More stories

  • in

    Range expansion decreases the reproductive fitness of Gentiana officinalis (Gentianaceae)

    Seed collectionMature seeds of G. officinalis were collected from the natural-growing plant community at the Hezuo alpine meadow and wetland ecosystem research station of Lanzhou University on the southeast Qinghai-Tibet Plateau (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m) in 2014 and grown in a nursery. Robust seedlings were selected and transplanted to the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences on the northeast Qinghai-Tibet Plateau (lat. 37°37′N, long. 101°19′ E, alt. 3200 m) and Datong ecological agriculture experimental station of the Northwest Institute of Plateau Biology (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). Transplantation was also performed in a natural environment (the Hezuo alpine meadow and a wetland ecosystem research station of Lanzhou University).Study plots and transplantingThe naturally studied population is located at the Hezuo alpine meadow and wetland ecosystem research station of Lanzhou University on the southeast Qinghai-Tibet Plateau (henceforth referred to as the natural environment (NE)), China (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). The third transplantation site was created in a natural environment and was termed “natural transplant” (NT). The average annual air temperature is 2 °C, with extremes of 11.5 °C (maximum) and –8.9 °C (minimum). The annual precipitation is approximately 550 mm, 80% of which falls in the short summer growing season between May and September. Hezuo station is dominated by Kobresia humilis, Pedicularis kansuensis, Heteropappus altaicus, Stellera chamaejasme, Aconitum gymnandrum and Nepeta pratti, which bloom at the same time as G. officinalis.The higher-elevation transplanted plot was located at the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences on the northeast Qinghai-Tibet Plateau (henceforth referred to as the high-elevation environment (HE) (lat. 37°37′N, long. 101°19′ E, alt. 3200 m). The average annual air temperature was –1.7 °C, with extremes of 27.6 °C (maximum) and –37.1 °C (minimum). The annual precipitation ranged between 426 and 860 mm, mainly in July and August.The lower-elevation transplanted plot was located at the Datong ecological agriculture experimental station of the Northwest Institute of Plateau Biology on the transition zone between Qinghai-Tibet Plateau and loess plateau (henceforth referred to as the low-elevation environment (LE)) (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). The average annual air temperature was 7.6 °C, with extremes of 34.6 °C (maximum) and –18.9 °C (minimum). The annual precipitation was approximately 380 mm, mainly in July and August. The study area was dominated by cultivated crops.Robust seedlings with floral buds were selected for transplantation. The density of G. officinalis under the NE was approximately 1.5 plants/m2; therefore, we planted individuals at the same plant density in all transplanted plots. Moreover, more than 300 robust seedlings of G. officinalis were transplanted to each transplanted plot. The total planting area was greater than 200 m2 at each plot. The transplanted seedlings flowered in the summer, and we conducted our experiments during the following 2 years (2016–2017).Flowing phenology and flower durationTo observe flowering phenology, three 1 × 10-m areas were created within each experimental plot in 2016. In each plot, flower opening and duration were monitored and recorded every morning until all flowers withered.At the full anthesis phase of G. officinalis in 2016, 10 plants from each plot were randomly selected. On each plant, two buds at the middle position of the inflorescence were selected, and the floral duration of all the selected buds was monitored and recorded. The pollen (male phase) and stigma (female phase) presentations were monitored and recorded.Floral display and reproductive allocationAt the full-bloom stage, 50 single plants were selected from each plot to test the inflorescence traits. Stem length (the distance from the stem base to apex) was measured by a straightedge. The number of sprays on each plant and the average flower numbers (including buds and fruits) on each spray were counted.We selected 100–150 fully open flowers on different plants in each population to test the flower sizes at each plot. To avoid the position effect as much as possible, we did not choose terminal flowers. The length and width (diameter) of the flowers in each plot were measured by Vernier calipers. To test the sexual allocation changes in G. officinalis among the three plots, 30 buds on different plants in each plot were selected randomly. Then, the pollen numbers (PNs) and ovule numbers (ONs) were counted. The pollen/ovule ratios (P/O) were calculated as P/O = pollen numbers in all five anthers/ovule numbers21.Sampling dates corresponded to the height of the flowering season at each site (mid-August in the LE and early September in the NE and HE) before fruiting had occurred. While fresh, the aboveground parts of 30 fully flowering plants per site were dissected into inflorescences, peduncles, leaves, and stems. Plant material was oven-dried at 70 °C for 3 days, and the dry weights were obtained to the nearest 0.1 mg on an analytical balance (Ohaus). The inflorescence and peduncle fractions of each plant were summed to provide a measure of reproductive biomass (R), and the leaf and stem fractions of each plant were summed to provide a measure of vegetative biomass (V). The reproductive allocation (RA) was calculated as RA = R/(R + V).Observation of pollinatorsThe floral visitors to G. officinalis were recorded in the three plots. Ten neighbouring inflorescences on different individual plants were selected at random and labelled. Before observation, we counted all the open flowers on one inflorescence and then recorded the number of flowers visited by pollinators. We observed these flowers between 9:00 a.m. and 6:00 p.m. in each plot during 2016 and 2017. In total, observations were carried out for 65 h in each plot over the 2 years. While carrying out these observations, we stayed 2 m away from the focal flowers to observe all of the floral visitors without disturbing their foraging behaviours. The visitor species, behaviour in the flower, and visiting times of each species were recorded, and the visit frequencies of each visitor species were calculated. The visit frequency was calculated as visit frequency = visit times/visit flower numbers/hour.To identify whether flower visitors were legitimate pollinators of G. officinalis, collected visitors were observed and photographed with a stereomicroscope to identify whether G. officinalis pollen was attached to their bodies. Additionally, each visitor was observed to determine whether the reproductive structures of flowers had been touched. Visitors that were positive for all these factors were considered legitimate pollinators.Seed productionTo test the self-compatibility of G. officinalis, flowers subjected to self-pollination treatment (unopened flowers were isolated with paper bags) in 2017 on the three plots were subjected. To further analyse self-compatibility, we conducted outcrossing pollination. In addition, 30 individual inflorescences on different plants were bagged, and two buds at the same position on each inflorescence were selected. Both buds on each inflorescence were emasculated before the flowers opened. When the stigma opened, one flower was pollinated with fresh pollen from the same inflorescence or different inflorescences on the same plant (selfing), and the other was pollinated with fresh pollen from a plant 5 m away (outcrossing). To test whether facilitated selfing occurred, 30 individual plants in each plot were tagged. On each tagged plant, two individual buds were selected: one was assigned to natural pollination, and the other was assigned to emasculation (removal of all anthers before stigma lobe opening). To test whether agamospermy occurred, the flowers were subjected to emasculation treatment and isolated in three plots. Thirty buds on different plants were randomly selected, and all the anthers were removed before the flowers opened, and then all the buds were isolated with paper bags. At maturity, all fruits were collected, and all of the seeds (including mature and abortive seeds) were counted. Seed-set ratios were used to assess the reproductive success of each treatment, which were calculated by the number of mature seeds divided by the total ovules in each ovary. The facilitated selfing data were calculated as the natural seed-set ratio minus the emasculated seed-set ratio.Similarly, 30 inflorescences were tagged on different plants in each plot, and two buds were then tagged at the same position on each inflorescence; one bud was assigned to natural pollination, and the other was assigned to supplemental hand pollination when stigmas opened. For supplemental hand pollination, pollen was collected randomly from unmarked individuals at a minimum distance of 5 m from the recipient individual. Supplemental hand pollination events were conducted every day until the flower was permanently closed. When mature, all seeds were counted, and seed-set ratios were calculated. For each plot, we calculated an index of pollen limitation (IPL): IPL = 1 − (Po/Ps), where Po is the natural seed-set ratio and Ps is the supplemental hand-pollination seed-set ratio. As the seed-set ratios showed no significant difference between natural and supplemental hand pollination in the natural environment, we considered the IPL at this plot to be 0. The IPL data at the other two plots were compared using an independent-samples t test.Statistical analysisThe normality of the data was tested using one-sample Kolmogorov–Smirnov (1-K-S) tests, and then one-way ANOVAs (with Tukey’s multiple contrasts) were used to test differences in all traits among the three environments. More

  • in

    Predator interference and complexity–stability in food webs

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Google Scholar 
    McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).CAS 
    ADS 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    ADS 

    Google Scholar 
    van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: the complexity–stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
    Google Scholar 
    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).
    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. & Pimm, S. L. The balance of nature?: Ecological issues in the conservation of species and communities (University of Chicago Press, 1991).MATH 

    Google Scholar 
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Google Scholar 
    Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. Geographic variation in network structure of a nearctic aquatic food web. Glob. Ecol. Biogeogr. 21, 579–591 (2012).
    Google Scholar 
    Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).CAS 
    PubMed 

    Google Scholar 
    Takemoto, K., Kanamaru, S. & Feng, W. Climatic seasonality may affect ecological network structure: food webs and mutualistic networks. Biosystems 121, 29–37 (2014).PubMed 

