pastures, and silicon application in both water regimes increased plant height (Fig. 6a,d). Water restriction with or without silicon supply decreased the number of tillers in both pastures, except for the cultivar BRS Zuri that had received Si. Silicon application increased the number of tillers in both pastures in both water regimes, except for the cultivar Massai without water restriction (Fig. 6b,e). The dry weight of both pastures decreased under water deficit, regardless of silicon. However, the dry matter of the pastures increased after Si application, with or without water restriction (Fig. 6c,f).Figure 6Plant height (a, d), number of tillers (b, e) and dry matter mass (c, f) of forage plants grown in soil with different soil water retention capacity (WRC) (70 and 40%) absence (− Si) and in the presence of silicon fertigation (+ Si). ns: not significant by the test F. Lowercase letters show differences in relation to Si and capitalization in relation to WRC. The bars represent the standard error of the mean, n = 6.Full size imageThus, the mitigating effects of Si on the physiological processes of both pastures grown under water deficit were responsible for increasing forage growth by promoting an increase of 12% in plant height and 31% in the number of tillers, which is one of the main components of pasture production. This resulted in a 25% increase in dry matter accumulation in relation to the pasture without Si (Fig. 7). Other authors have also reported the mitigating effect of Si on water deficit with a view to increasing plant growth in forage crops70 and other crops like wheat71 and rice72.Figure 7Figure of a forage plant in the condition of water deficit in the absence (− Si) and in the presence of silicon fertigation (+ Si) and a summary of its beneficial in the effects of the plant growth.Full size imageThe present study showed that the effect of Si on the attenuation of drought is not restricted only to physiological aspects involving increased plant water content and photosynthetic or biochemical efficiency. It also regulates elemental stoichiometric homeostasis as discussed above, confirming the biological strategy reported by Hao et al.29 in other forage grasses. Our study indicates that the line of research on the relationship between water deficit and Si in elementary stoichiometry is promising and should advance towards a better understanding of the multiple effects of this beneficial element on the plant.Animal production depends on the amount of biomass produced for grazing. The report of Habermann et al.73 has indicated that climate changes, such as droughts, are threatening pasture production and have a negative impact on animal and protein production. To solve this, the present research serves as a reference for Si fertigation management during the growth of P. maximum. This management consists of a sustainable alternative to improve production with greater nutritional balance even under soil water restriction, favoring water use efficiency in cultivation (Fig. 8). Moreover, Si has long-term potential to reduce the occurrence of droughts, favoring the sustainability of ecosystems. This is because the use of the beneficial element in the soil does not produce greenhouse gases, without negative impacts on the production environment74,75.Figure 8Benefits of Si in elementary stoichiometry and its relationship with physiological and biochemical aspects.Full size imageFuture perspectivesPeatlands and other terrestrial ecosystems represent large reservoirs and filters for Si, controlling Si transfer to the oceans. Land use change during the last 250 years has decreased soil Si availability by increasing export and decreasing Si storage due to higher erosion and a decrease in potentially Si-accumulating plants. Moreover, it has led to a twofold to threefold decrease of the base flow delivery of Si76. This raises concern over forage crops, reinforcing the need for silicate fertilization to explain the response of these species to the application of this element. Future perspectives would focuse on the benefits of Si in elementary stoichiometry and its relationship with physiological and biochemical aspects.Studies should use, other forage species, especially dicotyledons sensitive to water deficit, which have different mechanisms for Si absorption. This will allow a better understanding of whether the Si mechanisms that attenuate drought in monocotyledons also occur in dicotyledons. More

  • in

    Olfactory responses of Trissolcus mitsukurii to plants attacked by target and non-target stink bugs suggest low risk for biological control

    1.Kenis, M., Hurley, B. P., Hajek, A. E. & Cock, M. J. W. Classical biological control of insect pests of trees: Facts and figures. Biol. Invasions 19, 3401–3417 (2017).
    Google Scholar 
    2.Hoddle, M. S. Restoring balance: Using exotic species to control invasive exotic species. Conserv. Biol. 18, 38–49 (2004).
    Google Scholar 
    3.van Lenteren, J. C. & Loomans, A. J. M. Environmental risk assessment: Methods for comprehensive evaluation and quick scan. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment Vol. 10 (eds Bigler, F. et al.) 254–272 (CABI Publishing, 2006).
    Google Scholar 
    4.Loomans, A. J. M. Every generalist biological control agent requires a special risk assessment. Biocontrol 66, 23–35 (2021).
    Google Scholar 
    5.Mason, P. G., Everatt, M. J., Loomans, A. J. M. & Collatz, J. Harmonizing the regulation of invertebrate biological control agents in the EPPO region: Using the NAPPO region as a model. EPPO Bull. 47, 79–90 (2017).
    Google Scholar 
    6.Sabbatini-Peverieri, G. et al. Combining physiological host range, behavior and host characteristics for predictive risk analysis of Trissolcus japonicus. J. Pest Sci. 94, 1003–1016 (2021).
    Google Scholar 
    7.Abram, P. K., Labbe, R. M. & Mason, P. G. Ranking the host range of biological control agents with quantitative metrics of taxonomic specificity. Biol. Control 152, 104427 (2021).CAS 

    Google Scholar 
    8.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).
    Google Scholar 
    9.Hilker, M. & Meiners, T. Chemoecology of Insect Eggs and Egg Deposition (Blackwell, 2008).
    Google Scholar 
    10.Meiners, T. & Peri, E. Chemical ecology of insect parasitoids: Essential elements for developing effective biological control programmes. In Chemical Ecology of Insect Parasitoids (eds Wajnberg, E. & Colazza, S.) 191–224 (Wiley-Blackwell, 2013).
    Google Scholar 
    11.Conti, E. & Colazza, S. Chemical ecology of egg parasitoids associated with true bugs. Psyche 2012, 651015 (2012).
    Google Scholar 
    12.Desurmont, G. A. et al. Alien interference: Disruption of infochemical networks by invasive insect herbivores. Plant Cell Environ. 37, 1854–1865 (2014).PubMed 

    Google Scholar 
    13.Martorana, L. et al. An invasive insect herbivore disrupts plant volatile-mediated tritrophic signalling. J. Pest Sci. 90, 1079–1085 (2017).
    Google Scholar 
    14.van Driesche, R. G. & Murray, T. J. Parameters used in laboratory host range tests. In Assessing Host Ranges of Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice (eds van Driesche, R. & Reardon, R.) 55–67 (US Department Agriculture Forest Health Technology Enterprise Team, 2004).
    Google Scholar 
    15.Conti, E., Salerno, G., Bin, F. & Vinson, S. B. The role of host semiochemicals in parasitoid specificity: A case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol. Control 29, 435–444 (2004).CAS 

    Google Scholar 
    16.Ferracini, C. et al. Non-target host risk assessment for the parasitoid Torymus sinensis. Biocontrol 60, 583–594 (2015).
    Google Scholar 
    17.Avila, G. A., Withers, T. M. & Holwell, G. I. Laboratory odour-specificity testing of Cotesia urabae to assess potential risks to non-target species. Biocontrol 61, 365–377 (2016).
    Google Scholar 
    18.Wyckhuys, K. A. G. & Heimpel, G. E. Response of the soybean aphid parasitoid Binodoxys communis to olfactory cues from target and non-target host-plant complexes. Entomol. Exp. Appl. 123, 149–158 (2007).
    Google Scholar 
    19.Gohole, L. S., Overholt, W. A., Khan, Z. R. & Vet, L. E. M. Role of volatiles emitted by host and non-host plants in the foraging behaviour of Dentichasmias busseolae, a pupal parasitoid of the spotted stemborer Chilo partellus. Entomol. Exp. Appl. 107, 1–9 (2003).CAS 

    Google Scholar 
    20.Leskey, T. C. & Nielsen, A. L. Impact of the invasive Brown Marmorated Stink Bug in North America and Europe: History, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).CAS 
    PubMed 

