Reconstructing the historical expansion of industrial swine production from Landsat imagery
Changepoint detection methodAlthough most of the reflectance time series used in the BinSeg–Normal–Mean and BinSeg–Normal–MeanVar algorithms had a normal distribution, several lagoons had distributions that were skewed or did not follow a normal distribution (Fig. S1). However, results suggested that the accuracy of the detected changepoints were not sensitive to the normality assumption or distributional characteristics.The BinSeg-Normal-Mean algorithm had the highest performance (81% of the 340 validation sites) in detecting the correct year of swine waste lagoon construction, followed by BinSeg-Normal-MeanVar (77%). The two algorithms did not detect the same year of construction for 19 waste lagoons; of these 19, the BinSeg-Normal-Mean detected the correct year for 84% of them, while the BinSeg-Normal-MeanVar detected the correct year for only 16%. Therefore, the BinSeg-Normal-MeanVar algorithm was abandoned given it did not provide additional useful information relative to the BinSeg-Normal-Mean algorithm.Despite good performance, the BinSeg-Normal-Mean algorithm consistently detected a changepoint during the period of record for all sites included in the 10% validation set (n = 340 swine waste lagoons). However, 58 of the 340 swine waste lagoons were constructed prior to 1986, before the period of record suitable for detecting an accurate changepoint. Changepoints before 1986 either (1) detected the correct construction year, or (2) incorrectly detected a changepoint due to artifact signals identified on the images taken in 1984, probably associated with the initial satellite commissioning. In the latter circumstance, if the algorithm detected a changepoint due to this signal, it meant that no land-use change was detected after 1986. Therefore, these waste lagoons were estimated as having been constructed before 1986. In some conditions, when a large number of images was available for the year 1985 and 1986, the algorithm was able to detect the changepoint occurring for the years 1985 or 1986. Further, the BinSeg-Normal-Mean algorithm detected a false year of construction for swine waste lagoons for which the mean of the segment after the changepoint (S2) had a greater average than the segment before the changepoint (S1).To increase algorithm performance, we developed a workflow to address some of the aforementioned caveats (Fig. 4). In this workflow, the BinSeg-Normal-Mean algorithm is applied to a B4 reflectance time series at location j. If the BinSeg-Normal-Mean changepoint is identified for a time in or prior to 1986 (Fig. 4a,i,b,i) we assume that the lagoon was constructed in or prior to 1986. Similarly, a lagoon is assumed to be constructed in or prior to 1986 if a BinSeg-Normal-Mean changepoint is identified after 1986 and the mean of S2 is greater than the mean of S1 (Fig. 4a,ii,b,ii). If a changepoint occurred after 1986 and the mean of S1 was greater than S2, then the changepoint was estimated as having occurred between 1987 and 2010 (Fig. 4a,iii,b,iii).Figure 4Changepoint detection algorithm for determining the year of construction of swine waste lagoons. Panel (a) summarizes the algorithm workflow, while panel (b) illustrates specific examples corresponding to each step (i–iii) in the workflow.Full size imageThe performance of the workflow was evaluated using the validation set composed of 10% of the total number of swine waste lagoons (n = 340). With the new approach, 94% of the swine waste lagoon construction years (+ /- one year) were accurately retrieved. A tolerance of + /− 1 year was chosen to account for a lack of images in some years due to issues with image quality (e.g. high cloud cover) (e.g., Fig. 5a), or because construction spanned at least a year (e.g., Fig. 5b). The changepoint detection workflow incorrectly estimated the construction years for 19 of the 340 swine waste lagoons in the validation set; the differences between the observed and predicted years of construction of these lagoons ranged from 2 to 26 years with a median of 8 years.Figure 5Examples of limitations to the changepoint detection algorithm. In some cases, an insufficient number of high-quality Landsat 5 images were available to capture the year of construction of an individual swine waste lagoon (a), resulting in errors of + /− 1 year. In other cases, the changepoint algorithms detected the start of the construction of the swine waste lagoon but the swine waste lagoon was not fully operational until later years due to prolonged construction timelines (b).Full size imageBy visually inspecting historical Google Earth images for each of the lagoon sites for which the model incorrectly estimated construction year, we identified that model errors were associated with swine waste lagoon expansion, pixel transitions to land-use classes other than swine waste lagoons, or issues with pixels being partly covered by clouds or incompletely covered by the lagoon (i.e., narrow and small waste lagoons that do not entirely cover a pixel).Estimating swine waste lagoon construction yearsUsing the newly developed algorithm (Fig. 4), construction years were estimated for each swine waste lagoon in the NC Coastal Plain (Fig. 6); the years of construction for each swine waste lagoon are included in the supplementary material. Most swine waste lagoons were built in the early 90s and prior to the moratorium of 1997. More specifically, 80% of the swine waste lagoons (n = 2,736) were built between 1987 and 1997. Sixteen percent of the swine waste lagoons were constructed in or prior to 1986. A