    Google Scholar 
    De Angelis, D. L. Stability and connectance in food web models. Ecology 56, 238–243 (1975).
    Google Scholar 
    Borrvall, C., Ebenman, B. & Tomas Jonsson, T. J. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Google Scholar 
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B. Biol. Sci. 364, 1711–1723 (2009).
    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).CAS 
    ADS 

    Google Scholar 
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).PubMed 

    Google Scholar 
    Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).
    Google Scholar 
    Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).ADS 

    Google Scholar 
    Wootton, J. T. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).
    Google Scholar 
    Gellner, G. & McCann, K. S. Consistent role of weak and strong interactions in high-and low-diversity trophic food webs. Nat. Commun. 7, 1–7 (2016).
    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science (80-.) 337, 349–351 (2012).MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar 
    Kondoh, M. & Mougi, A. Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity–stability effect to arise. Popul. Ecol. 57, 21–27 (2015).
    Google Scholar 
    Mougi, A. & Kondoh, M. Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54–58 (2014).PubMed 
    MATH 
    ADS 

    Google Scholar 
    Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 1–5 (2016).
    Google Scholar 
    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).PubMed 

    Google Scholar 
    Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science (80-.) 299, 1388–1391 (2003).CAS 

    Google Scholar 
    Kawatsu, K. & Kondoh, M. Density-dependent interspecific interactions and the complexity-stability relationship. Proc. R. Soc. B Biol. Sci. 285, 20180698 (2018).
    Google Scholar 
    Oaten, A. & Murdoch, W. W. Functional response and stability in predator-prey systems. Am. Nat. 109, 289–298 (1975).
    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    Nunney, L. The stability of complex model ecosystems. Am. Nat. 115, 639–649 (1980).MathSciNet 

    Google Scholar 
    Kartascheff, B., Guill, C. & Drossel, B. Positive complexity–stability relations in food web models without foraging adaptation. J. Theor. Biol. 259, 12–23 (2009).MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar 
    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS 
    PubMed 

    Google Scholar 
    Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 

    Google Scholar 
    Terry, J. C. D., Morris, R. J. & Bonsall, M. B. Trophic interaction modifications: an empirical and theoretical framework. Ecol. Lett. 20, 1219–1230 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).
    Google Scholar 
    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).
    Google Scholar 
    Bolker, B., Holyoak, M., Křivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).
    Google Scholar 
    Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).PubMed 

    Google Scholar 
    Feng, J., Dakos, V. & van Nes, E. H. Does predator interference cause alternative stable states in multispecies communities?. Theor. Popul. Biol. 82, 170–176 (2012).PubMed 
    MATH 

    Google Scholar 
    Arditi, R., Callois, J.-M., Tyutyunov, Y. & Jost, C. Does mutual interference always stabilize predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).PubMed 

    Google Scholar 
    DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).
    Google Scholar 
    Rall, B. C., Guill, C. & Brose, U. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).
    Google Scholar 
    Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-.) 296, 1120–1123 (2002).CAS 
    ADS 

    Google Scholar 
    Havens, K. Scale and structure in natural food webs. Science (80-.) 257, 1107–1109 (1992).CAS 
    ADS 

    Google Scholar 
    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).
    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 

    Google Scholar 
    Langkilde, T. & Shine, R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684–691 (2004).PubMed 
    ADS 

    Google Scholar 
    Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2003).
    Google Scholar 
    Franke, H. D. & Janke, M. Mechanisms and consequences of intra- and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
    Google Scholar 
    Peckarsky, B. L. Mechanisms of intra-and interspecific interference between larval stoneflies. Oecologia 85, 521–529 (1991).PubMed 
    ADS 

    Google Scholar 
    Kimura, K. & Chiba, S. Interspecific interference competition alters habitat use patterns in two species of land snails. Evol. Ecol. 24, 815–825 (2010).
    Google Scholar 
    Franke, H.-D. & Janke, M. Mechanisms and consequences of intra-and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius)(Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
    Google Scholar 
    Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, E161–E173 (2013).PubMed 

    Google Scholar 
    Bolger, D. T. & Case, T. J. Intra-and interspecific interference behaviour among sexual and asexual geckos. Anim. Behav. 44, 21–30 (1992).
    Google Scholar 
    Wolff, J. O. The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can. J. Zool. 63, 2657–2662 (1985).
    Google Scholar 
    Hasegawa, K. & Maekawa, K. Role of visual barriers on mitigation of interspecific interference competition between native and non-native salmonid species. Can. J. Zool. 87, 781–786 (2009).
    Google Scholar 
    Denno, R. F., McClure, M. S. & Ott, J. R. Interactions in resurrected. Annu. Rev. Entomol. 40, 297–331 (1995).CAS 

    Google Scholar 
    Grether, G. F., Losin, N., Anderson, C. N. & Okamoto, K. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol. Rev. 84, 617–635 (2009).PubMed 

    Google Scholar 
    Carothers, J. H., Jaksić, F. M. & Jaksic, F. M. Time as a Niche difference: the role of interference competition. Oikos 42, 403 (1984).
    Google Scholar 
    Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).PubMed 

    Google Scholar 
    Stouffer, D. B. & Novak, M. Hidden layers of density dependence in consumer feeding rates. Ecol. Lett. 24, 520–532 (2021).PubMed 

    Google Scholar 
    Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
    Google Scholar 
    Cervantes-Loreto, A., Ayers, C. A., Dobbs, E. K., Brosi, B. J. & Stouffer, D. B. The context dependency of pollinator interference: how environmental conditions and co-foraging species impact floral visitation. Ecol. Lett. 24, 1443–1454 (2021).PubMed 

    Google Scholar 
    Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka-Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).CAS 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-.) 329, 853–856 (2010).ADS 

    Google Scholar 
    Guill, C. & Drossel, B. Emergence of complexity in evolving niche-model food webs. J. Theor. Biol. 251, 108–120 (2008).MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar  More

  • in

    A 14-year time series of marine megafauna bycatch in the Italian midwater pair trawl fishery

    Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19.11, 598–604 (2004).Article 

    Google Scholar 
    Lewison, R. L. et al. Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. Proc. Natl. Acad. Sci. USA 111.14, 5271–5276 (2014).Article 

    Google Scholar 
    Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33.4, 661–672 (2009).Article 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).Article 

    Google Scholar 
    Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74.9, 2283–2297 (2017).Article 

    Google Scholar 
    Wallace, B. P., Heppell, S. S., Lewison, R. L., Kelez, S. & Crowder, L. B. Impacts of fisheries bycatch on loggerhead turtles worldwide inferred from reproductive value analyses. J. Appl. Ecol. 45.4, 1076–1085 (2008).
    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 2–34 (2014).Article 

    Google Scholar 
    Lotze, H. K., Mills Flemming, J. & Magera, A. M. Critical factors for the recovery of marine mammals. Conserv. Biol. 31.6, 1301–1311 (2017).Article 

    Google Scholar 
    Carpentieri, P., Nastasi, A., Sessa, M. & Srour, A. Incidental catch of vulnerable species in Mediterranean and Black Sea fisheries – A review. Studies and Reviews No. 101 (General Fisheries Commission for the Mediterranean). Rome, FAO, 2021.European Parliament, Council of the European Union. Council Regulation No. 199/2008 of 25 February 2008 concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy, OJ L 60/1, 5.3.2008, 1–12 (European Council, 2008).Savoca, M. S. et al. Comprehensive bycatch assessment in US fisheries for prioritizing management. Nat. Sustain. 3.6, 1–9 (2020).
    Google Scholar 
    Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. (ACCOBAMS Secretariat, Monaco, 2002).Casale, P. Sea turtle by-catch in the Mediterranean. Fish Fish. 12.3, 299–316 (2011).Article 

    Google Scholar 
    Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22.4, 952–964 (2008).Article 

    Google Scholar 
    Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The conservation status of sharks, rays and chimaeras in the Mediterranean Sea (IUCN, Malaga, Spain, 2016).FAO. Monitoring the incidental catch of vulnerable species in Mediterranean and Black Sea fisheries: Methodology for data collection. FAO Fisheries and Aquaculture Technical Paper No. 640. (Rome, FAO, 2019).Mazzoldi, C., Sambo, A. & Riginella, E. The Clodia database: a long time series of fishery data from the Adriatic Sea. Sci. Data 1.1, 1–8 (2014).
    Google Scholar 
    Fortibuoni, T. et al. Fish and fishery historical data since the 19th century in the Adriatic Sea, Mediterranean. Sci. Data 4.1, 1–13 (2017).
    Google Scholar 
    Mancusi, C. et al. MEDLEM database, a data collection on large Elasmobranchs in the Mediterranean and Black seas. Mediterr. Mar. Sci. 21.2, 276–288 (2020).
    Google Scholar 
    Pulcinella, J. et al. Institute for Biological Resources and Marine Biotechnologies (IRBIM), Italian National Institute for Environmental Protection and Research (ISPRA). Monitored bycatch of Mustelus mustelus, Squalus acanthias, Myliobatis aquila, Pteroplatytrygon violacea and Caretta caretta in mid-water pair trawl fishery in the northern Adriatic Sea, from 2006-2017 (2020).Cardinale, M., Osio, G. C. & Scarcella, G. Mediterranean Sea: a failure of the European fisheries management system. Front. Mar. Sci 4, 72 (2017).Article 