    Google Scholar 
    21.Nixon, L. J. et al. Volatile release, mobility, and mortality of diapausing Halyomorpha halys during simulated shipping movements and temperature changes. J. Pest Sci. 92, 633–641 (2019).
    Google Scholar 
    22.Hoebeke, E. R. & Carter, M. E. Halyomorpha halys (Stål) (Heteroptera: Pentatomidae): A polyphagous plant pest from Asia newly detected in North America. Proc. Entomol. Soc. Washingt. 105, 225–237 (2003).
    Google Scholar 
    23.Haye, T., Abdallah, S., Gariepy, T. & Wyniger, D. Phenology, life table analysis and temperature requirements of the invasive brown marmorated stink bug, Halyomorpha halys, Europe. J. Pest Sci. 87, 407–418 (2014).
    Google Scholar 
    24.Maistrello, L. et al. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: The Italian invasion of Halyomorpha halys. Bioscience 68, 979–989 (2018).
    Google Scholar 
    25.Bariselli, M., Bugiani, R. & Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 46, 332–334 (2016).
    Google Scholar 
    26.Rot, M. et al. Native and non-native egg parasitoids associated with brown marmorated stink bug (Halyomorpha halys [stål, 1855]; Hemiptera: Pentatomidae) in western Slovenia. Insects 12, 505 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    27.Conti, E. et al. Biological control of invasive stink bugs: Review of global state and future prospects. Entomol. Exp. Appl. 169, 28–51 (2021).
    Google Scholar 
    28.Zapponi, L. et al. Assessing the distribution of exotic egg parasitoids of Halyomorpha halys in Europe with a large-scale monitoring program. Insects 12, 316 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    29.Zhang, J. et al. Seasonal parasitism and host specificity of Trissolcus japonicus in northern China. J. Pest Sci. 90, 1127–1141 (2017).ADS 

    Google Scholar 
    30.Yang, Z. Q., Yao, Y. X., Qiu, L. F. & Li, Z. X. A new species of Trissolcus (Hymenoptera: Scelionidae) parasitizing eggs of Halyomorpha halys (Heteroptera: Pentatomidae) in China with comments on its biology. Ann. Entomol. Soc. Am. 102, 39–47 (2009).
    Google Scholar 
    31.Abram, P. K., Talamas, E. J., Acheampong, S., Mason, P. G. & Gariepy, T. D. First detection of the samurai wasp, Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), Canada. J. Hymenopt. Res. 68, 29–36 (2019).
    Google Scholar 
    32.Kaser, J. M., Akotsen-Mensah, C., Talamas, E. J. & Nielsen, A. L. First Report of Trissolcus japonicus parasitizing Halyomorpha halys in North American agriculture. Florida Entomol. 101, 680–683 (2018).
    Google Scholar 
    33.Moraglio, S. T. et al. A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in northern Italy. J. Pest Sci. 93, 183–194 (2020).
    Google Scholar 
    34.Sabbatini-Peverieri, G. et al. Two Asian egg parasitoids of Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) emerge in northern Italy: Trissolcus mitsukurii (Ashmead) and Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae). J. Hymenopt. Res. 67, 37–53 (2018).
    Google Scholar 
    35.Scaccini, D. et al. An insight into the role of Trissolcus mitsukurii as biological control agent of Halyomorpha halys in Northeastern Italy. Insects 11, 306 (2020).PubMed Central 

    Google Scholar 
    36.Hokyo, N. & Kiritani, K. Two species of egg parasites as contemporaneous mortality factors in the egg population of the southern green stink bug, Nezara viridula. Jpn. J. Appl. Entomol. Zool. 7, 214–227 (1963).
    Google Scholar 
    37.Arakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).
    Google Scholar 
    38.Arakawa, R. & Namura, Y. Effects of temperature on development of three Trissolcus spp. (Hymenoptera: Scelionidae), egg parasitoids of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Entomol. Sci. 5, 215–218 (2002).
    Google Scholar 
    39.Chen, H., Talamas, E. J. & Pang, H. Notes on the hosts of Trissolcus ashmead (Hymenoptera: Scelionidae) from China. Biodivers. Data J. 8, e53786 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Ryu, J. & Hirashima, Y. Taxonomic studies on the genus Trissolcus Ashmead of Japan and Korea (Hymenoptera, Scelionidae). J. Fac. Agric. Kyushu Univ. 29, 35–58 (1984).
    Google Scholar 
    41.Bout, A. et al. First detection of the adventive egg parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in France. Insects 12, 761 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    42.Caron, V. et al. Preempting the arrival of the brown marmorated stink bug, Halyomorpha halys: Biological control options for Australia. Insects 12, 581 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    43.Giovannini, L. et al. Physiological host range of Trissolcus mitsukurii, a candidate biological control agent of Halyomorpha halys in Europe. J. Pest Sci. https://doi.org/10.1007/s10340-021-01415-x (2021).Article 

    Google Scholar 
    44.Bertoldi, V., Rondoni, G., Brodeur, J. & Conti, E. An egg parasitoid efficiently exploits cues from a coevolved host but not those from a novel host. Front. Physiol. 10, 746 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Colazza, S. et al. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. J. Exp. Biol. 207, 47–53 (2004).PubMed 

    Google Scholar 
    46.Tognon, R. et al. Volatiles mediating parasitism of Euschistus conspersus and Halyomorpha halys eggs by Telenomus podisi and Trissolcus erugatus. J. Chem. Ecol. 42, 1016–1027 (2016).CAS 
    PubMed 

    Google Scholar 
    47.Borges, M. & Blassioli-Moraes, M. C. The semiochemistry of Pentatomidae. In Stink Bugs: Biorational Control Based on Communication Processes 95–124 (CRC Press, 2017).48.Conti, E., Salerno, G., Leombruni, B., Frati, F. & Bin, F. Short-range allelochemicals from a plant-herbivore association: A singular case of oviposition-induced synomone for an egg parasitoid. J. Exp. Biol. 213, 3911–3919 (2010).CAS 
    PubMed 

    Google Scholar 
    49.De Clercq, P. Predaceous Stinkbugs (Pentatomidae: Asopinae). In Heteroptera of Economic Importance (eds Schaefer, C. W. & Panizzi, A. R.) 737–789 (CRC Press, 2000).
    Google Scholar 
    50.Hamilton, G. C. et al. Halyomorpha halys (Stål). In Invasive Stink Bugs and Related Species (Pentatomoidea) (ed. McPherson, J. E.) 243–292 (CRC Press, 2018).
    Google Scholar 
    51.Panizzi, A., McPherson, J., James, D., Javahery, M. & McPherson, R. Stink bugs (Pentatomidae). In Heteroptera of Economic Importance (eds Schaefer, C. & Panizzi, A.) 421–474 (CRC Press, 2000).
    Google Scholar 
    52.Rider, D. A. Family Pentatomidae. In Catalogue of the Heteroptera of the Palaearctic Region Vol. 5 (eds Aukema, B. & Rieger, C.) 233–402 (The Netherlands Entomological Society, 2006).
    Google Scholar 
    53.Milnes, J. M. & Beers, E. H. Trissolcus japonicus (Hymenoptera: Scelionidae) causes low levels of parasitism in three North American pentatomids under field conditions. J. Insect Sci. 19, 15 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Peiffer, M. & Felton, G. W. Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE 9, e88483 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Rondoni, G. et al. Vicia faba plants respond to oviposition by invasive Halyomorpha halys activating direct defences against offspring. J. Pest Sci. 91, 671–679 (2018).
    Google Scholar 
    56.Giacometti, R. et al. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack. Pest Manag. Sci. 72, 1585–1594 (2016).CAS 
    PubMed 

    Google Scholar 
    57.Timbó, R. V. et al. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS ONE 9, e109735 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Vet, L. E. M. & Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141–172 (1992).
    Google Scholar 
    59.Zapponi, L. et al. Assemblage of the egg parasitoids of the invasive stink bug Halyomorpha halys: Insights on plant host associations. Insects 11, 588 (2020).PubMed Central 