large decrease in the construction of swine waste lagoons occurred after the moratorium of 1997, with only 3.7% of swine waste lagoons being constructed after the moratorium. These results suggest that the 1997 moratorium did not completely halt the construction of lagoons, but dramatically slowed the rate of expansion.Figure 6Spatiotemporal distribution of swine waste lagoon construction (+/- 1 year) across the HUC6 watersheds. This figure was produced using QGIS version QGIS 3.18.3 (https://www.qgis.org/).Full size imageWith regards to hydrological boundaries (Fig. 7a–h), the Cape Fear River watershed had the highest number of swine waste lagoons (i.e., 56%; Fig. 7b), followed by the Neuse River (i.e., 23%; Fig. 7d), the Lower Pee Dee River (i.e., 9%; Fig. 7c) watersheds. The Albemarle-Chowan (Fig. 7a), Onslow Bay (Fig. 7e), Pamlico (Fig. 7f), Roanoke (Fig. 7g), and Upper Pee Dee (Fig. 7h) watersheds all had less than 9% of the total lagoons within the study area.Figure 7Year of construction of the swine waste lagoons (+ /− 1 year) for the HUC6 watersheds. The y-axis scales are unequal between the plots to improve readability. The dashed red lines correspond to the establishment of the moratorium in 1997.Full size imageResults suggested that the Cape Fear River watershed was the center of the historical growth of the swine industry, where over 300 swine waste lagoons were built prior to 1987. The Cape Fear River watershed experienced a steady increase in the number of swine waste lagoons from 1987 to 1990, with an average of 46 swine waste lagoons being built annually. However, after 1991, the pace of swine waste lagoon construction increased dramatically with an average of 192 swine waste lagoons built annually between 1991 and 1997. The highest construction rate occurred in 1994, with 242 swine waste lagoons built. However, after the 1997 moratorium, the construction rate decreased dramatically; in 1997, 153 swine waste lagoons were constructed, and this number dropped to 23 in 1998. After 1998, the annual average number of swine waste lagoons constructed plunged to 5. Although the swine waste lagoon construction rate fell considerably after the 1997 moratorium, the decrease had already started in 1995. The same pattern was observed for the Neuse, Pamlico, Albemarle-Pamlico, and Onslow Bay watersheds.The spatiotemporal distribution of swine waste lagoons at the HUC12 watershed scale emphasized the historical clustering of the swine industry in the NC Coastal Plain. After the moratorium, swine waste lagoons were present within 436 HUC12 watersheds. However, before 1986, they were spread across only 197 HUC12 watersheds (Fig. 8). Before 1986, the density of waste lagoons was relatively low with an average of 3.38 swine waste lagoons per 100 km2 and a maximum of 15.13 swine waste lagoons per 100 km2 (i.e., Clayroot Swamp-Swift Creek watershed) (Fig. 8). In the 90s, swine waste lagoon construction expanded and continued to intensify in the region. After the moratorium of 1997, the average density of waste lagoons per HUC12 watersheds was 10 per 100 km2 with a maximum of 78 waste lagoons per 100 km2 identified in the Maxwell Creek-Stocking Head Creek basin. After 1997, 16 of 436 HUC12 watersheds had a swine waste lagoon density greater than 40 per 100 km2 (Fig. 8).Figure 8Cumulative swine waste lagoon density per 100 km2 reported at the HUC12 watershed scale; HUC6 watersheds shown in gray for reference. This figure was produced using QGIS version QGIS 3.18.3 (https://www.qgis.org/).Full size imageSpatiotemporal distribution of swine waste lagoons in relation to water resourcesDistance of swine waste lagoon sites to the nearest water feature (i.e., reservoir, canal/ditch, lake/pond, stream/river, estuary) were assessed using the NHD. The analysis revealed that over 150 swine waste lagoons were misclassified by the NHD and were documented in the NHD as lake/pond (n = 102) or swamp/marsh (n = 46). Further, we observed that some NHD water features were misclassified as other non-water features (e.g., forest, pasture), and most of these misclassifications were for polygons with an area less than 0.05 km2. Therefore, NHD water features with areas less than 0.05 km2 were removed from subsequent analyses. Distances between swine waste lagoons and waterways were computed from the NHD without features with areas less than 0.05 km2. The new analysis revealed that 3 swine waste lagoons remained misclassified as lake/pond (n = 1) and swamp/marsh (n = 2). Canal/Ditch, lake/pond, stream/river, and swamp/marsh were identified as the NHD features that were most commonly near swine waste lagoons (Fig. 9). Two swine waste lagoons were near a reservoir in which one was identified as a treatment-sewage pond by the NHD.Figure 9Nearest water features distance to swine waste lagoons.Full size imageThe average and median distance of all swine waste lagoons (including those built early and late in the period of record) to the nearest water features were 234 and 177 m, respectively. Further, 92% of the swine waste lagoons were less than 500 m from the nearest waterways. The Mann–Kendall results revealed a significant upward trend over time of swine waste lagoon distances to the nearest water features (alpha = 0.05, p-value = 0.01). A slight increase over time of swine waste lagoon distances to the nearest water feature is also documented in Table 1.Table 1 Temporal average and median of nearest distance (m) of swine waste lagoons to water features. NA indicated that the water feature was not the closest waterway to any of the studied swine waste lagoons for the time period.Full size table More