    Google Scholar 
    Lotze, H. K., Coll, M. & Dunne, J. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea. Ecosystems 14.2, 198–222 (2011).Article 

    Google Scholar 
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13 (2012).ADS 
    Article 

    Google Scholar 
    Romano, B. & Zullo, F. The urban transformation of Italy’s Adriatic coastal strip: Fifty years of unsustainability. Land Use Policy 38, 26–36 (2014).Article 

    Google Scholar 
    Holcer, D. & Fortuna, C.M. Status and conservation of cetaceans the Adriatic Sea. (UNEP-MAP-RAC-SPA. Malaga, 2014).Ferretti, M. Technological evolution of pelagic trawl fishery in the Adriatic, Italy. (FAO Fisheries Reports FAO, 1981).Fortuna, C. M. et al. Bycatch of cetaceans and other species of conservation concern during pair trawl fishing operations in the Adriatic Sea (Italy). Chem. Ecol. 26.S1, 65–76 (2010).Article 

    Google Scholar 
    La Mesa, G., Annunziatellis, A., Filidei, E. Jr & Fortuna, C. M. Bycatch of myliobatid rays in the central Mediterranean Sea: the influence of spatiotemporal, environmental, and operational factors as determined by generalized additive modelling. Mar. Coast. Fish 8.1, 382–394 (2016).Article 

    Google Scholar 
    Bonanomi, S., Pulcinella, J., Fortuna, C. M., Moro, F. & Sala, A. Elasmobranch bycatch in the Italian Adriatic pelagic trawl fishery. PLoS One 13.1, e0191647 (2018).Article 

    Google Scholar 
    Pulcinella, J. et al. Bycatch of loggerhead turtle (Caretta caretta) in the Italian Adriatic midwater pair trawl fishery. Front. Mar. Sci. 6, 365 (2019).Article 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016).James, D. A., DebRoy, S. & Horner, M. J. Package ‘RMySQL’. R documentation. http://cran.rproject.org/web/packages/RMySQL/RMySQL.Pdf (2012).Bonanomi, S. et al. Bycatch of marine megafauna collected on board midwater pair trawlers in the Adriatic Sea between 2006 and 2019. Marine Data Archive https://doi.org/10.14284/483 (2021).Open Geospatial Consortium OGC, 2017. GeoPackage Implementations [WWW Document]. OGC implementations. URL https://www.GeoPackage.org/implementations.html.Ferretti, F., Crowder, L. B. & Micheli, F. Marine Historical Ecology in Conservation: Applying the Past to Manage for the Future Vol. (ed. Kittinger, J. N., McClenachan, L., Gedan, K. B. & Blight L. K.) Ch. 4 (California Univ. Press, 2014).Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat. Sci. 70.12, 1723–1740 (2013).Article 

    Google Scholar 
    Orio, A. et al. Modelling indices of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly standardized trawl survey data. ICES J. Mar. Sci. 74.5, 1322–1333 (2017).Article 

    Google Scholar 
    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5.5, 349–359 (2012).Article 

    Google Scholar 
    Wickham, H. The tidyverse. R package ver, 1(1), 1 (2017).Bivand, R. et al. rgdal: bindings for the geospatial data abstraction library 2017. R package version 0.8-13 (2018).Pebesma, E. J. Simple features for R: Standardized support for spatial vector data. R J. 10(1), 439 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (2nd ed.). New York, NY: Springer (2016).Hijmans, R. J., Williams, E. & Vennes, C. The” geosphere” package (Version 1.2. 1) 2010. More

  • in

    Using citizen science to test for acoustic niche partitioning in frogs

    Schwartz, J. J. & Bee, M. A. in Animal communication and noise (ed Henrik Brumm) 91–132 (Springer, 2013).Wollerman, L. Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim. Behav. 57, 529–536. https://doi.org/10.1006/anbe.1998.1013 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerhardt, H. C. & Schwartz, J. J. Interspecific interactions in anuran courtship. Amphib. Biol. 2, 603–632 (1995).
    Google Scholar 
    Gröning, J. & Hochkirch, A. Reproductive interference between animal species. Q. Rev. Biol. 83, 257–282 (2008).Article 

    Google Scholar 
    Popp, J. W., Ficken, R. W. & Reinartz, J. A. Short-term temporal avoidance of interspecific acoustic interference among forest birds. Auk 102, 744–748. https://doi.org/10.1093/auk/102.4.744 (1985).Article 

    Google Scholar 
    Luther, D. A. Signaller: Receiver coordination and the timing of communication in Amazonian birds. Biol. Let. 4, 651–654 (2008).Article 

    Google Scholar 
    Brumm, H. Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J. Comp. Physiol. A. 192, 1279–1285 (2006).Article 

    Google Scholar 
    Farina, A. Soundscape ecology: principles, patterns, methods and applications. (Springer, 2013).Krause, B. L. The niche hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newsl. 6, 6–10 (1993).
    Google Scholar 
    Littlejohn, M. & Martin, A. Acoustic interaction between two species of leptodactylid frogs. Anim. Behav. 17, 785–791. https://doi.org/10.1016/S0003-3472(69)80027-8 (1969).Article 

    Google Scholar 
    Ficken, R. W., Ficken, M. S. & Hailman, J. P. Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183, 762–763. https://doi.org/10.1126/science.183.4126.762 (1974).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). Afr. Zool. 47, 60–73 (2012).Article 

    Google Scholar 
    Lima, M., Pederassi, J., Pineschi, R. & Barbosa, D. Acoustic niche partitioning in an anuran community from the municipality of Floriano, Piauí Brazil. Brazil. J. Biol. 79, 566–576 (2019).CAS 
    Article 

    Google Scholar 
    Gottsberger, B. & Gruber, E. Temporal partitioning of reproductive activity in a neotropical anuran community. J. Trop. Ecol. 1, 271–280 (2004).Article 

    Google Scholar 
    Villanueva-Rivera, L. J. Eleutherodactylus frogs show frequency but no temporal partitioning: Implications for the acoustic niche hypothesis. PeerJ 2, e496 (2014).Article 

    Google Scholar 
    Bignotte-Giró, I. & López-Iborra, G. M. Acoustic niche partitioning in five Cuban frogs of the genus Eleutherodactylus. Amphibia-Reptilia 40, 1–11 (2019).Article 

    Google Scholar 
    Hödl, W. Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia 28, 351–363 (1977).ADS 
    Article 

    Google Scholar 
    Schmidt, A. K., Römer, H. & Riede, K. Spectral niche segregation and community organization in a tropical cricket assemblage. Behav. Ecol. 24, 470–480. https://doi.org/10.1093/beheco/ars187 (2013).Article 

    Google Scholar 
    Gotelli, N. J. & Graves, G. R. Null models in ecology. (1996).Chek, A. A., Bogart, J. P. & Lougheed, S. C. Mating signal partitioning in multi-species assemblages: A null model test using frogs. Ecol. Lett. 6, 235–247 (2003).Article 

    Google Scholar 
    Tobias, J. A., Planqué, R., Cram, D. L. & Seddon, N. Species interactions and the structure of complex communication networks. Proc. Natl. Acad. Sci. 111, 1020–1025. https://doi.org/10.1073/pnas.1314337111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sugai, L. S., Llusia, D., Siqueira, T. & Silva, T. S. Revisiting the drivers of acoustic similarities in tropical anuran assemblages. Ecology, e03380 (2021).Hart, P. J. et al. Acoustic niche partitioning in two tropical wet forest bird communities. bioRxiv (2020).Duellman, W. E. & Trueb, L. Biology of amphibians. (McGraw-Hill Book Company, 1986).Wells, K. D. The social behaviour of anuran amphibians. Anim. Behav. 25, 666–693. https://doi.org/10.1016/0003-3472(77)90118-X (1977).Article 

    Google Scholar 
    Woinarski, J., Fisher, A. & Milne, D. Distribution patterns of vertebrates in relation to an extensive rainfall gradient and variation in soil texture in the tropical savannas of the Northern Territory, Australia. J. Trop. Ecol. 1, 381–398 (1999).Article 

    Google Scholar 
    Allen-Ankins, S. & Schwarzkopf, L. Spectral overlap and temporal avoidance in a tropical savannah frog community. Anim. Behav. 180, 1–11. https://doi.org/10.1016/j.anbehav.2021.07.024 (2021).Article 

    Google Scholar 
    Gerhardt, H. C. The evolution of vocalization in frogs and toads. Ann. Rev. Ecol. Syst. 1, 293–324 (1994).Article 