    Google Scholar 
    60.Scala, M. et al. Risposte di Trissolcus mitsukurii alle tracce chimiche volatili rilasciate da Halyomorpha halys. in XXVI Italian Congress of Entomology, 7–11 June 2021, 318 (2021).61.Kiritani, K. & Hôkyo, N. Studies on the life table of the southern green stink bug, Nezara viridula. Jpn. J. Appl. Entomol. Zool. 6, 124–140 (1962).
    Google Scholar 
    62.Hokyo, N., Kiritani, K., Nakasuji, F. & Shiga, M. Comparative biology of the two Scelionid egg parasites of Nezara viridula L. (Hemiptera : Pentatomidae). Appl. Entomol. Zool. 1, 94–102 (1966).
    Google Scholar 
    63.Esquivel, J. F. et al. Nezara viridula (L.). In Invasive Stink Bugs and Related Species (Pentatomoidea) (ed. McPherson, J. E.) 351–424 (CRC Press, 2018).
    Google Scholar 
    64.Kobayashi, T. Insect pests of soybeans in Japan. Misc. Publ. Tohoku Natl. Agric. Exp. Stn. 2, 1–39 (1981).ADS 

    Google Scholar 
    65.Nakamura, K. & Numata, H. Effects of photoperiod and temperature on the induction of adult diapause in Dolycoris baccarum (L.) (Heteroptera: Pentatomidae) from Osaka and Hokkaido, Japan. Appl. Entomol. Zool. 41, 105–109 (2006).
    Google Scholar 
    66.Mahmoud, A. M. A. & Lim, U. T. Host discrimination and interspecific competition of Trissolcus nigripedius and Telenomus gifuensis (Hymenoptera: Scelionidae), sympatric parasitoids of Dolycoris baccarum (Heteroptera: Pentatomidae). Biol. Control 45, 337–343 (2008).
    Google Scholar 
    67.Lim, U.-T., Park, K.-S., Mahmoud, A. M. A. & Jung, C.-E. Areal distribution and parasitism on other soybean bugs of Trissolcus nigripedius (Hymenoptera: Scelionidae), an egg parasitoid of Dolycoris baccarum (Heteroptera: Pentatomidae). Korean J. Appl. Entomol. 46, 79–85 (2007).
    Google Scholar 
    68.Wäckers, F. L. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control 29, 307–314 (2004).
    Google Scholar 
    69.Gillespie, D. R. & Mcgregor, R. R. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: Water places limits on predation. Ecol. Entomol. 25, 380–386 (2000).
    Google Scholar 
    70.Bouagga, S. et al. Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag. Sci. 74, 1286–1296 (2018).CAS 
    PubMed 

    Google Scholar 
    71.Martorana, L. et al. Egg parasitoid exploitation of plant volatiles induced by single or concurrent attack of a zoophytophagous predator and an invasive phytophagous pest. Sci. Rep. 9, 18956 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Lara, J. R. et al. Physiological host range of Trissolcus japonicus in relation to Halyomorpha halys and other pentatomids from California. Biocontrol 64, 513–528 (2019).
    Google Scholar 
    73.Zhao, Q., Jiufeng, W., Wenjun, B., Guoqing, L. & Zhang, H. Synonymize Arma chinensis as Arma custos based on morphological, molecular and geographical data. Zootaxa 4455, 161–176 (2018).PubMed 

    Google Scholar 
    74.Zou, D. et al. Taxonomic and bionomic notes on Arma chinensis (Fallou) (Hemiptera: Pentatomidae: Asopinae). Zootaxa, 3382, 41–52 (2012).
    Google Scholar 
    75.Zou, D. Y. et al. A meridic diet for continuous rearing of Arma chinensis (Hemiptera: Pentatomidae: Asopinae). Biol. Control 67, 491–497 (2013).
    Google Scholar 
    76.Wu, S. et al. Egg cannibalism varies with sex, reproductive status, and egg and nymph ages in Arma custos (Hemiptera: Asopinae). Front. Ecol. Evol. 9, 3389 (2021).
    Google Scholar 
    77.Endo, J. & Numata, H. Synchronized hatching as a possible strategy to avoid sibling cannibalism in stink bugs. Behav. Ecol. Sociobiol. 74, 16 (2020).
    Google Scholar 
    78.Afsheen, S., Xia, W., Ran, L., Zhu, C. S. & Lou, Y. G. Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci. 15, 381–397 (2008).
    Google Scholar 
    79.Rondoni, G. et al. Native egg parasitoids recorded from the invasive Halyomorpha halys successfully exploit volatiles emitted by the plant–herbivore complex. J. Pest Sci. 90, 1087–1095 (2017).
    Google Scholar 
    80.Bertoldi, V., Rondoni, G., Peri, E., Conti, E. & Brodeur, J. Learning can be detrimental for a parasitic wasp. PLoS ONE 16, e0238336 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Conti, E., Salerno, G., Bin, F., Williams, H. J. & Vinson, S. B. Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J. Chem. Ecol. 29, 115–130 (2003).CAS 
    PubMed 

    Google Scholar 
    82.Fatouros, N. E., Dicke, M., Mumm, R., Meiners, T. & Hilker, M. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19, 677–689 (2008).
    Google Scholar 
    83.Vinson, S. B. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Control 11, 79–96 (1998).
    Google Scholar 
    84.Michereff, M. F. F. et al. The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bull. Entomol. Res. 106, 663–671 (2016).CAS 
    PubMed 

    Google Scholar 
    85.Bonnemaison, L. Insect pests of crucifers and their control. Annu. Rev. Entomol. 10, 233–256 (1965).
    Google Scholar 
    86.Rondoni, G., Chierici, E., Agnelli, A. & Conti, E. Microplastics alter behavioural responses of an insect herbivore to a plant-soil system. Sci. Total Environ. 787, 147716 (2021).ADS 
    CAS 

    Google Scholar 
    87.Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (Version 3, 1.0). (2006). http://www.jwatcher.ucla.edu. Accessed April 2021.88.Peri, E., Cusumano, A., Agrò, A. & Colazza, S. Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. Biocontrol 56, 163–171 (2011).
    Google Scholar 
    89.Rondoni, G., Ielo, F., Ricci, C. & Conti, E. Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs. native ladybirds. Sci. Rep. 7, 3716 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org (2020). More

  • in

    Physiology can predict animal activity, exploration, and dispersal

    1.Lihoreau, M. et al. Collective foraging in spatially complex nutritional environments. Philos. Trans. R. Soc. B 372, 20160238–11 (2017).
    Google Scholar 
    2.Ron, R., Fragman-Sapir, O. & Kadmon, R. Dispersal increases ecological selection by increasing effective community size. Proc. Natl Acad. Sci. USA 115, 11280–11285 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Yeakel, J. D., Gibert, J. P., Gross, T., Westley, P. A. H. & Moore, J. W. Eco-evolutionary dynamics, density-dependent dispersal and collective behaviour: implications for salmon metapopulation robustness. Philos. Trans. R. Soc. B 373, 20170018–13 (2018).
    Google Scholar 
    4.Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed 

    Google Scholar 
    5.Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).
    Google Scholar 
    6.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).PubMed 

    Google Scholar 
    7.Kerr, J. T. Racing against change: understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061–10 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Clobert, J., Galliard, J. L., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    9.Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    10.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).PubMed 

    Google Scholar 
    11.Benard, M. F. & McCauley, S. J. Integrating across life‐history stages: consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).PubMed 