    Google Scholar 
    Rowley, J. J. & Callaghan, C. T. The FrogID dataset: expert-validated occurrence records of Australia’s frogs collected by citizen scientists. ZooKeys 912, 139 (2020).Article 

    Google Scholar 
    Zelick, R. & Narins, P. M. Characterization of the advertisement call oscillator in the frogEleutherodactylus coqui. J. Comp. Physiol. A. 156, 223–229 (1985).Article 

    Google Scholar 
    Schwartz, J. J. & Wells, K. D. An experimental study of acoustic interference between two species of neotropical treefrogs. Anim. Behav. 31, 181–190. https://doi.org/10.1016/S0003-3472(83)80187-0 (1983).Article 

    Google Scholar 
    Smith, M. J. & Hunter, D. Temporal and geographic variation in the advertisement call of the booroolong frog (Litoria booroolongensis: Anura: Hylidae). Ethology 111, 1103–1115 (2005).Article 

    Google Scholar 
    Baraquet, M., Grenat, P. R., Salas, N. E. & Martino, A. L. Geographic variation in the advertisement call of Hypsiboas cordobae (Anura, Hylidae). Acta ethologica 18, 79–86 (2015).Ziegler, L., Arim, M. & Bozinovic, F. Intraspecific scaling in frog calls: The interplay of temperature, body size and metabolic condition. Oecologia 181, 673–681 (2016).ADS 
    Article 

    Google Scholar 
    Navas, C. A. & Bevier, C. R. Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus. Herpetologica, 384–395 (2001).Lougheed, S. C., Austin, J. D., Bogart, J. P., Boag, P. T. & Chek, A. A. Multi-character perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. BMC Evol. Biol. 6, 1–16 (2006).Article 

    Google Scholar 
    Littlejohn, M. Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution, 234–243 (1965).Lemmon, E. M. Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution: International Journal of Organic Evolution 63, 1155–1170 (2009).Jansen, M., Plath, M., Brusquetti, F. & Ryan, M. J. Asymmetric frequency shift in advertisement calls of sympatric frogs. Amphibia-Reptilia 37, 137–152 (2016).Article 

    Google Scholar 
    Jang, Y. & Gerhardt, H. Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae). J. Evol. Biol. 19, 459–472 (2006).CAS 
    Article 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8, 714–716 (2012).Article 

    Google Scholar 
    Hopkins, J. M., Edwards, W., Laguna, J. M. & Schwarzkopf, L. An endangered bird calls less when invasive birds are calling. J. Avian Biol. 52, 1 (2021).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19, 675–690 (2017).Article 

    Google Scholar 
    Wilczynski, W. & Ryan, M. J. in Geographic Variation in Behavior (eds S. A. Foster & J. A. Endler) 234–261 (Oxford University Press, 1999).Schwartz, J. J. & Gerhardt, H. C. Spatially mediated release from auditory masking in an anuran amphibian. J. Comp. Physiol. A. 166, 37–41 (1989).Article 

    Google Scholar 
    da Silveira Vasconcelos, T. & de Cerqueira Rossa-Feres, D. Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. Phyllomedusa J. Herpetol. 7, 127–142 (2008).Herrick, S. Z., Wells, K. D., Farkas, T. E. & Schultz, E. T. Noisy neighbors: Acoustic interference and vocal interactions between two syntopic species of Ranid frogs, Rana clamitans and Rana catesbeiana. J. Herpetol. 52, 176–184. https://doi.org/10.1670/17-049 (2018).Article 

    Google Scholar 
    Rowley, J. J. et al. FrogID: citizen scientists provide validated biodiversity data on frogs of Australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
    Google Scholar 
    Koehler, J. et al. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251, 1–124 (2017).Article 

    Google Scholar 
    Tonini, J. F. R. et al. Allometric escape from acoustic constraints is rare for frog calls. Ecol. Evol. 10, 3686–3695. https://doi.org/10.1002/ece3.6155 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anstis, M. et al. Revision of the water-holding frogs, Cyclorana platycephala (Anura: Hylidae), from arid Australia, including a description of a new species. Zootaxa 4126, 451–479 (2016).Article 

    Google Scholar 
    Cardoso, G. C. Using frequency ratios to study vocal communication. Anim. Behav. 85, 1529–1532 (2013).Article 

    Google Scholar 
    Narins, P. & Zelick, R. in The evolution of the amphibian auditory system (eds B Fritzsch et al.) 511–536 (John Wiley and Sons, 1988).Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H. & Hödl, W. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proc. Natl. Acad. Sci. 108, 17058–17063 (2011).ADS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Kassambara, A. & Mundt, F. factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020). More

  • in

    Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton

    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 

    Google Scholar 
    Wietz M, Gram L, Jørgensen B, Schramm A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat Microbial Ecol. 2010;61:179–89.
    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appli Environ Microbiol. 2000;66:4237–46.
    Google Scholar 
    González JM, Moran MA. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol. 1997;63:4237–42.PubMed 
    PubMed Central 

    Google Scholar 
    Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alavi M, Miller T, Erlandson K, Schneider R, Belas R. Bacterial community associated with Pfiesteria‐like dinoflagellate cultures. Environ Microbiol. 2001;3:380–96.CAS 
    PubMed 

    Google Scholar 
    Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol. 2005;71:3483–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Res Top Stud Oceanogr. 2002;49:3017–38.CAS 

    Google Scholar 
    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol. 2001;3:304–11.CAS 
    PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 

    Google Scholar 
    Voget S, Wemheuer B, Brinkhoff T, Vollmers J, Dietrich S, Giebel H-A, et al. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J. 2015;9:371–84.CAS 
    PubMed 

    Google Scholar 
    Billerbeck S, Wemheuer B, Voget S, Poehlein A, Giebel H-A, Brinkhoff T, et al. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. Nat Microbiol. 2016;1:16063.CAS 
    PubMed 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 

    Google Scholar 
    Amin S, Hmelo L, van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 2019;13:2536–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.CAS 
    PubMed 

    Google Scholar 
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.CAS 
    PubMed 

    Google Scholar 
    Levine NM, Toole DA, Neeley A, Bates NR, Doney SC, Dacey JW. Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurements. Environ Chem. 2016;13:302–13.CAS 

    Google Scholar 
    Kiene RP. Turnover of dissolved DMSP in estuarine and shelf waters of the northern Gulf of Mexico. In Biological and environmental chemistry of DMSP and related sulfonium compounds. Boston, MA: Springer; 1996. pp. 337–49.Kiene RP, Linn LJ. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol Oceanogr. 2000;45:849–61.CAS 

    Google Scholar 
    Curson AR, Todd JD, Sullivan MJ, Johnston AW. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol. 2011;9:849–59.CAS 
    PubMed 

    Google Scholar 
    Simó R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol. 2001;16:287–94.PubMed 

    Google Scholar 
    Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 1987;326:655–61.CAS 

    Google Scholar 
    Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varaljay VA, Howard EC, Sun S, Moran MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Appl Environ Microbiol. 2010;76:609–17.CAS 
    PubMed 

    Google Scholar 
    Varaljay VA, Robidart J, Preston CM, Gifford SM, Durham BP, Burns AS, et al. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME J. 2015;9:1677.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ledyard KM, DeLong EF, Dacey JW. Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch Microbiol. 1993;160:312–8.CAS 

    Google Scholar 
    Todd JD, Kirkwood M, Newton-Payne S, Johnston AW. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 2012;6:223–6.CAS 
    PubMed 

    Google Scholar 
    Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Green RT, Johnston AW. DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol. 2011;13:427–38.CAS 
    PubMed 

    Google Scholar 
    Todd J, Curson A, Dupont C, Nicholson P, Johnston A. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol. 2009;11:1376–85.CAS 
    PubMed 

    Google Scholar 
    Todd JD, Curson AR, Nikolaidou‐Katsaraidou N, Brearley CA, Watmough NJ, Chan Y, et al. Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol. 2010;12:327–43.CAS 
    PubMed 

    Google Scholar 
    Curson A, Rogers R, Todd J, Brearley C, Johnston A. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate‐changing gas dimethylsulfide in several marine α‐proteobacteria and Rhodobacter sphaeroides. Environ Microbiol. 2008;10:757–67.CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:646.PubMed 
    PubMed Central 

    Google Scholar 
    Stoica E, Herndl GJ. Bacterioplankton community composition in nearshore waters of the NW Black Sea during consecutive diatom and coccolithophorid blooms. Aquat Sci. 2007;69:413–8.CAS 

    Google Scholar 
    Giebel HA, Brinkhoff T, Zwisler W, Selje N, Simon M. Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean. Environ Microbiol. 2009;11:2164–78.CAS 
    PubMed 

    Google Scholar 
    Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016;10:39–50.CAS 
    PubMed 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel H-A, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.CAS 
    PubMed 