    Google Scholar 
    12.LeRoy, A. & Seebacher, F. Transgenerational effects and acclimation affect dispersal in guppies. Funct. Ecol. 32, 1819–1831 (2018).
    Google Scholar 
    13.McGhee, K. E., Barbosa, A. J., Bissell, K., Darby, N. A. & Foshee, S. Maternal stress during pregnancy affects activity, exploration and potential dispersal of daughters in an invasive fish. Anim. Behav. 171, 41–50 (2021).
    Google Scholar 
    14.Yip, E. C., Smith, D. R. & Lubin, Y. Causes of plasticity and consistency of dispersal behaviour in a group-living spider. Anim. Behav. 175, 99–109 (2021).
    Google Scholar 
    15.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19052–19059 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hawkes, C. Linking movement behaviour, dispersal and population processes: is individual variation a key? J. Anim. Ecol. 78, 894–906 (2009).PubMed 

    Google Scholar 
    17.Capelli, P., Pivetta, C., Esposito, M. S. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 56, 465–22 (2017).
    Google Scholar 
    18.Jiang, Y. et al. Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water. J. Evol. Biol. 30, 681–695 (2017).CAS 
    PubMed 

    Google Scholar 
    19.Malishev, M. & Kramer-Schadt, S. Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecol. Model. 441, 109413 (2021).
    Google Scholar 
    20.Klarevas‐Irby, J. A., Wikelski, M. & Farine, D. R. Efficient movement strategies mitigate the energetic cost of dispersal. Ecol. Lett. 24, 1432–1442 (2021).PubMed 

    Google Scholar 
    21.Mathot, K. J., Dingemanse, N. J. & Nakagawa, S. The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta‐analytic insights. Biol. Rev. 94, 1056–1074 (2019).PubMed 

    Google Scholar 
    22.Killen, S. S., Marras, S., Ryan, M. R., Domenici, P. & McKenzie, D. J. A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct. Ecol. 26, 134–143 (2012).
    Google Scholar 
    23.Metcalfe, N. B., Leeuwen, T. E. V. & Killen, S. S. Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish. Biol. 88, 298–321 (2016).CAS 
    PubMed 

    Google Scholar 
    24.Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).CAS 
    PubMed 

    Google Scholar 
    25.Gundersen, K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol. Rev. 86, 564–600 (2011).PubMed 

    Google Scholar 
    26.Lichtwark, G. A. & Wilson, A. M. A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes. J. Exp. Biol. 208, 2831–2843 (2005).CAS 
    PubMed 

    Google Scholar 
    27.Seebacher, F., Tallis, J. A. & James, R. S. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis Daudin. J. Exp. Biol. 217, 1940–1945 (2014).PubMed 

    Google Scholar 
    28.Denton, R. D., Higham, T., Greenwald, K. R. & Gibbs, H. L. Locomotor endurance predicts differences in realized dispersal between sympatric sexual and unisexual salamanders. Funct. Ecol. 31, 915–926 (2017).
    Google Scholar 
    29.Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).CAS 
    PubMed 

    Google Scholar 
    30.Jahn, M. & Seebacher, F. Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish (Danio rerio). J. Exp. Biol. 222, jeb201400–jeb201407 (2019).PubMed 

    Google Scholar 
    31.Pettersen, A. K., Marshall, D. J. & White, C. R. Understanding variation in metabolic rate. J. Exp. Biol. 221, jeb166876 (2018).PubMed 

    Google Scholar 
    32.Svendsen, J. C., Tirsgaard, B., Cordero, G. A. & Steffensen, J. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front. Physiol. 6, 43 (2017).
    Google Scholar 
    33.Seebacher, F. & Little, A. G. Plasticity of performance curves in ectotherms: individual variation modulates population responses to environmental change. Front. Physiol. 12, 733305 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    34.Freedberg, S., Urban, C. & Cunniff, B. M. Dispersal reduces interspecific competitiveness by spreading locally harmful traits. J. Evol. Biol. 34, 1477–1487 (2021).PubMed 

    Google Scholar 
    35.Ashe, A., Colot, V. & Oldroyd, B. P. How does epigenetics influence the course of evolution? Philos. Trans. R. Soc. B 376, 20200111 (2021).CAS 

    Google Scholar 
    36.Hardie, D. C. & Hutchings, J. A. Evolutionary ecology at the extremes of species ranges. Environ. Rev. 18, 1–20 (2010).
    Google Scholar 
    37.Charmantier, A., Doutrelant, C., Dubuc‐Messier, G., Fargevieille, A. & Szulkin, M. Mediterranean blue tits as a case study of local adaptation. Evol. Appl. 9, 135–152 (2016).PubMed 

    Google Scholar 
    38.Rohr, J. R. & Cohen, J. M. Understanding how temperature shifts could impact infectious disease. PLoS Biol. 18, e3000938 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Seebacher, F. & Krause, J. Physiological mechanisms underlying animal social behaviour. Philos. Trans. R. Soc. B 372, 20160231–20160238 (2017).
    Google Scholar 
    40.Avaria-Llautureo, J. et al. Historical warming consistently decreased size, dispersal and speciation rate of fish. Nat. Clim. Change 11, 787–793 (2021).
    Google Scholar 
    41.Radinger, J. et al. The future distribution of river fish: the complex interplay of climate and land use changes, species dispersal and movement barriers. Glob. Chan. Biol. 23, 4970–4986 (2017).
    Google Scholar 
    42.Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).PubMed 

    Google Scholar 
    43.Husak, J. F. Measuring selection on physiology in the wild and Manipulating phenotypes (in terrestrial nonhuman vertebrates). Compr. Physiol. 6, 63–85 (2016).
    Google Scholar 
    44.Hostrup, M. & Bangsbo, J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J. Physiol. 595, 2897–2913 (2017).CAS 
    PubMed 

    Google Scholar 
    45.Reale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B 365, 4051–4063 (2010).
    Google Scholar 
    46.Auer, S. K. et al. Metabolic rate interacts with resource availability to determine individual variation in microhabitat use in the wild. Am. Nat. 196, 132–144 (2020).PubMed 

    Google Scholar 
    47.Fewell, J. H. & Harrison, J. F. Scaling of work and energy use in social insect colonies. Behav. Ecol. Sociobiol. 70, 1047–1061 (2016).
    Google Scholar 
    48.LeRoy, A., Mazué, G. P. F., Metcalfe, N. B. & Seebacher, F. Diet and temperature modify the relationship between energy use and ATP production to influence behavior in zebrafish (Danio rerio). Ecol. Evol. 11, 9791–9803 (2021).
    Google Scholar 
    49.Alcaraz, G. & García-Cabello, K. N. Feeding and metabolic compensations in response to different foraging costs. Hydrobiologia 787, 217–227 (2017).
    Google Scholar 
    50.Boratyński, Z., Szyrmer, M. & Koteja, P. The metabolic performance predicts home range size of bank voles: a support for the behavioral–bioenergetics theory. Oecologia 193, 547–556 (2020).PubMed 

    Google Scholar 
    51.Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. Aerobic capacity influences the spatial position of individuals within fish schools. Proc. R. Soc. B 279, 357–364 (2012).PubMed 

    Google Scholar 
    52.Salin, K. et al. Differences in mitochondrial efficiency explain individual variation in growth performance. Proc. R. Soc. B 286, 20191466–20191468 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Wilson, R. S. & Husak, J. F. Introduction to the symposium: Towards a general framework for predicting animal movement speeds in nature. Integr. Comp. Biol. 55, 1121–1124 (2015).PubMed 

    Google Scholar 
    54.Wheatley, R., Niehaus, A. C., Fisher, D. O. & Wilson, R. S. Ecological context and the probability of mistakes underlie speed choice. Funct. Ecol. 32, 990–1000 (2018).
    Google Scholar 
    55.Martin, G. R. Understanding bird collisions with man‐made objects: a sensory ecology approach. Ibis 153, 239–254 (2011).
    Google Scholar 
    56.Husak, J. F. & Fox, S. F. Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): compensation and sexual selection. Evolution 60, 1888–1895 (2006).PubMed 

    Google Scholar 
    57.Mouchet, A. & Dingemanse, N. J. A quantitative genetics approach to validate lab- versus field-based behavior in novel environments. Behav. Ecol. 32, 903–911 (2021).
    Google Scholar 
    58.O’Connor, E. A., Cornwallis, C. K., Hasselquist, D., Nilsson, J.-Å. & Westerdahl, H. The evolution of immunity in relation to colonization and migration. Nat. Ecol. Evol. 2, 841–849 (2018).PubMed 

    Google Scholar 
    59.Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA 106, 3543–3548 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Jaikumar, G., Slabbekoorn, H., Sireeni, J., Schaaf, M. & Tudorache, C. The role of the glucocorticoid receptor in the regulation of diel rhythmicity. Physiol. Behav. 223, 112991 (2020).CAS 
    PubMed 

    Google Scholar 
    61.Castillo-Ramírez, L. A., Ryu, S. & Marco, R. J. D. Active behaviour during early development shapes glucocorticoid reactivity. Sci. Rep. 9, 55–59 (2019).
    Google Scholar 
    62.Bruijn, Rde & Romero, L. M. The role of glucocorticoids in the vertebrate response to weather. Gen. Comp. Endocrinol. 269, 11–32 (2018).PubMed 

    Google Scholar 
    63.Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).PubMed 

    Google Scholar 
    64.Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
    Google Scholar 
    65.White, C. R. et al. Geographical bias in physiological data limits predictions of global change impacts. Funct. Ecol. 35, 1572–1578 (2021).
    Google Scholar 
    66.Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    67.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 1–10 (2016).
    Google Scholar 
    68.Debeffe, L. et al. Exploration as a key component of natal dispersal: dispersers explore more than philopatric individuals in roe deer. Anim. Behav. 86, 143–151 (2013).
    Google Scholar 
    69.Careau, V. & T. G., Jr. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol. Biochem. Zool. 85, 543–571 (2012).PubMed 

    Google Scholar 
    70.Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade‐offs. Glob. Chang. Biol. 22, 494–512 (2016).PubMed 

    Google Scholar 
    71.Arnold, P. A., Delean, S., Cassey, P. & White, C. R. Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J. Comp. Physiol. B 191, 1097–1110 (2021).PubMed 

    Google Scholar 
    72.Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: the metaDigitise R package. Method. Ecol. Evol. 10, 426–431 (2019).
    Google Scholar 
    73.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis. (Academic Press, 1985).74.Hedges, L. V., Gurevich, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    75.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Method. Ecol. Evol. 7, 1476–1481 (2016).
    Google Scholar 
    77.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
    Google Scholar 
    78.Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    79.Bürkner, P. Advanced Bayesian multilevel modeling with the R package brms. R Journal 10, 395–411 (2018).80.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
    Google Scholar 
    81.Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 1–14 (2017).
    Google Scholar 
    82.Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. (in press, 2021) https://doi.org/10.1111/2041-210X.13724.83.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).
    Google Scholar 
    84.Wu, N. C. & Seebacher, F. Data for Physiology can predict animal activity, exploration, and dispersal. https://github.com/nicholaswunz/dispersal-meta-analysis. More

  • in

    French crop yield, area and production data for ten staple crops from 1900 to 2018 at county resolution

    Crop dataCrop area (in hectare, ha, for sown areas) and production (in kg) statistics on departmental level from 1900 until 1988 were collected from books of national agricultural statistics (‘Statistique agricole annuelle’ or ‘Annuaire de statistique agricole’) compiled by the French Ministry of Agriculture; detailed references are provided in the supplementary information. Numbers were manually digitized from photocopied versions of the original paper documents. Data from 1989 to 2018 were derived from digital statistics from the Agreste database (‘Statistique agricole annuelle’ compiled by the Service de la Statistique et de la Prospective (SSP), Secrétariat Général du Ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt (MAAF), France); details are provided in the supplementary information. Yields were calculated from total production and sown area for each department to avoid apparently often incorrect yield values printed in the old statistics books. Yields are given in kilogram per hectare (kg/ha, for sown area) for dry mass with 10–16% moisture content, depending on the crop.Data are available for ten crops: soft wheat (spring and winter separately), durum wheat, maize, oats (spring and winter), rapeseed (spring and winter), barley (spring and winter), potatoes, sugarbeet, sunflower and wine. The split into spring and winter crops eventually results in 18 distinct crop-cultivar types. Time frames with available data and the correspondence between French and English names are provided in Table 1.Table 1 Data set description for yields on department level.Full size tableThe shapes of French departments have changed over time. We use the 96 mainland (Metropolitan France) departments in their current form and subsume historical values to modern departments as follows. Corsica was one single department until 1975 but then split into Corse-du-Sud and Haute-Corse. Data for Corsica until 1975 were split equally (area, production) or copied (yield) to both new departments. Seine and Seine-et-Oise were two departments until 1967, but then subdivided into seven new departments on 1 January 1968. To account for this, we consider the values of the seven new departments (Essonne, Hauts-de-Seine, Paris, Seine-Saint-Denis, Val-de-Marne, Val-d’Oise, Yvelines) only from 1968 on and unite the two old departments into one counter-factual (“Seine_SeineOise” in the data tables) until 1967.Multiple cropping per year within this set of crops is accounted for by separate area data, but is practically nonexistent in France6.Quality filtersSome yield values had to be considered as outliers, also after checking for digitizing errors. There were four criteria for defining an outlier. First, absolute yield values larger than a physiologically currently unreachable threshold were removed; threshold values were 15 t/ha for barley and durum wheat, 200 t/ha for sugarbeet and potatoes, 20 t/ha for maize, oats and wheat, 10 t/ha for rape and sunflower and 200 hl/ha for wine. These thresholds were chosen to eliminate visually obvious outliers likely due to mismatches between area and production records. The values are set slightly above current maximum attained yields, thus remaining permissive and removing only obvious errors in this first step. Additionally, all yield values for winter rape in 1944, spring rape in 1968 and spring barley in 1980 were removed due to wrongly reported values in the yearbooks. This first step removed in total 167 yield data points. Second, the top 1% of yield values across all departments per decade were removed. Third, values above or below the mean +/− four times the standard deviation of each crop-department time series (for yield, area and production separately) were removed. Fourth, and finally, a similar variance filter as in the third step was applied within each decade of a single time series, filtering values above or below decadal mean +/− two (for yield) or three (area, production) decadal standard deviations. The latter three filters removed, on average, 3.6% of the yield and 0.2% of the area or production data, respectively (Table 1). There were, as a median, 43 yield outliers per department (out of 1,260 data points on average), with a range of 4 (department Hauts de Seine) and 255 (Nord) and an interquartile range of 35–50 outliers. Outliers were masked as missing values to avoid introducing a bias from any correction. In the accompanying data sets we provide two version of the full data set, one without any corrections (“RAW”) and one where the filters described above have been applied (“FILTERED”).ValidationNationally aggregated area, production and yield data from our data set were validated with national data from 1961 to 2018 provided by the FAO (http://faostat3.fao.org/home/E). Area and production data for crops with separate spring and winter data were summed on department level to test agreement with area and production data digitized for the ‘total’ crop. More

  • in

    Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula

    1.DeWitt, H. H. The character of the midwater fish fauna of the Ross Sea, Antarctica. Antarctic Ecol. 1, 305–314 (1970).
    Google Scholar 
    2.Guglielmo, L., Granata, A. & Greco, S. Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 37–51 (1997).
    Google Scholar 
    3.La Mesa, M. & Eastman, J. T. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fisheries 13, 241–266 (2012).
    Google Scholar 
    4.La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321–338 (2004).
    Google Scholar 
    5.Pinkerton, M. H., Bradford-Grieve, J. M. & Hanchet, S. M. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci. 17, 1–31 (2010).
    Google Scholar 
    6.Caccavo, J. A. et al. Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci. Rep. 8, 1–16 (2018).
    Google Scholar 
    7.Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J. Exp. Biol. 218, 1834–1845 (2015).PubMed 

    Google Scholar 
    8.Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 158, 382–390 (2011).
    Google Scholar 
    9.Sandersfeld, T., Davison, W., Lamare, M. D., Knust, R. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373–2381 (2015).PubMed 