    Google Scholar 
    Alonso-Gutiérrez J, Lekunberri I, Teira E, Gasol JM, Figueras A, Novoa B. Bacterioplankton composition of the coastal upwelling system of ‘Ría de Vigo’, NW Spain. FEMS Microbiol Ecol. 2009;70:493–505.PubMed 

    Google Scholar 
    Brown MV, Van De Kamp J, Ostrowski M, Seymour JR, Ingleton T, Messer LF, et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci Data. 2018;5:180130.PubMed 
    PubMed Central 

    Google Scholar 
    Ajani P, Hallegraeff G, Allen D, Coughlan A, Richardson A, Armand L, et al. Establishing baselines: a review of eighty years of phytoplankton diversity and biomass in southeastern Australia. Oceanogr Mar Biol. 2016;54:387–412.
    Google Scholar 
    Matear R, Chamberlain M, Sun C, Feng M. Climate change projection of the Tasman Sea from an eddy‐resolving ocean model. J Geophys Res Oceans. 2013;118:2961–76.
    Google Scholar 
    Ostrowski M, Seymour J, Messer L, Varkey D, Goosen K, Smith M, et al. Status of Australian marine microbial assemblages. In State and Trends of Australia’s Ocean Report, Integrated Marine Observing System (IMOS). 2020. https://doi.org/10.26198/5e16aa3e49e7f.Lynch TP, Morello EB, Evans K, Richardson AJ, Rochester W, Steinberg CR, et al. IMOS National Reference Stations: a continental-wide physical, chemical and biological coastal observing system. PloS ONE. 2014;9:e113652.PubMed 
    PubMed Central 

    Google Scholar 
    Lynch T, Roughan M, Mclaughlan D, Hughes D, Cherry D, Critchley G, et al. A national reference station infrastructure for Australia – Using telemetry and central processing to report multi-disciplinary data streams for monitoring marine ecosystem response to climate change. In: OCEANS 2008. 2008. https://doi.org/10.1109/OCEANS.2008.5151856.Appleyard SA, Abell G, Watson R. Tackling microbial related issues in cultured shellfish via integrated molecular and water chemistry approaches. Clayton: CSIRO Marine and Atmospheric Research; 2013.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 

    Google Scholar 
    Duarte CM. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–4.
    Google Scholar 
    Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:1–7.
    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environm Microbiol. 2014;16:2659–71.CAS 

    Google Scholar 
    Dadon-Pilosof A, Conley KR, Jacobi Y, Haber M, Lombard F, Sutherland KR, et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat Microbiol. 2017;2:1608–15.PubMed 

    Google Scholar 
    Lane D. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991, pp. 115–75.Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 1985;82:6955–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piredda R, Tomasino M, D’erchia A, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol Ecol. 2017;93.Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gordon A, Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools. 2010;5. http://hannonlab.cshl.edu/fastx_toolkit/.Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucl Acids Res. 2014;42:D643–8.CAS 
    PubMed 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl Acids Res. 2012;41:D597–604.PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11:1483–99.PubMed 
    PubMed Central 

    Google Scholar 
    Brinkhoff T, Giebel H-A, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008;189:531–9.CAS 
    PubMed 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981:1229–42.Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.CAS 
    PubMed 

    Google Scholar 
    emcparland. emcparland/dmspOTUs: first release. 2021. https://doi.org/10.5281/zenodo.5090864.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 

    Google Scholar 
    Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.
    Google Scholar 
    McParland EL, Levine NM. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnol Oceanogr. 2019;64:757–73.CAS 

    Google Scholar 
    Reshef DN, Reshef YA, Sabeti PC, Mitzenmacher M. An empirical study of the maximal and total information coefficients and leading measures of dependence. Ann Appl Stat. 2018;12:123–55.
    Google Scholar 
    Hammer Ø, Harper DA, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, González JM, Kiene RP. Linking a bacterial taxon to sulfur cycling in the sea: studies of the marine Roseobacter group. Geomicrobiol J. 2003;20:375–88.CAS 

    Google Scholar 
    Harris G, Nilsson C, Clementson L, Thomas D. The water masses of the east coast of Tasmania: seasonal and interannual variability and the influence on phytoplankton biomass and productivity. Mar Freshw Res. 1987;38:569–90.CAS 

    Google Scholar 
    Kiene RP, Linn LJ, González J, Moran MA, Bruton JA. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol. 1999;65:4549–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raina J-B, Tapiolas D, Willis BL, Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol. 2009;75:3492–501.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brinkmeyer R, Rappé M, Gallacher S, Medlin L. Development of clade-(Roseobacter and Alteromonas) and taxon-specific oligonucleotide probes to study interactions between toxic dinoflagellates and their associated bacteria. Eur J Phycol. 2000;35:315–29.
    Google Scholar 
    Töpel M, Pinder MI, Johansson ON, Kourtchenko O, Clarke AK, Godhe A. Complete genome sequence of novel Sulfitobacter pseudonitzschiae Strain SMR1, isolated from a culture of the marine diatom Skeletonema marinoi. J Genomics. 2019;7:7.PubMed 
    PubMed Central 

    Google Scholar 
    Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.CAS 
    PubMed 

    Google Scholar 
    Yang Q, Ge Y-M, Iqbal NM, Yang X, Zhang X-l. Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. Antonie Van Leeuwenhoek. 2021;114:1091–106.CAS 
    PubMed 

    Google Scholar 
    Ankrah NY, Lane T, Budinoff CR, Hadden MK, Buchan A. Draft genome sequence of Sulfitobacter sp. CB2047, a member of the Roseobacter clade of marine bacteria, isolated from an emiliania huxleyi bloom. Genome Announc. 2014;2:e01125–14.PubMed 
    PubMed Central 

    Google Scholar 
    Kwak M-J, Lee J-S, Lee KC, Kim KK, Eom MK, Kim BK, et al. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacternoctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol. 2014;64:3760–7.PubMed 

    Google Scholar 
    Zhang F, Fan Y, Zhang D, Chen S, Bai X, Ma X, et al. Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Environ Pollut. 2020;263:114475.CAS 
    PubMed 

    Google Scholar 
    Keller MD. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol Oceanogr. 1989;6:375–82.
    Google Scholar 
    McParland EL, Lee MD, Webb EA, Alexander H, Levine NM. DMSP synthesis genes distinguish two types of DMSP producer phenotypes. Environ Microbiol. 2021;23:1656–69.CAS 
    PubMed 

    Google Scholar 
    Galí M, Simó R. A meta‐analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox. Glob Biogeochem Cycles. 2015;29:496–515.
    Google Scholar 
    Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.PubMed 
    PubMed Central 

    Google Scholar 
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98.CAS 
    PubMed 

    Google Scholar 
    Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol. 2004;70:4692–701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 2010;329:342–5.CAS 
    PubMed 

    Google Scholar  More

  • in

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)

    Let (y_{itk}) denote the WCR count observed for trap i in week t in year k, and assume it to follow a Poisson distribution with parameter (mu _{itk})$$begin{aligned} y_{itk} | mu _{itk}, sim Poisson(mu _{itk}) end{aligned}$$
    (1)
    The intensity parameter (mu _{itk}) represents the rate of emergence for a given time period. Instead of allowing it to depend purely on time t, a phenological variable of growing degree days (GDD) is used, as warmer temperatures are required for WCR development25,26,27,28. GDDs reflect the heat accumulation and are defined as an integral of warmth above a base temperature after a given start date:$$begin{aligned} GDD = int (T(t)-T_{base})dt. end{aligned}$$
    (2)
    The above integral can be approximated by$$begin{aligned} GDD = max left( frac{T_{max} – T_{min}}{2} – T_{base}, 0 right) . end{aligned}$$
    (3)
    Here (T_{min}) is the minimum daily temperature, (T_{max}) is the maximum daily temperature, and (T_{base}) is a set base temperature. In this study, the base temperature was set to (10,^{circ })C, and the starting date was the beginning of April, which marks the start of the growing season in Austria.The rate of cumulative emergence of the WCR beetle can be described by a Gompertz function. The Gompertz function is a sigmoidal function which describes growth as being slowest at the beginning and the end of a given period and is defined as$$begin{aligned} f(z_t) = alpha exp (-beta exp (-gamma z_t)). end{aligned}$$
    (4)
    where (alpha) is the upper asymptote, (beta) is a relative starting value, (gamma) is a growth rate coefficient which affects the slope, and (z_t) are the cumulative growing degree days. In this study, one can consider the asymptote as proxy to the saturation level of WCR population growth. Lower values of (beta) suggest an earlier first emergence in the season, while lower values of (gamma) indicate a longer emergence period. To investigate whether there is an association between climate variables and the emergence dynamics, the Gompertz curve parameters were assumed to linearly depend on climate covariates. In this regression modelling framework, a spatially correlated residual structure can be added in either (alpha), (beta), and/or (gamma) if there is evidence to do so.To reflect the nature of the emergence dynamics and to preserve the shape of the increasing Gompertz curve, the parameters of the model were restricted to positive values such that (alpha >0), (beta >0), and (gamma >0). The time at inflection or period of highest growth can be obtained by solving Eq. (4) for the value of t at which the concavity of the function changes. The time at inflection is described as:$$begin{aligned} T_z^* = frac{log (beta )}{gamma } end{aligned}$$
    (5)
    The Gompertz function describes cumulative emergence. Thus to describe the marginal emergence rate, the derivative of the Gompertz function can be used instead. Consequently, as the WCR trapping data consisted of weekly counts, the rate of emergence (mu _{itk}) is better described by the log of the derivative of the Gompertz function$$begin{aligned} log (mu _{itk}) = log (alpha _{ik}) + log (gamma _{ik}) + log (beta _{ik}) + gamma _i z_{itk} – beta _{ik} exp (-gamma z_{itk}). end{aligned}$$
    (6)
    The parameters (alpha _{ik}), (beta _{ik}) and (gamma _{ik}) are site and year specific such that:$$begin{aligned}&alpha _{ik} sim N(mu _{alpha _{ik}}, tau _{alpha }) end{aligned}$$
    (7)
    $$begin{aligned}&gamma _{ik} sim N(mu _{gamma _{ik}}, tau _{gamma }) end{aligned}$$
    (8)
    $$begin{aligned}&beta _{ik} sim N(mu _{beta _{ik}}, tau _{beta }). end{aligned}$$
    (9)
    Here, (tau _{alpha }), (tau _{beta }), and (tau _{gamma }) are the precision (inverse variance) parameters of the prior distributions for (alpha), (beta) and (gamma) respectively. Moreover, the means of the distributions (mu _{alpha _{ik}}), (mu _{beta _{ik}}), and (mu _{gamma _{ik}}) can be expressed as functions of known covariates:$$begin{aligned} mu _{alpha _{ik}}= & {} a_{0} + {mathbf {w}}^T X_{alpha _{ik}}, end{aligned}$$
    (10)
    $$begin{aligned} mu _{beta _{ik}}= & {} b_{0}, end{aligned}$$
    (11)
    $$begin{aligned} mu _{gamma _{ik}}= & {} g_{0} + {mathbf {u}}^T X_{gamma _{ik}}. end{aligned}$$
    (12)
    Here (a_{0}) is the intercept, ({mathbf {w}}) is a vector of the regression coefficients, and (X_{alpha _{ik}}) are the location and year specific covariates. The predictors used in the regression of (mu _{alpha _{ik}}) are the average winter temperature, the precipitation sum during winter, the year, the percentage of the agricultural area per Austrian municipality used for cultivating maize crops (maize), and the corresponding centred coordinates of the trap locations; x, y, and their functions (x^2), (y^2), and xy. The parameter (g_{0}) is the intercept for the regression of (mu _{gamma _{ik}}), and u is the corresponding regression coefficient. The predictor used for (mu _{gamma _ik}) is the average yearly spring temperature.The intercepts and regression coefficients ((mathbf {w}) and (mathbf {u})) were given non-informative normal priors N(0, 0.01). The precision parameters (tau _{alpha }), (tau _{beta }) and (tau _{gamma }) were assigned prior distributions Gamma(0.01, 0.01).The model was fitted using WinBUGS through the R2WinBUGS package in R29,30,31. The model was run for 20000 iterations, with a burn-in of 10000 iterations, and a thinning rate of five. Convergence was determined by visual assessments of trace plots and marginal posterior densities. More

  • in

    Persistence of the invasive bird-parasitic fly Philornis downsi over the host interbreeding period in the Galapagos Islands

    Denlinger, D. L. Dormancy in tropical insects. Annu. Rev. Entomol. 31, 239–264. https://doi.org/10.1146/annurev.en.31.010186.001323 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moreau, R. E. The breeding seasons of African birds—1. Land birds. Ibis 92, 223–267. https://doi.org/10.1111/j.1474-919X.1950.tb01750.x (1950).Article 

    Google Scholar 
    Fogden, M. P. L. Seasonality and population dynamics of equatorial forest birds in Sarawak. Ibis 114, 307–343. https://doi.org/10.1111/j.1474-919X.1972.tb00831.x (1972).Article 

    Google Scholar 
    Karr, J. R. Resource availability, and community diversity in tropical bird communities. Am. Nat. 110, 973–994. https://doi.org/10.1086/283121 (1976).Article 

    Google Scholar 
    Oppel, S. et al. The effects of rainfall on different components of seasonal fecundity in a tropical forest passerine. Ibis 155, 464–475. https://doi.org/10.1111/ibi.12052 (2013).Article 

    Google Scholar 
    Shaw, P. Rainfall, leafing phenology and sunrise time as potential Zeitgeber for the bimodal, dry season laying pattern of an African rain forest tit (Parus fasciiventer). J. Ornithol. 158, 263–275. https://doi.org/10.1007/s10336-016-1395-6 (2017).Article 

    Google Scholar 
    Withers, P. C. & Cooper, C. E. Metabolic depression: A historical perspective. In Aestivation: Molecular and Physiological Aspects, Progress in Molecular and Subcellular Biology (eds Navas, C. A. & Carvalho, J. E.) 1–23 (Springer-Verlag, 2010).
    Google Scholar 
    Fletcher, B. S., Pappas, S. & Kapatos, E. Changes in ovaries of olive fly (Dacus-oleae-(Gmelin)) during summer, and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 3, 99–107. https://doi.org/10.1111/j.1365-2311.1978.tb00908.x (1978).Article 

    Google Scholar 
    Braby, M. F. Reproductive seasonality in tropical satyrine butterflies—Strategies for the dry season. Ecol. Entomol. 20, 5–17. https://doi.org/10.1111/j.1365-2311.1995.tb00423.x (1995).Article 

    Google Scholar 
    Goehring, L. & Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27, 674–685. https://doi.org/10.1046/j.1365-2311.2002.00454.x (2002).Article 

    Google Scholar 
    Valera, F., Casas-Crivillé, A. & Hoi, H. Interspecific parasite exchange in a mixed colony of birds. J. Parasitol. 89, 245–250. https://doi.org/10.1645/0022-3395(2003)089[0245:IPEIAM]2.0.CO;2 (2003).Article 
    PubMed 

    Google Scholar 
    Grimaldi, D. The bird flies, genus Carnus: Species revision, generic relationships, and a fossil Meoneura in amber (Diptera: Carnidae). Am. Mus. Novit. 3190, 1–30 (1997).MathSciNet 

    Google Scholar 
    Valera, F., Casas-Crivillé, A. & Calero-Torralbo, M. A. Prolonged diapause in the ectoparasite Carnus hemapterus (Diptera: Cyclorrapha, Acalyptratae)—How frequent is it in parasites?. Parasitology 133, 179–186. https://doi.org/10.1017/S0031182006009899 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sabrosky, C. W., Bennett, G. F. & Whitworth, T. L. Bird blow flies (Protocalliphora) in North America (Diptera: Calliphoridae), with notes on the Palearctic species. https://library.si.edu/digital-library/book/birdblowfliespro00sabr (Smithsonian Institute Press, 1989).Dodge, H. R. & Aitken, T. H. G. Philornis flies from Trinidad (Diptera: Muscidae). J. Kansas Entomol. Soc. 41, 134–154 (1968).
    Google Scholar 
    Couri, M. S. Notes and descriptions of Philornis flies (Diptera, Muscidae, Cyrtoneurinininae). Rev. Bras. Entomol. 28, 473–490 (1984).
    Google Scholar 
    Couri, M. S. Myiasis caused by obligatory parasites. Ia. Philornis Meinert (Muscidae). In Myiasis in Man and Animals in the Neotropical Region (eds Guimaraes, J. H. & Papavero, N.) 44–70 (Editora Pleiade, 1999).
    Google Scholar 
    Silvestri, L., Antoniazzi, L. R., Couri, M. S., Monje, L. D. & Beldomenico, P. M. First record of the avian ectoparasite Philornis downsi Dodge & Aitken, 1968 (Diptera: Muscidae) in Argentina. Syst. Parasitol. 80, 137–140. https://doi.org/10.1007/s11230-011-9314-y (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bulgarella, M. et al. Philornis downsi, an avian nest parasite invasive to the Galápagos Islands, in mainland Ecuador. Ann. Entomol. Soc. Am. 108, 242–250. https://doi.org/10.1093/aesa/sav026 (2015).Article 

    Google Scholar 
    Kleindorfer, S. & Dudaniec, R. Y. Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin finch hosts. BMC Zool. 1, 1. https://doi.org/10.1186/s40850-016-0003-9 (2016).Article 

    Google Scholar 
    Fessl, B., Heimpel, G. E. & Causton, C. E. Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: Colonization history, adaptations to novel ecosystems, and conservation challenges. In Disease Ecology: Social and Ecological Interactions in the Galapagos Islands (ed. Parker, P. G.) 213–266 (Springer, 2018). https://doi.org/10.1007/978-3-319-65909-1_9DO.Chapter 