    Google Scholar 
    10.Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).CAS 
    PubMed 

    Google Scholar 
    11.Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Change 10, 710–711 (2020).
    Google Scholar 
    12.Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. 173, 208–237 (2019).
    Google Scholar 
    13.Mintenbeck, K. & Torres, J. J. in The Antarctic silverfish: a keystone species in a changing ecosystem, 253–286 (Springer, 2017).14.Vacchi, M. et al. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 35, 1573–1585 (2012).
    Google Scholar 
    15.Vacchi, M., La Mesa, M., Dalu, M. & Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antartic Sci. 16, 299–305 (2004).
    Google Scholar 
    16.Kellermann, A. K. Midwater fish ecology. Found. Ecol. Res. West Antarctic Peninsula 70, 231–256 (1996).
    Google Scholar 
    17.La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).
    Google Scholar 
    18.Parker, M. L. et al. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J. Mar. Syst. 152, 18–41 (2015).
    Google Scholar 
    19.Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).
    Google Scholar 
    20.Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).
    Google Scholar 
    21.Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).CAS 

    Google Scholar 
    22.La Mesa, M. et al. Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarctic Sci. 22, 243 (2010).
    Google Scholar 
    23.Raphael, M. N. et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).
    Google Scholar 
    24.Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017337 (2012).25.Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).
    Google Scholar 
    26.Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).
    Google Scholar 
    27.Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).
    Google Scholar 
    28.Stammerjohn, S. E. et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa Sci. Anthropocene 3, 000055 (2015).29.Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice. Geophys. Res. Lett. 45, 11–227 (2018).
    Google Scholar 
    30.Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034939 (2008).31.Dotto, T. S. et al. Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).32.Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).CAS 

    Google Scholar 
    33.Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).
    Google Scholar 
    34.Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II Top. Stud. Oceanogr. 58, 1508–1523 (2011).CAS 

    Google Scholar 
    35.Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
    Google Scholar 
    37.Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).CAS 

    Google Scholar 
    38.Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I Oceanogr. Res. Papers 101, 54–70 (2015).
    Google Scholar 
    39.La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci. Rep. 9, 10087 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    40.Granata, A., Zagami, G., Vacchi, M. & Guglielmo, L. Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol. 32, 369–382 (2009).
    Google Scholar 
    41.Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L. & Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 42, 1187–1195 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    42.Ghigliotti, L. et al. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 40, 199–211 (2017).
    Google Scholar 
    43.Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie ­penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).
    Google Scholar 
    44.Coggins, J. H. J. & McDonald, A. J. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos. 120, 2167–2189 (2015).
    Google Scholar 
    45.Assmann, K. M. et al. Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603–6620 (2013).
    Google Scholar 
    46.Moffat, C., Owens, B. & Beardsley, R. C. On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC004955 (2009).47.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    PubMed 

    Google Scholar 
    48.Regan, H. C., Holland, P. R., Meredith, M. P. & Pike, J. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica. Deep Sea Res I Oceanogr. Res. Pap. 133, 59–71 (2018).
    Google Scholar 
    49.Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784–3801 (2014).
    Google Scholar 
    50.Hoppmann, M. et al. Platelet ice, the Southern Ocean’s hidden ice: a review. Ann. Glaciol. 61, 341–368 (2020).
    Google Scholar 
    51.Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci 6, 439–467 (2014).
    Google Scholar 
    52.Veazey, A. L., Jeffries, M. O. & Morris, K. Small-scale variability of physical properties and structural characteristics of Antarctic fast ice. Ann. Glaciol. 20, 61–66 (1994).
    Google Scholar 
    53.Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–365 (1983).CAS 

    Google Scholar 
    54.Quetin, L. B. & Ross, R. M. in Smithsonian at the Poles: Contributions to International Polar Year Science (eds Krupnik, I., Lang, M. A. & Miller, S. E.) 285–298 (IPY, 2009).55.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).56.Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).CAS 
    PubMed 

    Google Scholar 
    57.Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).
    Google Scholar 
    59.Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).CAS 

    Google Scholar 
    60.Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).
    Google Scholar 
    61.Gleiber, M. Long-Term Change in Copepod Community Structure in the Western Antarctic Peninsula: Linkage to Climate and Implications for Carbon Cycling. Dissertations, Theses, and Masters Projects, College of William and Mary, Virginia Institute of Marine Science (2014).62.Wöhrmann, A. P., Hagen, W. & Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum(Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 151, 205–218 (1997).
    Google Scholar 
    63.Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).
    Google Scholar 
    64.Meredith, M. P. et al. Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O. Deep Sea Res. II Top. Stud. Oceanogr. 55, 309–322 (2008).
    Google Scholar 
    65.Slosarczyk, W. Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983–84. Mem Natl Inst Polar Res Spec Issue. 40, 299–315 (1986).
    Google Scholar 
    66.Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 141, 401–429 (2005).
    Google Scholar 
    67.Gille, S. T., McKee, D. C. & Martinson, D. G. Temporal changes in the Antarctic circumpolar current: implications for the Antarctic Continental Shelves. Oceanography 29, 96–105 (2016).
    Google Scholar 
    68.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    69.Allen, M. et al. Technical summary: global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf (2019).70.Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383–395 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Gao, M. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmos. Res. 255, 105533 (2021).
    Google Scholar 
    72.Emslie, S. D. & McDaniel, J. D. Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol. 25, 222–229 (2002).
    Google Scholar 
    73.Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of Adélie penguin populations. In Foundations for Ecological Research West of the Antarctic Peninsula 257–272 (American Geophysical Union, 1996).74.Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).
    Google Scholar 
    76.Ruck, K. E., Steinberg, D. K. & Canuel, E. A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 509, 39–55 (2014).CAS 

    Google Scholar 
    77.Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fisheries 14, 343–363 (2013).
    Google Scholar 
    78.Eastman, J. T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 4, 155–160 (1985).
    Google Scholar 
    79.Hanchet, S. et al. The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761, 397–414 (2015).
    Google Scholar 
    80.Pinkerton, M., Hanchet, S. & Bradford-Grieve, J. Finding the role of Antarctic toothfish in the Ross Sea ecosystem. Water Atmos. 15, 20–21 (2007).
    Google Scholar 
    81.Hanchet, S. M. & Rickard, G. J. A hypothetical life cycle for Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea region. CCAMLR Sci. 15, 35–53 (2008).
    Google Scholar 
    82.Fuiman, L., Davis, R. & Williams, T. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815–822 (2002).
    Google Scholar 
    83.Casaux, R., Baroni, A. & Ramón, A. The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol. 29, 257–262 (2006).
    Google Scholar 
    84.Ponganis, P. J. & Stockard, T. K. Short note: the Antarctic toothfish: how common a prey for Weddell seals? Antarctic Sci. 19, 441–442 (2007).
    Google Scholar 
    85.Rumolo, P. et al. The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis. Eur. Zool. J. 87, 94–104 (2020).
    Google Scholar 
    86.Hubold, G. & Ekau, W. Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol. 10, 255–260 (1990).87.Moreno, C., Rueda, T. & Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 35, 101–117 (1986).88.Gleiber, M. R., Steinberg, D. K. & Schofield, O. M. E. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res. 38, 732–750 (2016).CAS 

    Google Scholar 
    89.Garzio, L., Steinberg, D., Erickson, M. & Ducklow, H. Microzooplankton grazing along the Western Antarctic Peninsula. Aquat. Microb. Ecol. 70, 215–232 (2013).
    Google Scholar 
    90.Hobbie, J. E. Scientific accomplishments of the Long Term Ecological Research Program: an introduction. Bioscience 53, 17–20 (2003).
    Google Scholar 
    91.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281 (2017).
    Google Scholar 
    92.Hilton, E. J., Watkins-Colwell, G. J. & Huber, S. K. The expanding role of natural history collections. Ichthyol. Herpetol. 109, 379–391 (2021).
    Google Scholar 
    93.Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435 (2020).CAS 
    PubMed 