    Google Scholar 
    McNew, S. M. & Clayton, D. H. Alien invasion: biology of Philornis flies highlighting Philornis downsi, an introduced parasite of Galapagos birds. Annu. Rev. Entomol. 63, 369–387. https://doi.org/10.1146/annurev-ento-020117-043103 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Anchundia, D. & Fessl, B. The conservation status of the Galapagos Martin, Progne modesta: Assessment of historical records and results of recent surveys. Bird Conserv. Int. 31, 129–138. https://doi.org/10.1017/S095927092000009X (2021).Article 

    Google Scholar 
    Coloma, A., Anchundia, D., Piedrahita, P., Pike, C. & Fessl, B. Observations on the nesting of the Galapagos Dove, Zenaida galapagoensis, in Galapagos, Ecuador. Galapagos Res. 69, 34–38 (2020).
    Google Scholar 
    Lack, D. Darwin’s Finches (Cambridge University Press, 1947).
    Google Scholar 
    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton University Press, 1986).
    Google Scholar 
    Bulgarella, M., Quiroga, M. A. & Heimpel, G. E. Additive negative effects of Philornis nest parasitism and small and declining Neotropical bird populations. Bird Conserv. Int. 29, 339–360. https://doi.org/10.1017/S0959270918000291 (2019).Article 

    Google Scholar 
    Causton, C. E. et al. Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS ONE 14(10), e0224125. https://doi.org/10.1371/journal.pone.0224125 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, E. J. & Wall, R. Age-grading adult insects: A review of techniques. Physiol. Entomol. 24, 1–10. https://doi.org/10.1046/j.1365-3032.1999.00104.x (1999).Article 

    Google Scholar 
    Lahuatte, P. F., Lincango, M. P., Heimpel, G. E. & Causton, C. E. Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J. Insect Sci. 16, 84. https://doi.org/10.1093/jisesa/iew064 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moon, R. D. & Krafsur, E. S. Pterin quantity and gonotrophic stage as indicators of age in Musca autumnalis (Diptera: Muscidae). J. Med. Entomol. 32, 673–684. https://doi.org/10.1093/jmedent/32.5.673 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Butler, S. M. et al. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med. Vet. Entomol. 23, 426–442. https://doi.org/10.1111/j.1365-2915.2009.00831.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mail, T. S. & Lehane, M. J. Characterisation of pigments in the head capsule of the adult stablefly Stomoxys calcitrans. Entomol. Exp. Appl. 46, 125–131. https://doi.org/10.1111/j.1570-7458.1988.tb01102.x (1988).Article 

    Google Scholar 
    Trueman, M. & D’Ozouville, N. Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res. 67, 26–37 (2010).
    Google Scholar 
    Stramma, L. et al. Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Sci. 12, 861–873. https://doi.org/10.5194/os-12-861-2016 (2016).ADS 
    Article 

    Google Scholar 
    Martin, N. J. et al. Seasonal and ENSO influences on the stable isotopic composition of Galapagos precipitation. J. Geophys. Res-Atmos. 123, 261–275. https://doi.org/10.1002/2017JD027380 (2018).ADS 
    Article 

    Google Scholar 
    Grant, P. R., Grant, B. R., Keller, L. F. & Petren, K. Effects of El Niño events on Darwin’s finch productivity. Ecology 81, 2442–2457. https://doi.org/10.2307/177466 (2000).Article 

    Google Scholar 
    Sage, R. et al. Environmentally cued hatching in the bird parasite Philornis downsi (Diptera: Muscidae). Entomol. Exp. Appl. 166, 752–760. https://doi.org/10.1111/eea.12721 (2018).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Lack, D. Breeding seasons in the Galapagos. Ibis 92, 268–278. https://doi.org/10.1111/j.1474-919X.1950.tb01751.x (1950).Article 

    Google Scholar 
    Grant, P. R. & Boag, P. T. Rainfall on the Galapagos and the demography of Darwin’s Finches. Auk 97, 227–244 (1980).Article 

    Google Scholar 
    Peck, S. B. Beetles of the Galápagos Islands, Ecuador: Evolution, Ecology, and Diversity (Insecta: Coleoptera) (NRC Research Press, 2006).
    Google Scholar 
    Grant, P. R. & Grant, B. R. The breeding and feeding characteristics of Darwin’s Finches on Isla Genovesa, Galapagos. Ecol. Monogr. 50, 381–410. https://doi.org/10.2307/2937257 (1980).Article 

    Google Scholar 
    Boag, P. T. & Grant, P. R. Darwin Finches (Geospiza) on Isla Daphne Major, Galapagos—Breeding and feeding ecology in a climatically variable environment. Ecol. Monogr. 54, 463–489. https://doi.org/10.2307/1942596 (1984).Article 

    Google Scholar 
    Schluter, D. Feeding correlates of breeding and social organization in two Galapagos Finches. Auk 101, 59–68. https://doi.org/10.1093/auk/101.1.59 (1984).Article 

    Google Scholar 
    Hau, M., Wikelski, M., Gwinner, H. & Gwinner, E. 2004 Timing of reproduction in a Darwin’s finch: Temporal opportunism under spatial constraints. Oikos 106, 489–500 (2004).Article 

    Google Scholar 
    Pike, C. L. et al. Behavior of the avian parasite Philornis downsi (Diptera: Muscidae) in and near host nests in the Galapagos Islands. J. Insect Behav. https://doi.org/10.1007/s10905-021-09789-7 (2021).Article 

    Google Scholar 
    Heleno, R. H., Olesen, J. M., Nogales, M., Vargas, P. & Traveset, A. Seed dispersal network in the Galapagos and the consequences of alien plant invasions. Proc. R. Soc. B. 280, 20122112. https://doi.org/10.1098/rspb.2012.2112 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Traveset, A., Chamorro, S., Olesen, J. M. & Heleno, R. Space, time and aliens: charting the dynamic structure of Galapagos pollination networks. AoB PLANTS 7, plv068. https://doi.org/10.1093/aobpla/plv068 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ervin, S. Nesting behavior of the large-billed flycatcher on Isla Santa Cruz. Noticias de Galapagos 51, 17–20 (1992).
    Google Scholar 
    Lincango, P. et al. Interactions between the avian parasite, Philornis downsi (Diptera: Muscidae) and the Galapagos Flycatcher, Myiarchus magnirostris Gould (Passeriformes: Tyrannidae). J. Wildl. Dis. 51, 907–910. https://doi.org/10.7589/2015-01-025 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dudaniec, R. Y., Gardner, M. G., Donnellan, S. & Kleindorfer, S. Genetic variation in the invasive parasite, Philornis downsi (Diptera: Muscidae) on the Galapagos archipelago. BMC Ecol. 8, 13. https://doi.org/10.1186/1472-6785-8-13 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cimadom, A. et al. Darwin’s finches treat their feathers with a natural repellent. Sci. Rep. 6, 34559. https://doi.org/10.1038/srep34559 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Common, L. K., Dudaniec, R. Y., Colombelli-Negrel, D. & Kleindorfer, S. Taxonomic shifts in Philornis larval behavior and rapid changes in Philornis downsi Dodge & Aitken (Diptera: Muscidae), an invasive avian parasite on the Galapagos Islands. InTech Open https://doi.org/10.5772/intechopen.88854 (2019).Article 

    Google Scholar 
    Common, L. K., O’Connor, J. A., Dudaniec, R. Y., Peters, K. J. & Kleindorfer, S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin’s finches. J. Evol. Biol. 33, 524–533. https://doi.org/10.1111/jeb.13588 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieckhoff, C., Theobald, J. C., Waeckers, F. L. & Heimpel, G. E. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field. Ecol. Evol. 4, 1739–1750. https://doi.org/10.1002/ece3.1023 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papaj, D. R. Ovarian dynamics and host use. Annu. Rev. Entomol. 45, 423–448. https://doi.org/10.1146/annurev.ento.45.1.423 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barton Browne, L., van Gerwen, A. C. M. & Williams, K. L. Oocyte resorption during ovarian development in the blowfly Lucilia cuprina. J. Insect Physiol. 25, 147–153. https://doi.org/10.1016/0022-1910(79)90093-3 (1979).Article 

    Google Scholar 
    Venkatesh, K. & Morrison, P. E. Some aspects of oogenesis in the stable fly Stomoxys calcitrans (Diptera, Muscidae). J. Insect Physiol. 26, 711–715. https://doi.org/10.1016/0022-1910(80)90045-1 (1980).Article 

    Google Scholar 
    Spradbery, J. P. & Schweizer, G. Oosorption during ovarian development in the screw-worm fly, Chrysomya bezziana. Entomol. Exp. Appl. 30, 209–214. https://doi.org/10.1111/j.1570-7458.1981.tb03102.x (1981).Article 

    Google Scholar 
    Curry, R. L. & Grant, P. R. Demography of the cooperatively breeding Galapagos mockingbird, Nesomimus parvulus, in a climatically variable environment. J. Anim. Ecol. 58, 441–463. https://doi.org/10.2307/4841 (1989).Article 

    Google Scholar 
    Calero-Torralbo, M. A. & Valera, F. Synchronization of host-parasite cycles by means of diapause: Host influence and parasite response to involuntary host shifting. Parasitol. 135, 1343–1352. https://doi.org/10.1017/S0031182008004885 (2008).CAS 
    Article 

    Google Scholar 
    Larimore, R. W. Synchrony of cliff swallow nesting and development of the tick Ixodes baergi. Southwest. Nat. 32, 121–126 (1987).Article 

    Google Scholar 
    Bulgarella, M. & Heimpel, G. E. Host range and community structure of bird parasites in the genus Philornis (Diptera: Muscidae) on the Island of Trinidad. Ecol. Evol. 5, 3695–3703. https://doi.org/10.1002/ece3.1621 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Common, L. K. et al. Avian vampire fly (Philornis downsi) mortality differs across Darwin’s finch host species. Sci. Rep. 11, 15832. https://doi.org/10.1038/s41598-021-94996-7 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendonca, E. & Couri, M. S. New associations between Philornis Meinert (Diptera, Muscidae) and Thamnophilidae (Aves, Passeriformes). Revta. Bras. Zool. 16, 1223–1225 (1999).Article 

    Google Scholar 
    Di Giacomo, A. G. Aves de la Reserva El Bagual. Historia natural y paisaje de la Reserva El Bagual, provincia de Formosa, Argentina. Inventario de la fauna de vertebrados y de la flora vascular de un área del Chaco Húmedo (eds. Di Giacomo, A. G. & Krapovickas, S. F.). Temas de Naturaleza y Conservación 4, 203–465 (Aves Argentinas/AOP, 2005).Koop, J. A. H., Causton, C. E., Bulgarella, M., Cooper, E. & Heimpel, G. E. Population structure of a nest parasite of Darwin’s finches within its native and invasive ranges. Conserv. Genet. 22, 11–22. https://doi.org/10.1007/s10592-020-01315-0 (2021).Article 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x (2004).Article 

    Google Scholar  More

  • in

    Avian predators taste reject mimetic prey in relation to their signal reliability

    Dall, S. R. X. & Johnstone, R. A. Managing uncertainty: Information and insurance under the risk of starvation. Philos. Trans. R. Soc. Lond. B 357, 1519–1526 (2002).
    Article 

    Google Scholar 
    Balogh, A. C. V., Gamberale-Stille, G. & Leimar, O. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim. Behav. 76, 1591–1599 (2008).Article 

    Google Scholar 
    Barnett, C. A., Bateson, M. & Rowe, C. Better the devil you know: Avian predators find variation in prey toxicity aversive. Biol. Lett. 10, 20140533 (2014).Article 

    Google Scholar 
    Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).Book 

    Google Scholar 
    Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).Article 

    Google Scholar 
    Sherratt, T. N., Speed, M. S. & Ruxton, G. D. Natural selection on unpalatable species imposed by state-dependent foraging behaviour. J. Theor. Biol. 228, 217–226 (2004).MathSciNet 
    Article 
    ADS 

    Google Scholar 
    Gamberale-Stille, G. & Guilford, T. Automimicry destabilizes aposematism: Predator sample-and-reject behaviour may provide a solution. Proc. R. Soc. Lond. B 271, 2621–2625 (2004).Article 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350 (2006).Article 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Automimic frequency influences the foraging decisions of avian predators on aposematic prey. Anim. Behav. 74, 1563–1572 (2007).Article 

    Google Scholar 
    Brower, J. V. Z. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94, 271–282 (1960).Article 

    Google Scholar 
    Huheey, J. E. Studies in warning coloration and mimicry VIII. Further evidence for a frequency-dependent model of predation. J. Herpetol. 14, 223–230 (1980).Avery, M. L. Application of mimicry theory to bird damage control. J. Wildl. Manag. 49, 1116–1121 (1985).Article 

    Google Scholar 
    Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).Article 

    Google Scholar 
    Rowland, H. M., Ihalainen, E., Lindström, L., Mappes, J. & Speed, M. P. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64–67 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).CAS 
    Article 

    Google Scholar 
    Jones, R. S., Davis, S. C. & Speed, M. P. Defence cheats can degrade protection of chemically defended prey. Ethology 119, 52–57 (2013).Article 

    Google Scholar 
    Guilford, T. “Go-slow” signalling and the problem of automimicry. J. Theor. Biol. 170, 311–316 (1994).Article 
    ADS 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol. 60, 550–555 (2006).Article 

    Google Scholar 
    Chatelain, M., Halpin, C. G. & Rowe, C. Ambient temperature influences birds’ decisions to eat toxic prey. Anim. Behav. 86, 733–740 (2013).CAS 
    Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    Yamazaki, Y., Pagani-Núñez, E., Sota, T. & Barnett C. R. A. The truth is in the detail: predators attack aposematic prey less intensely than other prey types. Biol. J. Linn. Soc. 131, 332–343 (2020).Valkonnen, J. K. et al. Variation in predator species abundance can cause variable selection pressure on warning signalling prey. Ecol. Evol. 2, 1971–1976 (2011).Article 

    Google Scholar 
    Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2014).Article 

    Google Scholar 
    Bibby, C. J., Burgess, N. D., Hill, D. A. &. Mustoe S. H. Bird Census Techniques (2nd Edition). (Academic Press, London, 2000).Tsujimoto, D., Lin, C.-H., Kurihara, N. & Barnett, C. R. A. Citizen science in the class-room: the consistency of student collected data and its value in ecological hypothesis testing. Ornithological Sci. 18, 39–47 (2019).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48 (2015).Article 

    Google Scholar 
    Rainey, C. Dealing with separation in logistic regression models. Polit. Anal. 24, 339–355 (2016).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth. Ecol. Evol. 4, 133–142 (2012).Article 

    Google Scholar 
    Hothorn, T,. Bretz, F. & Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical. J. 50, 346–363 (2008).Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Barnett, C. R. A., Ringhofer, M. & Suzuki, T. N. Differences in predatory behavior among three bird species when attacking chemically defended and undefended prey. J. Ethol. 39, 29–37 (2021).Article 

    Google Scholar 
    Carroll, J. & Sherratt, T. N. A direct comparison of the effectiveness of two anti-predator strategies under field conditions. J. Zool. 291, 279–285 (2013).Article 

    Google Scholar 
    Krebs, C. J. Ecological Methodology (2nd Edition). (Benjamin/Cummings, Menlo Park, CA, 1999).Oksanen, J. vegan: Community Ecology Package. (2020).R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL http://www.Rproject.org (2017).Marples, N. M., Speed, M. P. & Thomas, R. J. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol. J. Linn. Soc. 125, 1–13 (2018).Article 

    Google Scholar 
    Boyden, T. C. Butterfly palatability and mimicry: experiments with anolis lizards. Evolution 30, 73–81 (1976).Article 

    Google Scholar 
    Järvi, T., Sillén-Tullberg, B. & Wiklund, C. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the Great Tit Parus major. Oikos 36, 267–272 (1981).Wiklund, C. & Järvi, T. Survival of distasteful insects after being attacked by naïve birds: a reappraisal of aposematic coloration evolving through individual selection. Evolution 36, 998–1002 (1982).Article 

    Google Scholar 
    Pinheiro, C. E. G. & Campos, V. C. Do rufous-tailed jacamars (Galbula ruficauda) play with aposematic butterflies. Ornitol. Neotrop. 24, 1–3 (2013).
    Google Scholar 
    Halpin, C. G. & Rowe, C. The effect of distastefulness and conspicuous coloration on post-attack rejection behaviour of predators and survival of prey. Biol. J. Linn. Soc. 120, 236–244 (2017).
    Google Scholar 
    Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67, 411–415 (1985).Article 
    ADS 

    Google Scholar 
    Fisher, R. A. The Genetical Theory of Natural Selection (Clarenden Press, 1930).Book 

    Google Scholar 
    Chai, P. Field observations and feeding experiments on the responses of rufous-tailed jacamars butterflies in a tropical rainforest. Biol. J. Linn. Soc. 29, 161–189 (1986).Article 

    Google Scholar 
    Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C. & Lin, C.-P. Too hard to swallow: A secret secondary defence of an aposematic insect. J. Exp. Biol. 221, jeb172486 (2018).PubMed 

    Google Scholar 
    Summers, K., Speed, M. P., Blount, J. D. & Stuckert, A. M. M. Are aposematic signals honest? A review. J. Evol. Biol. 28, 1583–1599 (2015).CAS 
    Article 

    Google Scholar 
    Holen, Ø. H. Disentangling taste and toxicity in aposematic prey. Proc. R. Soc. B 280, 20122588 (2013).Article 

    Google Scholar 
    Speed, M. P. & Franks, D. W. Antagonistic evolution in an aposematic predator-prey system. Evolution 68, 2996–3007 (2014).Article 

    Google Scholar  More