    Google Scholar 
    94.Houde, E. D. Emerging from Hjort’s shadow. J. Northw. Atl. Fish. Sci 41, 53–70 (2008).
    Google Scholar 
    95.Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362, 67–94 (2007).
    Google Scholar 
    96.Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77–86 (1995).
    Google Scholar 
    97.Kellermann, A. K. Identification key and catalogue of larval Antarctic fishes. Ber. Polarforsch 1–138 (1990).98.Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).
    Google Scholar 
    99.Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).CAS 
    PubMed 

    Google Scholar 
    100.Hosking, J. S. & National Center for Atmospheric Research Staff. (eds) The Climate Data Guide: Amundsen Sea Low indices. https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices (2020).101.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar 
    102.Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning: With Applications in R (Spinger, 2013).103.Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Res. 93, 154–162 (2008).
    Google Scholar 
    104.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).105.Denes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6, 543–556 (2015).
    Google Scholar 
    106.Zuur, A. F. & Ieno, E. N. Beginner´s Guide to Zero-inflated Models with R (Highland Statistics Ltd., 2016).107.Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F. & Manseau, M. Using information criteria to select the correct variance–covariance structure for longitudinal data in ecology. Methods Ecol. Evol. 1, 15–24 (2010).
    Google Scholar 
    108.Clark, I. Statistics or geostatistics? Sampling error or nugget effect? J. Southern African Inst. Mining Metall. 110, 307–312 (2010).
    Google Scholar 
    109.Gschlößl, S. & Czado, C. Modelling count data with overdispersion and spatial effects. Stat. Papers 49, 531–552 (2008).
    Google Scholar 
    110.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    111.Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).PubMed 

    Google Scholar 
    112.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. JOSS 3, 772 (2018).
    Google Scholar 
    113.Francq, B. G., Lin, D. & Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 38, 5603–5622 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    114.Spineli, L. M. & Pandis, N. Prediction interval in random-effects meta-analysis. Am. J. Orthod. Dentofacial Orthop. 157, 586–588 (2020).PubMed 

    Google Scholar 
    115.Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).
    Google Scholar 
    116.Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004257 (2008).117.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. https://doi.org/10.24381/CDS.F17050D7 (2019).118.Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
    Google Scholar  More

  • in

    Environmental structure impacts microbial composition and secondary metabolism

    1.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 

    Google Scholar 
    2.Caswell H, Cohen JE. Disturbance, interspecific interaction and diversity in metapopulations. Biol J Linn Soc. 1991;42:193–218.
    Google Scholar 
    3.Tolker-Nielsen T, Molin S. Spatial organization of microbial biofilm communities. Microb Ecol. 2000;40:75–84.CAS 
    PubMed 

    Google Scholar 
    4.Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC. Drivers of spatial structure in social microbial communities. Curr Biol. 2019;29:R545–50.CAS 
    PubMed 

    Google Scholar 
    5.Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    6.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS 
    PubMed 

    Google Scholar 
    7.Overmann J, van Gemerden H. Microbial interactions involving sulfur bacteria: Implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev. 2000;24:591–9.CAS 
    PubMed 

    Google Scholar 
    8.García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361:1–11.
    Google Scholar 
    9.Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 

    Google Scholar 
    10.Wang X, Li X, Ling J. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans. J Basic Microbiol. 2017;57:605–16.CAS 
    PubMed 

    Google Scholar 
    11.Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:1–13.
    Google Scholar 
    12.Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75. https://doi.org/10.1038/s41559-019-1080-2.Article 
    PubMed 

    Google Scholar 
    13.Justice NB, Sczesnak A, Hazen TC, Arkin AP. Environmental selection, dispersal, and organism interactions shape community assembly in high-throughput enrichment culturing. Appl Environ Microbiol. 2017;83:1–16.
    Google Scholar 
    14.Hilker M. New synthesis: parallels between biodiversity and chemodiversity. J Chem Ecol. 2014;40:225–6.CAS 
    PubMed 

    Google Scholar 
    15.Raguso R, Agrawal A, Douglas A, Jander G, Kessler A, Poveda K, et al. The raison d’être of chemical ecology. Ecology. 2015;96:617–30.PubMed 

    Google Scholar 
    16.Tilman D. Competition and biodiversity in spatially structured habitats. Ecology. 1994;75:2–16.
    Google Scholar 
    17.Geyrhofer L, Brenner N. Coexistence and cooperation in structured habitats. BMC Ecol. 2020;20:1–15. https://doi.org/10.1186/s12898-020-00281-y.Article 

    Google Scholar 
    18.Wakano JY, Nowak MA, Hauert C. Spatial dynamics of ecological public goods. Proc Natl Acad Sci USA. 2009;106:7910–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 

    Google Scholar 
    20.Lowery NV, Ursell T. Structured environments fundamentally alter dynamics and stability of ecological communities. Proc Natl Acad Sci USA. 2019;116:379–88.CAS 

    Google Scholar 
    21.Lee JZ, Craig Everroad R, Karaoz U, Detweiler AM, Pett-Ridge J, Weber PK, et al. Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat. PLoS ONE. 2018;13:1–19.
    Google Scholar 
    22.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv. 2018;4:1–12.
    Google Scholar 
    23.Fenchel T, Finlay B. Oxygen and the spatial structure of microbial communities. Biol Rev. 2008;83:553–69.PubMed 

    Google Scholar 
    24.Esteban DJ, Hysa B, Bartow-McKenney C. Temporal and spatial distribution of the microbial community of winogradsky columns. PLoS ONE. 2015;10:1–21.
    Google Scholar 
    25.Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science. 1998;280:694–6.CAS 

    Google Scholar 
    26.McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc B Biol Sci. 2015;370:1–8.
    Google Scholar 
    27.Schreiber F, Ackermann M. Environmental drivers of metabolic heterogeneity in clonal microbial populations. Curr Opin Biotechnol. 2020;62:202–11. https://doi.org/10.1016/j.copbio.2019.11.018.CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2:1–11.
    Google Scholar 
    29.Picketts STA, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. NCASI Techn Bull. 1999;2:420.
    Google Scholar 
    30.Chao L, Levin BR. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA. 1981;78:6324–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69–72.CAS 
    PubMed 

    Google Scholar 
    32.Cardinale BJ. Biodiversity improves water quality through niche partitioning. Nature. 2011;472:86–91.CAS 
    PubMed 

    Google Scholar 
    33.Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001;294:804–8.CAS 
    PubMed 

    Google Scholar 
    34.Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol. 2015;5:176–95.PubMed 

    Google Scholar 
    35.Czárán TL, Hoekstra RF. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc R Soc B Biol Sci. 2003;270:1373–8.
    Google Scholar 
    36.West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol. 2006;4:597–607.CAS 
    PubMed 

    Google Scholar 
    37.Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek. 2002;81:665–80.CAS 
    PubMed 

    Google Scholar 
    38.Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol. 2015;17:4851–60.CAS 
    PubMed 

    Google Scholar 
    39.Liébana R, Arregui L, Santos A, Murciano A, Marquina D, Serrano S. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation. FEMS Microbiol Ecol. 2016;92:1–13.
    Google Scholar 
    40.Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2015;18:1403–14.PubMed 

    Google Scholar 
    42.Junkins EN, Stevenson BS. Using plate-wash PCR and high-throughput sequencing to measure cultivated diversity for natural product discovery efforts. Front Microbiol. 2021;12:1–14.
    Google Scholar 
    43.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Google Scholar 
    44.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    46.Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.
    Google Scholar 
    47.Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:1–14.
    Google Scholar 
    48.Wright ES. DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics. 2015;16:1–14. https://doi.org/10.1186/s12859-015-0749-z.CAS 
    Article 

    Google Scholar 
    49.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.
    Google Scholar 
    50.Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.CAS 
    PubMed 

    Google Scholar 
    51.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.
    Google Scholar 
    52.Willis A, Bunge J. Estimating diversity via frequency ratios. Biometrics. 2015;71:1042–9.PubMed 

    Google Scholar 
    53.Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44.
    Google Scholar 
    54.Levene H. Robust tests for equality of variances. In: Olkin I, editor. Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Palo Alto, California, USA; 1960. p. 278–92.55.Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage; 2019.56.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R Package; 2019.58.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 

    Google Scholar 
    59.Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:1–11.61.Myers OD, Sumner SJ, Li S, Barne S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem. 2017;89:8696–703.CAS 
    PubMed 

    Google Scholar 
    62.Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N;, Peng Y, et al. Sharing and community curation of mass spectrometry data with GNPS. Nat Biotechnol. 2017;34:828–37.
    Google Scholar 
    63.Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models. Genome Res. 2003;13:2498–504. http://ci.nii.ac.jp/naid/110001910481/.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.R Core Team. R: a language and environment for R Foundation for Statistical Computing. 2018. https://www.r-project.org/.66.Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    67.Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:1–20.
    Google Scholar 
    68.O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol. 2011;22:552–8. https://doi.org/10.1016/j.copbio.2011.03.010.CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Thierbach S, Wienhold M, Fetzner S, Hennecke U. Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS. Beilstein J Org Chem. 2019;15:187–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS, Bohn PW, et al. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J Biol Chem. 2018;293:9544–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35:247–74.CAS 
    PubMed 

    Google Scholar 
    72.Grollman AP. Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J Biolog Chem. 1967;242:3226–33. https://doi.org/10.1016/S0021-9258(18)95953-3.CAS 
    Article 

    Google Scholar 
    73.Sobin BA, Tanner FW Jr. Anisomycin, a new anti-protozoan antibiotic. J Am Chem Soc. 1954;76:4053–4053.CAS 

    Google Scholar 
    74.Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. 2007;14:53–63.CAS 
    PubMed 

    Google Scholar 
    75.Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, et al. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem. 2013;61:6786–91.CAS 
    PubMed 

    Google Scholar 
    76.Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, et al. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 2016;7:1–16.
    Google Scholar 
    77.Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res. 2011;45:5599–611.CAS 
    PubMed 

    Google Scholar 
    78.Skwor T, Stringer S, Haggerty J, Johnson J, Duhr S, Johnson M, et al. Prevalence of potentially pathogenic antibiotic-resistant Aeromonas spp. in treated urban wastewater effluents versus recipient riverine populations: a 3-year comparative study. Appl Environ Microbiol. 2020;86:1–16.
    Google Scholar 
    79.Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23:35–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Rema T, Lawrence JR, Dynes JJ, Hitchcock AP, Korber DR. Microscopic and spectroscopic analyses of chlorhexidine tolerance in Delftia acidovorans biofilms. Antimicrob Agents Chemother. 2014;58:5673–86.PubMed 
    PubMed Central 

    Google Scholar 
    81.Assanta MA, Roy D, Lemay MJ, Montpetit D. Attachment of Arcobacter butzleri, a new waterborne pathogen, to water distribution pipe surfaces. J Food Protect. 2002;65:1240–7.
    Google Scholar 
    82.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS 
    PubMed 

    Google Scholar 
    83.Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2008;2:49–55.PubMed 

    Google Scholar 
    84.Inglis RF, Roberts PG, Gardner A, Buckling A. Spite and the scale of competition in Pseudomonas aeruginosa. Am Nat. 2011;178:276–85.PubMed 

    Google Scholar 
    85.van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol Rev. 2017;41:392–416.PubMed 

    Google Scholar 
    86.Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS 
    PubMed 

    Google Scholar 
    87.Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56. https://doi.org/10.1038/ismej.2013.175. [Internet]Available fromCAS 
    Article 
    PubMed 

    Google Scholar 
    88.Pacala SW, Levin SA. Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P, editors. Spatial ecology: the role of space in population dynamics and interspecific interactions; Princeton University Press, Princeton, New Jersey, USA; 1997.89.Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.
    Google Scholar 
    90.Haig SJ, Quince C, Davies RL, Dorea CC, Collinsa G. The relationship between microbial community evenness and function in slow sand filters. mBio. 2015;6:1–12.
    Google Scholar 
    91.Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al. Initial community evenness favours functionality under selective stress. Nature. 2009;458:623–6.CAS 
    PubMed 

    Google Scholar 
    92.Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol. 2012;7:252–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.CAS 
    PubMed 

    Google Scholar 
    94.Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 2006;30:274–91.CAS 
    PubMed 

    Google Scholar 
    95.Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:R521–37. https://doi.org/10.1016/j.cub.2019.04.024.CAS 
    Article 
    PubMed 

    Google Scholar 
    96.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol. 2018;14:1–21.CAS 

    Google Scholar 
    97.Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Garcia-Garcera M, Rocha EPC. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat Commun. 2020;11:1–11. https://doi.org/10.1038/s41467-020-14572-x.CAS 
    Article 

    Google Scholar  More

  • in

    Global and regional health and food security under strict conservation scenarios

    1.Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).CAS 
    Article 

    Google Scholar 
    2.Buchanan, G. M., Butchart, S. H. M., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    3.Butchart, S. H. M. et al. in Global Assessment Report of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T. M.) Ch. 3 (IPBES Secretariat, 2019); https://doi.org/10.5281/zenodo.38320534.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    5.Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. S. W. 58, 7–17 (2014).
    Google Scholar 
    6.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    8.Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    9.Kok, M. T. J. et al. Assessing ambitious nature conservation strategies within a 2 degree warmer and food-secure world. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.236489 (2020).10.Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).Article 

    Google Scholar 
    11.Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    12.Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat. 2, 1172–1195 (2020).Article 

    Google Scholar 
    13.Rabin, S. S. et al. Impacts of future agricultural change on ecosystem service indicators. Earth Syst. Dynam. 11, 357–376 (2019).Article 

    Google Scholar 
    14.Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).Article 

    Google Scholar 
    15.Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    16.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    17.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwz136 (2019).18.Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).19.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    20.O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2015).21.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).22.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).Article 

    Google Scholar 
    23.Kashwan, P. V., Duffy, R., Massé, F., Asiyanbi, A. P. & Marijnen, E. From racialized neocolonial global conservation to an inclusive and regenerative conservation. Environ. Sci. Policy Sustain. Dev. 63, 4–19 (2021).Article 

    Google Scholar 
    24.The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).25.Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).Article 

    Google Scholar 
    26.Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2021).27.Brockington, D. & Wilkie, D. Protected areas and poverty. Phil. Trans. R. Soc. B 370, 20140271 (2015).28.Protected Planet Report 2020 (UNEP–WCMC and IUCN, 2021).29.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS 
    Article 

    Google Scholar 
    30.Dutta, A., Allan, J., Shimray, G., General, S. & Pact, A. I. P. RE: “A ‘Global Safety Net’ to reverse biodiversity loss and stabilize Earth’s climate”. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    31.Simmons, B. A., Nolte, C. & McGowan, J. Tough questions for the “30 × 30” conservation agenda. Front. Ecol. Environ. 19, 322–323 (2021).Article 

    Google Scholar 
    32.Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).33.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019).34.The World Database of Key Biodiversity Areas (KBA Partnership, 2019); www.keybiodiversityareas.org35.Mogg, S., Fastre, C. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).36.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).37.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3 https://CRAN.R-project.org/package=prioritizr (2020).38.Hurtt, G., Chini, L., Frolking, S. & Sahajpal, R. Land-Use Harmonization (LUH2) (Global Ecology Laboratory, Univ. Maryland, 2017).39.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed April 2019); www.protectedplanet.net40.Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).41.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 84003 (2016).42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    43.Engström, K. et al. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst. Dynam. 7, 893–915 (2016).44.Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 35, 138–147 (2015).Article 

    Google Scholar 
    45.Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).Article 

    Google Scholar 
    46.GBD Results Tool (IHME, 2020); http://ghdx.healthdata.org/gbd-results-tool47.KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017). More